1
|
Mo X, Shen L, Wang X, Sun Y, Cheng R, Chen W, Chen J, He R, Liu L. European bilberry extract reduces high-temperature baked food-induced accumulation of N ε-carboxymethyllysine and N ε-carboxyethyllysine in vivo. Food Res Int 2024; 197:115157. [PMID: 39593369 DOI: 10.1016/j.foodres.2024.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 11/28/2024]
Abstract
This study aimed to investigate the effect of European bilberry extract (EBE) on the accumulation of Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) in rats exposed to a high advanced glycation end products (AGEs) diet. We found that EBE reduced high AGEs diet-induced accumulation of free-CML, bound-CML, free-CEL, and bound-CEL in the serum, kidney, skin, and brain. EBE also inhibited high AGEs diet-induced accumulation of bound-CML and bound-CEL in the uterus, ovary, stomach, duodenum, and colon. Meanwhile, EBE attenuated high AGEs diet-induced accumulation of free-CML and free-CEL in the muscle, bone, joint, and eyes. In addition, EBE ameliorated high AGEs diet-induced accumulation of free-CML and bound-CML in the liver, free-CML in the ovary, and bound-CML in the thyroid gland. EBE had no effect on the accumulation of free-CML, bound-CML, free-CEL, and bound-CEL in the adrenal gland and free-CML and free-CEL in the heart caused by a high AGEs diet. We did not observe AGEs accumulation in the pancreas, aorta, lung, spleen, and adipose tissues. This study revealed the in vivo distribution of CML and CEL exposed to a high AGEs diet and the effect of EBE on reducing the accumulation of CML and CEL in the specific target tissues.
Collapse
Affiliation(s)
- Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Lihui Shen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Xinyu Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Yunhong Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Ruijie Cheng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Wenwen Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Juan Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, Guangzhou 510663, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
2
|
Berni Canani R, Carucci L, Coppola S, D'Auria E, O'Mahony L, Roth-Walter F, Vassilopolou E, Agostoni C, Agache I, Akdis C, De Giovanni Di Santa Severina F, Faketea G, Greenhawt M, Hoffman K, Hufnagel K, Meyer R, Milani GP, Nowak-Wegrzyn A, Nwaru B, Padua I, Paparo L, Diego P, Reese I, Roduit C, Smith PK, Santos A, Untersmayr E, Vlieg-Boerstra B, Venter C. Ultra-processed foods, allergy outcomes and underlying mechanisms in children: An EAACI task force report. Pediatr Allergy Immunol 2024; 35:e14231. [PMID: 39254357 DOI: 10.1111/pai.14231] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Consumption of ultra-processed foods [UPFs] may be associated with negative health outcomes. Limited data exist regarding the potential role of UPFs in the occurrence of allergic diseases. The underlying mechanisms underpinning any such associations are also poorly elucidated. METHODS We performed a systematic review and narrative evidence synthesis of the available literature to assess associations between UPF consumption and pediatric allergy outcomes (n = 26 papers), including data on the association seen with the gut microbiome (n = 16 papers) or immune system (n = 3 papers) structure and function following PRISMA guidelines. RESULTS Dietary exposure to fructose, carbonated soft drinks, and sugar intake was associated with an increased risk of asthma, allergic rhinitis, and food allergies in children. Commercial baby food intake was associated with childhood food allergy. Childhood intake of fructose, fruit juices, sugar-sweetened beverages, high carbohydrate UPFs, monosodium glutamate, UPFs, and advanced glycated end-products (AGEs) was associated with the occurrence of allergic diseases. Exposure to UPFs and common ingredients in UPFs seem to be associated with increased occurrence of allergic diseases such as asthma, wheezing, food allergies, atopic dermatitis, and allergic rhinitis, in many, but not all studies. CONCLUSION More preclinical and clinical studies are required to better define the link between UPF consumption and the risk of allergies and asthma. These observational studies ideally require supporting data with clearly defined UPF consumption, validated dietary measures, and mechanistic assessments to definitively link UPFs with the risk of allergies and asthma.
Collapse
Affiliation(s)
- Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Enza D'Auria
- Allergy Unit-Buzzi Children's Hospital-University of Milan, Milan, Italy
| | - Liam O'Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Franziska Roth-Walter
- Department of Interdisciplinary Life Sciences, Messerli Research Institute, University of Veterinary Medicine, Medical University and University of Vienna, Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Emilia Vassilopolou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Thessaloniki, Greece
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Iaona Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Fiorenza De Giovanni Di Santa Severina
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Gaby Faketea
- Department of Pediatrics, "Karamandaneio" Children's Hospital of Patra, Patras, Greece
- Department of Pharmacology, "luliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Matt Greenhawt
- Section of Pediatric Allergy and Immunology, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Karin Hoffman
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Karin Hufnagel
- Department of Interdisciplinary Life Sciences, Messerli Research Institute, University of Veterinary Medicine, Medical University and University of Vienna, Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Rosan Meyer
- Department of Nutrition and Dietetics, Winchester University, Winchester, UK
- Department of Medicine, KU Leuven, Leuven, Belgium
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Nowak-Wegrzyn
- Department of Pediatrics, Hassenfeld Children's Hospital, NYU Grossman School of Medicine, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Bright Nwaru
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ines Padua
- Department of Sciences, University Institute of Health Sciences, Gandra, Portugal
- i4HB/UCIBIO - Translational Toxicology Research Laboratory, Gandra, Portugal
- CUF Porto Trindade Hospital, Porto, Portugal
| | - Lorella Paparo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Peroni Diego
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Imke Reese
- Practice for Dietary Advice & Nutrition Therapy in Adverse Food Reactions, Munich, Germany
| | - Caroline Roduit
- Division of Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
- CK-CARE, Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Peter K Smith
- Griffith University, Southport, Queensland, Australia
| | - Alexandra Santos
- Department of Women and Children's Health (Pediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, UK
| | - Eva Untersmayr
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Berber Vlieg-Boerstra
- Department of Paediatrics, OLVG Hospital, Amsterdam, The Netherlands
- Rijnstate Allergy Centre, Rijnstate Hospital, Arnhem, The Netherlands
| | - Carina Venter
- Section of Pediatric Allergy and Immunology, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
3
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Aroni A, Detopoulou P, Presvelos D, Kostopoulou E, Ioannidis A, Panoutsopoulos GI, Zyga S, Kosmidis G, Spiliotis BE, Rojas Gil AP. A One-Month Advanced Glycation End Products-Restricted Diet Improves CML, RAGE, Metabolic and Inflammatory Profile in Patients with End-Stage Renal Disease Undergoing Haemodialysis. Int J Mol Sci 2024; 25:8893. [PMID: 39201577 PMCID: PMC11354996 DOI: 10.3390/ijms25168893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Exogenous and endogenous advanced glycation end products (AGEs) contribute to the pathogenesis and progression of renal disease. This is a one-month controlled dietary counseling trial that restricts nutritional AGEs in patients with end-stage renal disease (ESRD) undergoing haemodialysis (n = 22 participants in the intervention and n = 20 participants in the control group). Haematological, biochemical markers, the soluble form of the receptor for AGEs (sRAGE), and carboxymethyl lysine (CML) were measured at baseline and at follow-up. Mononuclear cells were isolated and the protein expression of RAGE and the inflammatory marker COX-2 was measured using Western immunoblotting. The intervention group presented a lower increase in CML compared to the control group (12.39% median change in the intervention vs. 69.34% in the control group, p = 0.013), while RAGE (% mean change -56.54 in the intervention vs. 46.51 in the control group, p < 0.001) and COX-2 (% mean change -37.76 in the intervention vs. 0.27 in the control group, p < 0.001) were reduced compared to the control group. sRAGE was reduced in both groups. In addition, HbA1c (at two months), total cholesterol, and triglycerides were reduced in the intervention versus the control group. The adoption of healthy cooking methods deserves further research as a possible way of modulating inflammatory markers in patients with CKD.
Collapse
Affiliation(s)
- Adamantia Aroni
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (A.A.); (A.I.); (G.K.)
- Haemodialysis Unit, General Hospital of Molaoi, 23052 Molaoi, Greece;
| | - Paraskevi Detopoulou
- Department of Nutritional Science and Dietetics, Faculty of Health Sciences, University of Peloponnese, New Building, Antikalamos, 24100 Kalamata, Greece; (P.D.); (G.I.P.)
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, Athanassaki 2, 11526 Athens, Greece
| | | | - Eirini Kostopoulou
- Department of Paediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, University of Patras School of Medicine, 26504 Patras, Greece; (E.K.); (B.E.S.)
| | - Anastasios Ioannidis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (A.A.); (A.I.); (G.K.)
| | - George I. Panoutsopoulos
- Department of Nutritional Science and Dietetics, Faculty of Health Sciences, University of Peloponnese, New Building, Antikalamos, 24100 Kalamata, Greece; (P.D.); (G.I.P.)
| | - Sofia Zyga
- Laboratory of Nursing Research and Care, School of Health Sciences Department of Nursing, University of Peloponnese, 22100 Tripoli, Greece;
| | - Georgios Kosmidis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (A.A.); (A.I.); (G.K.)
| | - Bessie E. Spiliotis
- Department of Paediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, University of Patras School of Medicine, 26504 Patras, Greece; (E.K.); (B.E.S.)
| | - Andrea Paola Rojas Gil
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, 22100 Tripoli, Greece; (A.A.); (A.I.); (G.K.)
| |
Collapse
|
5
|
Durak Ş, Yılmazer Y, Çelik F, Yeşiloğlu E, Karaköse D, Dinçol S, Uçak S, Yaman M, Zeybek Ü. Investigation of Advanced Glycation End Products in Liver, Adipose, and Renal Tissue of Mice on a High-Fat Diet. Cell Biochem Biophys 2024; 82:1101-1108. [PMID: 38630412 DOI: 10.1007/s12013-024-01260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 08/25/2024]
Abstract
Obesity is a complex condition associated with disruptions in carbohydrate, protein, and fat metabolism, linked to increased insulin resistance and glucose intolerance. High levels of Advanced Glycation End-products (AGEs) are associated with a range of chronic diseases, including kidney diseases, diabetic complications, cardiovascular diseases, and neurodegenerative diseases. Our study aims to investigate the accumulation of AGEs in the liver, renal and adipose tissues of mice fed a high-fat diet, contributing to a deeper understanding of obesity and its related metabolic disorders. Our study consists of three different groups fed with diets containing 60% and 10% fat. The Experiment 1 group was maintained on their diet for 12 weeks, while the obese 2 and control groups continued their diets for 24 weeks. AGEs in the liver and kidney tissues obtained were measured using the High-performance liquid chromatography grade (HPLC) method. Higher accumulation of AGEs has been observed in kidney tissue compared to adipose and liver tissues (p < 0.05). Moreover, the GO levels were notably higher in liver tissue than in adipose tissue of the D1 and D2 groups (p < 0.0001). Our results suggest that particularly in kidney tissue, increased filtration burden, functional impairment, and receptor interaction due to obesity may be effective. The lower levels of AGEs detected, especially in the obese groups compared to the control, can be attributed to the inability to metabolize AGEs due to tissue damage caused by obesity.
Collapse
Affiliation(s)
- Şermin Durak
- Faculty of Medicine, Department of Medical Microbiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Yasemin Yılmazer
- Deparment of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Faruk Çelik
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ebrar Yeşiloğlu
- Deparment of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Dilara Karaköse
- Deparment of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Sena Dinçol
- Deparment of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Sümeyye Uçak
- Deparment of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Mustafa Yaman
- Deparment of Molecular Biology and Genetics, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Ümit Zeybek
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
6
|
Kunnel S, Chakraborty I, Govindaraju I, Mal SS, Mazumder N. Impact of dietary advanced glycation end products (dAGEs) in processed foods on health. ADVANCED BIOPHYSICAL TECHNIQUES FOR POLYSACCHARIDES CHARACTERIZATION 2024:309-325. [DOI: 10.1016/b978-0-443-14042-6.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Jahromi MK, Tehrani AN, Farhadnejad H, Emamat H, Ahmadirad H, Teymoori F, Heidari Z, Saber N, Rashidkhani B, Mirmiran P. Dietary advanced glycation end products are associated with an increased risk of breast cancer in Iranian adults. BMC Cancer 2023; 23:932. [PMID: 37789296 PMCID: PMC10546745 DOI: 10.1186/s12885-023-11462-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Dietary advanced glycation end products (AGEs) can play an important role in increasing inflammatory factors and oxidative stress as risk factors for cancers. In the present study, we aimed to assess the relationship between dietary AGEs and the risk of breast cancer (BC) in Iranian adult women. METHODS This hospital-based case-control study includes 401 participants aged ≥ 30 years old. The cases group consisted of 134 women diagnosed with histologically confirmed BC. The control group included 267 women enrolled randomly from patients admitted to the same hospitals. Dietary intake information was determined using a validated food frequency questionnaire, and dietary AGEs intake was computed for all participants. Logistic regression models, adjusted for potential confounders, were used to determine the odds ratios (OR) and 95% confidence interval (CI) of BC across tertiles of dietary AGEs. RESULTS The mean ± SD age and body mass index of the study population were 47.92 ± 10.33 years and 29.43 ± 5.51 kg/m2, respectively. The median (interquartile) of dietary AGEs in all individuals was 9251(7450, 11,818) kU/day. After adjusting for age, first pregnancy age, and energy intake, participants in the highest tertile of dietary AGEs intakes had higher odds of BC compared to those in the lowest tertile of dietary AGEs (OR:2.29;95%CI:1.19-4.39, Ptrend:0.012). Additionally, in the multivariable model, after adjusting for age, age at first pregnancy, energy, menopausal status, family history of cancer, anti-inflammatory drug use, Vitamin D supplementation, physical activity, body mass index, number of childbirths, and history of abortion, breastfeeding, and oral contraceptive pills use, the odds of BC were increased across tertiles of dietary AGEs intake (OR: 2.33; 95%CI: 1.18-4.60, Ptrend: 0.017). CONCLUSION The present findings suggest that a diet with high AGEs is associated with a higher likelihood of BC in adult women.
Collapse
Affiliation(s)
- Mitra Kazemi Jahromi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Asal Neshatbini Tehrani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Farhadnejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Emamat
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Ahmadirad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Zeinab Heidari
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloufar Saber
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Rashidkhani
- Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Lee HB, Choi JH, Kim D, Lee KW, Ha SK, Lee SH, Park HY. Dietary N ε-(carboxymethyl)lysine is a trigger of non-alcoholic fatty liver disease under high-fat consumption. Food Chem Toxicol 2023; 180:114010. [PMID: 37652125 DOI: 10.1016/j.fct.2023.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
The irreversible glycation of proteins produces advanced glycation end products (AGEs) which are triggered to bind the receptor for AGE (RAGE), thereby activating mitogen-activated protein kinase/nuclear factor-κB signaling pathway and stimulating proinflammatory cytokines, ultimately leading to chronic disorders. In this study, we focus the promoting effect of Nε-carboxymethyl-lysine (CML), one of the most dietary AGEs, on non-alcoholic fatty liver disease (NAFLD) and evaluated NAFLD-related biomarkers. Oxidative stress and hepatic steatosis were assessed in oleic acid (OA)-induced HepG2 cells. Using OA-induced HepG2 cells, we show that CML results in oxidative stress and steatosis and drives major changes in hepatic lipid metabolism. Administration of CML exacerbated NAFLD-related symptoms by increasing body and liver weight gain, serum alanine aminotransferase and lipid levels, and insulin resistance in mild high-fat diet-induced mice. Moreover, hepatic histological analysis data, such as staining, western blotting, and RNA-seq, indicate that CML aggravates NAFLD in association with activation of the de novo lipogenesis pathway, consistent with the in vitro assays. Our findings could contribute to model studies related to the prevention and treatment of NAFLD progression due to excessive consumption of dietary AGEs.
Collapse
Affiliation(s)
- Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Ju Hyeong Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Donghwan Kim
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Keun Ha
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Sang-Hoon Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
9
|
Vasilj M, Goni L, Gayoso L, Razquin C, Sesma MT, Etxeberria U, Ruiz-Canela M. Correlation between serum advanced glycation end products and dietary intake of advanced glycation end products estimated from home cooking and food frequency questionnaires. Nutr Metab Cardiovasc Dis 2023; 33:1768-1777. [PMID: 37414659 DOI: 10.1016/j.numecd.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND & AIMS To our knowledge the association between dietary advanced glycation end-products (dAGEs) and cardiometabolic disease is limited. Our aim was to examine the association between dAGEs and serum concentration of carboxymethyl-lysine (CML) or soluble receptor advanced glycation end-products (sRAGEs), and to assess the difference on dAGEs and circulating AGEs according to lifestyle and biochemical measures. METHODS AND RESULTS 52 overweight or obese adults diagnosed with type 2 diabetes were included in this cross-sectional analysis. dAGEs were estimated from a Food Frequency Questionnaire (FFQ) or from a FFQ + Home Cooking Frequency Questionnaire (HCFQ). Serum concentrations of CML and sRAGEs were measured by ELISA. Correlation tests were used to analyze the association between dAGEs derived from the FFQ or FFQ + HCFQ and concentrations of CML or sRAGEs. Demographic characteristics, lifestyle factors and biochemical measures were analyzed according to sRAGEs and dAGEs using student t-test and ANCOVA. A significant inverse association was found between serum sRAGEs and dAGEs estimated using the FFQ + HCFQ (r = -0.36, p = 0.010), whereas no association was found for dAGEs derived from the FFQ alone. No association was observed between CML and dAGEs. dAGEs intake estimated from the FFQ + HCFQ was significantly higher among younger and male participants, and in those with higher BMI, higher Hb1Ac levels, longer time with type 2 diabetes, lower adherence to Mediterranean diet, and higher use of culinary techniques that generate more AGEs (all p values p < 0.05). CONCLUSIONS These results show knowledge on culinary techniques is relevant to derive the association between dAGEs intake and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Maria Vasilj
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain
| | - Leticia Goni
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Gayoso
- Basque Culinary Center, Faculty of Gastronomic Sciences, Mondragon Unibertsitatea, Donostia-San Sebastián, Spain; BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, Donostia-San Sebastián, Spain
| | - Cristina Razquin
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Sesma
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Usune Etxeberria
- Basque Culinary Center, Faculty of Gastronomic Sciences, Mondragon Unibertsitatea, Donostia-San Sebastián, Spain; BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, Donostia-San Sebastián, Spain
| | - Miguel Ruiz-Canela
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Smith PK, Venter C, O’Mahony L, Canani RB, Lesslar OJL. Do advanced glycation end products contribute to food allergy? FRONTIERS IN ALLERGY 2023; 4:1148181. [PMID: 37081999 PMCID: PMC10111965 DOI: 10.3389/falgy.2023.1148181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Sugars can bind non-enzymatically to proteins, nucleic acids or lipids and form compounds called Advanced Glycation End Products (AGEs). Although AGEs can form in vivo, factors in the Western diet such as high amounts of added sugars, processing methods such as dehydration of proteins, high temperature sterilisation to extend shelf life, and cooking methods such as frying and microwaving (and reheating), can lead to inordinate levels of dietary AGEs. Dietary AGEs (dAGEs) have the capacity to bind to the Receptor for Advanced Glycation End Products (RAGE) which is part of the endogenous threat detection network. There are persuasive epidemiological and biochemical arguments that correlate the rise in food allergy in several Western countries with increases in dAGEs. The increased consumption of dAGEs is enmeshed in current theories of the aetiology of food allergy which will be discussed.
Collapse
Affiliation(s)
- P. K. Smith
- Clinical Medicine and Menzies School of Research, Griffith University, Gold Coast, QLD, Australia
- Correspondence: P. K. Smith
| | - C. Venter
- Children’s Hospital Colorado, University of Colorado, Aurora, CO, United States
| | - L. O’Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R. Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE-Advanced Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | | |
Collapse
|
11
|
Rojas A, Lindner C, Schneider I, Gonzàlez I, Morales MA. Receptor of advanced glycation end-products axis and gallbladder cancer: A forgotten connection that we should reconsider. World J Gastroenterol 2022; 28:5679-5690. [PMID: 36338887 PMCID: PMC9627425 DOI: 10.3748/wjg.v28.i39.5679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Compelling evidence derived from clinical and experimental research has demonstrated the crucial contribution of chronic inflammation in the development of neoplasms, including gallbladder cancer. In this regard, data derived from clinical and experimental studies have demonstrated that the receptor of advanced glycation end-products (RAGE)/AGEs axis plays an important role in the onset of a crucial and long-lasting inflammatory milieu, thus supporting tumor growth and development. AGEs are formed in biological systems or foods, and food-derived AGEs, also known as dietary AGEs are known to contribute to the systemic pool of AGEs. Once they bind to RAGE, the activation of multiple and crucial signaling pathways are triggered, thus favoring the secretion of several proinflammatory cytokines also involved in the promotion of gallbladder cancer invasion and migration. In the present review, we aimed to highlight the relevance of the association between high dietary AGEs intakes and high risk for gallbladder cancer, and emerging data supporting that dietary intervention to reduce gallbladder cancer risk is a very attractive approach that deserves much more research efforts.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Iván Schneider
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Ileana Gonzàlez
- Biomedical Research Laboratories, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Miguel Angel Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Santiago, Chile
| |
Collapse
|
12
|
Park HY, Lee HB, Lee SY, Oh MJ, Ha SK, Do E, Lee HHL, Hur J, Lee KW, Nam MH, Park MG, Kim Y. Lactococcus lactis KF140 Reduces Dietary Absorption of Nε - (Carboxymethyl)lysine in Rats and Humans via β-Galactosidase Activity. Front Nutr 2022; 9:916262. [PMID: 35811971 PMCID: PMC9263842 DOI: 10.3389/fnut.2022.916262] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Aims Excessive intake of advanced glycation end products (AGEs), which are formed in foods cooked at high temperatures for long periods of time, has negative health effects, such as inflammatory responses and oxidative stress. Nε-(Carboxymethyl)lysine (CML) is one of the major dietary AGEs. Given their generally recognized as safe status and probiotic functionalities, lactic acid bacteria may be ideal supplements for blocking intestinal absorption of food toxicants. However, the protective effects of lactic acid bacteria against dietary AGEs have not been fully elucidated. Materials and Methods We investigated the effect of treatment with Lactococcus lactis KF140 (LL-KF140), which was isolated from kimchi, on the levels and toxicokinetics of CML. The CML reduction efficacies of the Lactococcus lactis KF140 (LL-KF140), which was isolated from kimchi, were conducted by in vitro test for reducing CML concentration of the casein-lactose reaction product (CLRP) and in vivo test for reducing serum CML level of LL-KF140 administered rats at 2.0 × 108 CFU/kg for14 days. In addition, 12 volunteers consuming LL-KF140 at 2.0 × 109 CFU/1.5 g for 26 days were determined blood CML concentration and compared with that before intake a Parmesan cheese. Results Administration of LL-KF140 reduced serum CML levels and hepatic CML absorption in rats that were fed a CML-enriched product. In a human trial, the intake of LL-KF140 prevented increases in the serum levels of CML and alanine aminotransferase after consumption of a CML-rich cheese. LL-KF140 was determined to presence in feces through metagenome analysis. Furthermore, β-galactosidase, one of the L. lactis-produced enzymes, inhibited the absorption of CML and reduced the levels of this AGE, which suggests an indirect inhibitory effect of LL-KF140. This study is the first to demonstrate that an L. lactis strain and its related enzyme contribute to the reduction of dietary absorption of CML.
Collapse
Affiliation(s)
- Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - So-Young Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Mi-Jin Oh
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Sang Keun Ha
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Eunju Do
- Clinical Trial Convergence Commercialization Team, Daegu Technopark, Daegu, South Korea
| | - Hyun Hee L. Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Jinyoung Hur
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, South Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Mi-Hyun Nam
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, Aurora, Aurora, CO, United States
| | | | - Yoonsook Kim
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, South Korea
- *Correspondence: Yoonsook Kim,
| |
Collapse
|
13
|
Mendes NP, Ribeiro PVM, Alfenas RCG. Does dietary fat affect advanced glycation end products and their receptors? A systematic review of clinical trials. Nutr Rev 2021; 80:598-612. [PMID: 34871448 DOI: 10.1093/nutrit/nuab095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CONTEXT Dietary fat seems to affect advanced glycation end products (AGEs) and their receptors. This systematic review assesses studies that evaluated the effect of dietary fat on markers of glycation. OBJECTIVE The aim of this systematic review was to analyze the effect of dietary fat on markers of glycation and to explore the mechanisms involved. DATA SOURCES This study was conducted according to PRISMA guidelines. PubMed, Cochrane, and Scopus databases were searched, using descriptors related to dietary fat, AGEs, and the receptors for AGEs. STUDY SELECTION Studies were selected independently by the 3 authors. Divergent decisions were resolved by consensus. All studies that evaluated the effects of the quantity and quality of dietary fat on circulating concentrations of AGEs and their receptors in adults and elderly adults with or without chronic diseases were included. Initially, 9 studies met the selection criteria. DATA EXTRACTION Three authors performed data extraction independently. Six studies were included. RESULTS Consumption of a Mediterranean diet rich in monounsaturated fatty acids (MUFAs) and low in dietary AGEs reduced serum concentrations of AGEs, reduced expression of the receptor for AGE (RAGE), and increased expression of the AGE receptor 1 (AGER1) when compared with consumption of a Western diet rich in saturated fatty acids and dietary AGEs. Supplementation with omega-3 polyunsaturated fatty acids (PUFAs) resulted in decreased concentrations of fluorescent AGEs and decreased expression of RAGE as well as increased expression of AGER1. CONCLUSIONS Increased consumption of MUFAs and omega-3 PUFAs and reduced consumption of saturated fatty acids seem to be effective strategies to beneficially affect glycation markers, which in turn may prevent and control chronic diseases. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42021220489.
Collapse
Affiliation(s)
- Nélia P Mendes
- N.P. Mendes, P.V.M. Ribeiro, and R.C.G. Alfenas are with the Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Priscila V M Ribeiro
- N.P. Mendes, P.V.M. Ribeiro, and R.C.G. Alfenas are with the Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rita C G Alfenas
- N.P. Mendes, P.V.M. Ribeiro, and R.C.G. Alfenas are with the Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
14
|
Kremers SHM, Remmelzwaal S, Schalkwijk CG, Elders PJM, Stehouwer CDA, van Ballegooijen AJ, Beulens JWJ. The role of serum and dietary advanced glycation endproducts in relation to cardiac function and structure: The Hoorn Study. Nutr Metab Cardiovasc Dis 2021; 31:3167-3175. [PMID: 34518083 DOI: 10.1016/j.numecd.2021.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS This study aims to investigate the relationship of serum and dietary advanced glycation endproducts (AGEs) with cardiac function and structure after eight years of follow-up. METHODS AND RESULTS We included 370 Hoorn Study participants (aged 66.4 ± 6.1, 47% women). Serum protein-bound AGEs [Nε-(carboxymethyl)lysine, Nε-(carboxyethyl)lysine, and pentosidine], as well as echocardiography to assess left atrium volume index (LAVI), left ventricle ejection fraction (LVEF), and left ventricle mass index (LVMI), were measured at baseline and after 8 years of follow-up. Dietary AGEs [Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine] were estimated at baseline with a validated food-frequency questionnaire and an AGEs database. Increased pentosidine [-1.4% (-2.6;-0.2)] and overall serum AGEs Z-scores over time [-2.1% (-3.8;-0.5)] were associated with decreased LVEF at follow-up, adjusted for confounders. Glucose metabolism status was an effect modifier (P-for-interaction = 0.04). In participants with impaired glucose metabolism, but not type 2 diabetes, increased pentosidine was associated with decreased LVEF [-4.2 (-8.0;-0.3)%]. Higher dietary Nε-(carboxyethyl)lysine [1.9 (0.1; 3.7)%] and overall dietary AGEs Z-scores [2.1 (0.1; 4.2)%] were associated with higher LVEF at follow-up. However, prior cardiovascular disease (CVD) was an effect modifier (P = 0.02). We found a stronger, non-significant, association of higher dietary (carboxyethyl)lysine with higher LVEF at follow-up in participants without CVD [2.3 (-0.1; 4.7)%] compared to participants with CVD [0.6 (-2.1; 3.4)%]. CONCLUSION Overall serum AGEs were longitudinally associated with impaired systolic function. Future research should focus on including changes in dietary AGEs intake over time and the relation of dietary AGEs with cardiac measures needs to be established in intervention studies using low AGEs diets.
Collapse
Affiliation(s)
- Sanne H M Kremers
- Department of Epidemiology & Data Science, Amsterdam UMC-location VUmc, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, the Netherlands
| | - Sharon Remmelzwaal
- Department of Epidemiology & Data Science, Amsterdam UMC-location VUmc, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, the Netherlands.
| | - Casper G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Petra J M Elders
- Department of General Practice and Elderly Care Medicine, Amsterdam Public Health Research Institute, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Adriana J van Ballegooijen
- Department of Epidemiology & Data Science, Amsterdam UMC-location VUmc, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, the Netherlands; Department of Nephrology, Amsterdam UMC-location VUmc, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, the Netherlands
| | - Joline W J Beulens
- Department of Epidemiology & Data Science, Amsterdam UMC-location VUmc, Amsterdam Cardiovascular Sciences Research Institute, Amsterdam, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
15
|
Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev 2020; 33:298-311. [PMID: 32238213 DOI: 10.1017/s0954422420000104] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing clinical and experimental evidence accumulated during the past few decades supports an important role for dietary advanced glycation endproducts (AGE) in the pathogenesis of many chronic non-infectious diseases, such as type 2 diabetes, CVD and others, that are reaching epidemic proportions in the Western world. Although AGE are compounds widely recognised as generated in excess in the body in diabetic patients, the potential importance of exogenous AGE, mostly of dietary origin, has been largely ignored in the general nutrition audience. In the present review we aim to describe dietary AGE, their mechanisms of formation and absorption into the body as well as their main mechanisms of action. We will present in detail current evidence of their potential role in the development of several chronic non-infectious clinical conditions, some general suggestions on how to restrict them in the diet and evidence regarding the potential benefits of lowering their consumption.
Collapse
Affiliation(s)
- M E Garay-Sevilla
- Medical Science Department, University of Guanajuato, Guanajuato, Mexico
| | - M S Beeri
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
| | - M P de la Maza
- Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros, University of Chile, Santiago, Chile
| | - A Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca, Chile
| | - S Salazar-Villanea
- Department of Animal Science, Universidad de Costa Rica, San Pedro Montes de Oca, San José, Costa Rica
| | - J Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Shen CY, Lu CH, Wu CH, Li KJ, Kuo YM, Hsieh SC, Yu CL. The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases. Molecules 2020; 25:molecules25235591. [PMID: 33261212 PMCID: PMC7729569 DOI: 10.3390/molecules25235591] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products (AGEs) are generated by nonenzymatic modifications of macromolecules (proteins, lipids, and nucleic acids) by saccharides (glucose, fructose, and pentose) via Maillard reaction. The formed AGE molecules can be catabolized and cleared by glyoxalase I and II in renal proximal tubular cells. AGE-related diseases include physiological aging, neurodegenerative/neuroinflammatory diseases, diabetes mellitus (DM) and its complications, autoimmune/rheumatic inflammatory diseases, bone-degenerative diseases, and chronic renal diseases. AGEs, by binding to receptors for AGE (RAGEs), alter innate and adaptive immune responses to induce inflammation and immunosuppression via the generation of proinflammatory cytokines, reactive oxygen species (ROS), and reactive nitrogen intermediates (RNI). These pathological molecules cause vascular endothelial/smooth muscular/connective tissue-cell and renal mesangial/endothelial/podocytic-cell damage in AGE-related diseases. In the present review, we first focus on the cellular and molecular bases of AGE–RAGE axis signaling pathways in AGE-related diseases. Then, we discuss in detail the modes of action of newly discovered novel biomolecules and phytochemical compounds, such as Maillard reaction and AGE–RAGE signaling inhibitors. These molecules are expected to become the new therapeutic strategies for patients with AGE-related diseases in addition to the traditional hypoglycemic and anti-hypertensive agents. We particularly emphasize the importance of “metabolic memory”, the “French paradox”, and the pharmacokinetics and therapeutic dosing of the effective natural compounds associated with pharmacogenetics in the treatment of AGE-related diseases. Lastly, we propose prospective investigations for solving the enigmas in AGE-mediated pathological effects.
Collapse
Affiliation(s)
- Chieh-Yu Shen
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Cheng-Hsun Lu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Cheng-Han Wu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Yu-Min Kuo
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
- Correspondence: (S.-C.H.); (C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
- Department of Internal Medicine, Kaohsiung Medical University College of Medicine, Kaohsiung 80756, Taiwan
- Correspondence: (S.-C.H.); (C.-L.Y.)
| |
Collapse
|
17
|
Brinkley TE, Semba RD, Kritchevsky SB, Houston DK, for the Health, Aging, and Body Composition Study. Dietary protein intake and circulating advanced glycation end product/receptor for advanced glycation end product concentrations in the Health, Aging, and Body Composition Study. Am J Clin Nutr 2020; 112:1558-1565. [PMID: 33301008 PMCID: PMC7727487 DOI: 10.1093/ajcn/nqaa241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Advanced glycation end products (AGEs) promote adverse health effects and may contribute to the multi-system functional decline observed in aging. Diet is a major source of AGEs, and foods high in protein may increase circulating AGE concentrations. However, epidemiological evidence that high-protein diets increase AGEs is lacking. OBJECTIVES We examined whether dietary protein intake was associated with serum concentrations of the major AGE carboxymethyl-lysine (CML) and the soluble receptor for AGEs (sRAGE) in 2439 participants from the Health, Aging, and Body Composition study (mean age, 73.6 ± 2.9 y; 52% female; 37% black). METHODS CML and sRAGE were measured by ELISA, and the CML/sRAGE ratio was calculated. Protein intake was estimated using an interviewer-administered FFQ and categorized based on current recommendations for older adults: <0.8 g/kg/d (n = 1077), 0.8 to <1.2 g/kg/d (n = 922), and ≥1.2 g/kg/d (n = 440). Associations between protein intake and AGE-RAGE biomarkers were examined using linear regression models adjusted for demographics, height, lifestyle behaviors, prevalent disease, cognitive function, inflammation, and other dietary factors. RESULTS CML concentrations were higher in individuals with higher total protein intake (adjusted least squares mean ± SE: <0.8 g/kg/d, 829 ± 17 ng/ml; 0.8 to <1.2 g/kg/d, 860 ± 15 ng/ml; ≥1.2 g/kg/d, 919 ± 23 ng/ml; P for trend = 0.001), as were sRAGE concentrations (<0.8 g/kg/d, 1412 ± 34 pg/ml; 0.8 to <1.2 g/kg/d, 1479 ± 31 pg/ml; ≥1.2 g/kg/d, 1574 ± 47 pg/ml; P for trend < 0.0001). Every 0.1 g/kg/d increment in total protein intake was associated with a 13.3 ± 3.0 ng/ml increment in CML and a 22.1 ± 6.0 pg/ml increment in sRAGE (P < 0.0001 for both). Higher CML and sRAGE concentrations were also associated with higher intakes of both animal and vegetable protein (all P values ≤ 0.01). There were no significant associations with the CML/sRAGE ratio. CONCLUSIONS Higher dietary protein intake was associated with higher CML and sRAGE concentrations in older adults; however, the CML/sRAGE ratio remained similar across groups.
Collapse
Affiliation(s)
| | - Richard D Semba
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Denise K Houston
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
18
|
Bo Y, Jian Z, Zhi-Jun S, Quing W, Hua Z, Chuan-Wei L, Yu-Kang C. Panax notoginseng saponins alleviates advanced glycation end product-induced apoptosis by upregulating SIRT1 and antioxidant expression levels in HUVECs. Exp Ther Med 2020; 20:99. [PMID: 32973948 PMCID: PMC7506886 DOI: 10.3892/etm.2020.9229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
The present study examined whether Panax notoginseng saponins (PNS) alleviated advanced glycation end product (AGE)-induced apoptosis in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated with 300 µg/ml AGEs alone or AGEs and PNS (0.05, 0.5 or 1 mg/ml) for 48 h. The results of the present study demonstrated that PNS effectively promoted cell viability, inhibited apoptosis and suppressed the activity of caspase-3 in AGE-induced HUVECs. The activities of monocyte chemoattractant protein-1 and malondialdehyde were reduced, and superoxide dismutase activity was increased following treatment with PNS. Furthermore, PNS significantly increased the expression of silent information regulator 1 (SIRT1) and transforming growth factor (TGF)-β1 proteins, and suppressed the expression of inducible nitric oxide synthase and cyclooxyggenase-2 proteins in AGE-induced HUVECs. Therefore, the present study demonstrated that PNS reduced AGE-induced apoptosis by upregulating SIRT1 and antioxidants in HUVECs. The present findings suggest that the PNS may as an important pharmacological agent for AGE-induced cardiovascular injury.
Collapse
Affiliation(s)
- Yang Bo
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhang Jian
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Sun Zhi-Jun
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wu Quing
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhao Hua
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Li Chuan-Wei
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Cao Yu-Kang
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
19
|
van der Lugt T, Opperhuizen A, Bast A, Vrolijk MF. Dietary Advanced Glycation Endproducts and the Gastrointestinal Tract. Nutrients 2020; 12:nu12092814. [PMID: 32937858 PMCID: PMC7551018 DOI: 10.3390/nu12092814] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
The prevalence of inflammatory bowel diseases (IBD) is increasing in the world. The introduction of the Western diet has been suggested as a potential explanation of increased prevalence. The Western diet includes highly processed food products, and often include thermal treatment. During thermal treatment, the Maillard reaction can occur, leading to the formation of dietary advanced glycation endproducts (dAGEs). In this review, different biological effects of dAGEs are discussed, including their digestion, absorption, formation, and degradation in the gastrointestinal tract, with an emphasis on their pro-inflammatory effects. In addition, potential mechanisms in the inflammatory effects of dAGEs are discussed. This review also specifically elaborates on the involvement of the effects of dAGEs in IBD and focuses on evidence regarding the involvement of dAGEs in the symptoms of IBD. Finally, knowledge gaps that still need to be filled are identified.
Collapse
Affiliation(s)
- Timme van der Lugt
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, The Netherlands
- Correspondence:
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), 3540 AA Utrecht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Campus Venlo, Maastricht University, 5911 BV Venlo, The Netherlands; (A.B.); (M.F.V.)
| | - Misha F. Vrolijk
- Campus Venlo, Maastricht University, 5911 BV Venlo, The Netherlands; (A.B.); (M.F.V.)
| |
Collapse
|
20
|
Zhang Q, Wang Y, Fu L. Dietary advanced glycation end‐products: Perspectives linking food processing with health implications. Compr Rev Food Sci Food Saf 2020; 19:2559-2587. [DOI: 10.1111/1541-4337.12593] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Qiaozhi Zhang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and BiotechnologyZhejiang Gongshang University Hangzhou P.R. China
| |
Collapse
|
21
|
Higher ultra-processed food intake is associated with higher DNA damage in healthy adolescents. Br J Nutr 2020; 125:568-576. [DOI: 10.1017/s0007114520001981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractUltra-processed food is one of the main contributors to energy supply and consumption in food systems worldwide, and evidence of their detrimental health outcomes in humans is emerging. This study aimed to assess ultra-processed food intake and its association with urinary levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative damage, in 139 healthy adolescents in Karaj City in Iran. Usual dietary intake was measured using a 168-item validated FFQ. The daily intake of ultra-processed food consumption was determined through the classification of NOVA, and general linear models were used to compare the urinary levels of 8-OHdG/creatinine (ng/mg creatinine) within tertiles of ultra-processed food intake. Adolescents in the higher tertile of ultra-processed food consumption had a significantly higher mean level of urinary 8-OHdG/creatinine in comparison with the lower tertiles in the crude model (Pfor trend: 0·003) and after adjustment for confounding variables, including total energy intake, sex, age, BMI for age Z-score, obesity and physical activity (Pfor trend: 0·004). This association was still significant after adjusting for dietary intake of whole grains, nuts, legumes, the ratio of MUFA:SFA (g/d) and Mediterranean dietary score (Pfor trend: 0·002). More studies are needed to explore the determinants of ultra-processed food supply, demand, consumption and health effects; such studies should be applied to develop evidence-informed policies and regulatory mechanisms to improve children’s and adolescents’ food environment policymaking and legislation with special attention to ultra-processed food.
Collapse
|
22
|
Zhu JL, Cai YQ, Long SL, Chen Z, Mo ZC. The role of advanced glycation end products in human infertility. Life Sci 2020; 255:117830. [PMID: 32450172 DOI: 10.1016/j.lfs.2020.117830] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/09/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
Advanced glycation end products (AGEs) are heterogeneous products of the non-enzymatic interaction between proteins and reducing sugars. Numerous studies have shown that AGEs are associated with senescence, diabetes, vascular disease, aging and kidney disease. Infertility has been affected approximately 10 to15% of couples of reproductive ages. AGEs accumulation has been shown to play a crucial role in pathogenesis of infertility-related diseases. The present review provides the generation process, mechanism and pathological significance of AGEs and the novel treatment targeting AGEs for infertility.
Collapse
Affiliation(s)
- Jing-Ling Zhu
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China; Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ya-Qin Cai
- Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuang-Lian Long
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China
| | - Zhuo Chen
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China.
| | - Zhong-Cheng Mo
- Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
23
|
Iron and Advanced Glycation End Products: Emerging Role of Iron in Androgen Deficiency in Obesity. Antioxidants (Basel) 2020; 9:antiox9030261. [PMID: 32235809 PMCID: PMC7139764 DOI: 10.3390/antiox9030261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022] Open
Abstract
The literature suggests a bidirectional relationship between testosterone (T) and iron, but mechanisms underlying this relationship remain unclear. We investigated effects of iron on advanced glycation end products (AGEs) in obesity-related androgen deficiency. In total, 111 men were recruited, and iron biomarkers and N(ɛ)-(carboxymethyl)lysine (CML) were measured. In an animal study, rats were fed a 50% high-fat diet (HFD) with (0.25, 1, and 2 g ferric iron/kg diet) or without ferric citrate for 12 weeks. Obese rats supplemented with >1 g iron/kg diet had decreased testicular total T compared to HFD alone. Immunohistochemical staining showed that >1 g of ferric iron increased iron and AGE retention in testicular interstitial tissues, which is associated with increased expression of the receptor for AGEs (RAGE), tumor necrosis factor-α, and nitric oxide. Compared with normal weight, overweight/obese men had lower T levels and higher rates of hypogonadism (19% vs. 11.3%) and iron overload (29.8% vs.15.9%). A correlation analysis showed serum total T was positively correlated with transferrin saturation (r = 0.242, p = 0.007) and cathepsin D (r = 0.330, p = 0.001), but negatively correlated with red blood cell aggregation (r = −0.419, p<0.0001) and CML (r = −0.209, p < 0.05). In conclusion, AGEs may partially explain the underlying relationship between dysregulated iron and T deficiency.
Collapse
|
24
|
Le Bagge S, Fotheringham AK, Leung SS, Forbes JM. Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes. Med Res Rev 2020; 40:1200-1219. [PMID: 32112452 DOI: 10.1002/med.21654] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) is one of the most common chronic diseases manifesting in early life, with the prevalence increasing worldwide at a rate of approximately 3% per annum. The prolonged hyperglycaemia characteristic of T1D upregulates the receptor for advanced glycation end products (RAGE) and accelerates the formation of RAGE ligands, including advanced glycation end products, high-mobility group protein B1, S100 calcium-binding proteins, and amyloid-beta. Interestingly, changes in the expression of RAGE and these ligands are evident in patients before the onset of T1D. RAGE signals via various proinflammatory cascades, resulting in the production of reactive oxygen species and cytokines. A large number of proinflammatory ligands that can signal via RAGE have been implicated in several chronic diseases, including T1D. Therefore, it is unsurprising that RAGE has become a potential therapeutic target for the treatment and prevention of disease. In this review, we will explore how RAGE might be targeted to prevent the development of T1D.
Collapse
Affiliation(s)
- Selena Le Bagge
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia K Fotheringham
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sherman S Leung
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Josephine M Forbes
- Glycation and Diabetes, Translational Research Institute (TRI), Mater Research Institute-The University of Queensland (MRI-UQ), Brisbane, Queensland, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Mater Clinical School, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Ruiz HH, Ramasamy R, Schmidt AM. Advanced Glycation End Products: Building on the Concept of the "Common Soil" in Metabolic Disease. Endocrinology 2020; 161:bqz006. [PMID: 31638645 PMCID: PMC7188081 DOI: 10.1210/endocr/bqz006] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 10/01/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
The role of advanced glycation end products (AGEs) in promoting and/or exacerbating metabolic dysregulation is being increasingly recognized. AGEs are formed when reducing sugars nonenzymatically bind to proteins or lipids, a process that is enhanced by hyperglycemic and hyperlipidemic environments characteristic of numerous metabolic disorders including obesity, diabetes, and its complications. In this mini-review, we put forth the notion that AGEs span the spectrum from cause to consequence of insulin resistance and diabetes, and represent a "common soil" underlying the pathophysiology of these metabolic disorders. Collectively, the surveyed literature suggests that AGEs, both those that form endogenously as well as exogenous AGEs derived from environmental factors such as pollution, smoking, and "Western"-style diets, contribute to the pathogenesis of obesity and diabetes. Specifically, AGE accumulation in key metabolically relevant organs induces insulin resistance, inflammation, and oxidative stress, which in turn provide substrates for excess AGE formation, thus creating a feed-forward-fueled pathological loop mediating metabolic dysfunction.
Collapse
Affiliation(s)
- Henry H Ruiz
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
26
|
JANŠÁKOVÁ K, LENGYELOVÁ E, PRIBULOVÁ N, SOMOZA V, CELEC P, ŠEBEKOVÁ K, OSTATNÍKOVÁ D, TÓTHOVÁ Ľ. Metabolic and Renal Effects of Dietary Advanced Glycation end Products in Pregnant Rats – A Pilot Study. Physiol Res 2019; 68:467-479. [DOI: 10.33549/physiolres.934102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thermally processed food contains advanced glycation end products (AGEs) including N-(carboxymethyl)lysine (CML). Higher AGEs or circulating CML were shown to be associated with pregnancy complications such as preeclampsia and gestational diabetes. It is unclear whether this association is causal. The aim of our study was to analyze the effects of dietary CML and CML-containing thermally processed food on metabolism in pregnant rats. Animals were fed with standard or with AGE-rich diet from gestation day 1. Third group received standard diet and CML via gavage. On gestation day 18, blood pressure was measured, urine and blood were collected and the oral glucose tolerance test was performed. Plasma AGEs were slightly higher in pregnant rats fed with the AGE-rich diet (p=0.09). A non-significant trend towards higher CML in plasma was found in the CML group (p=0.06). No significant differences between groups were revealed in glucose metabolism or markers of renal functions like proteinuria and creatinine clearance. In conclusion, this study does not support the hypothesis that dietary AGEs such as CML might induce harmful metabolic changes or contribute to the pathogenesis of pregnancy complications. The short duration of the rodent gestation warrants further studies analyzing long-term effects of AGEs/CML in preconception nutrition.
Collapse
Affiliation(s)
- K. JANŠÁKOVÁ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - E. LENGYELOVÁ
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia,
| | - N. PRIBULOVÁ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - V. SOMOZA
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - P. CELEC
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - K. ŠEBEKOVÁ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - D. OSTATNÍKOVÁ
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Ľ. TÓTHOVÁ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
27
|
Mirmiran P, Yousefi R, Mottaghi A, Azizi F. Advanced glycation end products and risk of hypertension in Iranian adults: Tehran lipid and glucose study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2018; 23:43. [PMID: 29937905 PMCID: PMC5996569 DOI: 10.4103/jrms.jrms_982_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/06/2018] [Accepted: 03/08/2018] [Indexed: 12/17/2022]
Abstract
Background: Elevated blood pressure is still one of the major risk factors for diseases and disabilities and also a public health challenge worldwide. In the present longitudinal study, we aimed to evaluate the association between risk of hypertension and dietary advanced glycation end products (AGEs) as a recently discussed potential risk factor. Materials and Methods: Dietary assessment of 1775 participants in the third phase of Tehran lipid and glucose study to obtain dietary intake of AGEs was performed using a validated semi-quantitative food frequency questionnaire, and they were followed up for a mean duration of approximately 6 years. To determine the incidence of hypertension across quartiles of AGEs intake, logistic regression models with adjustment for potential confounding variables were used. All statistical analyses were conducted using SPSS, and P < 0.05 was considered statistically significant. Results: Higher hypertension occurrence risk was generally attributed to higher AGEs intake quartiles after adjusting for age in men (odds ratio [OR] = 1.48, 95% confidence interval [CI] = 1.11–1.52, P = 0.038) and additional adjustment for smoking, drugs, and physical activity in women (OR = 1.38%–95% CI = 1.09–1.42, P = 0.042). Moreover, across the increasing trend of dietary AGEs intake, the percentage of fat intake increased and that of carbohydrate significantly decreased (P < 0.0001). Conclusion: In conclusion, it is highly recommended to limit dietary AGEs consumption to prevent and manage hypertension and its complications.
Collapse
Affiliation(s)
- Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute of Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Yousefi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Mottaghi
- Research Center for Prevention of Cardiovascular Diseases, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Di Pino A, Currenti W, Urbano F, Scicali R, Piro S, Purrello F, Rabuazzo AM. High intake of dietary advanced glycation end-products is associated with increased arterial stiffness and inflammation in subjects with type 2 diabetes. Nutr Metab Cardiovasc Dis 2017; 27:978-984. [PMID: 28958695 DOI: 10.1016/j.numecd.2017.06.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/07/2017] [Accepted: 06/27/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Modern diets are high in advanced glycation end-products (dAGEs), derived from processing methods, exerting a pivotal role in promoting atherosclerotic risk. In this cross-sectional study we investigate the relationship between dAGE intake, arterial stiffness, inflammatory profile and macronutrient composition, in subjects with type 2 diabetes without overt cardiovascular disease. METHODS AND RESULTS Arterial stiffness, carboxy-methyl-lysine, endogenous secretory receptor for AGEs (esRAGE), high sensitivity C reactive protein (hs-CRP), S100A12 and macronutrient intake were evaluated in 85 subjects with type 2 diabetes. The subjects were stratified into two groups according to dAGE consumption: high and low dAGE intake (≥ or <15.000 kU/day, respectively). Subjects with high dAGE intake (n = 45) showed a higher augmentation, augmentation index and pulse wave velocity (PWV) compared with those subjects with low dAGE intake (18 ± 5.4 vs 12.2 ± 6.3 mmHg, P < 0.05; 38.3 ± 5.4 vs 29.3 ± 10%; 9.2 ± 1.4 m/sec vs 7.9 ± 1.7, P < 0.05, respectively). hs-CRP were higher in subjects with high dAGE intake [0.42 (0.18-0.54) vs 0.21 (0.14-0.52) mg/dL, P < 0.05] whereas esRAGE plasma levels were lower [0.16 (0.23-0.81) vs 0.2 (0.14-0.54) ng/dL, P < 0.05]. Simple regression analysis showed a correlation between dAGEs and fat intake. Multivariate analysis showed an independent association between augmentation, systolic blood pressure (BP) and dAGE consumption; BMI and esRAGE were the major determinants of PWV. CONCLUSIONS Our data suggests that a chronic high dAGE diet could lead to a vascular dysfunction and inflammatory activation, contributing to the development of vascular complications in subjects with type 2 diabetes. Testing this hypothesis may represent a direction of future research.
Collapse
Affiliation(s)
- A Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - W Currenti
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - F Urbano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - R Scicali
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - S Piro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - F Purrello
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| | - A M Rabuazzo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
29
|
Honma A, Ogawa C, Sugahara M, Fujimura S, Kita K. Influence of Varying Dietary Protein Levels on Glycation of Albumin, Tryptophan and Valine in the Plasma of Chickens. J Poult Sci 2017; 54:242-246. [PMID: 32908432 PMCID: PMC7477214 DOI: 10.2141/jpsa.0160146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/14/2017] [Indexed: 01/28/2023] Open
Abstract
Glycation is a chemical reaction in which reducing sugars bind non-enzymatically to compounds containing amino groups. Avian species like chickens are hyperglycemic animals and have high body temperature compared to mammalian species, which enables avian species to accelerate the glycation of proteins and amino acids with glucose. Although varying dietary crude protein (CP) levels alter plasma concentrations of proteins and amino acids, the influence of varying CP levels on the glycation of plasma proteins and amino acids has not been studied so far. In the present study, therefore, glycation of albumin, tryptophan and valine in the plasma of chickens fed diets with varying CP levels (0, 10, 20, 40 and 60%) was examined. At the end of the experimental period, blood samples were collected and plasma concentrations of glycoalbumin, glycated tryptophan (tryptophan-Amadori product and (1R, 3S) - 1 - (D - gluco - 1, 2, 3, 4, 5 - pentahydroxypentyl) - 1, 2, 3, 4 - tetrahydro - β - carboline - 3 - carboxylic acid (PHP-THβC)), and valine-Amadori product were measured. Although plasma albumin concentration was reduced along with the decrease in dietary CP levels from 20% to 0%, glycoalbumin in the plasma was increased under such dietary conditions. Similar increase in the ratios of tryptophan-Amadori product to tryptophan and valine-Amadori product to valine in the plasma of chickens fed a protein-free diet was observed. These results suggest that dietary protein deficiency might enhance the non-enzymatic glycation of plasma proteins and amino acids in chickens.
Collapse
Affiliation(s)
- Ayaka Honma
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Chiaki Ogawa
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Misaki Sugahara
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Shinobu Fujimura
- Faculty of Agriculture, Niigata University, Ikarashi, Niigata 950-2181, Japan
| | - Kazumi Kita
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
30
|
Prasad C, Davis KE, Imrhan V, Juma S, Vijayagopal P. Advanced Glycation End Products and Risks for Chronic Diseases: Intervening Through Lifestyle Modification. Am J Lifestyle Med 2017; 13:384-404. [PMID: 31285723 DOI: 10.1177/1559827617708991] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022] Open
Abstract
Advanced glycation end products (AGEs) are a family of compounds of diverse chemical nature that are the products of nonenzymatic reactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs bind to one or more of their multiple receptors (RAGE) found on a variety of cell types and elicit an array of biologic responses. In this review, we have summarized the data on the nature of AGEs and issues associated with their measurements, their receptors, and changes in their expression under different physiologic and disease states. Last, we have used this information to prescribe lifestyle choices to modulate AGE-RAGE cycle for better health.
Collapse
Affiliation(s)
- Chandan Prasad
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Kathleen E Davis
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Victorine Imrhan
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Shanil Juma
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Parakat Vijayagopal
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| |
Collapse
|
31
|
Pearce K, Hatzinikolas A, Moran L, de Courten MPJ, Forbes J, Scheijen JLJM, Schalkwijk CG, Walker K, de Courten B. Disparity in the micronutrient content of diets high or low in advanced glycation end products (AGEs) does not explain changes in insulin sensitivity. Int J Food Sci Nutr 2017; 68:1021-1026. [PMID: 28460575 DOI: 10.1080/09637486.2017.1319468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have previously shown that an isoenergetic low advanced glycation end products (AGEs) diet matched for macronutrient content improved insulin sensitivity compared to high AGE diet. Here, we evaluated the differences in micronutrient intake of these two dietary patterns and if they could explain differences in insulin sensitivity. Participants consumed the intervention diets each for 2 weeks with 4 weeks of habitual dietary intake (washout) in-between. Dietary analysis revealed that the high AGE diet contained greater levels of retinol equivalents (RE) (478.9 + 151.3 μg/day versus 329.0 + 170.0 μg/day; p < .006), vitamin A (806.3 + 223.5 (μg RE)/day versus 649.1 + 235.8 (μg RE)/day; p < .05) and thiamine (2.3 + 0.6 mg/day versus 1.6 + 0.4 mg/day; p = .014) compared to the low AGE diet. The changes in polyunsaturated fat, retinol, vitamin A and thiamine did not correlate with changes in insulin sensitivity (all p > .1) therefore are unlikely to explain observed changes in insulin sensitivity. (clinicaltrials.gov:NCT00422253).
Collapse
Affiliation(s)
- Karma Pearce
- a University of South Australia , Adelaide , Australia
| | | | - Lisa Moran
- b Centre for Health Research and Improvement, Monash University , Melbourne , Australia
| | | | - Josephine Forbes
- d Chronic Disease Biology and Care, University of Queensland , Brisbane , Queensland , Australia
| | - Jean L J M Scheijen
- e Laboratory for Metabolism and Vascular Medicine , Experimental Internal Medicine, Maastricht University , Maastricht , the Netherlands
| | - Casper G Schalkwijk
- e Laboratory for Metabolism and Vascular Medicine , Experimental Internal Medicine, Maastricht University , Maastricht , the Netherlands
| | - Karen Walker
- b Centre for Health Research and Improvement, Monash University , Melbourne , Australia
| | - Barbora de Courten
- b Centre for Health Research and Improvement, Monash University , Melbourne , Australia
| |
Collapse
|
32
|
López-Díez R, Shekhtman A, Ramasamy R, Schmidt AM. Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2244-2252. [PMID: 27166197 DOI: 10.1016/j.bbadis.2016.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Post-translational modification of proteins imparts diversity to protein functions. The process of glycation represents a complex set of pathways that mediates advanced glycation endproduct (AGE) formation, detoxification, intracellular disposition, extracellular release, and induction of signal transduction. These processes modulate the response to hyperglycemia, obesity, aging, inflammation, and renal failure, in which AGE formation and accumulation is facilitated. It has been shown that endogenous anti-AGE protective mechanisms are thwarted in chronic disease, thereby amplifying accumulation and detrimental cellular actions of these species. Atop these considerations, receptor for advanced glycation endproducts (RAGE)-mediated pathways downregulate expression and activity of the key anti-AGE detoxification enzyme, glyoxalase-1 (GLO1), thereby setting in motion an interminable feed-forward loop in which AGE-mediated cellular perturbation is not readily extinguished. In this review, we consider recent work in the field highlighting roles for glycation in obesity and atherosclerosis and discuss emerging strategies to block the adverse consequences of AGEs. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, United States.
| |
Collapse
|
33
|
Advanced Glycation End Products Induce Obesity and Hepatosteatosis in CD-1 Wild-Type Mice. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7867852. [PMID: 26942201 PMCID: PMC4753052 DOI: 10.1155/2016/7867852] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/10/2016] [Indexed: 12/31/2022]
Abstract
AGEs are a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with free amino groups of proteins, lipids, and/or nucleic acids. AGEs have been shown to play a role in various conditions including cardiovascular disease and diabetes. In this study, we hypothesized that AGEs play a role in the “multiple hit hypothesis” of nonalcoholic fatty liver disease (NAFLD) and contribute to the pathogenesis of hepatosteatosis. We measured the effects of various mouse chows containing high or low AGE in the presence of high or low fat content on mouse weight and epididymal fat pads. We also measured the effects of these chows on the inflammatory response by measuring cytokine levels and myeloperoxidase activity levels on liver supernatants. We observed significant differences in weight gain and epididymal fat pad weights in the high AGE-high fat (HAGE-HF) versus the other groups. Leptin, TNF-α, IL-6, and myeloperoxidase (MPO) levels were significantly higher in the HAGE-HF group. We conclude that a diet containing high AGEs in the presence of high fat induces weight gain and hepatosteatosis in CD-1 mice. This may represent a model to study the role of AGEs in the pathogenesis of hepatosteatosis and steatohepatitis.
Collapse
|
34
|
Yao Y, Han K, Dong S, Zeng M, Liu Z. Antioxidant balance and accumulation of advanced glycation end products after the consumption of standard diets including Maillard reaction products from silver carp peptides. Food Funct 2016; 7:4709-4719. [DOI: 10.1039/c6fo01183g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The oxidative stress of diabetic mice fed on peptide MRPs with high AGE levels was aggravated, and the uptake of CML correlated with excretion but affected the accumulation in organs to a lesser extent.
Collapse
Affiliation(s)
- Ye Yao
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Kaining Han
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Shiyuan Dong
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Mingyong Zeng
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Zunying Liu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| |
Collapse
|