1
|
Babu A, Smith ZR, Mukhtarova N, Siddappa AM, Kling PJ. Short- and long-term alterations of hematopoietic cell lineages in rats with congenital iron deficiency. Blood Cells Mol Dis 2025; 111:102908. [PMID: 39705841 DOI: 10.1016/j.bcmd.2024.102908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Data support that fetal iron delivery is prioritized to hemoglobin in erythrocytes (RBC). Iron deficiency (ID) during pregnancy can cause congenital ID, i.e., low fetal iron acquisition. Because how congenital ID impacts other fetal hematopoietic cell lineages is unknown our pilot study examined this in a rat congenital ID model. Pregnant dams fed ID diets were compared to iron sufficient (IS) controls. Iron indices, complete cell counts with differentials, and microscopic morphology were studied at birth P2-3, mid-recovery P15 and adolescent post-recovery P45. Compared to IS at birth, ID rats exhibited 350 % higher zinc protoporphyrin/heme, 70 % lower plasma ferritin, 30 % lower hemoglobin, 25 % fewer platelets, but nucleated RBC (nRBC) and reticulocytes did not differ. Compared to IS at birth, ID rats exhibited 36 % fewer white counts (WBC) but proportionate lymphocytes and granulocytes (all P < 0.015). Compared to IS at P45, RBC, platelets, and WBC numbers did not differ, but lymphocytes were relatively lower in ID (P < 0.01). Microscopic morphology differed from IS in ID, with persistent differences at P45. Because altered inflammatory programming was previously reported in congenital ID and because this pilot study found altered WBC populations, this model of congenital ID is well situated to investigate long-term developmental programming.
Collapse
Affiliation(s)
- Anthony Babu
- Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Zachary R Smith
- Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, United States of America; Bronson Children's Hospital, Kalamazoo, MI, United States of America
| | - Narmin Mukhtarova
- Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Ashajyothi M Siddappa
- Pediatrics, Masonic Children's Hospital University of Minnesota and Hennepin Healthcare, both in Minneapolis, MN, United States of America
| | - Pamela J Kling
- Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, United States of America.
| |
Collapse
|
2
|
Yamashita N, Tanaka K, Miyake Y. Association between maternal anemia during pregnancy and risk of eczema in early childhood: A cohort study in Japan. Allergol Immunopathol (Madr) 2025; 53:106-111. [PMID: 39786882 DOI: 10.15586/aei.v53i1.1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/22/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND There is limited evidence on the association between maternal anemia during pregnancy and the risk of childhood allergic disorders, with regards to atopic eczema. The current pre-birth cohort study aimed to examine the association between maternal anemia during pregnancy and the risk of atopic eczema in Japanese 2-year-olds. METHODS The study included 1354 Japanese mother-child pairs. Maternal anemia during pregnancy was determined based on self-reported iron treatment for anemia during pregnancy. Eczema was defined according to the criteria of the International Study of Asthma and Allergies in Childhood (ISAAC). Physician-diagnosed atopic eczema was evaluated through a questionnaire completed by the mothers. RESULTS The prevalence of maternal anemia during pregnancy was 52.8%. The study found that maternal anemia during pregnancy was associated with an increased risk of physician-diagnosed atopic eczema in children; with an adjusted odds ratio of 1.79 and a 95% confidence interval of 1.04-3.17. However, there was no observed association between maternal anemia during pregnancy and the risk of eczema as defined by the ISAAC criteria. CONCLUSIONS Although the study relied on self-reported information, it suggested a potential positive association between maternal anemia during pregnancy and the risk of atopic eczema in children.
Collapse
Affiliation(s)
- Noboru Yamashita
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Ehime, Japan
- Department of Pharmacy, Ehime University Hospital, Ehime, Japan
| | - Keiko Tanaka
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Ehime, Japan
- Integrated Medical and Agricultural School of Public Health, Ehime University, Ehime, Japan
- Center for Data Science, Ehime University, Ehime, Japan;
| | - Yoshihiro Miyake
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Ehime, Japan
- Integrated Medical and Agricultural School of Public Health, Ehime University, Ehime, Japan
- Department of Healthcare Data Science, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
3
|
Mukhtarova N, Babu A, Coe CL, Kling PJ. Influence of Biological Sex and Congenital Iron Deficiency on Neonatal Cytokine Responses. Nutrients 2024; 16:4203. [PMID: 39683596 DOI: 10.3390/nu16234203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Stimulated cord blood mononuclear cell (CBMC) cytokine responses were previously shown to predict the risk of childhood atopic disease. Iron deficiency (ID) at birth may also program atopic disease. Males are at a higher risk of pediatric atopic disease, but it is not known whether congenital ID impacts CBMC immune responses differentially by sex. METHODS Cord blood (CB) samples were collected from healthy term or near-term neonates after elective cesarean deliveries. A transferrin saturation ≤ 25% defined congenital ID. CBMCs were stimulated with either phytohemagglutinin (PHA) or PHA plus an iron chelator. RESULTS Of the 85 neonates, the 26 neonates with congenital ID exhibited lower plasma tumor necrosis factor-α (TNF-α), as well as higher CBMC TNF-α and IL-8 responses than iron-sufficient neonates (p = 0.017, p = 0.013, and p = 0.007, respectively). Higher CBMC TNF-α responses were seen in both males and females with congenital ID. However, females with congenital ID also had lower plasma IL-6, lower plasma TNF-α, and higher CBMC interleukin (IL)-8 responses. Additionally, iron chelation during culture influenced stimulated CBMC IFN-γ and CBMC TNF-α responses. DISCUSSION Congenital ID may influence stimulated CBMC cytokine responses, but results point to a sex-specific regulation of immune balance at birth. Because males are more prone to infantile ID and more likely to develop early childhood asthma, future studies should further investigate how fetal sex and congenital iron status impacts childhood immune responsiveness to infections and antigenic stimulation from the rearing environment.
Collapse
Affiliation(s)
- Narmin Mukhtarova
- Department of Pediatrics, University of Wisconsin Hospitals and Clinics, Madison, WI 53792, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Anthony Babu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pamela J Kling
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
4
|
Quezada-Pinedo HG, Jaddoe V, Gaillard R, Duijts L, van Rijn B, Reiss IKM, Vermeulen MJ, Santos S. Maternal hemoglobin and iron status in early pregnancy and childhood cardiac outcomes. Clin Nutr 2024; 43:1997-2004. [PMID: 39053328 DOI: 10.1016/j.clnu.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND & AIMS Dysregulation of iron homeostasis is associated with cardiac alterations in a sex-dependent manner in adults. It is unknown whether iron status during pregnancy has long-term impact on cardiovascular health, and if this association is influenced by sex. Therefore, this study aimed to evaluate sex-specific association between maternal iron status during early pregnancy and cardiac outcomes in children aged 10 years. METHODS In a population-based cohort study among 1972 mother-child pairs, hemoglobin and ferritin were measured in early pregnancy (<18 weeks) and categorized into anemia (hemoglobin<11 g/dL), elevated hemoglobin (hemoglobin≥13.2 g/dL), iron deficiency (ferritin<15 μg/L), and iron overload (ferritin>150 μg/L). At 10 years of age, cardiac MRI was performed to measure right and left cardiac outcomes of function (ventricular end-diastolic volume (RVEDV and LVEDV) and ejection fraction (RVEF and LVEF)), and structure (left ventricular mass (LVM), and left ventricular mass-to-volume ratio (LMVR)). Results are presented for boys and girls separately and models were adjusted for confounders and multiple testing. RESULTS In boys, one standard deviation score (SDS) increase in maternal hemoglobin was associated with lower RVEDV and LVEDV (difference (95%CI) -0.10 (-0.17, -0.03) SDS and -0.09 (-0.16, -0.03) SDS, respectively). In boys, maternal anemia, as compared to normal hemoglobin levels, was associated with higher LVEDV (difference 0.34 (0.10, 0.59) SDS). No associations were observed for other cardiac outcomes and for ferritin in boys. No associations were observed in girls. CONCLUSION In boys, dysregulated iron status during early pregnancy might permanently alter cardiovascular RVEDV and LVEDV function. Underlying mechanisms need further study.
Collapse
Affiliation(s)
- Hugo G Quezada-Pinedo
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincent Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Romy Gaillard
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bas van Rijn
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000, CA, Rotterdam, the Netherlands; Department of Obstetrics and Gynecology, Máxima Medical Center, Veldhoven, the Netherlands
| | - Irwin K M Reiss
- Department of Pediatrics, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marijn J Vermeulen
- Department of Pediatrics, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal.
| |
Collapse
|
5
|
Vassilopoulou E, Venter C, Roth-Walter F. Malnutrition and Allergies: Tipping the Immune Balance towards Health. J Clin Med 2024; 13:4713. [PMID: 39200855 PMCID: PMC11355500 DOI: 10.3390/jcm13164713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Malnutrition, which includes macro- and micronutrient deficiencies, is common in individuals with allergic dermatitis, food allergies, rhinitis, and asthma. Prolonged deficiencies of proteins, minerals, and vitamins promote Th2 inflammation, setting the stage for allergic sensitization. Consequently, malnutrition, which includes micronutrient deficiencies, fosters the development of allergies, while an adequate supply of micronutrients promotes immune cells with regulatory and tolerogenic phenotypes. As protein and micronutrient deficiencies mimic an infection, the body's innate response limits access to these nutrients by reducing their dietary absorption. This review highlights our current understanding of the physiological functions of allergenic proteins, iron, and vitamin A, particularly regarding their reduced bioavailability under inflamed conditions, necessitating different dietary approaches to improve their absorption. Additionally, the role of most allergens as nutrient binders and their involvement in nutritional immunity will be briefly summarized. Their ability to bind nutrients and their close association with immune cells can trigger exaggerated immune responses and allergies in individuals with deficiencies. However, in nutrient-rich conditions, these allergens can also provide nutrients to immune cells and promote health.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- Department of Clinical Sciences and Community Health, Univertià degli Studi die Milano, 20122 Milan, Italy
| | - Carina Venter
- Pediatrics, Section of Allergy & Immunology, University of Colorado Denver School of Medicine, Children’s Hospital Colorado, Box B518, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Franziska Roth-Walter
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, 1210 Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
Bradley MC, Gray J, Carpia FL, Idzikowski E, Guyer R, Pethe K, Hod EA, Connors TJ. Dietary iron deficiency impairs effector function of memory T cells following influenza infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604599. [PMID: 39211133 PMCID: PMC11361010 DOI: 10.1101/2024.07.22.604599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The establishment of memory T cell responses is critical to protection against pathogens and is influenced by the conditions under which memory formation occurs. Iron is an essential micronutrient for multiple immunologic processes and nutritional deficiency is a common problem worldwide. Despite its prevalence, the impact of nutritional iron deficiency on the establishment of memory T cell responses is not fully understood. In this study we investigate the impact of nutritional iron deficiency on the generation, phenotype, and function of memory T cell responses using a murine model of dietary iron modulation in the context of influenza infection. Iron deficient mice have decreased systemic iron levels and develop significant anemia. Increased T cell expression of the transferrin receptor (CD71) is seen in iron deficient mice at baseline. During primary influenza infection, iron deficient mice experience increased weight loss and phenotypic evidence of impairments in T cell activation. Following recovery from infection, iron deficient mice generate increased influenza specific memory T cells which exhibit impaired ability to produce IFNγ, most notably within the lung. Importantly, the ability to produce IFNγ and TNFα is not recovered by co-culture with iron replete dendritic cells, suggesting a T cell intrinsic alteration in functional memory formation. Altogether, these results isolate a critical effect of nutritional iron deficiency on T cell memory development and function.
Collapse
|
7
|
Pacella I, Pinzon Grimaldos A, Rossi A, Tucci G, Zagaglioni M, Potenza E, Pinna V, Rotella I, Cammarata I, Cancila V, Belmonte B, Tripodo C, Pietropaolo G, Di Censo C, Sciumè G, Licursi V, Peruzzi G, Antonucci Y, Campello S, Guerrieri F, Iebba V, Prota R, Di Chiara M, Terrin G, De Peppo V, Grazi GL, Barnaba V, Piconese S. Iron capture through CD71 drives perinatal and tumor-associated Treg expansion. JCI Insight 2024; 9:e167967. [PMID: 38954474 PMCID: PMC11383606 DOI: 10.1172/jci.insight.167967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Besides suppressing immune responses, regulatory T cells (Tregs) maintain tissue homeostasis and control systemic metabolism. Whether iron is involved in Treg-mediated tolerance is completely unknown. Here, we showed that the transferrin receptor CD71 was upregulated on activated Tregs infiltrating human liver cancer. Mice with a Treg-restricted CD71 deficiency spontaneously developed a scurfy-like disease, caused by impaired perinatal Treg expansion. CD71-null Tregs displayed decreased proliferation and tissue-Treg signature loss. In perinatal life, CD71 deficiency in Tregs triggered hepatic iron overload response, characterized by increased hepcidin transcription and iron accumulation in macrophages. Lower bacterial diversity, and reduction of beneficial species, were detected in the fecal microbiota of CD71 conditional knockout neonates. Our findings indicate that CD71-mediated iron absorption is required for Treg perinatal expansion and is related to systemic iron homeostasis and bacterial gut colonization. Therefore, we hypothesize that Tregs establish nutritional tolerance through competition for iron during bacterial colonization after birth.
Collapse
Affiliation(s)
- Ilenia Pacella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Alessandra Rossi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Gloria Tucci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Zagaglioni
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Potenza
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Pinna
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ivano Rotella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ilenia Cammarata
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | | | - Chiara Di Censo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Sapienza University of Rome, Rome, Italy
| | - Giovanna Peruzzi
- Centre for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Ylenia Antonucci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Guerrieri
- Cancer Research Centre of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, Lyon, France
| | - Valerio Iebba
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Rita Prota
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Maria Di Chiara
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Gianluca Terrin
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Valerio De Peppo
- Hepatobiliary and Pancreatic Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gian Luca Grazi
- Hepatobiliary and Pancreatic Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Barnaba
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Piconese
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
8
|
Podgórska A, Kicman A, Naliwajko S, Wacewicz-Muczyńska M, Niczyporuk M. Zinc, Copper, and Iron in Selected Skin Diseases. Int J Mol Sci 2024; 25:3823. [PMID: 38612631 PMCID: PMC11011755 DOI: 10.3390/ijms25073823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Trace elements are essential for maintaining the body's homeostasis, and their special role has been demonstrated in skin physiology. Among the most important trace elements are zinc, copper, and iron. A deficiency or excess of trace elements can be associated with an increased risk of skin diseases, so increasing their supplementation or limiting intake can be helpful in dermatological treatment. In addition, determinations of their levels in various types of biological material can be useful as additional tests in dermatological treatment. This paper describes the role of these elements in skin physiology and summarizes data on zinc, copper, and iron in the course of selected, following skin diseases: psoriasis, pemphigus vulgaris, atopic dermatitis, acne vulgaris and seborrheic dermatitis. In addition, this work identifies the potential of trace elements as auxiliary tests in dermatology. According to preliminary studies, abnormal levels of zinc, copper, and iron are observed in many skin diseases and their determinations in serum or hair can be used as auxiliary and prognostic tests in the course of various dermatoses. However, since data for some conditions are conflicting, clearly defining the potential of trace elements as auxiliary tests or elements requiring restriction/supplement requires further research.
Collapse
Affiliation(s)
- Aleksandra Podgórska
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland; (A.P.); (A.K.); (M.N.)
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland; (A.P.); (A.K.); (M.N.)
| | - Sylwia Naliwajko
- Department of Bromatology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | | | - Marek Niczyporuk
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland; (A.P.); (A.K.); (M.N.)
| |
Collapse
|
9
|
Jung DK, Tan ST, Hemlock C, Mertens AN, Stewart CP, Rahman MZ, Ali S, Raqib R, Grembi JA, Karim MR, Shahriar S, Roy AK, Abdelrahman S, Shoab AK, Famida SL, Hossen MS, Mutsuddi P, Akther S, Rahman M, Unicomb L, Hester L, Granger DA, Erhardt J, Naved RT, Al Mamun MM, Parvin K, Colford JM, Fernald LC, Luby SP, Dhabhar FS, Lin A. Micronutrient status during pregnancy is associated with child immune status in rural Bangladesh. Curr Dev Nutr 2023; 7:101969. [PMID: 37560460 PMCID: PMC10407622 DOI: 10.1016/j.cdnut.2023.101969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
Background Poor immune function increases children's risk of infection and mortality. Several maternal factors during pregnancy may affect infant immune function during the postnatal period. Objectives We aimed to evaluate whether maternal micronutrients, stress, estriol, and immune status during the first or second trimester of pregnancy were associated with child immune status in the first two years after birth. Methods We conducted observational analyses within the water, sanitation, and hygiene (WASH) Benefits Bangladesh randomized controlled trial. We measured biomarkers in 575 pregnant women and postnatally in their children. Maternal biomarkers measured during the first and second trimester of pregnancy included nutrition status via vitamin D (25-hydroxy-D [25(OH)D]), ferritin, soluble transferrin receptor (sTfR), and retinol-binding protein (RBP); cortisol; estriol. Immune markers were assessed in pregnant women at enrollment and their children at ages 14 and 28 mo, including C-reactive protein (CRP), alpha-1-acid glycoprotein (AGP), and 13 cytokines (including IFN-γ). We generated a standardized sum score of log-transformed cytokines. We analyzed IFN-γ individually because it is a critical immunoregulatory cytokine. All outcomes were prespecified. We used generalized additive models and reported the mean difference and 95% confidence intervals at the 25th and 75th percentiles of exposure distribution. Results At child age 14 mo, concentrations of maternal RBP were inversely associated with the cytokine sum score in children (-0.34 adjusted difference between the 25th and 75th percentile [95% confidence interval -0.61, -0.07]), and maternal vitamin A deficiency was positively associated with the cytokine sum score in children (1.02 [0.13, 1.91]). At child age of 28 mo, maternal RBP was positively associated with IFN-γ in children (0.07 [0.01, 0.14]), whereas maternal vitamin A deficiency was negatively associated with child AGP (-0.07 [-0.13, -0.02]). Maternal iron deficiency was associated with higher AGP concentrations in children at age 14 mo (0.13 [0.04, 0.23]), and maternal sTfR concentrations were positively associated with child CRP concentrations at age 28 mo (0.18 [0, 0.36]). Conclusion Maternal deficiencies in vitamin A or iron during the first 2 trimesters of pregnancy may shape the trajectory of a child's immune status.
Collapse
Affiliation(s)
- Da Kyung Jung
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - Sophia T. Tan
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States
| | - Caitlin Hemlock
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - Andrew N. Mertens
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - Christine P. Stewart
- Institute for Global Nutrition, University of California Davis, Davis, CA, United States
| | - Md Ziaur Rahman
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Shahjahan Ali
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Rubhana Raqib
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Jessica A. Grembi
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States
| | - Mohammed Rabiul Karim
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Sunny Shahriar
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Anjan Kumar Roy
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Sarah Abdelrahman
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - Abul K. Shoab
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Syeda L. Famida
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Md Saheen Hossen
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Palash Mutsuddi
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Salma Akther
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Leanne Unicomb
- Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh
| | - Lisa Hester
- Department of Medicine, University of Maryland, Baltimore, MD USA
| | - Douglas A. Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, United States
| | | | | | - Md Mahfuz Al Mamun
- Health System and Population Studies Division, icddr,b, Dhaka, Bangladesh
| | - Kausar Parvin
- Health System and Population Studies Division, icddr,b, Dhaka, Bangladesh
| | - John M. Colford
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA, United States
| | - Lia C.H. Fernald
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Stephen P. Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States
| | - Firdaus S. Dhabhar
- Department of Psychiatry & Behavioral Sciences, Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Audrie Lin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, United States
| |
Collapse
|
10
|
Stumpf K, Mirpuri J. Maternal Macro- and Micronutrient Intake During Pregnancy: Does It Affect Allergic Predisposition in Offspring? Immunol Allergy Clin North Am 2023; 43:27-42. [PMID: 36411006 DOI: 10.1016/j.iac.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review article explores the available literature on the association of maternal nutrient intake with development of allergies in offspring. It examines the mechanisms for maternal diet-mediated effects on offspring immunity and dissects recent human and animal studies that evaluate the role of both maternal macro- and micronutrient intake on offspring susceptibility to asthma, eczema, food allergy, and atopy.
Collapse
Affiliation(s)
- Katherine Stumpf
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard- Suite F3.302, Dallas, TX 75390-9063, USA.
| | - Julie Mirpuri
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard- Suite F3.302, Dallas, TX 75390-9063, USA.
| |
Collapse
|
11
|
Peroni DG, Hufnagl K, Comberiati P, Roth-Walter F. Lack of iron, zinc, and vitamins as a contributor to the etiology of atopic diseases. Front Nutr 2023; 9:1032481. [PMID: 36698466 PMCID: PMC9869175 DOI: 10.3389/fnut.2022.1032481] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Micronutritional deficiencies are common in atopic children suffering from atopic dermatitis, food allergy, rhinitis, and asthma. A lack of iron, in particular, may impact immune activation with prolonged deficiencies of iron, zinc, vitamin A, and vitamin D associated with a Th2 signature, maturation of macrophages and dendritic cells (DCs), and the generation of IgE antibodies. In contrast, the sufficiency of these micronutrients establishes immune resilience, promotion of regulatory cells, and tolerance induction. As micronutritional deficiencies mimic an infection, the body's innate response is to limit access to these nutrients and also impede their dietary uptake. Here, we summarize our current understanding of the physiological function of iron, zinc, and vitamins A and D in relation to immune cells and the clinical consequences of deficiencies in these important nutrients, especially in the perinatal period. Improved dietary uptake of iron is achieved by vitamin C, vitamin A, and whey compounds, whereas zinc bioavailability improves through citrates and proteins. The addition of oil is essential for the dietary uptake of beta-carotene and vitamin D. As for vitamin D, the major source comes via sun exposure and only a small amount is consumed via diet, which should be factored into clinical nutritional studies. We summarize the prevalence of micronutritional deficiencies of iron, zinc, and vitamins in the pediatric population as well as nutritional intervention studies on atopic diseases with whole food, food components, and micronutrients. Dietary uptake via the lymphatic route seems promising and is associated with a lower atopy risk and symptom amelioration. This review provides useful information for clinical studies and concludes/emphasizes that a healthy, varied diet containing dairy products, fish, nuts, fruits, and vegetables as well as supplementing foods or supplementation with micronutrients as needed is essential to combat the atopic march.
Collapse
Affiliation(s)
- Diego G. Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pasquale Comberiati
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria,*Correspondence: Franziska Roth-Walter, ;
| |
Collapse
|
12
|
Ali HA, Deraz TE, Reyad NI, Mohammed YH, Husseiny AA. Iron status and its relation to lung function in pediatric asthmatics: a cross-sectional study. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2022. [DOI: 10.1186/s43168-022-00147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Asthma and iron deficiency are common pediatric conditions. In addition, iron deficiency may affect spirometry results in asthmatic children. So, we aimed to assess the effect of ion status on lung function in childhood asthma.
Results
In this cross-sectional study, fifty asthmatic pediatric patients aged from 6 to 16 years presented to our institute during the period from (June 2018 to December 2018) were enrolled. Asthmatic patients were classified according to their complete blood count and iron profile into 2 groups: group 1, asthmatic children without iron deficiency anemia (IDA); and group 2, asthmatic children with IDA. All patients underwent full history taking, clinical examination, laboratory investigations, asthma control test, and pulmonary function tests (PFTs). The study showed that PFTs’ parameters (forced expiratory volume in one second (FEV1) % of predicted, FEV1/forced vital capacity, and maximal mid expiratory flow (MMEF) 25–75% of predicted) were significantly lower among asthmatics with IDA (80.62 ± 18.13, 78.36 ± 11.22, 62.35 ± 26.67) than among asthmatics without IDA (93.45 ± 15.51, 87.68 ± 10.81, 82.10 ± 24.74), respectively (p =0.012, 0.006, 0.012). Also, poorly controlled asthma was significantly higher among asthmatics with IDA (p =0.001). In addition, there was a statistically significant positive correlation between forced spirometry parameters, hemoglobin, and ferritin level (p=0.012, 0.042). Moreover, there was a significant positive correlation between hemoglobin level and MMEF 25–75% of predicted (p=0.012).
Conclusions
Lower iron status negatively affects the lung function in asthmatic children with a more obstructive pattern among asthmatics with IDA.
Collapse
|
13
|
Roth-Walter F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. FRONTIERS IN ALLERGY 2022; 3:859922. [PMID: 35769558 PMCID: PMC9234869 DOI: 10.3389/falgy.2022.859922] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Although iron is one of the most abundant elements on earth, about a third of the world's population are affected by iron deficiency. Main drivers of iron deficiency are beside the chronic lack of dietary iron, a hampered uptake machinery as a result of immune activation. Macrophages are the principal cells distributing iron in the human body with their iron restriction skewing these cells to a more pro-inflammatory state. Consequently, iron deficiency has a pronounced impact on immune cells, favoring Th2-cell survival, immunoglobulin class switching and primes mast cells for degranulation. Iron deficiency during pregnancy increases the risk of atopic diseases in children, while both children and adults with allergy are more likely to have anemia. In contrast, an improved iron status seems to protect against allergy development. Here, the most important interconnections between iron metabolism and allergies, the effect of iron deprivation on distinct immune cell types, as well as the pathophysiology in atopic diseases are summarized. Although the main focus will be humans, we also compare them with innate defense and iron sequestration strategies of microbes, given, particularly, attention to catechol-siderophores. Similarly, the defense and nutritional strategies in plants with their inducible systemic acquired resistance by salicylic acid, which further leads to synthesis of flavonoids as well as pathogenesis-related proteins, will be elaborated as both are very important for understanding the etiology of allergic diseases. Many allergens, such as lipocalins and the pathogenesis-related proteins, are able to bind iron and either deprive or supply iron to immune cells. Thus, a locally induced iron deficiency will result in immune activation and allergic sensitization. However, the same proteins such as the whey protein beta-lactoglobulin can also transport this precious micronutrient to the host immune cells (holoBLG) and hinder their activation, promoting tolerance and protecting against allergy. Since 2019, several clinical trials have also been conducted in allergic subjects using holoBLG as a food for special medical purposes, leading to a reduction in the allergic symptom burden. Supplementation with nutrient-carrying lipocalin proteins can circumvent the mucosal block and nourish selectively immune cells, therefore representing a new dietary and causative approach to compensate for functional iron deficiency in allergy sufferers.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Franziska Roth-Walter ;
| |
Collapse
|
14
|
Ameliorating Atopy by Compensating Micronutritional Deficiencies in Immune Cells: A Double-Blind Placebo-Controlled Pilot Study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1889-1902.e9. [PMID: 35263681 DOI: 10.1016/j.jaip.2022.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Functional iron deficiency facilitates allergy development and amplifies the symptom burden in people experiencing allergies. Previously we selectively delivered micronutrients to immune cells with β-lactoglobulin as carrier (holoBLG), resulting in immune resilience and allergy prevention. OBJECTIVE The clinical efficacy of a food for special medical purposes-lozenge containing β-lactoglobulin with iron, polyphenols, retinoic acid, and zinc (holoBLG lozenge) was assessed in allergic women. METHODS In a randomized, double-blind, placebo-controlled pilot study, grass- and/or birch pollen-allergic women (n = 51) were given holoBLG or placebo lozenges over 6 months. Before and after dietary supplementation, participants were nasally challenged and the blood was analyzed for immune and iron parameters. Daily symptoms, medications, pollen concentrations, and well-being were recorded by an electronic health application. RESULTS Total nasal symptom score after nasal provocations improved by 42% in the holoBLG group versus 13% in the placebo group. The combined symptom medication score during the birch peak and entire season as well as the entire grass pollen season improved in allergic subjects supplemented with the holoBLG lozenge by 45%, 31%, and 40%, respectively, compared with the placebo arm. Participants ingesting the holoBLG lozenge had improved iron status with increased hematocrit values, decreased red cell distribution width, and higher iron levels in circulating CD14+ cells compared with the placebo group. CONCLUSIONS Targeted micronutrition with the holoBLG lozenge seemed to be effective in elevating the labile iron levels in immune cells and reducing the symptom burden in allergic women in this pilot study. The underlying allergen-independent mechanism provides evidence that dietary nutritional supplementation of the immune system is one of the ways to combat atopy.
Collapse
|
15
|
Yu Z, Xu C, Fang C, Zhang F. Causal effect of iron status on lung function: A Mendelian randomization study. Front Nutr 2022; 9:1025212. [PMID: 36590211 PMCID: PMC9798299 DOI: 10.3389/fnut.2022.1025212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background The association between systemic iron status and lung function was conflicting in observational studies. We aim to explore the potential causal relationships between iron status and the levels of lung function using the two-sample Mendelian randomization (MR) design. Methods Genetic instruments associated with iron status biomarkers were retrieved from the Genetics of Iron Status (GIS) consortium (N = 48,972). Summary statistics of these genetic instruments with lung function were extracted from a meta-analysis of UK Biobank and SpiroMeta consortium (N = 400,102). The main analyses were performed using the inverse-variance weighted method, and complemented by multiple sensitivity analyses. Results Based on conservative genetic instruments, MR analyses showed that genetically predicted higher iron (beta: 0.036 per 1 SD increase, 95% confidence interval (CI): 0.016 to 0.056, P = 3.51 × 10-4), log10-transformed ferritin (beta: 0.081, 95% CI: 0.047 to 0.116, P = 4.11 × 10-6), and transferrin saturation (beta: 0.027, 95% CI: 0.015 to 0.038, P = 1.09 × 10-5) were associated with increased forced expiratory volume in 1 s (FEV1), whereas higher transferrin was associated with decreased FEV1 (beta: -0.036, 95% CI: -0.064 to -0.008, P = 0.01). A significant positive association between iron status and forced vital capacity (FVC) was also observed. However, there is no causal association between iron status and FEV1-to-FVC ratio (P = 0.10). Similar results were obtained from the liberal instruments analyses and multiple sensitivity analyses. Conclusion Our study provided strong evidence to support that higher iron status is causally associated with higher levels of FEV1 and FVC, but has no impact on airway obstruction, confirming iron status as an important target for lung function management.
Collapse
Affiliation(s)
- Zhimin Yu
- Department of General Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chengkai Xu
- Department of General Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chenggang Fang
- Department of General Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Fangfang Zhang
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Fangfang Zhang
| |
Collapse
|
16
|
Afify SM, Regner A, Pacios LF, Blokhuis BR, Jensen SA, Redegeld FA, Pali-Schöll I, Hufnagl K, Bianchini R, Guethoff S, Kramer MF, Fiocchi A, Dvorak Z, Jensen-Jarolim E, Roth-Walter F. Micronutritional supplementation with a holoBLG-based FSMP (food for special medical purposes)-lozenge alleviates allergic symptoms in BALB/c mice: Imitating the protective farm effect. Clin Exp Allergy 2021; 52:426-441. [PMID: 34773648 DOI: 10.1111/cea.14050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Previously, the protective farm effect was imitated using the whey protein beta-lactoglobulin (BLG) that is spiked with iron-flavonoid complexes. Here, we formulated for clinical translation a lozenge as food for special medical purposes (FSMP) using catechin-iron complexes as ligands for BLG. The lozenge was tested in vitro and in a therapeutical BALB/c mice model. METHODS Binding of iron-catechin into BLG was confirmed by spectroscopy and docking calculations. Serum IgE binding of children allergic or tolerating milk was assessed to loaded (holo-) versus empty (apo-) BLG and for human mast cell degranulation. BLG and Bet v 1 double-sensitized mice were orally treated with the holoBLG or placebo lozenge, and immunologically analysed after systemic allergen challenge. Human PBMCs of pollen allergic subjects were flow cytometrically assessed after stimulation with apoBLG or holoBLG using catechin-iron complexes as ligands. RESULTS One major IgE and T cell epitope were masked by catechin-iron complexes, which impaired IgE binding of milk-allergic children and degranulation of mast cells. In mice, only supplementation with the holoBLG lozenge reduced clinical reactivity to BLG and Bet v 1, promoted Tregs, and suppressed antigen presentation. In allergic subjects, stimulation of PBMCs with holoBLG led to a significant increase of intracellular iron in circulating CD14+ cells with significantly lower expression of HLADR and CD86 compared to their stimulation with apoBLG. CONCLUSION The FSMP lozenge targeted antigen presenting cells and dampened immune activation in human immune cells and allergic mice in an antigen-non-specific manner, thereby conferring immune resilience against allergic symptoms.
Collapse
Affiliation(s)
- Sheriene Moussa Afify
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory Medicine and Immunology Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Andreas Regner
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria
| | - Luis F Pacios
- Biotechnology Department, ETSIAAB, Center for Plant Biotechnology and Genomics, CBGP (UPM-INIA), Technical University of Madrid, Madrid, Spain
| | - Bart R Blokhuis
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Sebastian A Jensen
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Frank A Redegeld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Isabella Pali-Schöll
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria
| | - Sonja Guethoff
- Bencard Allergie GmbH, Munich, Germany.,Allergy Therapeutics, Worthing, UK
| | - Matthias F Kramer
- Bencard Allergie GmbH, Munich, Germany.,Allergy Therapeutics, Worthing, UK
| | | | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Biomedical International R+D GmbH, Vienna, Austria
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Mineral Micronutrients in Asthma. Nutrients 2021; 13:nu13114001. [PMID: 34836256 PMCID: PMC8625329 DOI: 10.3390/nu13114001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Asthma represents one of the most common medical issues in the modern world. It is a chronic inflammatory disease characterized by persistent inflammation of the airways and disturbances in redox status, leading to hyperresponsiveness of bronchi and airway obstruction. Apart from classical risk factors such as air pollution, family history, allergies, or obesity, disturbances of the levels of micronutrients lead to impairments in the defense mechanisms of the affected organism against oxidative stress and proinflammatory stimuli. In the present review, the impact of micronutrients on the prevalence, severity, and possible risk factors of asthma is discussed. Although the influence of classical micronutrients such as selenium, copper, or zinc are well known, the effects of those such as iodine or manganese are only rarely mentioned. As a consequence, the aim of this paper is to demonstrate how disturbances in the levels of micronutrients and their supplementation might affect the course of asthma.
Collapse
|
18
|
Kang CM, Chiang BL, Wang LC. Maternal Nutritional Status and Development of Atopic Dermatitis in Their Offspring. Clin Rev Allergy Immunol 2021; 61:128-155. [PMID: 32157654 DOI: 10.1007/s12016-020-08780-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atopic dermatitis (AD) is the leading chronic skin inflammatory disease and the initial manifestation of atopic march. Available evidence supports the notion that primary prevention early in life leads to a decreased incidence of AD, thus possibly decreasing the subsequent occurrence of atopic march. Nutritional status is essential to a proper functioning immune system and is valued for its important role in AD. Essential nutrients, which include carbohydrates, proteins, lipids, vitamins, and minerals, are transferred from the mother to the fetus through the placenta during gestation. Various nutrients, such as polyunsaturated fatty acids (PUFAs) and vitamin D, were studied in relation to maternal status and offspring allergy. However, no strong evidence indicates that a single nutrient or food in mothers' diet significantly affects the risk of childhood AD. In the light of current evidence, mothers should not either increase nor avoid consuming these nutrients to prevent or ameliorate allergic diseases in their offspring. Each essential nutrient has an important role in fetal development, and current government recommendations suggest specific intake amounts for pregnant women. This review discusses evidence on how various nutrients, including lipids (monounsaturated fatty acids, PUFAs, saturated fatty acids, and short-chain fatty acids), carbohydrates (oligosaccharides and polysaccharides), proteins, vitamins (A, B, C, D, and E), and trace minerals (magnesium, iron, zinc, copper, selenium, and strontium) in maternal status are associated with the development of AD and their possible mechanisms.
Collapse
Affiliation(s)
- Chun-Min Kang
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei, 10002, Taiwan, Republic of China
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei, 10002, Taiwan, Republic of China.
| |
Collapse
|
19
|
Quezada-Pinedo HG, Cassel F, Duijts L, Muckenthaler MU, Gassmann M, Jaddoe VWV, Reiss IKM, Vermeulen MJ. Maternal Iron Status in Pregnancy and Child Health Outcomes after Birth: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13072221. [PMID: 34203528 PMCID: PMC8308244 DOI: 10.3390/nu13072221] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
In pregnancy, iron deficiency and iron overload increase the risk for adverse pregnancy outcomes, but the effects of maternal iron status on long-term child health are poorly understood. The aim of the study was to systematically review and analyze the literature on maternal iron status in pregnancy and long-term outcomes in the offspring after birth. We report a systematic review on maternal iron status during pregnancy in relation to child health outcomes after birth, from database inception until 21 January 2021, with methodological quality rating (Newcastle-Ottawa tool) and random-effect meta-analysis. (PROSPERO, CRD42020162202). The search identified 8139 studies, of which 44 were included, describing 12,7849 mother–child pairs. Heterogeneity amongst the studies was strong. Methodological quality was predominantly moderate to high. Iron status was measured usually late in pregnancy. The majority of studies compared categories based on maternal ferritin, however, definitions of iron deficiency differed across studies. The follow-up period was predominantly limited to infancy. Fifteen studies reported outcomes on child iron status or hemoglobin, 20 on neurodevelopmental outcomes, and the remainder on a variety of other outcomes. In half of the studies, low maternal iron status or iron deficiency was associated with adverse outcomes in children. Meta-analyses showed an association of maternal ferritin with child soluble transferrin receptor concentrations, though child ferritin, transferrin saturation, or hemoglobin values showed no consistent association. Studies on maternal iron status above normal, or iron excess, suggest deleterious effects on infant growth, cognition, and childhood Type 1 diabetes. Maternal iron status in pregnancy was not consistently associated with child iron status after birth. The very heterogeneous set of studies suggests detrimental effects of iron deficiency, and possibly also of overload, on other outcomes including child neurodevelopment. Studies are needed to determine clinically meaningful definitions of iron deficiency and overload in pregnancy.
Collapse
Affiliation(s)
- Hugo G. Quezada-Pinedo
- The Generation R Study Group, Erasmus MC-Sophia, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands; (H.G.Q.-P.); (V.W.V.J.); (I.K.M.R.)
- Department of Pediatrics, Erasmus MC-Sophia, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Florian Cassel
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands; (F.C.); (L.D.)
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands; (F.C.); (L.D.)
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Martina U. Muckenthaler
- Molecular Medicine Partnership Unit, University Hospital Heidelberg, D-69120 Heidelberg, Germany;
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
- Zurich Center for Integrative, Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland
- School of Medicine, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus MC-Sophia, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands; (H.G.Q.-P.); (V.W.V.J.); (I.K.M.R.)
- Department of Pediatrics, Erasmus MC-Sophia, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Irwin K. M. Reiss
- The Generation R Study Group, Erasmus MC-Sophia, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands; (H.G.Q.-P.); (V.W.V.J.); (I.K.M.R.)
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands; (F.C.); (L.D.)
| | - Marijn J. Vermeulen
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia, University Medical Center, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands; (F.C.); (L.D.)
- Correspondence:
| |
Collapse
|
20
|
Iron status of full-term infants in early infancy is not associated with maternal ferritin levels nor infant feeding practice. Br J Nutr 2021; 127:1198-1203. [PMID: 34103112 DOI: 10.1017/s0007114521001975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Iron deficiency (ID) in early life is associated with morbidities. Most fetal iron required for infant growth is acquired in the third trimester from maternal iron store. However, how prenatal iron level affects ferritin level in early infancy remains controversial. This study aimed to examine the associations between maternal ferritin levels and cord blood serum ferritin (CBSF) and to compare the ferritin levels between different feeding practices in early infancy. Healthy Chinese mothers with uncomplicated pregnancy and their infants were followed up at 3 months post-delivery for questionnaire completion and infant blood collection. Infants who were predominantly breastfed and those who were predominantly formula fed were included in this analysis. Serum ferritin levels were measured in maternal blood samples collected upon delivery, cord blood and infant blood samples at 3 months of age. Ninety-seven mother-baby dyads were included. Maternal ID is common (56 %) while the CBSF levels were significantly higher than maternal ferritin levels. Only three infants (3 %) had ID at 3 months of age. There were no significant correlations between maternal ferritin levels with CBSF (r 0·168, P = 0·108) nor with infant ferritin levels at 3 months of age (r 0·023, P = 0·828). Infant ferritin levels at 3 months were significantly and independently associated with CBSF (P = 0·007) and birth weight (P < 0·001) after adjusting for maternal age, parity, maternal education, infant sex and feeding practice. In conclusion, maternal ID was common upon delivery. However, maternal ferritin levels were not significantly associated with CBSF concentrations nor infant ferritin concentrations at 3 months of age.
Collapse
|
21
|
Roth-Walter F. Funktionellen Eisenmangel beim Allergiker mit gezielter Mikroernährung ausgleichen. ALLERGO JOURNAL 2021. [DOI: 10.1007/s15007-021-4822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Quezada-Pinedo HG, Mensink-Bout SM, Reiss IK, Jaddoe VWV, Vermeulen MJ, Duijts L. Maternal iron status during early pregnancy and school-age, lung function, asthma, and allergy: The Generation R Study. Pediatr Pulmonol 2021; 56:1771-1778. [PMID: 33657279 PMCID: PMC8251584 DOI: 10.1002/ppul.25324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Iron deficiency during early life could affect the developing lung and immune system, and influence child's respiratory or allergy outcomes in later life. OBJECTIVE To examine the associations of maternal iron status during early pregnancy with child's lung function, asthma, inhalant allergic sensitization, and physician-diagnosed inhalant allergy at school-age. METHODS In a population-based cohort study, among 3825 mother-child pairs, ferritin, transferrin concentrations, and transferrin saturation were measured from maternal venous blood samples during early pregnancy. In children at the age of 10 years, spirometry was used to determine child's lung function, current asthma and physician-diagnosed inhalant allergy were assessed by questionnaires, and inhalant allergic sensitization was measured by skin prick tests. We used multivariable regression models to examine the associations. RESULTS After adjustment for gestational age at maternal iron status measurement and sociodemographic or lifestyle-related confounders, a higher maternal transferrin concentration was associated with a higher risk of physician-diagnosed inhalant allergy (odds ratio [95% confidence interval]: 1.13 [1.01 to1.26]), but not with lung function, asthma, or inhalant allergic sensitization. This association did not attenuate after further adjustment for maternal hemoglobin levels or early growth factors. We observed no consistent association of maternal ferritin concentrations or transferrin saturation with child's respiratory or allergy outcomes. CONCLUSION Higher maternal transferrin concentrations during pregnancy, reflecting lower serum iron levels, were associated with an increased risk of child's physician-diagnosed inhalant allergy but not lung outcomes. Underlying mechanisms and clinical implications need to be explored.
Collapse
Affiliation(s)
- Hugo G Quezada-Pinedo
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marijn J Vermeulen
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Ha EK, Kim JH, Lee E, Sung M, Jee HM, Baek HS, Shin YH, Lee NH, Han MY. Abnormal iron status is independently associated with reduced oscillometric lung function in schoolchildren. CLINICAL RESPIRATORY JOURNAL 2021; 15:870-877. [PMID: 33848060 DOI: 10.1111/crj.13375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Associations between anemia and allergic diseases have been reported, but the relationship of iron deficiency with airway dysfunction in children remains unclear. We aimed to investigate the relationship between abnormal iron parameters and lung function in schoolchildren. METHODS Four hundred and forty-five children (10-12 years-old) from 11 elementary schools in were enrolled. The relationships of different iron parameters (hemoglobin, serum iron, transferrin saturation, and serum ferritin) with lung function evaluated by impulse oscillometry (airways resistance at 5 Hz [Rrs5], 10 Hz [Rrs10], and the difference of Rrs5 and Rrs20 Hz [Rrs5-20]), and with exhaled nitric oxide (FeNO) were evaluated after adjustment for confounders including height, sex, and body mass index z-score, and for additional covariates that could affect airway function. RESULTS Total airway dysfunction represented by Rrs5 was reduced in participants with low serum iron level (aβ: -0.13, 95% CI: -0.23 to -0.03, p = 0.040) after adjustment for key confounders, but did not correlate with other iron profiles. Reduced oscillometric lung function recorded as Rrs5-20 was related with low serum iron and high serum ferritin, but the results were inconsistent after multiple comparisons. Associations were not observed with serum hemoglobin. CONCLUSIONS Decreased serum iron level was related with airway dysfunction represented as oscillomteric Rrs5. Our results suggest a relationship of reduced lung function with abnormal iron status in children.
Collapse
Affiliation(s)
- Eun Kyo Ha
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Ju Hee Kim
- Department of Pediatrics, Hallym University Kandong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Myongsoon Sung
- Department of Pediatrics, Soon Chun Hyang University Gumi Hospital, Soon Chun Hyang University College of Medicine, Gumi, Republic of Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Hey Sung Baek
- Department of Pediatrics, Hallym University Kandong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Na Hee Lee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
24
|
Yang L, Sato M, Saito-Abe M, Irahara M, Nishizato M, Sasaki H, Konishi M, Ishitsuka K, Mezawa H, Yamamoto-Hanada K, Matsumoto K, Ohya Y. Association of Hemoglobin and Hematocrit Levels during Pregnancy and Maternal Dietary Iron Intake with Allergic Diseases in Children: The Japan Environment and Children's Study (JECS). Nutrients 2021; 13:nu13030810. [PMID: 33804474 PMCID: PMC7999127 DOI: 10.3390/nu13030810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Few epidemiologic studies have examined the role of maternal iron status in allergic diseases in offspring and findings have been inconsistent. We used a large birth cohort in Japan to explore the association of the markers for maternal iron status (maternal hemoglobin, hematocrit and dietary iron intake during pregnancy) with allergy development in offspring during early childhood. We analyzed information on children age 0–3 years from the Japan Environment and Children’s Study (JECS). We used logistic models and generalized estimating equation models to evaluate the effect of maternal hemoglobin and hematocrit levels and dietary iron intake on allergies in children. Models were also fitted with propensity score-matched datasets. Data were collected for a total of 91,247 mother–child pairs. The prevalence (95% confidence interval) of low hemoglobin and hematocrit was 14.0% (13.7–14.2%) and 12.5% (12.3–12.8%), respectively. After adjusting confounders, low hemoglobin and hematocrit during pregnancy were not associated with childhood allergic outcomes. Findings from models with propensity score-matched datasets also indicated that children born to mothers with low hemoglobin or hematocrit levels during pregnancy did not have a higher risk of developing allergic conditions at 3 years old. We found no meaningful associations between low energy adjusted maternal dietary iron intake and allergies in children. In conclusion, using birth cohort data, we found no evidence supporting an association of low maternal hemoglobin, hematocrit and low dietary iron intake with allergy symptoms during early childhood. Further studies with more suitable proxy markers for blood iron status are needed.
Collapse
Affiliation(s)
- Limin Yang
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (M.S.-A.); (M.I.); (M.N.); (H.S.); (M.K.); (K.I.); (H.M.); (K.Y.-H.); (K.M.); (Y.O.)
- Medical Support Center for the Japan Environment and Children’s Study, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Correspondence: ; Tel.: +81-3-3416-0181; Fax: +81-3-3416-2222
| | - Miori Sato
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (M.S.-A.); (M.I.); (M.N.); (H.S.); (M.K.); (K.I.); (H.M.); (K.Y.-H.); (K.M.); (Y.O.)
- Medical Support Center for the Japan Environment and Children’s Study, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Mayako Saito-Abe
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (M.S.-A.); (M.I.); (M.N.); (H.S.); (M.K.); (K.I.); (H.M.); (K.Y.-H.); (K.M.); (Y.O.)
- Medical Support Center for the Japan Environment and Children’s Study, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Makoto Irahara
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (M.S.-A.); (M.I.); (M.N.); (H.S.); (M.K.); (K.I.); (H.M.); (K.Y.-H.); (K.M.); (Y.O.)
- Medical Support Center for the Japan Environment and Children’s Study, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Minaho Nishizato
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (M.S.-A.); (M.I.); (M.N.); (H.S.); (M.K.); (K.I.); (H.M.); (K.Y.-H.); (K.M.); (Y.O.)
- Medical Support Center for the Japan Environment and Children’s Study, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hatoko Sasaki
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (M.S.-A.); (M.I.); (M.N.); (H.S.); (M.K.); (K.I.); (H.M.); (K.Y.-H.); (K.M.); (Y.O.)
- Medical Support Center for the Japan Environment and Children’s Study, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Mizuho Konishi
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (M.S.-A.); (M.I.); (M.N.); (H.S.); (M.K.); (K.I.); (H.M.); (K.Y.-H.); (K.M.); (Y.O.)
- Medical Support Center for the Japan Environment and Children’s Study, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kazue Ishitsuka
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (M.S.-A.); (M.I.); (M.N.); (H.S.); (M.K.); (K.I.); (H.M.); (K.Y.-H.); (K.M.); (Y.O.)
- Medical Support Center for the Japan Environment and Children’s Study, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hidetoshi Mezawa
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (M.S.-A.); (M.I.); (M.N.); (H.S.); (M.K.); (K.I.); (H.M.); (K.Y.-H.); (K.M.); (Y.O.)
- Medical Support Center for the Japan Environment and Children’s Study, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kiwako Yamamoto-Hanada
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (M.S.-A.); (M.I.); (M.N.); (H.S.); (M.K.); (K.I.); (H.M.); (K.Y.-H.); (K.M.); (Y.O.)
- Medical Support Center for the Japan Environment and Children’s Study, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kenji Matsumoto
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (M.S.-A.); (M.I.); (M.N.); (H.S.); (M.K.); (K.I.); (H.M.); (K.Y.-H.); (K.M.); (Y.O.)
- Medical Support Center for the Japan Environment and Children’s Study, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Yukihiro Ohya
- Allergy Center, National Center for Child Health and Development, Tokyo 157-8535, Japan; (M.S.); (M.S.-A.); (M.I.); (M.N.); (H.S.); (M.K.); (K.I.); (H.M.); (K.Y.-H.); (K.M.); (Y.O.)
- Medical Support Center for the Japan Environment and Children’s Study, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | | |
Collapse
|
25
|
La X, Wang W, Zhang M, Liang L. Definition and Multiple Factors of Recurrent Spontaneous Abortion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:231-257. [PMID: 33523437 DOI: 10.1007/978-981-33-4187-6_11] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recurrent spontaneous abortion (RSA) is usually defined as three or more spontaneous abortions prior to 20-28 weeks gestation. RSA affects approximately 2-5% of all women of childbearing age, and it brings tremendous psychological and psychiatric trauma to the women and also results in economic burden. The causes could be female age, anatomical and chromosomal abnormalities, genetic, endocrinological, placental anomalies, infection, smoking and alcohol consumption, psychological factor, exposure to environmental factors such as heavy metal, environment pollution, and radiation.
Collapse
Affiliation(s)
- Xiaolin La
- Reproductive Medicine Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Wenjuan Wang
- Reproductive Medical Center, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| | - Meng Zhang
- Reproductive Medicine Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Liang
- Reproductive Medical Center, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P.R. China
| |
Collapse
|
26
|
Shaheen SO, Gissler M, Devereux G, Erkkola M, Kinnunen TI, Mcardle H, Sheikh A, Hemminki E, Nwaru BI. Maternal iron supplementation in pregnancy and asthma in the offspring: follow-up of a randomised trial in Finland. Eur Respir J 2020; 55:13993003.02335-2019. [PMID: 32139461 DOI: 10.1183/13993003.02335-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/04/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Seif O Shaheen
- Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mika Gissler
- Finnish Institute for Health and Welfare, Helsinki, Finland.,Dept of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | | | | | - Tarja I Kinnunen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Harry Mcardle
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - Aziz Sheikh
- Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Elina Hemminki
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Bright I Nwaru
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland.,Asthma UK Centre for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, UK.,Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| |
Collapse
|
27
|
Roth-Walter F, Afify SM, Pacios LF, Blokhuis BR, Redegeld F, Regner A, Petje LM, Fiocchi A, Untersmayr E, Dvorak Z, Hufnagl K, Pali-Schöll I, Jensen-Jarolim E. Cow's milk protein β-lactoglobulin confers resilience against allergy by targeting complexed iron into immune cells. J Allergy Clin Immunol 2020; 147:321-334.e4. [PMID: 32485264 DOI: 10.1016/j.jaci.2020.05.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Beta-lactoglobulin (BLG) is a bovine lipocalin in milk with an innate defense function. The circumstances under which BLG is associated with tolerance of or allergy to milk are not understood. OBJECTIVE Our aims were to assess the capacity of ligand-free apoBLG versus loaded BLG (holoBLG) to protect mice against allergy by using an iron-quercetin complex as an exemplary ligand and to study the molecular mechanisms of this protection. METHODS Binding of iron-quercetin to BLG was modeled and confirmed by spectroscopy and docking calculations. Serum IgE binding to apoBLG and holoBLG in children allergic to milk and children tolerant of milk was assessed. Mice were intranasally treated with apoBLG versus holoBLG and analyzed immunologically after systemic challenge. Aryl hydrocarbon receptor (AhR) activation was evaluated with reporter cells and Cyp1A1 expression. Treated human PBMCs and human mast cells were assessed by fluorescence-activated cell sorting and degranulation, respectively. RESULTS Modeling predicted masking of major IgE and T-cell epitopes of BLG by ligand binding. In line with this modeling, IgE binding in children allergic to milk was reduced toward holoBLG, which also impaired degranulation of mast cells. In mice, only treatments with holoBLG prevented allergic sensitization and anaphylaxis, while sustaining regulatory T cells. BLG facilitated quercetin-dependent AhR activation and, downstream of AhR, lung Cyp1A1 expression. HoloBLG shuttled iron into monocytic cells and impaired their antigen presentation. CONCLUSION The cargo of holoBLG is decisive in preventing allergy in vivo. BLG without cargo acted as an allergen in vivo and further primed human mast cells for degranulation in an antigen-independent fashion. Our data provide a mechanistic explanation why the same proteins can act either as tolerogens or as allergens.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Sheriene Moussa Afify
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Laboratory Medicine and Immunology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Luis F Pacios
- Biotechnology Department, ETSIAAB, Center for Plant Biotechnology and Genomics, CBGP (UPM-INIA), Technical University of Madrid, Madrid, Spain
| | - Bart R Blokhuis
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Frank Redegeld
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Andreas Regner
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Lisa-Marie Petje
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | | | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Karin Hufnagl
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria; Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
Inclan-Rico JM, Hernandez CM, Henry EK, Federman HG, Sy CB, Ponessa JJ, Lemenze AD, Joseph N, Soteropoulos P, Beaulieu AM, Yap GS, Siracusa MC. Trichinella spiralis-induced mastocytosis and erythropoiesis are simultaneously supported by a bipotent mast cell/erythrocyte precursor cell. PLoS Pathog 2020; 16:e1008579. [PMID: 32421753 PMCID: PMC7259795 DOI: 10.1371/journal.ppat.1008579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/29/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Anti-helminth responses require robust type 2 cytokine production that simultaneously promotes worm expulsion and initiates the resolution of helminth-induced wounds and hemorrhaging. However, how infection-induced changes in hematopoiesis contribute to these seemingly distinct processes remains unknown. Recent studies have suggested the existence of a hematopoietic progenitor with dual mast cell-erythrocyte potential. Nonetheless, whether and how these progenitors contribute to host protection during an active infection remains to be defined. Here, we employed single cell RNA-sequencing and identified that the metabolic enzyme, carbonic anhydrase (Car) 1 marks a predefined bone marrow-resident hematopoietic progenitor cell (HPC) population. Next, we generated a Car1-reporter mouse model and found that Car1-GFP positive progenitors represent bipotent mast cell/erythrocyte precursors. Finally, we show that Car1-expressing HPCs simultaneously support mast cell and erythrocyte responses during Trichinella spiralis infection. Collectively, these data suggest that mast cell/erythrocyte precursors are mobilized to promote type 2 cytokine responses and alleviate helminth-induced blood loss, developmentally linking these processes. Collectively, these studies reveal unappreciated hematopoietic events initiated by the host to combat helminth parasites and provide insight into the evolutionary pressure that may have shaped the developmental relationship between mast cells and erythrocytes. Helminth parasites infect approximately 2 billion people and represent a significant public health concern. Helminths undertake complex developmental life cycles through multiple organs and as a result cause substantial tissue damage. To combat this, mammals have evolved mechanisms to initiate balanced immune responses that promote inflammation needed to seclude parasites in granulomas, reduce parasitic burdens and mitigate the consequences of helminth-induced wounds. Despite their clinical importance, the mechanisms that regulate these events remain poorly defined. Here we have uncovered a unique progenitor cell that supports both proinflammatory mast cell responses and red blood cell development, thereby simultaneously initiating both of these host-protective responses. Collectively, these studies reveal unappreciated events initiated by the host to combat pathogens that infect billions of individuals worldwide.
Collapse
Affiliation(s)
- Juan M. Inclan-Rico
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Christina M. Hernandez
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Everett K. Henry
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Hannah G. Federman
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Chandler B. Sy
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - John J. Ponessa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Alexander D. Lemenze
- The Department of Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Nathanael Joseph
- The Genomics Center, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Patricia Soteropoulos
- The Genomics Center, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Aimee M. Beaulieu
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - George S. Yap
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
| | - Mark C. Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
29
|
Ali MK, Kim RY, Brown AC, Mayall JR, Karim R, Pinkerton JW, Liu G, Martin KL, Starkey MR, Pillar AL, Donovan C, Pathinayake PS, Carroll OR, Trinder D, Tay HL, Badi YE, Kermani NZ, Guo YK, Aryal R, Mumby S, Pavlidis S, Adcock IM, Weaver J, Xenaki D, Oliver BG, Holliday EG, Foster PS, Wark PA, Johnstone DM, Milward EA, Hansbro PM, Horvat JC. Crucial role for lung iron level and regulation in the pathogenesis and severity of asthma. Eur Respir J 2020; 55:13993003.01340-2019. [PMID: 32184317 DOI: 10.1183/13993003.01340-2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/28/2020] [Indexed: 01/08/2023]
Abstract
Accumulating evidence highlights links between iron regulation and respiratory disease. Here, we assessed the relationship between iron levels and regulatory responses in clinical and experimental asthma.We show that cell-free iron levels are reduced in the bronchoalveolar lavage (BAL) supernatant of severe or mild-moderate asthma patients and correlate with lower forced expiratory volume in 1 s (FEV1). Conversely, iron-loaded cell numbers were increased in BAL in these patients and with lower FEV1/forced vital capacity (FVC) ratio. The airway tissue expression of the iron sequestration molecules divalent metal transporter 1 (DMT1) and transferrin receptor 1 (TFR1) are increased in asthma, with TFR1 expression correlating with reduced lung function and increased Type-2 (T2) inflammatory responses in the airways. Furthermore, pulmonary iron levels are increased in a house dust mite (HDM)-induced model of experimental asthma in association with augmented Tfr1 expression in airway tissue, similar to human disease. We show that macrophages are the predominant source of increased Tfr1 and Tfr1+ macrophages have increased Il13 expression. We also show that increased iron levels induce increased pro-inflammatory cytokine and/or extracellular matrix (ECM) responses in human airway smooth muscle (ASM) cells and fibroblasts ex vivo and induce key features of asthma in vivo, including airway hyper-responsiveness (AHR) and fibrosis, and T2 inflammatory responses.Together these complementary clinical and experimental data highlight the importance of altered pulmonary iron levels and regulation in asthma, and the need for a greater focus on the role and potential therapeutic targeting of iron in the pathogenesis and severity of disease.
Collapse
Affiliation(s)
- Md Khadem Ali
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Rafia Karim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - James W Pinkerton
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Respiratory Pharmacology and Toxicology Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Kristy L Martin
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Dept of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Amber L Pillar
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Prabuddha S Pathinayake
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Olivia R Carroll
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Debbie Trinder
- Medical School, Harry Perkins Medical Research Institute, University of Western Australia, Fiona Stanley Hospital, Perth, Australia
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Yusef E Badi
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Nazanin Z Kermani
- Data Science Institute, Dept of Computing, Imperial College London, London, UK
| | - Yi-Ke Guo
- Data Science Institute, Dept of Computing, Imperial College London, London, UK
| | - Ritambhara Aryal
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Sharon Mumby
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Stelios Pavlidis
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jessica Weaver
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Dikaia Xenaki
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Elizabeth G Holliday
- Hunter Medical Research Institute, New Lambton, Australia.,School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Dept of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Daniel M Johnstone
- Discipline of Physiology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Elizabeth A Milward
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia.,These authors contributed equally
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,These authors contributed equally
| |
Collapse
|
30
|
Atopic Disease and Anemia in Korean Patients: Cross-Sectional Study with Propensity Score Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061978. [PMID: 32197291 PMCID: PMC7142528 DOI: 10.3390/ijerph17061978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Atopic disease is associated with chronic inflammation, and anemia has been reported in patients with inflammatory disorders such as rheumatoid arthritis, chronic obstructive pulmonary disease, and irritable bowel disease. The objective of this study was to determine whether atopic disease is associated with an increased risk of anemia. A cross-sectional study with propensity score weighting was conducted using a health insurance review agency claims dataset comprised of randomized patients who used the Korean national health system at least once in 2016. The association between atopic disease (asthma, atopic dermatitis, allergic rhinitis) and anemia (iron deficiency anemia (IDA) and/or anemia of inflammation (AI)) was examined. A total of 1,468,033 patients were included in this study. The IDA/AI prevalence was 3.1% (45,681 patients). After propensity score weighting, there were 46,958 and 45,681 patients in the non-anemic and anemic groups, respectively. The prevalence of IDA/AI in patients with atopic dermatitis, allergic rhinitis, or asthma had an odds ratio (OR) of 1.40 (95% confidence interval (CI), 1.33–1.48; p < 0.001), 1.17 (95% CI, 1.14–1.21; p < 0.001), and 1.32 (95% CI, 1.28–1.36; p < 0.001), respectively. In addition, the prevalence of IDA increased with higher numbers of atopic diseases. In conclusion, the prevalence of IDA/AI was higher in patients with atopic disease, even after adjusting for demographic characteristics and other risk factors. Further study is needed to distinguish between IDA and AI and to enhance understanding of the etiology of anemia in patients with inflammatory conditions.
Collapse
|
31
|
Fujimura T, Lum SZC, Nagata Y, Kawamoto S, Oyoshi MK. Influences of Maternal Factors Over Offspring Allergies and the Application for Food Allergy. Front Immunol 2019; 10:1933. [PMID: 31507589 PMCID: PMC6716146 DOI: 10.3389/fimmu.2019.01933] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
The prevalence of food allergy has been steadily rising worldwide with the highest incidence noted among younger children, and increasingly recognized as a growing public concern. The first known ingestion of foods often causes allergic reaction, suggesting that sensitization of offspring with food allergens may occur during pregnancy and/or through breastfeeding. This creates a milieu that shapes the neonatal immune responses to these allergens. However, the effects of maternal allergen exposure and maternal sensitization with allergens on development of allergies in offspring remain controversial. This review discusses recent advances from human data in our understanding of how maternal factors, namely, food allergens, allergen-specific immunoglobulins, cytokines, genetics, and environmental factors transferred during pregnancy or breastfeeding influence offspring allergies and how such effects may be applicable to food allergy. Based on information obtained from mouse models of asthma and food allergy, the review also dissects the mechanisms by which maternal factors, including the impact of immune complexes, transforming growth factor-β, vitamin A, and regulatory T-cell responses, contribute to the induction of neonatal tolerance vs. development of allergic responses to maternally transferred allergens.
Collapse
Affiliation(s)
- Takashi Fujimura
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
- Hiroshima Research Center for Healthy Aging (HiHA), Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Yuka Nagata
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Seiji Kawamoto
- Hiroshima Research Center for Healthy Aging (HiHA), Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Michiko K. Oyoshi
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Al-Shamrani A, Bagais K, Alenazi A, Alqwaiee M, Al-Harbi AS. Wheezing in children: Approaches to diagnosis and management. Int J Pediatr Adolesc Med 2019; 6:68-73. [PMID: 31388550 PMCID: PMC6676316 DOI: 10.1016/j.ijpam.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
33
|
Dietary and Nutritional Influences on Allergy Prevention. CURRENT TREATMENT OPTIONS IN ALLERGY 2018. [DOI: 10.1007/s40521-018-0182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Zhang Y, Guo Y, Ma J, Lu XZ, Luo XQ. [Association of FokI rs2228570 and TMPRSS6 rs855791 polymorphisms with cow's milk protein allergy in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:641-646. [PMID: 30111473 PMCID: PMC7389751 DOI: 10.7499/j.issn.1008-8830.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To study the association of polymorphisms of FokI rs2228570 in the vitamin D receptor (VDR) gene and TMPRSS6 rs855791 with cow's milk protein allergy (CMPA) in children. METHODS Quantitative real-time PCR was used to analyze the single nucleotide polymorphisms of FokI rs2228570 in the VDR gene and TMPRSS6 rs855791 in 100 children with CMPA and 100 healthy children (control group). The multivariate logistic regression model was used to identify the risk factors for CMPA. RESULTS There were significant differences in the frequencies of CC, CT, and TT genotypes of TMPRSS6 rs855791 between the CMPA and control groups (P=0.008), and the CMPA group had a significantly higher frequency of TT genotype. The multivariate logistic regression analysis showed that the children with TT genotype of rs855791 had an increased risk of CMPA (OR=3.473, P=0.011). However, there was no significant difference in the genotype distribution of FokI rs2228570 in the VDR gene between the two groups (P=0.686). CONCLUSIONS TMPRSS6 rs855791 polymorphism is associated with CMPA in children, and TT genotype may be the susceptible genotype of CMPA. FokI rs2228570 polymorphism is not associated with CMPA.
Collapse
Affiliation(s)
- Ye Zhang
- Guangdong Women and Children's Hospital Affiliated to Guangzhou Medical University, Guangzhou 511400, China.
| | | | | | | | | |
Collapse
|
35
|
Bédard A, Lewis SJ, Burgess S, Henderson AJ, Shaheen SO. Maternal iron status during pregnancy and respiratory and atopic outcomes in the offspring: a Mendelian randomisation study. BMJ Open Respir Res 2018; 5:e000275. [PMID: 29636978 PMCID: PMC5890059 DOI: 10.1136/bmjresp-2018-000275] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 12/23/2022] Open
Abstract
Introduction Limited evidence from birth cohort studies suggests that lower prenatal iron status may be a risk factor for childhood respiratory and atopic outcomes, but these observational findings may be confounded. Mendelian randomisation (MR) can potentially provide unconfounded estimates of causal effects by using common genetic variants as instrumental variables. We aimed to study the relationship between prenatal iron status and respiratory and atopic outcomes in the offspring using MR. Methods In the Avon Longitudinal Study of Parents and Children birth cohort, we constructed four maternal genotypic risk scores by summing the total number of risk alleles (associated with lower iron status) across single nucleotide polymorphisms known to be associated with at least one of four iron biomarkers (serum iron, ferritin, transferrin and transferrin saturation). We used MR to study their associations with respiratory and atopic outcomes in children aged 7-9 years (n=6002). Results When analyses were restricted to mothers without iron supplementation during late pregnancy, negative associations were found between the maternal transferrin saturation score and childhood forced expiratory volume in 1 s and forced vital capacity (difference in age, height and gender-adjusted SD units per SD increase in genotypic score: -0.05 (-0.09, -0.01) p=0.03, and -0.04 (-0.08, 0.00) p=0.04, respectively). Conclusion Using MR we have found weak evidence suggesting that low maternal iron status during pregnancy may cause impaired childhood lung function.
Collapse
Affiliation(s)
- Annabelle Bédard
- Centre for Primary Care and Public Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sarah J Lewis
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.,Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - A John Henderson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Seif O Shaheen
- Centre for Primary Care and Public Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
36
|
Pereira de Jesus SMCB, den Dekker HT, de Jongste JC, Reiss IK, Steegers EA, Jaddoe VWV, Duijts L. Maternal hemoglobin and hematocrit levels during pregnancy and childhood lung function and asthma. The Generation R Study. Pediatr Pulmonol 2018; 53:130-137. [PMID: 29265553 DOI: 10.1002/ppul.23733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To examine the associations of maternal hemoglobin and hematocrit levels during pregnancy with childhood lung function and asthma, and whether adverse pregnancy outcomes and atopic predisposition modify the associations. METHODS In a population-based prospective cohort study among 3672 subjects, we measured maternal hemoglobin and hematocrit levels in early pregnancy, and lung function by spirometry and current asthma by questionnaire at age 10 years. RESULTS Higher maternal hematocrit levels, both continuously and categorized into clinical cut-offs, were associated with lower forced expiratory flow at 75% of forced vital capacity (FEF75 ) in children (Z-score (95%CI): -0.04 (-0.07, -0.01), per increase of 1 SDS in hematocrit level; Z-score (95%CI) difference: -0.11 (-0.20, -0.03) compared with normal hematocrit levels, respectively), taking lifestyle and socio-economic factors into account. Adverse pregnancy outcomes and atopic predisposition did not modify the results. No associations of maternal hemoglobin and hematocrit with current asthma were observed. CONCLUSION Higher maternal hematocrit levels during pregnancy are associated with lower childhood lung function but not with risk of asthma. Adverse pregnancy outcomes and atopic predisposition do not modify these associations. Underlying mechanisms need to be further studied.
Collapse
Affiliation(s)
- Sabrina M C B Pereira de Jesus
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Respiratory Medicine, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Herman T den Dekker
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Respiratory Medicine, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johan C de Jongste
- Division of Respiratory Medicine, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eric A Steegers
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Division of Respiratory Medicine, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Harju M, Pekkanen J, Heinonen S, Keski-Nisula L. Maternal anemia during pregnancy and slightly higher risk of asthma in male offspring. J Obstet Gynaecol Res 2018; 44:614-622. [PMID: 29314471 DOI: 10.1111/jog.13569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/07/2017] [Indexed: 01/12/2023]
Abstract
AIM We aimed to determine whether maternal hemoglobin levels or anemia during pregnancy are associated with the development of asthma among offspring. METHODS Data were retrieved from the birth register database of Kuopio University Hospital between 1989 and 2007 (n = 38 381). Hemoglobin levels were measured during three trimesters of pregnancy and anemia was defined according to the World Health Organization criteria. The prevalence of asthma was determined from the register of reimbursement for medication for asthma at the Finnish Social Security Institution. Cox proportional hazard regression analysis was performed to evaluate the possible associations between prenatal factors and development of asthma ever. RESULTS A total of 8198 (21.4%) women had anemia at some stage of pregnancy. Mild maternal anemia during the first trimester was associated with an increased risk of asthma among male offspring (adjusted hazard ratio, 1.46; 95% confidence interval, 1.11-1.94) compared with those with normal maternal hemoglobin levels. This finding remained significant also after applying the Bonferroni correction. CONCLUSION Male offspring with maternal anemia during the first trimester of pregnancy had significantly more asthma ever than the offspring of women with normal hemoglobin levels during pregnancy. These findings were not strong but suggest possible sex-specific effects of maternal health on prenatal programming and future risk of asthma.
Collapse
Affiliation(s)
- Maijakaisa Harju
- Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - Juha Pekkanen
- Department of Public Health, University of Helsinki, Helsinki, Finland.,Living Environment and Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Seppo Heinonen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Leea Keski-Nisula
- Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland.,Living Environment and Health Unit, National Institute for Health and Welfare, Kuopio, Finland.,Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
38
|
Roth-Walter F, Pacios LF, Bianchini R, Jensen-Jarolim E. Linking iron-deficiency with allergy: role of molecular allergens and the microbiome. Metallomics 2017; 9:1676-1692. [PMID: 29120476 DOI: 10.1039/c7mt00241f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atopic individuals tend to develop a Th2 dominant immune response, resulting in hyperresponsiveness to harmless antigens, termed allergens. In the last decade, epidemiological studies have emerged that connected allergy with a deficient iron-status. Immune activation under iron-deficient conditions results in the expansion of Th2-, but not Th1 cells, can induce class-switching in B-cells and hampers the proper activation of M2, but not M1 macrophages. Moreover, many allergens, in particular with the lipocalin and lipocalin-like folds, seem to be capable of binding iron indirectly via siderophores harboring catechol moieties. The resulting locally restricted iron-deficiency may then lead during immune activation to the generation of Th2-cells and thus prepare for allergic sensitization. Moreover, iron-chelators seem to also influence clinical reactivity: mast cells accumulate iron before degranulation and seem to respond differently depending on the type of the encountered siderophore. Whereas deferoxamine triggers degranulation of connective tissue-type mast cells, catechol-based siderophores reduce activation and degranulation and improve clinical symptoms. Considering the complex interplay of iron, siderophores and immune molecules, it remains to be determined whether iron-deficiencies are the cause or the result of allergy.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Department of Comparative Medicine, at the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria.
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Rodolfo Bianchini
- Department of Comparative Medicine, at the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria.
| | - Erika Jensen-Jarolim
- Department of Comparative Medicine, at the Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria. and Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Shaheen SO, Macdonald-Wallis C, Lawlor DA, Henderson AJ. Haemoglobin concentrations in pregnancy and respiratory and allergic outcomes in childhood: Birth cohort study. Clin Exp Allergy 2017; 47:1615-1624. [PMID: 28940397 PMCID: PMC5725736 DOI: 10.1111/cea.13034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/31/2017] [Accepted: 09/12/2017] [Indexed: 12/23/2022]
Abstract
Background Limited epidemiological evidence suggests that low maternal iron status and anaemia in pregnancy may increase the risk of childhood respiratory and allergic outcomes. Objectives To investigate the relation between maternal haemoglobin concentrations in pregnancy and childhood respiratory and allergic outcomes. Methods In the Avon Longitudinal Study of Parents and Children (ALSPAC), we examined associations of maternal haemoglobin concentrations (g/dL) in pregnancy with hayfever, eczema, wheezing, doctor‐diagnosed asthma, allergic sensitisation and total IgE at 7 years, and with lung function at 8‐9 years in the offspring, after controlling for potential confounders (N = 3234‐5335). Results Maternal haemoglobin was not associated with offspring hayfever, eczema, wheezing or asthma. However, the first haemoglobin measurement in pregnancy (<18 weeks' gestation) and the last measurement (>28 weeks' gestation) were negatively associated with allergic sensitisation (adjusted odds ratio [95% CI] per g/dL 0.91 [0.83 to 0.99] and 0.90 [0.83 to 0.98], respectively). The last haemoglobin measurement was also negatively associated with total IgE (adjusted geometric mean ratio 0.94 [0.88 to 0.99]). Anaemia (haemoglobin <11 g/dL) in late pregnancy was negatively associated with forced vital capacity (difference in standard deviation score −0.07 [−0.13 to −0.01]). Conclusions and Clinical Relevance Lower maternal haemoglobin in pregnancy may be a risk factor for allergic sensitisation, elevated IgE and lower FVC in childhood, which may reflect effects of lower prenatal iron status. However, maternal haemoglobin was not associated with risk of childhood asthma or other allergic disorders.
Collapse
Affiliation(s)
- S O Shaheen
- Centre for Primary Care and Public Health, Barts and The London School of Medicine and Dentistry, London, UK
| | - C Macdonald-Wallis
- School of Social and Community Medicine, University of Bristol, Bristol, UK.,MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - D A Lawlor
- School of Social and Community Medicine, University of Bristol, Bristol, UK.,MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - A J Henderson
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
40
|
Asthma as a disruption in iron homeostasis. Biometals 2016; 29:751-79. [PMID: 27595579 DOI: 10.1007/s10534-016-9948-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/28/2022]
Abstract
Over several decades, asthma has evolved from being recognized as a single disease to include a diverse group of phenotypes with dissimilar natural histories, pathophysiologies, responses to treatment, and distinctive molecular pathways. With the application of Occam's razor to asthma, it is proposed that there is one cause underlying the numerous phenotypes of this disease and that the responsible molecular pathway is a deficiency of iron in the lung tissues. This deficiency can be either absolute (e.g. asthma in the neonate and during both pregnancy and menstruation) or functional (e.g. asthma associated with infections, smoking, and obesity). Comparable associations between asthma co-morbidity (e.g. eczema, urticaria, restless leg syndrome, and pulmonary hypertension) with iron deficiency support such a shared mechanistic pathway. Therapies directed at asthma demonstrate a capacity to impact iron homeostasis, further strengthening the relationship. Finally, pathophysiologic events producing asthma, including inflammation, increases in Th2 cells, and muscle contraction, can correlate with iron availability. Recognition of a potential association between asthma and an absolute and/or functional iron deficiency suggests specific therapeutic interventions including inhaled iron.
Collapse
|
41
|
Dosch NC, Guslits EF, Weber MB, Murray SE, Ha B, Coe CL, Auger AP, Kling PJ. Maternal Obesity Affects Inflammatory and Iron Indices in Umbilical Cord Blood. J Pediatr 2016; 172:20-8. [PMID: 26970931 PMCID: PMC5808508 DOI: 10.1016/j.jpeds.2016.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/23/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine the impact of maternal obesity and gestational weight gain across pregnancy on fetal indices of inflammation and iron status. STUDY DESIGN Eighty-five healthy term newborns delivered via elective cesarean were categorized by 2 maternal body mass index (BMI) thresholds; above or below 30 kg/m(2) or above or below 35 kg/m(2). Umbilical cord plasma levels of C-reactive protein, interleukin (IL)-6, tumor necrosis factor (TNF)-α, ferritin, and hepcidin were assayed. Cytokines released by phytohemagglutinin-stimulated umbilical cord mononuclear cells (MNCs) were assayed. RESULTS Maternal class II obesity, defined as BMI of 35 kg/m(2) and above, predicted higher C-reactive protein and TNF-α in umbilical cord plasma (P < .05 for both), and also proinflammatory cytokines (IL-1β, IL-6, and TNF-α) from stimulated MNC (P < .05 for all). The rise in plasma TNF-α and MNC TNF-α was not linear but occurred when the threshold of BMI 35 kg/m(2) was reached (P < .005, P < .06). Poorer umbilical cord iron indices were associated with maternal obesity. When ferritin was low, IL-6 was higher (P < .04), but this relationship was present primarily when maternal BMI exceeded 35 kg/m(2) (P < .03). Ferritin was correlated with hepcidin (P < .0001), but hepcidin was unrelated to either maternal BMI or inflammatory indices. CONCLUSIONS Class II obesity and above during pregnancy is associated with fetal inflammation in a threshold fashion. Although maternal BMI negatively impacted fetal iron status, hepcidin, related to obesity in adults, was related to iron status and not obesity in fetuses. Pediatricians should be aware of these relationships.
Collapse
Affiliation(s)
| | | | - Morgan B. Weber
- Department of Pediatrics, School of Medicine and Public Health
| | | | - Barbara Ha
- Department of Pediatrics, School of Medicine and Public Health
| | - Christopher L. Coe
- Harlow Center for Biological Psychology and,Department of Psychology, University of Wisconsin, Madison, WI
| | | | - Pamela J. Kling
- Department of Pediatrics, School of Medicine and Public Health
| |
Collapse
|
42
|
Chun GB, Powell CA. Lifestyle Medicine and Chronic Pulmonary Disease. LIFESTYLE MEDICINE 2016. [DOI: 10.1007/978-3-319-24687-1_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
43
|
Maternal pregnancy weight gain and cord blood iron status are associated with eosinophilia in infancy. J Perinatol 2015; 35:621-6. [PMID: 25836316 PMCID: PMC5810929 DOI: 10.1038/jp.2015.21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/26/2015] [Accepted: 02/23/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Allergic disease is multifactorial in origin. Because iron nutrition affects immune responses and maternal pregnancy weight gain impairs fetal iron delivery while increasing fetal demands for growth, the study examined maternal pregnancy weight gain, newborn iron status and an index of atopic disease, infant eosinophilia. STUDY DESIGN Within a larger prospective study of healthy newborns at risk for developing iron deficiency anemia, umbilical cord iron indicators were compared to infant eosinophil counts. RESULT Infants who developed eosinophilia exhibited higher cord reticulocyte-enriched zinc protoporphyrin/heme ratio, P<0.05 and fewer cord ferritin values in the highest (best) quartile, P<0.05. If cord ferritin was in the upper three quartiles, the negative predictive value for infant eosinophilia was 90%. High maternal pregnancy weight gain predicted infant eosinophil counts, P<0.04, and contributed to cord ferritin predicting eosinophilia, P<0.003. CONCLUSION Poor fetal iron status may be an additional risk factor for infant eosinophilia.
Collapse
|
44
|
Devakumar D, Stocks J, Ayres JG, Kirkby J, Yadav SK, Saville NM, Devereux G, Wells JCK, Manandhar DS, Costello A, Osrin D. Effects of antenatal multiple micronutrient supplementation on lung function in mid-childhood: follow-up of a double-blind randomised controlled trial in Nepal. Eur Respir J 2015; 45:1566-75. [PMID: 25700386 PMCID: PMC4636045 DOI: 10.1183/09031936.00188914] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022]
Abstract
A randomised trial of prenatal multiple micronutrient supplementation in Nepalese women increased birthweight and weight at 2 years of age in offspring, compared to those born to mothers who only received iron and folic acid supplements. Further follow-up of this cohort provided an opportunity to investigate the effect of antenatal multiple micronutrients on subsequent lung function by measuring spirometry at 7-9 years of age in C: hildren born during the trial. 841 children (80% of the cohort) were seen at mean±sd 8.5±0.4 years. Technically successful spirometry results were obtained in 793 (94.3%) children, 50% of whom had been randomised to micronutrient supplementation. Background characteristics, including anthropometry, were similar in the two allocation groups. Lung function was also similar, mean (95% CI) difference in z-scores (supplementation minus control) was -0.08 (-0.19-0.04), -0.05 (-0.17-0.06) and -0.04 (-0.15-0.07) for forced expiratory volume in 1 s (FEV1), forced vital capacity and FEV1/FVC, respectively. Compared with healthy white children, FEV1 and FVC in the "healthy" Nepalese children were ∼1 (∼13%) z-score lower, with no difference in FEV1/FVC. We conclude that, compared with routine iron and folic acid, multiple micronutrient supplementation during pregnancy has no effect on spirometric lung function in Nepalese children at 8.5 years of age.
Collapse
Affiliation(s)
- Delan Devakumar
- Institute for Global Health, University College London, London, UK.
| | - Janet Stocks
- Respiratory, Critical Care and Anaesthesia Section (Portex Unit), Institute of Child Health, University College London, London, UK
| | - Jon G Ayres
- Institute of Occupational and Environmental Medicine, University of Birmingham, Birmingham, UK
| | - Jane Kirkby
- Respiratory, Critical Care and Anaesthesia Section (Portex Unit), Institute of Child Health, University College London, London, UK. Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Naomi M Saville
- Institute for Global Health, University College London, London, UK
| | - Graham Devereux
- Child Health Dept, University of Aberdeen, Royal Aberdeen Children's Hospital, Aberdeen, UK
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, Institute of Child Health, University College London, London, UK
| | | | - Anthony Costello
- Institute for Global Health, University College London, London, UK
| | - David Osrin
- Institute for Global Health, University College London, London, UK
| |
Collapse
|