1
|
Yaeger MJ, Leuenberger L, Shaikh SR, Gowdy KM. Omega-3 Fatty Acids and Chronic Lung Diseases: A Narrative Review of Impacts from Womb to Tomb. J Nutr 2025; 155:453-464. [PMID: 39424068 PMCID: PMC12002217 DOI: 10.1016/j.tjnut.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
The lungs are a mucosal organ constantly exposed to potentially harmful compounds and pathogens. Beyond their role in gas exchange, they must perform a well-orchestrated protective response against foreign invaders. The lungs identify these foreign compounds, respond to them by eliciting an inflammatory response, and restore tissue homeostasis after inflammation to ensure the lungs continue to function. In addition, lung function can be affected by genetics, environmental exposures, and age, leading to pulmonary diseases that infringe on quality of life. Recent studies indicate that diet can influence pulmonary health including the incidence and/or severity of lung diseases. Specifically, long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) have gained attention because of their potential to reduce inflammation and promote resolution of inflammation. Docosahexaenoic acid and eicosapentaenoic acid are 2 potentially beneficial n-3 PUFAs primarily acquired through dietary intake. Here we review current literature examining the role of n-3 PUFAs and the biological mechanisms by which these fatty acids alter the incidence and pathologies of chronic lung diseases including asthma, chronic obstructive pulmonary disease, and interstitial lung disease. We also highlight the role of n-3 PUFAs in vulnerable populations such as pre/postnatal children, those with obesity, and the elderly. Lastly, we review the impact of n-3 PUFA intake and supplementation to evaluate if increasing consumption can mitigate mechanisms driving chronic lung diseases.
Collapse
Affiliation(s)
- Michael J Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| | - Laura Leuenberger
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
2
|
Pennington ER, Virk R, Bridges MD, Bathon BE, Beatty N, Gray RS, Kelley P, Wassall SR, Manke J, Armstrong M, Reisdorph N, Vanduinen R, Fenton JI, Gowdy KM, Shaikh SR. Docosahexaenoic Acid Controls Pulmonary Macrophage Lipid Raft Size and Inflammation. J Nutr 2024; 154:1945-1958. [PMID: 38582385 PMCID: PMC11217028 DOI: 10.1016/j.tjnut.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) controls the biophysical organization of plasma membrane sphingolipid/cholesterol-enriched lipid rafts to exert anti-inflammatory effects, particularly in lymphocytes. However, the impact of DHA on the spatial arrangement of alveolar macrophage lipid rafts and inflammation is unknown. OBJECTIVES The primary objective was to determine how DHA controls lipid raft organization and function of alveolar macrophages. As proof-of-concept, we also investigated DHA's anti-inflammatory effects on select pulmonary inflammatory markers with a murine influenza model. METHODS MH-S cells, an alveolar macrophage line, were treated with 50 μM DHA or vehicle control and were used to study plasma membrane molecular organization with fluorescence-based methods. Biomimetic membranes and coarse grain molecular dynamic (MD) simulations were employed to investigate how DHA mechanistically controls lipid raft size. qRT-PCR, mass spectrometry, and ELISAs were used to quantify downstream inflammatory signaling transcripts, oxylipins, and cytokines, respectively. Lungs from DHA-fed influenza-infected mice were analyzed for specific inflammatory markers. RESULTS DHA increased the size of lipid rafts while decreasing the molecular packing of the MH-S plasma membrane. Adding a DHA-containing phospholipid to a biomimetic lipid raft-containing membrane led to condensing, which was reversed with the removal of cholesterol. MD simulations revealed DHA nucleated lipid rafts by driving cholesterol and sphingomyelin into rafts. Downstream of the plasma membrane, DHA lowered the concentration of select inflammatory transcripts, oxylipins, and IL-6 secretion. DHA lowered pulmonary Il6 and Tnf-α mRNA expression and increased anti-inflammatory oxylipins of influenza-infected mice. CONCLUSIONS The data suggest a model in which the localization of DHA acyl chains to nonrafts is driving sphingomyelin and cholesterol molecules into larger lipid rafts, which may serve as a trigger to impede signaling and lower inflammation. These findings also identify alveolar macrophages as a target of DHA and underscore the anti-inflammatory properties of DHA for lung inflammation.
Collapse
Affiliation(s)
- Edward Ross Pennington
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, NC, United States
| | - Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, NC, United States
| | - Meagan D Bridges
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, NC, United States
| | - Brooke E Bathon
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, NC, United States
| | - Nari Beatty
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, NC, United States
| | - Rosemary S Gray
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, NC, United States
| | - Patrick Kelley
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel Vanduinen
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Kymberly M Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, the Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, NC, United States.
| |
Collapse
|
3
|
Wu S, Zhang X, Wang Y, Zheng H, Zhu M. Lipid Metabolism Reprogramming of Immune Cells in Acne: An Update. Clin Cosmet Investig Dermatol 2023; 16:2391-2398. [PMID: 37675181 PMCID: PMC10478778 DOI: 10.2147/ccid.s424478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
Acne vulgaris is one of the most widespread skin conditions and the main reason for visiting a dermatologist. Inflammatory response and abnormal infiltrations of immune cells are the main pathogenesis of acne. The increased lipid is the prerequisite for the acne, and the perturbation of lipid composition and content is consistent with the severity of acne. Furthermore, the increased lipid production not only contributes to the occurrence and development of acne, but also sensitizes the function of immune cells. The lipid metabolic dysfunction aggravates the severity of local tissue and provides pro-inflammatory-cytokine cues, which indicates the crucial roles of lipid metabolism on immune cells. Recent advances have demonstrated the lipid metabolism reprogramming of various immune cells in acne lesion. The abnormal lipid accumulation, lipolysis, and fatty acid oxidation lead to the activation and differentiation of immune cells, which promotes the pro-inflammatory cytokines production. Thus, this review discusses the emerging role of lipid metabolism reprogramming of immune cells in the progress of acne and aims to constitute food for others' projects involved in acne research.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Dermatology, Key Laboratory of Vascular Biology and Translational Medicine, Education Department of Hunan Province, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Xi Zhang
- Department of Physical Education and Health Promotion, Hunan University of Technology and Business, Changsha, Hunan, People’s Republic of China
| | - Yun Wang
- Department of Dermatology, Key Laboratory of Vascular Biology and Translational Medicine, Education Department of Hunan Province, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Huie Zheng
- Department of Dermatology, Key Laboratory of Vascular Biology and Translational Medicine, Education Department of Hunan Province, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Mingfang Zhu
- Department of Dermatology, Key Laboratory of Vascular Biology and Translational Medicine, Education Department of Hunan Province, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
4
|
Endo Y, Kanno T, Nakajima T. Fatty acid metabolism in T-cell function and differentiation. Int Immunol 2022; 34:579-587. [PMID: 35700102 DOI: 10.1093/intimm/dxac025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/12/2022] [Indexed: 01/07/2023] Open
Abstract
Immunometabolism has recently emerged as a field of study examining the intersection between immunology and metabolism. Studies in this area have yielded new findings on the roles of a diverse range of metabolic pathways and metabolites, which have been found to control many aspects of T-cell biology, including cell differentiation, function and fate. A particularly important finding has been the discovery that to meet the energy requirements associated with their proliferation, activation and specific functions, T cells switch their metabolic signatures during differentiation. For example, whereas the induction of de novo fatty acid biosynthesis and fatty acid uptake programs are required for antigen-stimulation-induced proliferation and differentiation of effector T cells, fatty acid catabolism via β-oxidation is essential for the generation of memory T cells and the differentiation of regulatory T cells. In this review, we discuss recent advances in our understanding of the metabolism in different stages of T cells and how fatty acid metabolism in these cells controls their specific functions.
Collapse
Affiliation(s)
- Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan.,Department of Omics Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
5
|
Pompura SL, Hafler DA, Dominguez-Villar M. Fatty Acid Metabolism and T Cells in Multiple Sclerosis. Front Immunol 2022; 13:869197. [PMID: 35603182 PMCID: PMC9116144 DOI: 10.3389/fimmu.2022.869197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Cellular metabolic remodeling is intrinsically linked to the development, activation, differentiation, function, and survival of T cells. T cells transition from a catabolic, naïve state to an anabolic effector state upon T cell activation. Subsequently, specialization of T cells into T helper (Th) subsets, including regulatory T cells (Treg), requires fine-tuning of metabolic programs that better support and optimize T cell functions for that particular environment. Increasingly, studies have shown that changes in nutrient availability at both the cellular and organismal level during disease states can alter T cell function, highlighting the importance of better characterizing metabolic-immune axes in both physiological and disease settings. In support of these data, a growing body of evidence is emerging that shows specific lipid species are capable of altering the inflammatory functional phenotypes of T cells. In this review we summarize the metabolic programs shown to support naïve and effector T cells, and those driving Th subsets. We then discuss changes to lipid profiles in patients with multiple sclerosis, and focus on how the presence of specific lipid species can alter cellular metabolism and function of T cells.
Collapse
Affiliation(s)
- Saige L. Pompura
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
6
|
Liddle DM, Hutchinson AL, Monk JM, Power KA, Robinson LE. Dietary ω-3 polyunsaturated fatty acids modulate CD4 + T-cell subset markers, adipocyte antigen-presentation potential, and NLRP3 inflammasome activity in a coculture model of obese adipose tissue. Nutrition 2021; 91-92:111388. [PMID: 34298481 DOI: 10.1016/j.nut.2021.111388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Chronic low-grade inflammation in obesity is partly driven by inflammatory cross talk between adipocytes and interferon-γ-secreting CD4+ T-helper (Th)1 cells, a process we have shown may be mitigated by long-chain (LC) ω-3 polyunsaturated fatty acids (PUFAs). Our objective was to study pivotal mediators of interactions between Th1 cells and adipocytes as potential mechanisms underlying the antiinflammatory effects of LC ω-3 PUFAs. METHODS Using an in vitro model, 3T3-L1 adipocytes were cocultured with purified splenic CD4+ T cells from C57BL/6 mice consuming one of two isocaloric high-fat (HF) diets (60% kcal fat), containing either 41.2% kcal from lard + 18.7% kcal from corn oil (control, HF) or 41.2% kcal from lard + 13.4% kcal from corn oil + 5.3% kcal from fish oil (HF+FO). Cocultures were stimulated for 48 h with lipopolysaccharide (10 ng/mL). RESULTS Compared with HF cocultures, HF+FO reduced Th1-cell markers (including secreted interferon-γ) and increased Th2-cell markers, consistent with reduced expression of genes related to major histocompatibility complex II (P < 0.05). HF+FO also blunted markers of priming and activity of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome (P < 0.05). In confirmatory work, 3T3-L1 adipocyte pretreatment with the LC ω-3 PUFA docosahexaenoic acid (100 μM, 24 h) blunted interferon-γ-induced (5 ng/mL, 24 h) expression of genes related to major histocompatibility complex II and priming and activity markers of the NLRP3 inflammasome compared with control (P < 0.05). CONCLUSIONS Inflammatory interactions between CD4+ T cells and adipocytes may provide a target for LC ω-3 PUFAs to mitigate obesity-associated inflammation.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Krista A Power
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
7
|
The Effect of Lipid Metabolism on CD4 + T Cells. Mediators Inflamm 2021; 2021:6634532. [PMID: 33505215 PMCID: PMC7806377 DOI: 10.1155/2021/6634532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
CD4+ T cells play a vital role in the adaptive immune system and are involved in the pathogenesis of many diseases, including cancer, autoimmune diseases, and chronic inflammation. As an important mechanism for energy storage, a lot of researches have clarified that metabolism imbalance interacts with immune disorder, and one leads to the other. Lipid metabolism has close relationship with CD4+ T cells. In this review, we discuss fatty acid, cholesterol, prostaglandin, and phospholipid metabolism in CD4+ T cell subsets. Fatty acid β-oxidation (FAO) is activated in Th17 cell to support the proinflammatory function. Cholesterol promotes Th1, Th2, and Treg cell differentiation. In addition to glucose metabolism, lipid metabolism is also very important for immunity. Here, it is highlighted that lipid metabolism regulates CD4+ T cell differentiation and function and is related to diseases.
Collapse
|
8
|
Liddle DM, Hutchinson AL, Monk JM, DeBoer AA, Ma DWL, Robinson LE. Dietary long-chain n-3 PUFAs mitigate CD4 + T cell/adipocyte inflammatory interactions in co-culture models of obese adipose tissue. J Nutr Biochem 2020; 86:108488. [PMID: 32827664 DOI: 10.1016/j.jnutbio.2020.108488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Obese adipose tissue (AT) inflammation is partly driven by accumulation of CD4+ T helper (Th)1 cells and reduced Th2 and T regulatory subsets, which promotes macrophage chemotaxis and ensuing AT metabolic dysfunction. This study investigated CD4+ T cell/adipocyte cytokine-mediated paracrine interactions (cross talk) as a target for dietary intervention to mitigate obese AT inflammation. Using an in vitro co-culture model designed to recapitulate CD4+ T cell accumulation in obese AT (5% of stromal vascular cellular fraction), 3T3-L1 adipocytes were co-cultured with purified splenic CD4+ T cells from C57Bl/6 mice consuming one of two isocaloric diets containing either 10% w/w safflower oil (control, CON) or 7% w/w safflower oil+3% w/w fish oil (FO) for 4 weeks (n=8-11/diet). The FO diet provided 1.9% kcal from the long-chain (LC) n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid, a dose that can be achieved by supplementation. Co-cultures were stimulated for 48 h with lipopolysaccharide (LPS) to mimic in vivo obese endotoxin levels or with conditioned media collected from LPS-stimulated visceral AT isolated from CON-fed mice. In both stimulation conditions, FO reduced mRNA expression and/or secreted protein levels of Th1 markers (T-bet, IFN-γ) and increased Th2 markers (GATA3, IL-4), concomitant with reduced inflammatory cytokines (IL-1β, IL-6, IL-12p70, TNF-α), macrophage chemokines (MCP-1, MCP-3, MIP-1α, MIP-2) and levels of activated central regulators of inflammatory signaling (NF-κB, STAT-1, STAT-3) (P<.05). Therefore, CD4+ T cell/adipocyte cross talk represents a potential target for LC n-3 PUFAs to mitigate obese AT inflammation.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Amber L Hutchinson
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Jennifer M Monk
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Anna A DeBoer
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - David W L Ma
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Lindsay E Robinson
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
9
|
Xie S, Wei D, Tan B, Liu Y, Tian L, Niu J. Schizochytrium limacinum Supplementation in a Low Fish-Meal Diet Improved Immune Response and Intestinal Health of Juvenile Penaeus monodon. Front Physiol 2020; 11:613. [PMID: 32714197 PMCID: PMC7344155 DOI: 10.3389/fphys.2020.00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of the present experiment was to evaluate the effects of Schizochytrium limacinum supplementation on the immune response, gut microbiota, and health of Penaeus monodon fed a low fish-meal (FM) diet. A diet containing 25% FM was used as a control (Diet A), and three other diets were formulated to contain 15% FM and supplemented with 0, 0.75, and 1.5% S. limacinum (Diet B, C, and D, respectively). The experiment was carried out in quadruplicates (30 shrimp per replicate, average weight 1.01 ± 0.01 g), and the shrimps were fed the test diets to apparent satiation three times daily for 8 weeks. Shrimp fed diet B and D showed lower weight gain than those fed diet A. Supplementation of 0.75% S. limacinum enhanced expression of antioxidative genes (superoxide dismutase and catalase) and immune-response-related genes in hepatopancreas but could not affect the gene expression of immune deficiency in hepatopancreas and Tube in the intestine. A low FM diet induced endoplasmic reticulum swelling of the intestinal epithelial cells, which was alleviated by S. limacinum supplementation. Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry was employed to analyze the changes of hemolymph metabolomics, 49 significantly different metabolites were identified, and lysoPCs, deoxyinosine, inosine, and highly unsaturated fatty acids were lower in fish fed with low FM diets. Intestinal microbial diversity was lower in shrimp fed Diet B than those fed the control diet. Dietary supplementation of 0.75% S. limacinum increased intestinal microbial diversity of shrimp and decreased the ratio of pathogenic bacterium (Thalassotalea and Tenacibaculum). These results indicated that supplementing S. limacinum into a low FM diet improves the growth performance, immune response, and intestinal health of P. monodon. The optimum inclusion level of seems to be 0.75% of diet.
Collapse
Affiliation(s)
- Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Wei
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yongjian Liu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lixia Tian
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jin Niu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Lim Y, Kim S, Kim S, Kim DI, Kang KW, Hong SH, Lee SM, Koh HR, Seo YJ. n-3 Polyunsaturated Fatty Acids Impede the TCR Mobility and the TCR-pMHC Interaction of Anti-Viral CD8+ T Cells. Viruses 2020; 12:v12060639. [PMID: 32545480 PMCID: PMC7354506 DOI: 10.3390/v12060639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/27/2022] Open
Abstract
The immune-suppressive effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on T cells have been observed via multiple in vitro and in vivo models. However, the precise mechanism that causes these effects is still undefined. In this study, we investigated whether n-3 PUFAs regulated T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions. The expansion of anti-viral CD8+ T cells that endogenously synthesize n-3 PUFAs (FAT-1) dramatically decreased upon lymphocytic choriomeningitis virus (LCMV) infection in vivo. This decrease was not caused by the considerable reduction of TCR expression or the impaired chemotactic activity of T cells. Interestingly, a highly inclined and laminated optical sheet (HILO) microscopic analysis revealed that the TCR motility was notably reduced on the surface of the FAT-1 CD8+ T cells compared to the wild type (WT) CD8+ T cells. Importantly, the adhesion strength of the FAT-1 CD8+ T cells to the peptide-MHC was significantly lower than that of the WT CD8+T cells. Consistent with this result, treatment with docosahexaenoic acid (DHA), one type of n-3 PUFA, significantly decreased CD8+ T cell adhesion to the pMHC. Collectively, our results reveal a novel mechanism through which n-3 PUFAs decrease TCR-pMHC interactions by modulating TCR mobility on CD8+ T cell surfaces.
Collapse
Affiliation(s)
- Younghyun Lim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Seyoung Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Sehoon Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea;
| | - Dong-In Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Korea; (K.W.K.); (S.-M.L.)
| | - So-Hee Hong
- Department of Biotechnology, the Catholic University of Korea, Bucheon 14662, Korea;
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Korea; (K.W.K.); (S.-M.L.)
| | - Hye Ran Koh
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea;
- Correspondence: (H.R.K.); (Y.-J.S.)
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
- Correspondence: (H.R.K.); (Y.-J.S.)
| |
Collapse
|
11
|
Antioxidants as a Potential Target against Inflammation and Oxidative Stress in Attention-Deficit/Hyperactivity Disorder. Antioxidants (Basel) 2020; 9:antiox9020176. [PMID: 32098021 PMCID: PMC7070894 DOI: 10.3390/antiox9020176] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Psychostimulants and non-psychostimulants are the medications prescribed for the treatment of attention-deficit/hyperactivity disorder (ADHD). However, several adverse results have been linked with an increased risk of substance use and side effects. The pathophysiology of ADHD is not completely known, although it has been associated with an increase in inflammation and oxidative stress. This review presents an overview of findings following antioxidant treatment for ADHD and describes the potential amelioration of inflammation and oxidative stress using antioxidants that might have a future as multi-target adjuvant therapy in ADHD. The use of antioxidants against inflammation and oxidative conditions is an emerging field in the management of several neurodegenerative and neuropsychiatric disorders. Thus, antioxidants could be promising as an adjuvant ADHD therapy.
Collapse
|
12
|
Wu D, Lewis ED, Pae M, Meydani SN. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. Front Immunol 2019; 9:3160. [PMID: 30697214 PMCID: PMC6340979 DOI: 10.3389/fimmu.2018.03160] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
It is well-established that the nutritional deficiency or inadequacy can impair immune functions. Growing evidence suggests that for certain nutrients increased intake above currently recommended levels may help optimize immune functions including improving defense function and thus resistance to infection, while maintaining tolerance. This review will examine the data representing the research on prominent intervention agents n-3 polyunsaturated fatty acids (PUFA), micronutrients (zinc, vitamins D and E), and functional foods including probiotics and tea components for their immunological effects, working mechanisms, and clinical relevance. Many of these nutritive and non-nutritive food components are related in their functions to maintain or improve immune function including inhibition of pro-inflammatory mediators, promotion of anti-inflammatory functions, modulation of cell-mediated immunity, alteration of antigen-presenting cell functions, and communication between the innate and adaptive immune systems. Both animal and human studies present promising findings suggesting a clinical benefit of vitamin D, n-3 PUFA, and green tea catechin EGCG in autoimmune and inflammatory disorders, and vitamin D, vitamin E, zinc, and probiotics in reduction of infection. However, many studies report divergent and discrepant results/conclusions due to various factors. Chief among them, and thus call for attention, includes more standardized trial designs, better characterized populations, greater consideration for the intervention doses used, and more meaningful outcome measurements chosen.
Collapse
Affiliation(s)
- Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Erin D Lewis
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Munyong Pae
- Department of Food and Nutrition, Chungbuk National University, Cheongju, South Korea
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| |
Collapse
|
13
|
Bentsen H, Landrø NI. Neurocognitive effects of an omega-3 fatty acid and vitamins E+C in schizophrenia: A randomised controlled trial. Prostaglandins Leukot Essent Fatty Acids 2018; 136:57-66. [PMID: 29079039 DOI: 10.1016/j.plefa.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023]
Abstract
There is need for more efficient treatment of neurocognitive deficits in schizophrenia. In this 16 weeks randomised, placebo-controlled trial, we examined neurocognitive effects of adding ethyl-eicosapentaenoate 2g/day and/or vitamins E 364mg/day + C 1000mg/day to antipsychotics in 53 patients aged 18-39 years with acute schizophrenia. For the sake of validating neurocognitive tests, healthy subjects, not taking trial drugs, were also included in the study. Ethyl-EPA given alone to patients with low baseline RBC polyunsaturated fatty acids (PUFA), and Vitamins E+C given alone to high PUFA patients, impaired sustained attention (Continuous Performance Test, CPT-IP d prime score), standardised effect sizes d = 0.78 and d = 0.69, respectively. These adverse effects were paralleled by excessive increases in long-chain PUFA and serum alpha-tocopherol, respectively. They were counteracted by combining ethyl-EPA and vitamins, d = 0.80 and d = 0.74 in low and high PUFA patients, respectively. No other neurocognitive tests yielded significant results. Plausible mechanisms of harmful effects are oxidative stress and lipid raft disruption.
Collapse
Affiliation(s)
- H Bentsen
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Department of Specialised Psychosis Treatment, Psychiatric Clinic, Haukeland University Hospital, Bergen, Norway.
| | - N I Landrø
- Clinical Neuroscience Research Group, Department of Psychology, Faculty of Social Sciences, University of Oslo, Norway
| |
Collapse
|
14
|
Mason RP, Dawoud H, Jacob RF, Sherratt SCR, Malinski T. Eicosapentaenoic acid improves endothelial function and nitric oxide bioavailability in a manner that is enhanced in combination with a statin. Biomed Pharmacother 2018; 103:1231-1237. [PMID: 29864903 DOI: 10.1016/j.biopha.2018.04.118] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 11/27/2022] Open
Abstract
The endothelium exerts many vasoprotective effects that are largely mediated by release of nitric oxide (NO). Endothelial dysfunction represents an early but reversible step in atherosclerosis and is characterized by a reduction in the bioavailability of NO. Previous studies have shown that eicosapentaenoic acid (EPA), an omega-3 fatty acid (O3FA), and statins individually improve endothelial cell function, but their effects in combination have not been tested. Through a series of in vitro experiments, this study evaluated the effects of a combined treatment of EPA and the active metabolite of atorvastatin (ATM) on endothelial cell function under conditions of oxidative stress. Specifically, the comparative and time-dependent effects of these agents on endothelial dysfunction were examined by measuring the levels of NO and peroxynitrite (ONOO-) released from human umbilical vein endothelial cells (HUVECs). The data suggest that combined treatment with EPA and ATM is beneficial to endothelial function and was unique to EPA and ATM since similar improvements could not be recapitulated by substituting another O3FA docosahexaenoic acid (DHA) or other TG-lowering agents such as fenofibrate, niacin, or gemfibrozil. Comparable beneficial effects were observed when HUVECs were pretreated with EPA and ATM before exposure to oxidative stress. Interestingly, the kinetics of EPA-based protection of endothelial function in response to oxidation were found to be significantly different than those of DHA. Lastly, the beneficial effects on endothelial function generated by combined treatment of EPA and ATM were reproduced when this study was expanded to an ex vivo model utilizing rat glomerular endothelial cells. Taken together, these findings suggest that a combined treatment of EPA and ATM can inhibit endothelial dysfunction that occurs in response to conditions such as hyperglycemia, oxidative stress, and dyslipidemia.
Collapse
Affiliation(s)
- R Preston Mason
- Elucida Research LLC, Beverly, MA, 01915, United States; Cardiovascular Division, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Hazem Dawoud
- Nanomedical Research Laboratory, Ohio University, Athens, OH, 45701, United States
| | | | | | - Tadeusz Malinski
- Nanomedical Research Laboratory, Ohio University, Athens, OH, 45701, United States
| |
Collapse
|
15
|
Fuentes NR, Kim E, Fan YY, Chapkin RS. Omega-3 fatty acids, membrane remodeling and cancer prevention. Mol Aspects Med 2018; 64:79-91. [PMID: 29627343 DOI: 10.1016/j.mam.2018.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Proteins are often credited as the macromolecule responsible for performing critical cellular functions, however lipids have recently garnered more attention as our understanding of their role in cell function and human health becomes more apparent. Although cellular membranes are the lipid environment in which many proteins function, it is now apparent that protein and lipid assemblies can be organized to form distinct micro- or nanodomains that facilitate signaling events. Indeed, it is now appreciated that cellular function is partly regulated by the specific spatiotemporal lipid composition of the membrane, down to the nanosecond and nanometer scale. Furthermore, membrane composition is altered during human disease processes such as cancer and obesity. For example, an increased rate of lipid/cholesterol synthesis in cancerous tissues has long been recognized as an important aspect of the rewired metabolism of transformed cells. However, the contribution of lipids/cholesterol to cellular function in disease models is not yet fully understood. Furthermore, an important consideration in regard to human health is that diet is a major modulator of cell membrane composition. This can occur directly through incorporation of membrane substrates, such as fatty acids, e.g., n-3 polyunsaturated fatty acids (n-3 PUFA) and cholesterol. In this review, we describe scenarios in which changes in membrane composition impact human health. Particular focus is placed on the importance of intrinsic lipid/cholesterol biosynthesis and metabolism and extrinsic dietary modification in cancer and its effect on plasma membrane properties.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
16
|
Islam MS, Castellucci C, Fiorini R, Greco S, Gagliardi R, Zannotti A, Giannubilo SR, Ciavattini A, Frega NG, Pacetti D, Ciarmela P. Omega-3 fatty acids modulate the lipid profile, membrane architecture, and gene expression of leiomyoma cells. J Cell Physiol 2018; 233:7143-7156. [PMID: 29574773 DOI: 10.1002/jcp.26537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Abstract
Uterine leiomyomas (fibroids or myomas) are the most common benign tumors of premenopausal women and new medical treatments are needed. This study aimed to determine the effects of omega-3 fatty acids on the lipid profile, membrane architecture and gene expression patterns of extracellular matrix components (collagen1A1, fibronectin, versican, or activin A), mechanical signaling (integrin β1, FAK, and AKAP13), sterol regulatory molecules (ABCG1, ABCA1, CAV1, and SREBF2), and mitochondrial enzyme (CYP11A1) in myometrial and leiomyoma cells. Myometrial tissues had a higher amount of arachidonic acid than leiomyoma tissues while leiomyoma tissues had a higher level of linoleic acid than myometrial tissues. Treatment of primary myometrial and leiomyoma cells with eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) reduced the monounsaturated fatty acid (MUFA) content and increased the polyunsaturated fatty acid (PUFA) content in both cell types. Myometrial and leiomyoma cell membranes were in the liquid-crystalline phase, but EPA- and DHA-treated cells had decreased membrane fluidity. While we found no changes in the mRNA expression of ECM components, EPA and DHA treatment reduced levels of ABCG1, ABCA1, and AKAP13 in both cell types. EPA and DHA also reduced FAK and CYP11A1 expression in myometrial cells. The ability of omega-3 fatty acids to remodel membrane architecture and downregulate the expression of genes involved in mechanical signaling and lipid accumulation in leiomyoma cells offers to further investigate this compound as preventive and/or therapeutic option.
Collapse
Affiliation(s)
- Md Soriful Islam
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Biotechnology and Microbiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - Clara Castellucci
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Rosamaria Fiorini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Greco
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | | | - Alessandro Zannotti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Stefano R Giannubilo
- Department of Clinical Science, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Ciavattini
- Department of Clinical Science, Università Politecnica delle Marche, Ancona, Italy
| | - Natale G Frega
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Pasquapina Ciarmela
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Department of Information Engineering, Università Politecnica delle , Marche, Ancona, Italy
| |
Collapse
|
17
|
Abstract
Cell membrane fatty acids influence fundamental properties of the plasma membrane, including membrane fluidity, protein functionality, and lipid raft signalling. Evidence suggests that dietary n-3 PUFA may target the plasma membrane of immune cells by altering plasma membrane lipid dynamics, thereby regulating the attenuation of immune cell activation and suppression of inflammation. As lipid-based immunotherapy might be a promising new clinical strategy for the treatment of inflammatory disorders, we conducted in vitro and in vivo experiments to examine the effects of n-3 PUFA on CD4+ T cell membrane order, mitochondrial bioenergetics and lymphoproliferation. n-3 PUFA were incorporated into human primary CD4+ T cells phospholipids in vitro in a dose-dependent manner, resulting in a reduction in whole cell membrane order, oxidative phosphorylation and proliferation. At higher doses, n-3 PUFA induced unique phase separation in T cell-derived giant plasma membrane vesicles. Similarly, in a short-term human pilot study, supplementation of fish oil (4 g n-3 PUFA/d) for 6 weeks in healthy subjects significantly elevated EPA (20 : 5n-3) levels in CD4+ T cell membrane phospholipids, and reduced membrane lipid order. These results demonstrate that the dynamic reshaping of human CD4+ T cell plasma membrane organisation by n-3 PUFA may modulate down-stream clonal expansion.
Collapse
|
18
|
Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients 2017; 9:nu9121289. [PMID: 29186929 PMCID: PMC5748740 DOI: 10.3390/nu9121289] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein.
Collapse
|
19
|
Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3131-3140. [DOI: 10.1016/j.bbamem.2016.10.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/01/2016] [Accepted: 10/03/2016] [Indexed: 11/17/2022]
|
20
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
21
|
Harris M, Kinnun JJ, Kosaraju R, Leng X, Wassall SR, Shaikh SR. Membrane Disordering by Eicosapentaenoic Acid in B Lymphomas Is Reduced by Elongation to Docosapentaenoic Acid as Revealed with Solid-State Nuclear Magnetic Resonance Spectroscopy of Model Membranes. J Nutr 2016; 146:1283-9. [PMID: 27306897 PMCID: PMC4926856 DOI: 10.3945/jn.116.231639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/29/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Plasma membrane organization is a mechanistic target of n-3 (ω-3) polyunsaturated fatty acids. Previous studies show that eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) differentially disrupt plasma membrane molecular order to enhance the frequency and function of B lymphocytes. However, it is not known whether EPA and DHA affect the plasma membrane organization of B lymphomas differently to influence their function. OBJECTIVE We tested whether EPA and DHA had different effects on membrane order in B lymphomas and liposomes and studied their effects on B-lymphoma growth. METHODS B lymphomas were treated with 25 μmol EPA, DHA, or serum albumin control/L for 24 h. Membrane order was measured with fluorescence polarization, and cellular fatty acids (FAs) were analyzed with GC. Growth was quantified with a viability assay. (2)H nuclear magnetic resonance (NMR) studies were conducted on deuterated phospholipid bilayers. RESULTS Treating Raji, Ramos, and RPMI lymphomas for 24 h with 25 μmol EPA or DHA/L lowered plasma membrane order by 10-40% relative to the control. There were no differences between EPA and DHA on membrane order for the 3 cell lines. FA analyses revealed complex changes in response to EPA or DHA treatment and a large fraction of EPA was converted to docosapentaenoic acid (DPA; 22:5n-3). NMR studies, which were used to understand why EPA and DHA had similiar membrane effects, showed that phospholipids containing DPA, similar to DHA, were more ordered than those containing EPA. Finally, treating B lymphomas with 25 μmol EPA or DHA/L did not increase the frequency of B lymphomas compared with controls. CONCLUSIONS The results establish that 25 μmol EPA and DHA/L equally disrupt membrane order and do not promote B lymphoma growth. The data open a new area of investigation, which is how EPA's conversion to DPA substantially moderates its influence on membrane properties.
Collapse
Affiliation(s)
- Mitchell Harris
- Department of Biochemistry and Molecular Biology,,East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC; and
| | - Jacob J Kinnun
- Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN
| | - Rasagna Kosaraju
- Department of Biochemistry and Molecular Biology,,East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC; and
| | - Xiaoling Leng
- Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN
| | - Stephen R Wassall
- Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN
| | - Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC; and
| |
Collapse
|
22
|
Fiorini R, Pagliarani A, Nesci S, Trombetti F, Pirini M, Fabbri M, Ventrella V. Lipid unsaturation per se does not explain the physical state of mitochondrial membranes in Mytilus galloprovincialis. Comp Biochem Physiol B Biochem Mol Biol 2016; 191:66-75. [PMID: 26456349 DOI: 10.1016/j.cbpb.2015.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/28/2023]
Abstract
Through a multiple approach, the present study on the mitochondrial membranes from mussel gills and swine heart combines some biochemical information on fatty acid composition, sterol pattern, and temperature dependence of the F1FO-ATPase activity (EC 3.6.3.14.) with fluorescence data on mitochondrial membranes and on liposomes obtained from lipid extracts of mitochondria. The physical state of mussel gills and swine heart was investigated by Laurdan steady state fluorescence. Quite surprisingly, the similar temperature dependence of the F1FO complex, illustrated as Arrhenius plot which in both mitochondria exhibits the same discontinuity at approximately 21°C and overlapping activation energies above and below the discontinuity, is apparently compatible with a different composition and physical state of mitochondrial membranes. Accordingly, mussel membranes contain highly unsaturated fatty acids, abundant sterols, including phytosterols, while mammalian membranes only contain cholesterol and in prevalence shorter and less unsaturated fatty acids, leading to a lower membrane unsaturation with respect to mussel mitochondria. As suggested by fluorescence data, the likely formation of peculiar microdomains interacting with the membrane-bound enzyme complex in mussel mitochondria could produce an environment which somehow approaches the physical state of mammalian mitochondrial membranes. Thus, as an adaptive strategy, the interaction between sterols, highly unsaturated phospholipids and proteins in mussel gill mitochondria could allow the F1FO-ATPase activity to maintain the same activation energy as the mammalian enzyme.
Collapse
Affiliation(s)
- Rosamaria Fiorini
- Department of Life and Environmental Sciences, Marche Polytechnic University, Montedago, 60131 Ancona, Italy.
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Maurizio Pirini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| |
Collapse
|
23
|
n-3 polyunsaturated fatty acids suppress CD4(+) T cell proliferation by altering phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:85-96. [PMID: 26476105 DOI: 10.1016/j.bbamem.2015.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
The mechanisms by which n-3 polyunsaturated fatty acids (n-3 PUFA), abundant in fish oil, exert their anti-inflammatory effects have not been rigorously defined. We have previously demonstrated that n-3 PUFA decrease the amount of phosphatidylinositol-(4,5)-bisphosphate, [PI(4,5)P2], in CD4(+) T cells, leading to suppressed actin remodeling upon activation. Since discrete pools of PI(4,5)P2 exist in the plasma membrane, we determined whether n-3 PUFA modulate spatial organization of PI(4,5)P2 relative to raft and non-raft domains. We used Förster resonance energy transfer (FRET) to demonstrate that lipid raft mesodomains in the plasma membrane of CD4(+) T cells enriched in n-3 PUFA display increased co-clustering of Lck(N10) and LAT(ΔCP), markers of lipid rafts. CD4(+) T cells enriched in n-3 PUFA also exhibited a depleted plasma membrane non-raft PI(4,5)P2 pool as detected by decreased co-clustering of Src(N15), a non-raft marker, and PH(PLC-δ), a PI(4,5)P2 reporter. Incubation with exogenous PI(4,5)P2 rescued the effects on the non-raft PI(4,5)P2 pool, and reversed the suppression of T cell proliferation in CD4(+) T cells enriched with n-3 PUFA. Furthermore, CD4(+) T cells isolated from mice fed a 4% docosahexaenoic acid (DHA)-enriched diet exhibited a decrease in the non-raft pool of PI(4,5)P2, and exogenous PI(4,5)P2 reversed the suppression of T cell proliferation. Finally, these effects were not due to changes to post-translational lipidation, since n-3 PUFA did not alter the palmitoylation status of signaling proteins. These data demonstrate that n-3 PUFA suppress T cell proliferation by altering plasma membrane topography and the spatial organization of PI(4,5)P2.
Collapse
|
24
|
Whelan J, Gowdy KM, Shaikh SR. N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: Implications for the immune response to infections. Eur J Pharmacol 2015; 785:10-17. [PMID: 26022530 DOI: 10.1016/j.ejphar.2015.03.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/15/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
B cell antigen presentation, cytokine production, and antibody production are targets of pharmacological intervention in inflammatory and infectious diseases. Here we review recent pre-clinical evidence demonstrating that pharmacologically relevant levels of n-3 polyunsaturated fatty acids (PUFA) derived from marine fish oils influence key aspects of B cell function through multiple mechanisms. N-3 PUFAs modestly diminish B cell mediated stimulation of classically defined naïve CD4(+) Th1 cells through the major histocompatibility complex (MHC) class II pathway. This is consistent with existing data showing that n-3 PUFAs suppress the activation of Th1/Th17 cells through direct effects on helper T cells and indirect effects on antigen presenting cells. Mechanistically, n-3 PUFAs lower antigen presentation and T cell signaling by disrupting the formation of lipid microdomains within the immunological synapse. We then review data to show that n-3 PUFAs boost B cell activation and antibody production in the absence and presence of antigen stimulation. This has potential benefits for several clinical populations such as the aged and obese that have poor humoral immunity. The mode of action by which n-3 PUFA boost B cell activation and antibody production remains unclear, but may involve Th2 cytokines, enhanced production of specialized proresolving lipid mediators, and targeting of protein lateral organization in lipid microdomains. Finally, we highlight evidence to show that different n-3 PUFAs are not biologically equivalent, which has implications for the development of future interventions to target B cell activity.
Collapse
Affiliation(s)
- Jarrett Whelan
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Kymberly M Gowdy
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Microbiology & Immunology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
25
|
Hou TY, McMurray DN, Chapkin RS. Omega-3 fatty acids, lipid rafts, and T cell signaling. Eur J Pharmacol 2015; 785:2-9. [PMID: 26001374 DOI: 10.1016/j.ejphar.2015.03.091] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 02/16/2015] [Accepted: 03/16/2015] [Indexed: 12/24/2022]
Abstract
n-3 polyunsaturated fatty acids (PUFA) have been shown in many clinical studies to attenuate inflammatory responses. Although inflammatory responses are orchestrated by a wide spectrum of cells, CD4(+) T cells play an important role in the etiology of many chronic inflammatory diseases such as inflammatory bowel disease and obesity. In light of recent concerns over the safety profiles of non-steroidal anti-inflammatory drugs (NSAIDs), alternatives such as bioactive nutraceuticals are becoming more attractive. In order for these agents to be accepted into mainstream medicine, however, the mechanisms by which nutraceuticals such as n-3 PUFA exert their anti-inflammatory effects must be fully elucidated. Lipid rafts are nanoscale, dynamic domains in the plasma membrane that are formed through favorable lipid-lipid (cholesterol, sphingolipids, and saturated fatty acids) and lipid-protein (membrane-actin cytoskeleton) interactions. These domains optimize the clustering of signaling proteins at the membrane to facilitate efficient cell signaling which is required for CD4(+) T cell activation and differentiation. This review summarizes novel emerging data documenting the ability of n-3 PUFA to perturb membrane-cytoskeletal structure and function in CD4(+) T cells. An understanding of these underlying mechanisms will provide a rationale for the use of n-3 PUFA in the treatment of chronic inflammation.
Collapse
Affiliation(s)
- Tim Y Hou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA; Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA
| | - David N McMurray
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA; Department of Microbial Pathogenesis and Immunology, Texas A&M University System Health Science Center, College Station, TX, USA
| | - Robert S Chapkin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA; Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA; Department of Microbial Pathogenesis and Immunology, Texas A&M University System Health Science Center, College Station, TX, USA.
| |
Collapse
|
26
|
Shaikh SR, Wassall SR, Brown DA, Kosaraju R. N-3 Polyunsaturated Fatty Acids, Lipid Microclusters, and Vitamin E. CURRENT TOPICS IN MEMBRANES 2015; 75:209-31. [PMID: 26015284 DOI: 10.1016/bs.ctm.2015.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased consumption of long-chain marine n-3 polyunsaturated fatty acids (PUFA) has potential health benefits for the general population and for select clinical populations. However, several key limitations remain in making adequate dietary recommendations on n-3 PUFAs in addition to translating the fatty acids into clinical trials for select diseases. One major constraint is an incomplete understanding of the underlying mechanisms of action of n-3 PUFAs. In this review, we highlight studies to show n-3 PUFA acyl chains reorganize the molecular architecture of plasma membrane sphingolipid-cholesterol-enriched lipid rafts and potentially sphingolipid-rich cholesterol-free domains and cardiolipin-protein scaffolds in the inner mitochondrial membrane. We also discuss the possibility that the effects of n-3 PUFAs on membrane organization could be regulated by the presence of vitamin E (α-tocopherol), which is necessary to protect highly unsaturated acyl chains from oxidation. Finally, we propose the integrated hypothesis, based predominately on studies in lymphocytes, cancer cells, and model membranes, that the mechanism by which n-3 PUFAs disrupt signaling microclusters is highly dependent on the type of lipid species that incorporate n-3 PUFA acyl chains. The current evidence suggests that n-3 PUFA acyl chains disrupt lipid raft formation by incorporating primarily into phosphatidylethanolamines but can also incorporate into other lipid species of the lipidome.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC, USA; Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - David A Brown
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Rasagna Kosaraju
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| |
Collapse
|
27
|
Li X, Ballantyne LL, Che X, Mewburn JD, Kang JX, Barkley RM, Murphy RC, Yu Y, Funk CD. Endogenously generated omega-3 fatty acids attenuate vascular inflammation and neointimal hyperplasia by interaction with free fatty acid receptor 4 in mice. J Am Heart Assoc 2015; 4:jah3926. [PMID: 25845931 PMCID: PMC4579939 DOI: 10.1161/jaha.115.001856] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Omega‐3 polyunsaturated fatty acids (ω3 PUFAs) suppress inflammation through activation of free fatty acid receptor 4 (FFAR4), but this pathway has not been explored in the context of cardiovascular disease. We aimed to elucidate the involvement of FFAR4 activation by ω3 PUFAs in the process of vascular inflammation and neointimal hyperplasia in mice. Methods and Results We used mice with disruption of FFAR4 (Ffar4−/−), along with a strain that synthesizes high levels of ω3 PUFAs (fat‐1) and a group of crossed mice (Ffar4−/−/fat‐1), to elucidate the role of FFAR4 in vascular dysfunction using acute and chronic thrombosis/vascular remodeling models. The presence of FFAR4 in vascular‐associated cells including perivascular adipocytes and macrophages, but not platelets, was demonstrated. ω3 PUFAs endogenously generated in fat‐1 mice (n=9), but not in compound Ffar4−/−/fat‐1 mice (n=9), attenuated femoral arterial thrombosis induced by FeCl3. Neointimal hyperplasia and vascular inflammation in the common carotid artery were significantly curtailed 4 weeks after FeCl3 injury in fat‐1 mice (n=6). This included greater luminal diameter and enhanced blood flow, reduced intima:media ratio, and diminished macrophage infiltration in the vasculature and perivascular adipose tissue compared with control mice. These effects were attenuated in the Ffar4−/−/fat‐1 mice. Conclusions These results indicate that ω3 PUFAs mitigate vascular inflammation, arterial thrombus formation, and neointimal hyperplasia by interaction with FFAR4 in mice. Moreover, the ω3 PUFA–FFAR4 pathway decreases inflammatory responses with dampened macrophage transmigration and infiltration.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (X.L., L.L.B., X.C., C.D.F.)
| | - Laurel L Ballantyne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (X.L., L.L.B., X.C., C.D.F.)
| | - Xinghui Che
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (X.L., L.L.B., X.C., C.D.F.)
| | - Jeffrey D Mewburn
- Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (J.D.M.)
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (J.X.K.)
| | - Robert M Barkley
- Department of Pharmacology, University of Colorado Denver, Aurora, CO (R.M.B., R.C.M.)
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO (R.M.B., R.C.M.)
| | - Ying Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.Y.)
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (X.L., L.L.B., X.C., C.D.F.)
| |
Collapse
|
28
|
Chapkin RS, DeClercq V, Kim E, Fuentes NR, Fan YY. Mechanisms by Which Pleiotropic Amphiphilic n-3 PUFA Reduce Colon Cancer Risk. CURRENT COLORECTAL CANCER REPORTS 2014; 10:442-452. [PMID: 25400530 DOI: 10.1007/s11888-014-0241-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the major causes of cancer-related mortality in both men and women worldwide. Genetic susceptibility and diet are primary determinants of cancer risk and tumor behavior. Experimental, epidemiological, and clinical data substantiate the beneficial role of n-3 polyunsaturated fatty acids (PUFA) in preventing chronic inflammation and colon cancer. From a mechanistic perspective, n-3 PUFA are pleiotropic and multifaceted with respect to their molecular mechanisms of action. For example, this class of dietary lipid uniquely alters membrane structure/ cytoskeletal function, impacting membrane receptor function and downstream signaling cascades, including gene expression profiles and cell phenotype. In addition, n-3 PUFA can synergize with other potential anti-tumor agents, such as fermentable fiber and curcumin. With the rising prevalence of diet-induced obesity, there is also an urgent need to elucidate the link between chronic inflammation in adipose tissue and colon cancer risk in obesity. In this review, we will summarize recent developments linking n-3 PUFA intake, membrane alterations, epigenetic modulation, and effects on obesity-associated colon cancer risk.
Collapse
Affiliation(s)
- Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Center for Translational Environmental Health Research, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA. Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA. Faculty of Toxicity, Texas A&M University, College Station, TX 77843, USA
| | - Vanessa DeClercq
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Molecular & Cellular Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Natividad Roberto Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Faculty of Toxicity, Texas A&M University, College Station, TX 77843, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA. Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
29
|
Allen MJ, Fan YY, Monk JM, Hou TY, Barhoumi R, McMurray DN, Chapkin RS. n-3 PUFAs reduce T-helper 17 cell differentiation by decreasing responsiveness to interleukin-6 in isolated mouse splenic CD4⁺ T cells. J Nutr 2014; 144:1306-13. [PMID: 24944284 PMCID: PMC4093987 DOI: 10.3945/jn.114.194407] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cluster of differentiation 4(+) (CD4(+)) effector T-cell subsets [e.g., T-helper (Th) 1 and Th17] are implicated in autoimmune and inflammatory disorders such as multiple sclerosis, psoriasis, and rheumatoid arthritis. Interleukin (IL)-6 is a pleiotropic cytokine that induces Th17 polarization via signaling through the membrane-bound transducer glycoprotein 130 (GP130). Previously, we demonstrated that n-3 (ω-3) polyunsaturated fatty acids (PUFAs) reduce CD4(+) T-cell activation and differentiation into pathogenic Th17 cells by 25-30%. Here we report that n-3 PUFAs alter the response of CD4(+) T cells to IL-6 in a lipid raft membrane-dependent manner. Naive splenic CD4(+) T cells from fat-1 transgenic mice exhibited 30% lower surface expression of the IL-6 receptor. This membrane-bound receptor is known to be shed during cellular activation, but the release of soluble IL-6 receptor after treatment with anti-CD3 and anti-CD28 was not changed in the CD4(+) T cells from fat-1 mice, suggesting that the decrease in surface expression was not due to ectodomain release. We observed a significant 20% decrease in the association of GP130 with lipid rafts in activated fat-1 CD4(+) T cells and a 35% reduction in GP130 homodimerization, an obligate requirement for downstream signaling. The phosphorylation of signal transducer and activator of transcription 3 (STAT3), a downstream target of IL-6-dependent signaling, was also decreased by 30% in response to exogenous IL-6 in fat-1 CD4(+) T cells. Our results suggest that n-3 PUFAs suppress Th17 cell differentiation in part by reducing membrane raft-dependent responsiveness to IL-6, an essential polarizing cytokine.
Collapse
Affiliation(s)
- M. Jeannie Allen
- Program in Integrative Nutrition and Complex Diseases,,Nutrition and Food Science
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases,,Nutrition and Food Science
| | - Jennifer M. Monk
- Program in Integrative Nutrition and Complex Diseases,,Nutrition and Food Science
| | - Tim Y. Hou
- Program in Integrative Nutrition and Complex Diseases,,Biochemistry and Biophysics
| | - Rola Barhoumi
- College of Veterinary Medicine and Biomedical Sciences Image Analysis Laboratory, and
| | - David N. McMurray
- Program in Integrative Nutrition and Complex Diseases,,Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, College Station, TX
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases,,Nutrition and Food Science,,Center for Translational Environmental Health Research, Texas A&M University, College Station, TX; and,Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, College Station, TX,To whom correspondence should be addressed. E-mail:
| |
Collapse
|