1
|
Arain MA, Khaskheli GB, Barham GS, Shah QA, Nabi F, Almutairi MH, Almutairi BO, Marghazani IB. Exploring the anti-diabetic properties of camel milk: effects on blood glucose, antioxidant defense, and organ histo-morphological features in rabbits. J Mol Histol 2025; 56:92. [PMID: 39966267 DOI: 10.1007/s10735-025-10371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Camel milk (CM) has acquired substantial consideration in contemporary years owing to its potential prospective pharmaceutical benefits besides nutritional properties. As, CM retain inimitable composition and attain sophisticated concentration of bioactive compounds, thus helps in regulation of blood glucose level, and improves insulin sensitivity. Contemporary study intends to explore anti-diabetic inflictions of CM, besides body weight, blood profile, antioxidant defense and organ integrity in diabetic rabbits. To achieve this, a total of 36 rabbits was randomly alienated into six equal groups (N = 6), such as control, control + camel milk, diabetic control, insulin treated, camel milk treated, and CM + insulin. Diabetes was induced by injecting STZ (50-mg/kg). The diabetic rabbits were treated either with CM (100 ml/rabbit/day), or insulin (6 unit/kg/day) and their combination (CM-30 ml + insulin 3-unit/day) for 42 days. Body weight, blood glucose level and hematological indices were measured weekly. Reduced body weight, elevated blood glucose level and altered hematological indices were noticed in diabetes induced rabbits. On the contrary, improved weight gain, glycemic level, anti-oxidant defense and blood chemistry were noticed in groups treated with camel milk individually and insulin; conversely, non-significant changes were seen in CM + insulin treated group. Diabetic control group revealed gross-pathological changes in liver, kidney, intestine and pancreas. CM and insulin augmented organ integrity and stability. Convincingly, these outcomes strongly indicate therapeutic potential of CM that regulated hyperglycemic condition and mitigated the negative impact of diabetes in organ histomorphology.
Collapse
Affiliation(s)
- Muhammad Asif Arain
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University, Tandojam, 70050, Pakistan.
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal, 90150, Pakistan.
| | - Gul Bahar Khaskheli
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University, Tandojam, 70050, Pakistan.
| | - Ghulam Shabir Barham
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University, Tandojam, 70050, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Fazul Nabi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Bader O Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Illahi Bakhash Marghazani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal, 90150, Pakistan
| |
Collapse
|
2
|
Ayoub MA, Yap PG, Mudgil P, Khan FB, Anwar I, Muhammad K, Gan CY, Maqsood S. Invited review: Camel milk-derived bioactive peptides and diabetes-Molecular view and perspectives. J Dairy Sci 2024; 107:649-668. [PMID: 37709024 DOI: 10.3168/jds.2023-23733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
In dairy science, camel milk (CM) constitutes a center of interest for scientists due to its known beneficial effect on diabetes as demonstrated in many in vitro, in vivo, and clinical studies and trials. Overall, CM had positive effects on various parameters related to glucose transport and metabolism as well as the structural and functional properties of the pancreatic β-cells and insulin secretion. Thus, CM consumption may help manage diabetes; however, such a recommendation will become rationale and clinically conceivable only if the exact molecular mechanisms and pathways involved at the cellular levels are well understood. Moreover, the application of CM as an alternative antidiabetic tool may first require the identification of the exact bioactive molecules behind such antidiabetic properties. In this review, we describe the advances in our knowledge of the molecular mechanisms reported to be involved in the beneficial effects of CM in managing diabetes using different in vitro and in vivo models. This mainly includes the effects of CM on the different molecular pathways controlling (1) insulin receptor signaling and glucose uptake, (2) the pancreatic β-cell structure and function, and (3) the activity of key metabolic enzymes in glucose metabolism. Moreover, we described the current status of the identification of CM-derived bioactive peptides and their structure-activity relationship study and characterization in the context of molecular markers related to diabetes. Such an overview will not only enrich our scientific knowledge of the plausible mode of action of CM in diabetes but should ultimately rationalize the claim of the potential application of CM against diabetes. This will pave the way toward new directions and ideas for developing a new generation of antidiabetic products taking benefits from the chemical composition of CM.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (i2U) Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Irfa Anwar
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (i2U) Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Raj A, Shuklan P, Madan P, Chauhan K, Phogat J, Rani S. Comparative Attenuating Impact of Camel Milk and Insulin in Streptozotocin-Induced Diabetic Albino Rats. ACS OMEGA 2023; 8:29270-29280. [PMID: 37599985 PMCID: PMC10433336 DOI: 10.1021/acsomega.3c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
In this study, albino Wistar rats that have developed diabetes as a result of the drug streptozotocin (STZ) were treated with camel milk and insulin. For this, 36 rats were divided into six different (n = 6) groups: control, control + camel milk, diabetic control, insulin, camel milk, and combined camel milk + insulin. A 50 mg/kg intraperitoneal injection of STZ was used to induce diabetes. Rats with blood glucose levels exceeding 250 mg/dL after the induction of diabetes were taken into consideration for the study. The diabetic rats were treated with camel milk (50 mL/rat/day), insulin (6 units kg-1 b·wt/day), or their combination daily for 30 days. Throughout the course of the study, the rats' glucose levels and body weight were checked. In the diabetic control rats, a reduction in body weight and hyperglycemic condition was seen. Improvements in glycemic levels and weight gain were seen in the camel milk, insulin, and combined treatment groups compared to the diabetic control group; however, the combined treated group did not show the same degree of improvement as the alone treated group. Hematological changes in the diabetic control group included reductions in lymphocytes, platelets, total leukocyte count (TLC), and red blood cell (RBC) indices (mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), packed cell volume (PCV), and mean cell hemoglobin concentration (MCHC)). Each group that got insulin and camel milk separately and combined showed improvement in these changes. The liver, kidney, and pancreas in the diabetic control group had worsened morphological alterations. These histopathological alternations were significantly improved in the treatment groups. Hence, this study demonstrates the antidiabetic effects of camel milk in comparison to insulin. These findings highlight the potential of camel milk as an alternative therapy for diabetes, although further research is warranted to fully understand its mechanisms of action and long-term effects.
Collapse
Affiliation(s)
- Anshu Raj
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Priyanka Shuklan
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Preety Madan
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Khushboo Chauhan
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Jatin Phogat
- Department
of Biochemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Sudesh Rani
- Department
of Zoology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| |
Collapse
|
4
|
Shahein MR, El-Sayed MI, Raya-Álvarez E, Elmeligy AA, Hussein MAM, Mubaraki MA, Agil A, Elmahallawy EK. Fortification of Fermented Camel Milk with Salvia officinalis L. or Mentha piperita Leaves Powder and Its Biological Effects on Diabetic Rats. Molecules 2023; 28:5749. [PMID: 37570720 PMCID: PMC10420823 DOI: 10.3390/molecules28155749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The incorporation of fermented camel milk with natural additives possesses numerous benefits for the treatment of various pathological and metabolic conditions. The present study investigated the impact of fortification of fermented camel milk with sage or mint leaves powder (1 and 1.5%, respectively) on glucose and insulin levels, lipid profile, and liver and kidney functions in alloxan-induced diabetic rats. The gross chemical composition of sage and peppermint leaves powder was studied. The chemical composition of sage and mint extracts was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-MS) of sage and mint extracts. Furthermore, a total of forty-two adult normal male albino rats were included in this study, whereas one group was kept as the healthy control group (n = 6 rats) and diabetes was induced in the remaining animals (n = 36 rats) using alloxan injection (150 mg/kg of body weight). Among diabetic rats groups, a control group (n = 6 rats) was kept as the diabetic control group whereas the other 5 groups (6 rats per group) of diabetic rats were fed fermented camel milk (FCM) or fermented camel milk fortified with 1 and 1.5% of sage or mint leaves powder. Interestingly, the oral administration of fermented camel milk fortified with sage or mint leaves powder, at both concentrations, caused a significant decrease in blood glucose level and lipid profile, and an increase in insulin level compared to the diabetic control and FCM groups. Among others, the best results were observed in the group of animals that received fermented camel milk fortified with 1.5% sage powder. In addition, the results revealed that the fermented camel milk fortified with sage or mint leaves powder improved the liver and kidney functions of diabetic rats. Our study concluded that the use of sage and mint leaves powder (at a ratio of 1.5%) with fermented camel milk produces functional food products with anti-diabetic activity.
Collapse
Affiliation(s)
- Magdy Ramadan Shahein
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Mahmoud Ibrahim El-Sayed
- Department of Dairy Technology Research, Food Technology Research Institute, Agricultural Research Center, Giza 12622, Egypt;
| | - Enrique Raya-Álvarez
- Rheumatology Department, Hospital Universitario San Cecilio, Av. de la Investigación, s/n, 18016 Granada, Spain;
| | | | - Mohamed A. Mohamady Hussein
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt;
| | - Murad A. Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Ahmad Agil
- Department of Pharmacology, Biohealth Institute Granada (IBs Granada) and Neuroscience Institute, School of Medicine, University of Granada, 18016 Granada, Spain;
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, 14004 Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
5
|
Hameed A, Ishtiaq F, Zeeshan M, Akhtar S, Ismail T, Ahmad RS, Amir M, Anwar MJ. Combined antidiabetic potential of camel milk yogurt with Cinnamomum verum and Stevia rebaudiana by using rodent modelling. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1175-1184. [PMID: 36908342 PMCID: PMC9998783 DOI: 10.1007/s13197-023-05671-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
This study aimed to evaluate anti-diabetic potential of functional camel milk yogurt enriched with Cinnamomum verum and Stevia rebaudiana that not only mask its peculiar flavour rather have an antidiabetic effect as well. Sixty-three pathogen free STZ-induced albino Wistar rats were categorized into 7 groups on the basis of treatments. From each treatment group three animals were dissected periodically at 0, 7 and 21 days of study to determine the effect of all treatments on physicochemical parameters, serum glucose, serum chemistry and haematology. The study revealed that the mean blood glucose level in the untreated control group was within normal range (100-108 mg/dl) while there was noticeable decrease in mean blood glucose level of all the treated groups during three weeks' trial. Decline in blood glucose level (46%) was higher in animal group containing functional camel milk yogurt (T4) at 3rd week of trial as compared to other treatments.
Collapse
Affiliation(s)
- Aneela Hameed
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, 60,800 Pakistan
| | - Farheen Ishtiaq
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, 60,800 Pakistan
| | - Muhammad Zeeshan
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, 60,800 Pakistan
| | - Saeed Akhtar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, 60,800 Pakistan
| | - Tariq Ismail
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, 60,800 Pakistan
| | - Rabia Shabir Ahmad
- Institute of Home and Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mamoona Amir
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, 60,800 Pakistan
| | - Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, 60,800 Pakistan
| |
Collapse
|
6
|
Anwar I, Khan FB, Maqsood S, Ayoub MA. Camel Milk Targeting Insulin Receptor—Toward Understanding the Antidiabetic Effects of Camel Milk. Front Nutr 2022; 8:819278. [PMID: 35223937 PMCID: PMC8864127 DOI: 10.3389/fnut.2021.819278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
Camel milk (CM) is known for its beneficial virtues in the human diet and health. This includes its antidiabetic properties demonstrated in many in vitro and in vivo studies. Nevertheless, the scientific rationale behind the molecular and cellular basis of such beneficial effects and the exact antidiabetic agent(s)/mechanism(s) are still elusive. In this review, we focused on the recent advances supporting the targeting of insulin receptor (IR) by CM components. Indeed, our recent work reported that CM proteins and derived peptides pharmacologically target IR in vitro leading to its activation and potentiation of insulin-mediated responses. The review describes the experimental approaches used to investigate the effects of CM on IR in vitro based on the fractionation of CM whey proteins to purify functional proteins and their hydrolysis by gastric proteases to generate bioactive peptides. In addition, we illustrated our cellular and molecular model consisting of studying the functional activity of CM fractions on IR and its downstream signaling pathways in the hepatocarcinoma (HepG2) and the human embryonic kidney (HEK293) cells using the bioluminescence resonance energy transfer (BRET), phosphorylation, and glucose uptake assays. Overall, our work demonstrated for the first time that CM lactoferrin and CM-derived bioactive peptides positively modulate IR and its related signaling pathways in HepG2 and HEK293 cells. As a conclusion, the pharmacological targeting of IR by CM sheds more light on the antidiabetic properties of CM by providing its molecular basis that may constitute a solid rationale for the development of new generation of antidiabetic tools from CM-derived proteins and peptides and the utilization of CM in the management of diabetes. The sequencing and the synthesis of the potent bioactive CM peptides may open promising perspectives for their application as antidiabetic agents.
Collapse
Affiliation(s)
- Irfa Anwar
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, The United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, The United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Mohammed Akli Ayoub
| |
Collapse
|
7
|
Muthukumaran MS, Mudgil P, Baba WN, Ayoub MA, Maqsood S. A comprehensive review on health benefits, nutritional composition and processed products of camel milk. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2008953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M. Selva Muthukumaran
- Department of Food Technology, Hindustan Institute of Technology and Science, Chennai, India
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
| | - Waqas N Baba
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, UAE
- Zayed Center for Health Sciences, The United Arab Emirates University, UAE
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine United Arab Emirates University, UAE
- Zayed Center for Health Sciences, The United Arab Emirates University, UAE
| |
Collapse
|
8
|
Research Development on Anti-Microbial and Antioxidant Properties of Camel Milk and Its Role as an Anti-Cancer and Anti-Hepatitis Agent. Antioxidants (Basel) 2021; 10:antiox10050788. [PMID: 34067516 PMCID: PMC8156492 DOI: 10.3390/antiox10050788] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Camel milk is a rich source of vitamin C, lactic acid bacteria (LAB), beta-caseins and milk whey proteins, including lactoferrin, lysozyme, lactoperoxidase, alpha-lactalbumin and immunoglobulin. The lactoferrin plays a key role in several physiological functions, such as conferring antioxidant, anti-microbial and anti-inflammatory functions in cells. Similarly, the camel milk alpha-lactalbumin has shown greater antioxidative activity because of its higher antioxidant amino acid residues. The antioxidant properties of camel milk have also been ascribed to the structural conformation of its beta-caseins. Upon hydrolysis, the beta-caseins lead to some bioactive peptides having antioxidant activities. Consequently, the vitamin C in camel milk has a significant antioxidant effect and can be used as a source of vitamin C when the climate is harsh. Furthermore, the lysozyme and immunoglobulins in camel milk have anti-microbial and immune regulatory properties. The LAB isolated from camel milk have a protective role against both Gram-positive and -negative bacteria. Moreover, the LAB can be used as a probiotic and may restore the oxidative status caused by various pathogenic bacterial infections. Various diseases such as cancer and hepatitis have been associated with oxidative stress. Camel milk could increase antiproliferative effects and regulate antioxidant genes during cancer and hepatitis, hence ameliorating oxidative stress. In the current review, we have illustrated the anti-microbial and antioxidant properties of camel milk in detail. In addition, the anti-cancer and anti-hepatitis properties of camel milk have also been discussed.
Collapse
|
9
|
Kilari BP, Mudgil P, Azimullah S, Bansal N, Ojha S, Maqsood S. Effect of camel milk protein hydrolysates against hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin (STZ)-induced diabetic rats. J Dairy Sci 2020; 104:1304-1317. [PMID: 33272578 DOI: 10.3168/jds.2020-19412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
This study investigated the effect of camel milk protein hydrolysates (CMPH) at 100, 500 and 1,000 mg/kg of body weight (BW) for 8 wk on hyperglycemia, hyperlipidemia, and associated oxidative stress in streptozotocin-induced diabetic rats. Body weights and fasting blood glucose levels were observed after every week until 8 wk, and oral glucose tolerance test (OGTT) levels and biochemical parameters were evaluated after 8 wk in blood and serum samples. Antioxidant enzyme activity and lipid peroxidation in the liver were estimated, and histological examination of the liver and pancreatic tissues was also conducted. Results showed that CMPH at 500 mg/kg of BW [camel milk protein hydrolysate, mid-level dosage (CMPH-M)] exhibited potent hypoglycemic activity, as shown in the reduction in fasting blood glucose and OGTT levels. The hypolipidemic effect of CMPH was indicated by normalization of serum lipid levels. Significant improvement in activity of superoxide dismutase and catalase, and reduced glutathione levels were observed, along with the attenuation of malondialdehyde content in groups fed CMPH, especially CMPH-M, was observed. Decreased levels of liver function enzymes (aspartate aminotransferase and alanine aminotransferase) in the CMPH-M group was also noted. Histology of liver and pancreatic tissue displayed absence of lipid accumulation in hepatocytes and preservation of β-cells in the CMPH-M group compared with the diabetic control group. This is the first study to report anti-hyperglycemic and anti-hyperlipidemic effect of CMPH in an animal model system. This study indicates that CMPH can be suggested for its therapeutic benefits for hyperglycemia and hyperlipidemia, thus validating its use for better management of diabetes and associated comorbidities.
Collapse
Affiliation(s)
- Bhanu Priya Kilari
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, 17666, United Arab Emirates
| | - Nidhi Bansal
- ARC Dairy Innovation Hub, School of Agriculture and Food Sciences, The University of Queensland, QLD 4072, Australia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, 17666, United Arab Emirates.
| | - Sajid Maqsood
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
10
|
Ming L, Qiao X, Yi L, Siren D, He J, Hai L, Guo F, Xiao Y, Ji R. Camel milk modulates ethanol-induced changes in the gut microbiome and transcriptome in a mouse model of acute alcoholic liver disease. J Dairy Sci 2020; 103:3937-3949. [PMID: 32171514 DOI: 10.3168/jds.2019-17247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Morbidity and mortality as a result of liver disease are major problems around the world, especially from alcoholic liver disease (ALD), which is characterized by hepatic inflammation and intestinal microbial imbalance. In this study, we investigated the hepatoprotective effects of camel milk (CM) in a mouse model of acute ALD and the underlying mechanism at the gut microbiota and transcriptome level. Male Institute of Cancer Research mice (n = 24; Beijing Weitong Lihua Experimental Animal Technology Co. Ltd., China) were divided into 3 groups: normal diet (NC); normal diet, then ethanol (ET); and normal diet and camel milk (CM), then ethanol (ET+CM). Analysis of serum biochemical indexes and histology revealed a reduction in hepatic inflammation in the ET+CM group. Sequencing of 16S rRNA showed that CM modulated the microbial communities, with an increased proportion of Lactobacillus and reduced Bacteroides, Alistipes, and Rikenellaceae RC9 gut group. Comparative hepatic transcriptome analysis revealed 315 differentially expressed genes (DEG) in the ET+CM and ET groups (150 upregulated and 165 downregulated). Enrichment analysis revealed that CM downregulated the expression of inflammation-related (ILB and CXCL1) genes in the IL-17 and tumor necrosis factor (TNF-α) pathways. We conclude that CM modulates liver inflammation and alleviates the intestinal microbial disorder caused by acute alcohol injury, indicating the potential of dietary CM in protection against alcohol-induced liver injury.
Collapse
Affiliation(s)
- Liang Ming
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - XiangYu Qiao
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Li Yi
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dalai Siren
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Camel Research Institute of Inner Mongolia, Alashan 737300, China
| | - Jing He
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Le Hai
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fucheng Guo
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuchen Xiao
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rimutu Ji
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Camel Research Institute of Inner Mongolia, Alashan 737300, China.
| |
Collapse
|
11
|
Margaritis I, Angelopoulou K, Lavrentiadou S, Mavrovouniotis IC, Tsantarliotou M, Taitzoglou I, Theodoridis A, Veskoukis A, Kerasioti E, Kouretas D, Zervos I. Effect of crocin on antioxidant gene expression, fibrinolytic parameters, redox status and blood biochemistry in nicotinamide-streptozotocin-induced diabetic rats. ACTA ACUST UNITED AC 2020; 27:4. [PMID: 32161725 PMCID: PMC7053078 DOI: 10.1186/s40709-020-00114-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Background Diabetes is regarded as an epidemiological threat for the twenty-first century. Phytochemicals with known pharmaceutical properties have gained interest in the field of alleviating secondary complications of diseases. Such a substance is crocin, a basic constituent of saffron (Crocus sativus). The present study aimed at examining the beneficial effects of per os crocin administration on the antioxidant status, blood biochemical profile, hepatic gene expression and plasminogen activator inhibitor-1 activity (PAI-1) in the liver, kidney and plasma (an important marker of pre-diabetic status and major factor of thrombosis in diabetes) of healthy rats, as well as of rats with nicotinamide-streptozotocin-induced diabetes. Results Diabetes disrupted the oxidation-antioxidation balance, while crocin improved the antioxidant state in the liver by significantly affecting SOD1 gene expression and/or by restoring SOD and total antioxidant capacity (TAC) levels. In the kidney, crocin improved hydrogen peroxide decomposing activity and TAC. In blood, hepatic transaminases ALT and AST decreased significantly, while there was a trend of decrease regarding blood urea nitrogen (BUN) levels. The expression of PAI-1 gene was affected in the liver by the dose of 50 mg kg−1. Conclusions Crocin treatment contributed in restoring some parameters after diabetes induction, primarily by affecting significantly hepatic transaminases ALT and AST, SOD1 and PAI-1 gene expression and nephric H2O2 decomposing activity. In conclusion, crocin did contribute to the alleviation of some complications of diabetes.
Collapse
Affiliation(s)
- Ioannis Margaritis
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Angelopoulou
- 2Laboratory of Biochemistry & Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sophia Lavrentiadou
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Maria Tsantarliotou
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Taitzoglou
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Theodoridis
- 4Laboratory of Animal Production Economics, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aristidis Veskoukis
- 5Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Efthalia Kerasioti
- 5Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Dimitrios Kouretas
- 5Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Ioannis Zervos
- 1Laboratory of Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Liu W, Sun H, Zhou Y, Li Y, Qin Y, Li R, Chen Y, Yu L, Zhao M, Zhang W, Xu Y. Goat Milk Consumption Ameliorates Abnormalities in Glucose Metabolism and Enhances Hepatic and Skeletal Muscle AMP-Activated Protein Kinase Activation in Rats Fed with High-Fat Diets. Mol Nutr Food Res 2019; 63:e1900703. [PMID: 31750605 DOI: 10.1002/mnfr.201900703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/13/2019] [Indexed: 12/15/2022]
Abstract
SCOPE Diabetes endangers health and causes serious economic impediment. The aim of this study is to identify the effects of goat milk consumption on glucose metabolism of rats with high-fat (HF) diet. METHODS AND RESULTS Sixty male Sprague Dawley rats are divided into five groups and fed with different diets for 24 weeks: goat-milk-based HF diet (GHF group; goat milk powder+HF diet), cow-milk-based HF diet (CHF group; cow milk powder+HF diet), HF diet, HF diet plus acarbose (HF+A group; acarbose+HF diet), and chow diet (CD group). Fasting glucose in GHF-fed rats are lower than HF-fed rats on weeks 16 and 20. GHF-fed rats display improved insulin sensitivity in oral glucose and insulin tolerance tests. Compared with HF-fed rats, glycated hemoglobin and triglycerides in GHF-fed rats are lower and high-density lipoprotein level is higher. AMP-activated protein kinase activation (AMPK) in the liver and skeletal muscle is higher in GHF rats than HF rats. Phosphoenolpyruvate carboxykinase and glucose 6-phosphatase protein levels in the liver are lower and hexokinase 2 protein level in the skeletal muscle is higher in GHF rats compared with HF rats. CONCLUSION Goat milk consumption can ameliorate abnormalities in glucose metabolism, and AMPK pathway in the liver and skeletal muscle plays an important role in the process.
Collapse
Affiliation(s)
- Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Han Sun
- Research and Development Department, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, 100015, China
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| | - Mengya Zhao
- Research and Development Department, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, 100015, China
| | - Wei Zhang
- Research and Development Department, Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing, 100015, China
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Xueyuan Road 38, Haidian, Beijing, 100083, China
| |
Collapse
|
13
|
Hamed AI, Ben Said R, Kontek B, Al-Ayed AS, Kowalczyk M, Moldoch J, Oleszek W, Stochmal A, Olas B. Electrospray ionization mass spectrometry characterization of ubiquitous minor lipids and oligosaccharides in milk of the camel (Camelus dromedarius) and their inhibition of oxidative stress in human plasma. J Dairy Sci 2019; 103:72-86. [PMID: 31677836 DOI: 10.3168/jds.2019-16710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/24/2019] [Indexed: 11/19/2022]
Abstract
The aim of this study was to characterize minor lipids in methanol fraction extracted from raw camel milk after loading it on a water-preconditioned short C18 open column and fractionating with a gradient of methanol/water. The C18 column showed high fractionation efficiency of minor lipids, such as glycosphingolipids, lipopolysaccharides, or oligosaccharides, when compared with other constituents, in particular polysaccharides, proteins, and free fatty acids. Liquid chromatography electrospray ionization tandem mass spectrometry in negative ion mode was used to identify 21 new glycosphingolipids, lipopolysaccharides, and oligosaccharides. Electrospray ionization tandem mass spectrometry was qualified to provide relevant data for recognizing the molecular mass, glycosylation sequences, and structure of saccharide moieties for the revealed compounds. The sequence of combinations of one selected lipopolysaccharide, which was considered the backbone of the remaining lipopolysaccharides, was confirmed in a density functional theory study. The obtained results showed that the tested fraction is a rich source of glycosphingolipids, lipopolysaccharides, and oligosaccharides with antioxidant activity.
Collapse
Affiliation(s)
- Arafa I Hamed
- Phytochemistry Laboratory, Department of Botany, Faculty of Science, Aswan University, Aswan 81528, Egypt; Department of Chemistry, College of Science & Arts at Al-Rass, Qassim University, Al-Rass 58892 Buraidah , Saudi Arabia; Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland
| | - Ridha Ben Said
- Department of Chemistry, College of Science & Arts at Al-Rass, Qassim University, Al-Rass 58892 Buraidah , Saudi Arabia; Unitè Physico-Chimie des Materiauxa l'Etat Condense UR11ES19, Departement de Chimie, Facultè des Sciences de Tunis Universitè, Tunis El Manar Campus Universitaire, MANAR II, 2092 Tunis, Tunisia
| | - Bogdan Kontek
- Department of General Biochemistry, Institute of Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| | - Abdullah S Al-Ayed
- Department of Chemistry, College of Science & Arts at Al-Rass, Qassim University, Al-Rass 58892 Buraidah , Saudi Arabia
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland
| | - Jaroslaw Moldoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland
| | - Wieslaw Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland
| | - Beata Olas
- Department of General Biochemistry, Institute of Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland.
| |
Collapse
|
14
|
Mohammed W, El Magdoub HM, Schaalan M. Renoprotective effect of camel milk in pediatric diabetic ketoacidosis: A focus on TLR-4/MAPK axis. Diabetes Res Clin Pract 2019; 151:88-95. [PMID: 30951795 DOI: 10.1016/j.diabres.2019.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Waleed Mohammed
- Chemistry Department, Kasr Alainy Hospitals, Cairo University, Cairo, Egypt
| | - Hekmat M El Magdoub
- Department of Biochemistry, Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Mona Schaalan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Translational and Clinical Research Unit, Misr International University, Cairo, Egypt
| |
Collapse
|
15
|
Meena S, Rajput YS, Sharma R, Singh R. Effect of goat and camel milk vis a vis cow milk on cholesterol homeostasis in hypercholesterolemic rats. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2018.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Ayoub MA, Palakkott AR, Ashraf A, Iratni R. The molecular basis of the anti-diabetic properties of camel milk. Diabetes Res Clin Pract 2018; 146:305-312. [PMID: 30452940 DOI: 10.1016/j.diabres.2018.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/18/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023]
Abstract
Over the years, strong evidence have been accumulated in favor of the beneficial effects of camel milk on glucose homeostasis with significant anti-diabetic properties in both human and animal diabetic models. However, the cellular and molecular mechanisms involved in such effects remain not understood. In this review, we speculated about the potential mechanisms and summarized few mechanistic-based studies that investigated the biological activity of camel milk and its protein components on the different aspects that may be involved in the anti-diabetic effects. A special emphasis is given to the molecular events engaged by camel milk proteins/peptides on two key aspects: insulin secretion and insulin receptor activity. Thus, the review gives a molecular rationale to the anti-diabetic effects of camel milk. This will help to identify the anti-diabetic agent(s) contained in camel milk and to understand better its mechanism of action in order to use it for the management of diabetes mellitus.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Abdul Rasheed Palakkott
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Arshida Ashraf
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Yadav R, Dey DK, Vij R, Meena S, Kapila R, Kapila S. Evaluation of anti-diabetic attributes of Lactobacillus rhamnosus MTCC: 5957, Lactobacillus rhamnosus MTCC: 5897 and Lactobacillus fermentum MTCC: 5898 in streptozotocin induced diabetic rats. Microb Pathog 2018; 125:454-462. [PMID: 30316007 DOI: 10.1016/j.micpath.2018.10.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
Interest in probiotics has grown significantly in the last decades due to their reported nutritional and health promoting effects. The aim of this study is to investigate the therapeutic potential of probiotic fermented milk (PFM) prepared using three different probiotic strains i.e. Lactobacillus rhamnosus MTCC: 5957, Lactobacillus rhamnosus MTCC: 5897 and Lactobacillus fermentum MTCC: 5898; independently or in combination, for treating streptozotocin induced type-1 diabetes in male Wistar rats. Diabetic rats were fed with PFM preparations for 6 weeks and then analyzed for the various biochemical parameters associated. The results indicated that feeding of PFM significantly improved glucose metabolism (fasting blood glucose, glycated hemoglobin, serum insulin), serum inflammation status (tumor necrosis factor-α, and serum interleukin-6), oxidative stress (thiobarbituric acid reactive substance, catalase, superoxide dismutase and glutathione peroxidase activities in liver and kidney), serum lipid profile (total cholesterol, low density lipoprotein-cholesterol, very low density lipoprotein-cholesterol, triglycerides) in diabetic rats. In addition, feeding of PFM has significantly reduced mRNA expression of pepck and g6pase genes that code the key enzymes of gluconeogenesis pathway. The results of this study showed that daily consumption of PFM can be effective in combating of type -1 diabetes and its complications.
Collapse
Affiliation(s)
- Radha Yadav
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Debpriyo Kumar Dey
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Rishika Vij
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Sunita Meena
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
18
|
Fallah Z, Feizi A, Hashemipour M, Kelishadi R. Effect of fermented camel milk on glucose metabolism, insulin resistance, and inflammatory biomarkers of adolescents with metabolic syndrome: A double-blind, randomized, crossover trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2018; 23:32. [PMID: 29887900 PMCID: PMC5961288 DOI: 10.4103/jrms.jrms_1191_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 12/31/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023]
Abstract
Background: This study, for the first time, aimed to assess the effects of fermented camel milk (FCM) on glycemic and inflammatory parameters related to metabolic syndrome (MetS), an aggregation of cardiometabolic risk factors, in adolescents. Materials and Methods: In a double-blind, randomized crossover trial, overweight/obese adolescents (fulfilling MetS criteria, aged 11–18 years) were randomly assigned to receive FCM 250 cc per day for an 8-week period, a 4-week washout, and then diluted cow's yogurt (DCY) 250 cc/day for another 8-week period, or the reverse sequence. Fasting blood sugar (FBS), fasting insulin, insulin resistance by three equations, incretin hormone glucose-dependent insulinotropic peptide (GIP), and glucagon-like peptide-1 (GLP1) as well as inflammatory markers such as interleukin 6 (IL6) and tumor necrosis factor-alpha (TNF-α) were measured before and after each of the four periods. A 3-day food record and physical activity questionnaire were completed before each period. Statistical analyses were done using Minitab and SPSS software considering the significance level of 0.05. Results: Twenty-four participants with a mean (standard deviation) age of 13.77 (1.87) years (range: 10.45–16.25 years) (58% girls) completed the study. It resulted in nonsignificant mean reduction in IL6 (−18.28 pg/mL [95% confidence interval [CI]: −47.48; 10.90]; P = 0.20) and nonsignificant increase in glucose metabolizing hormones such as GIP (683.10 pg/mL [95% CI: −457.84; 1824.0]; P = 0.22) and GLP1 (6.98 pg/mL [95% CI: −66.61; 80.57]; P = 0.84) by FCM consumption in comparison to DCY. Nonsignificant decrease was observed in TNF-α in the first periods of the study. The changes of FBS, fasting insulin, and insulin resistance indices were not statistically significant as well. Conclusion: According to preliminary positive influences of FCM on inflammatory markers, and findings related to glucose metabolism, we suggest conducting further studies on its clinical impacts.
Collapse
Affiliation(s)
- Zahra Fallah
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Hashemipour
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Fallah Z, Feizi A, Hashemipour M, Kelishadi R. Positive Effect of Fermented Camel Milk on Liver Enzymes of Adolescents with Metabolic Syndrome: a Double Blind, Randomized, Cross-over Trial. Mater Sociomed 2018; 30:20-25. [PMID: 29670474 PMCID: PMC5857053 DOI: 10.5455/msm.2018.30.20-25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Metabolic syndrome (MetS) has several health consequences. Liver enzymes elevation is among them. Aim: This study aimed to assess the effects of fermented Camel milk (FCM), as a functional food and dairy, on some features of MetS in adolescents including liver enzymes status, serum lipids and anthropometric measures. Methods: Overweight/obese adolescents with MetS were randomly assigned to FCM 250 cc per day for 8 weeks, a 4-week washout, and then to diluted Cow’s yogurt (DCY) 250 cc per day for 8 weeks, or the reverse sequence. Anthropometric measures, liver enzymes and serum lipids were measured just before and after each one of the four periods. A three-day food record and physical activity questionnaire were completed before each period. Statistical analyses were done using Minitab and SPSS soft-wares considering the significance level of 0.05. Results: Twenty-four participants with a mean age (SD) of 13.77 (1.87) years (range: 10.45-16.25) (58% girls) completed the study. It resulted significant mean reduction of aspartate aminotransferase (AST) (-3.75 U/L [95% CI: -7.06; -0.43]; p=0.042) and alanine aminotransferase (ALT) (-2.54 U/L [95% CI: -3.33; -2.24], and p=0.006) and AST/ALT ratio (-0.16 U/L [95% CI: -0.28; -0.05]; p= 0.029) by FCM consumption in comparison to DCY. Non-significant favorable effects on anthropometric measures and serum lipids were seen as well. Conclusion: According to the observed favorable effects of fermented camel milk on liver enzymes, its consumption may be considered as a functional food supplement in related circumstances.
Collapse
Affiliation(s)
- Zahra Fallah
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Hashemipour
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Jeon YD, Kang SH, Moon KH, Lee JH, Kim DG, Kim W, Kim JS, Ahn BY, Jin JS. The Effect of Aronia Berry on Type 1 Diabetes In Vivo and In Vitro. J Med Food 2018; 21:244-253. [DOI: 10.1089/jmf.2017.3939] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yong-Deok Jeon
- Department of Oriental Medicine Resources, Chonbuk National University, Iksan, South Korea
| | - Sa-Haeng Kang
- Department of Oriental Medicine Resources, Chonbuk National University, Iksan, South Korea
- Department of Oriental Pharmacy, College of Pharmacy, Wongkwang-Oriental Medicine Research Institute, Wongkwang University, Iksan, South Korea
| | - Kwang-Hyun Moon
- Sunchang Research Institute of Health and Longevity, Sunchang, South Korea
| | - Jeong-Ho Lee
- Sunchang Research Institute of Health and Longevity, Sunchang, South Korea
| | - Dae-Geun Kim
- Sunchang Research Institute of Health and Longevity, Sunchang, South Korea
| | - Wook Kim
- Sunchang Research Institute of Health and Longevity, Sunchang, South Korea
| | - Jong-Sung Kim
- Department of Hotel and Restaurant Culinary Art, Kunjang University, Gunsan, South Korea
| | - Byung-Yong Ahn
- Department of Oriental Medicine Resources, Chonbuk National University, Iksan, South Korea
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Chonbuk National University, Iksan, South Korea
| |
Collapse
|
21
|
Mohamed WA, Schaalan MF. Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; controlling impact on PPAR-γ, SIRT-1, and TLR4 downstream signaling pathway. Diabetol Metab Syndr 2018; 10:89. [PMID: 30534206 PMCID: PMC6280363 DOI: 10.1186/s13098-018-0390-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
The current study aims to investigate the antidiabetic efficacy of camel milk-derived lactoferrin and potential involvement of PPAR-γ and SIRT-1 via TLR-4/NFκB signaling pathway in obese diabetic pediatric population. Sixty young obese patients with type 2 diabetes were selected from the Pediatric Endocrine Metabolic Unit, Cairo University and were randomly divided among two age and sex-matched groups so as to receive either standard therapy without lactoferrin in one arm or to be treated with oral lactoferrin capsules (250 mg/day, p.o) for 3 months in the other arm. Both groups were compared to 50 control healthy volunteers. Measurements of HbA1c, lipid profile, antioxidant capacity (SOD, Nrf2), proinflammatory interleukins; (IL-1β, IL-6, IL-18), Cyclin D-1, lipocalin-2, and PPAR-γ expression levels were done at the beginning and 3 months after daily consumption of lactoferrin. The mechanistic involvement of TLR4-SIRT-1-NFκB signaling cascade was also investigated. The antidiabetic efficacy of lactoferrin was confirmed by significant improvement of the baseline levels of HbA1c, BMI and lipid profile of the obese pediatric cohort, which is evidenced by increased PPAR-γ and SIRT-1 expression. Moreover, the anti-inflammatory effect was evident by the significant decrease in serum levels of IL-1β, IL-6, IL-18, TNF-α, lipocalin 2 in type 2 diabetic post-treatment group, which corresponded by decreased NFκB downstream signaling indicators. The antioxidant efficacy was evident by stimulated SOD levels and NrF2 expression; compared with the pre-treatment group (all at P ≤ 0.001). The consumption of high concentrations of lactoferrin explains its hypoglycemic efficacy and counts for its insulin-sensitizing, anti-inflammatory and immunomodulatory effects via TLR4-NFκB-SIRT-1 signaling cascade. Recommendations on regular intake of lactoferrin could ensure better glycemic control, compared to conventional antidiabetics alone.
Collapse
Affiliation(s)
- Waleed A. Mohamed
- Department of Chemistry, Kasr El Aini Teaching Hospitals, Cairo University, Cairo, Egypt
| | - Mona F. Schaalan
- Department of Clinical Pharmacy and Pharmacy Practice, Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
22
|
Al Aamri ZM, Ali BH. Does honey have any salutary effect against streptozotocin - induced diabetes in rats? J Diabetes Metab Disord 2017; 16:4. [PMID: 28127544 PMCID: PMC5260029 DOI: 10.1186/s40200-016-0278-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/29/2016] [Indexed: 01/24/2023]
Abstract
BACKGROUND Diabetes is a global, growing and costly public health problem. In the literature, there are conflicting reports on the effect of consumption of bee honey on diabetes. We assessed the possible effect of a commercially available bee honey (given orally by gavage at doses of 1 g/kg/day for 4 weeks) on the blood concentrations of glucose, insulin and leptin and body weight of rats with streptozotocin-induced diabetes. METHODS Thirty-six rats were allocated randomly into six groups equally and treated for 4 weeks as follows: Group.1: non-diabetic rats given distilled water, group.2: non-diabetic rats given honey (1 g/kg), group.3: Diabetic rats given distilled water, group.4: Diabetic rats given honey, group.5: Diabetic rats given insulin (10 IU/kg), and group.6: Diabetic rats given combination of insulin (10 IU/kg) with honey (1 g/kg). The body weight, blood glucose, insulin and leptin concentrations of each rat were measured. RESULTS Honey treatment did not significantly affect the glucose, leptin and insulin concentrations of diabetic rats. It did not significantly affect the excessive water intake or urinary output in diabetic rats when compared to the insulin-treated groups. Neither honey nor insulin improved body weight in diabetic rats. CONCLUSION Contrary to the reports of a salutary effect of honey in diabetic humans and rodents, our results showed that consumption of honey caused no significant changes in body weight, or glucose and insulin concentrations. However, further studies with different doses and durations of treatment are warranted.
Collapse
Affiliation(s)
- Zakariya M. Al Aamri
- College of Medicine & Health Sciences, Sultan Qaboos University, Al - Khoud, Oman
| | - Badreldin H. Ali
- Department of Pharmacology, College of Medicine & Health Sciences, Sultan Qaboos University, AL-Koud, Oman
| |
Collapse
|
23
|
Abstract
This review summarises current knowledge on camel milk proteins, with focus on significant peculiarities in protein composition and molecular properties. Camel milk is traditionally consumed as a fresh or naturally fermented product. Within the last couple of years, an increasing quantity is being processed in dairy plants, and a number of consumer products have been marketed. A better understanding of the technological and functional properties, as required for product improvement, has been gained in the past years. Absence of the whey protein β-LG and a low proportion of к-casein cause differences in relation to dairy processing. In addition to the technological properties, there are also implications for human nutrition and camel milk proteins are of interest for applications in infant foods, for food preservation and in functional foods. Proposed health benefits include inhibition of the angiotensin converting enzyme, antimicrobial and antioxidant properties as well as an antidiabetogenic effect. Detailed investigations on foaming, gelation and solubility as well as technological consequences of processing should be investigated further for the improvement of camel milk utilisation in the near future.
Collapse
|
24
|
Editorial: Milk is good for you. J DAIRY RES 2016; 83:267. [PMID: 27600959 DOI: 10.1017/s0022029916000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|