1
|
Deoni SCL, Beauchemin J, D'Sa V. Enhanced brain myelination and cognitive development in young children associated with milk fat globule membrane (MFGM) intake: a temporal cohort study. Brain Struct Funct 2025; 230:52. [PMID: 40252122 DOI: 10.1007/s00429-025-02907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/06/2025] [Indexed: 04/21/2025]
Abstract
Myelination is an important neurodevelopmental process that facilitates efficient brain messaging and connectivity, and contributes to the emergence and refinement of cognitive skills and abilities. Healthy maturation of the myelinated white matter requires coordinated delivery of key nutritional building blocks, including short and long-chain polyunsaturated fatty acids, phospholipids, and sphingolipids. While many of these nutrients are amply supplied by breastmilk, they may not be present in sufficient quantity in infant formula milk. Milk fat globule membrane (MFGM) is a rich source of phospholipids, including sphingomyelin and has been associated with improved cognitive development in infants and children when added to infant formula. To determine if added bovine MFGM is also associated with improved myelination, this study used myelin-sensitive MRI to compare myelination trends in healthy infants and toddlers, 0-2 years of age, who received the same branded infant formula with and without added bovine MFGM in two temporal cohorts: Without Added MFGM between 2010 and 2017; and With Added MFGM between 2018-2020. Concurrent with imaging, cognitive development was assessed using the Mullen Scales of Early Learning (MSEL). Matched for important demographic and socioeconomic characteristics, we found that children who received infant formula with added MFGM showed improved myelination in motor-related areas (motor cortices, internal capsule, and cerebellum) and improved MSEL gross and fine motor scores. No significant differences in verbal or overall cognitive ability scores were noted. These results support the importance of phospholipids, sphingolipids, and sphingomyelin in promoting brain myelination and cognitive development.
Collapse
Affiliation(s)
- Sean C L Deoni
- Advanced Baby Imaging Lab, Warren Alpert Medical School at Brown University, Providence, RI, 02912, USA.
| | - Jennifer Beauchemin
- Advanced Baby Imaging Lab, Warren Alpert Medical School at Brown University, Providence, RI, 02912, USA
- Department of Pediatrics, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Viren D'Sa
- Advanced Baby Imaging Lab, Warren Alpert Medical School at Brown University, Providence, RI, 02912, USA
- Department of Pediatrics, Warren Alpert Medical School at Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Ni X, Zhang Z, Deng ZY, Duan S, Szeto IMY, He J, Li T, Li J. Global Levels and Variations of Cholesterol and Polar Lipids of Human Milk: A Systematic Review and Meta-analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7046-7064. [PMID: 40091209 DOI: 10.1021/acs.jafc.4c11942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Polar lipids and cholesterol are vital structural components of the milk fat globule membrane, playing a crucial role in infant growth and development; however, systematic global reports on their content in human milk are currently lacking. This study conducted a systematic literature search in Chinese and English databases, including 69,392 human milk samples from 96 studies. A random-effects model based on global data was used to assess the content of total lipids, cholesterol, gangliosides, and phospholipids in human milk and their variations with the lactation stage, geographical region, and sample year. The mean contents of total lipids, cholesterol, and total phospholipids were 2774.15 mg/100 g (95% CI: 2614.88, 2933.42 mg/100 g), 21.15 mg/100 g (18.35, 23.95 mg/100 g), and 70.72 mg/100 g (68.84, 72.60 mg/100 g), respectively, with gangliosides GM3 and GD3 at 0.63 mg/100 g (0.54, 0.72 mg/100 g) and 0.34 mg/100 g (0.32, 0.36 mg/100 g). The major phospholipids SM, PC, PE, PS, and PI averaged 24.19 mg/100 g (23.17 and 25.21 mg/100 g), 21.27 mg/100 g (19.92 and 22.62 mg/100 g), 18.28 mg/100 g (17.46 and 19.10 mg/100 g), 2.86 mg/100 g (2.32 and 3.40 mg/100 g), and 2.12 mg/100 g (1.75 and 2.49 mg/100 g). With the progression of lactation, total lipids, gangliosides, and most phospholipids (SM, PC, PS, PI) increased, while cholesterol and PE decreased. Over the years, total lipids, gangliosides, and PE showed an upward trend, whereas cholesterol and most phospholipids declined. Human milk from Europe had lower total lipid and cholesterol levels compared with other regions. While the total phospholipid content did not show significant regional differences (P > 0.05), variations in phospholipid composition were observed. These findings emphasize the importance of understanding spatiotemporal changes in human milk lipids to develop personalized nutrition strategies that support optimal infant growth and development.
Collapse
Affiliation(s)
- Xinggang Ni
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhiyi Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Sufang Duan
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Jian He
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ting Li
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China
- National Center for Technology Innovation of Dairy, Ltd., Hohhot, Inner Mongolia 010110, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
3
|
Yu J, Wang Y, Wei W, Wang X. A review on lipid inclusion in preterm formula: Characteristics, nutritional support, challenges, and future perspectives. Compr Rev Food Sci Food Saf 2025; 24:e70099. [PMID: 39898899 DOI: 10.1111/1541-4337.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 02/04/2025]
Abstract
The lack of nutrient accumulation during the last trimester and the physiological immaturity at birth make nutrition for preterm infants a significant challenge. Lipids are essential for preterm infant growth, neurodevelopment, immune function, and intestinal health. However, the inclusion of novel lipids in preterm formulas has rarely been discussed. This study discusses specific lipid recommendations for preterm infants according to authoritative legislation based on their physiological characteristics. The gaps in lipid composition, such as fatty acids, triacylglycerols, and complex lipids, between preterm formulas and human milk have been summarized. The focus of this study is mainly on the vital roles of lipids in nutritional support, including long-chain polyunsaturated fatty acids, structural lipids, milk fat global membrane ingredients, and other minor components. These lipids have potential applications in preterm formulas for improving lipid absorption, regulating lipid metabolism, and protecting against intestinal inflammation. The lipidome and microbiome can be used to provide adequately powered evidence of the effects of lipids. This study proposes nutritional strategies for preterm infants and suggests approaches to enhance their lipid quality in preterm formula.
Collapse
Affiliation(s)
- Jiahui Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yandan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Puri K, Svenstrup C, Vanderpool C. Functional Infant Formula Additives. Neoreviews 2025; 26:e163-e171. [PMID: 40020744 DOI: 10.1542/neo.26-3-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2025] [Accepted: 11/04/2025] [Indexed: 03/03/2025]
Abstract
Breastfeeding is the ideal initial feeding method for providing nutrition to full-term infants and is recommended by major health organizations, including the American Academy of Pediatrics and the World Health Organization. Despite improvements in global breastfeeding rates, many infants still receive formula. Significant advancements have been achieved in the safety and nutritional content of modern formulas. Various functional additives, such as human milk oligosaccharides, milk fat globule membrane, docosahexaenoic acid, and lactoferrin, are used with the aim to replicate some of the benefits of breast milk. These additives enhance formula by providing benefits beyond basic nutrition. The aim of this review is to summarize these additives and their impact on infant nutrition and development.
Collapse
Affiliation(s)
- Kanika Puri
- Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana
| | - Courtney Svenstrup
- Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana
| | - Charles Vanderpool
- Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, Indiana
| |
Collapse
|
5
|
Deoni SC, Beauchemin J, D'Sa V, Bonham K, Klepac-Ceraj V. Enhanced Brain Myelination and Cognitive Development in Young Children Associated with Milk Fat Globule Membrane (MFGM) Intake: A Temporal Cohort Study. RESEARCH SQUARE 2024:rs.3.rs-4999582. [PMID: 39483872 PMCID: PMC11527252 DOI: 10.21203/rs.3.rs-4999582/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Myelination is a fundamental process of neurodevelopment that facilitates the efficient brain messaging and connectivity that underlies the emergence and refinement of cognitive skills and abilities. Healthy maturation of the myelinated white matter requires appropriate neural activity and coordinated delivery of key nutritional building blocks, including short and long-chain polyunsaturated fatty acids, phospholipids, and sphingolipids. While many of these nutrients are amply supplied by breastmilk, they are often provided in only limited quantities in infant formula milk. Milk fat globule membrane (MFGM) is a rich source of phospholipids, including sphingomyelin and has been associated with improved cognitive development in infants and children when added to infant formula. To determine if added bovine MFGM is also associated with improved myelination, this study used myelin-sensitive MRI to compare myelination trends in healthy infants and toddlers who received the same infant formula with and without added bovine MFGM in two temporal cohorts: Without Added MFGM between 2009 and 2016; and With Added MFGM between 2018-2020. We also used the Mullen Scales of Early Learning (MSEL) to compare verbal, non-verbal, and overall cognitive abilities. Matched for important demographic and socioeconomic characteristics, we found that children who received infant formula with added MFGM showed improved myelination in motor-related areas (motor cortices, internal capsule, and cerebellum) and improved MSEL nonverbal and fine motor scores. No significant differences in verbal or overall cognitive ability scores were noted. These results support the importance of phospholipids, sphingolipids, and sphingomyelin in promoting brain myelination and cognitive development.
Collapse
Affiliation(s)
| | | | - Viren D'Sa
- Warren Alpert Medical School at Brown University
| | | | | |
Collapse
|
6
|
Jin D, Yu X, Wang Q, Chen X, Xiao M, Wang H, Cui Y, Lu W, Ge L, Yao Y, Zhou X, Wu J, Jian S, Yang H, Tao Y, Shen Q. A study of the effect of hypothyroidism during pregnancy on human milk quality based on rheological properties. J Dairy Sci 2024; 107:3400-3412. [PMID: 38135045 DOI: 10.3168/jds.2023-23900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Hypothyroidism has been found to have an effect on the nutritional composition of human milk during pregnancy. This study aims to explore the combined influence of rheological properties, macronutrient content, particle size, and the zeta potential of milk fat globules, as well as the composition of milk fat globule membrane (MFGM) proteins on the quality of human milk in gestational hypothyroidism. The study revealed that human milk from the group with hypothyroidism during pregnancy (AHM) was less viscoelastic and stable when compared with normal pregnancy group human milk (NHM). Furthermore, the particle size and macronutrient content of NHM were found to be larger than that of AHM. In contrast, the zeta potential of AHM was greater than that of NHM. The sodium dodecyl sulfate-PAGE results disclosed that the composition of MFGM proteins in these 2 groups were generally the same, but the content of AHM was lower than that of NHM. In conclusion, this study confirms that hypothyroidism during pregnancy can have a significant effect on the quality of human milk.
Collapse
Affiliation(s)
- Danping Jin
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xinyue Yu
- Alberta Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingcheng Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou 311199, China
| | - Xi Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Xiao
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Haifeng Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yiwei Cui
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ying Yao
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Xiaoli Zhou
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Jiahui Wu
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shikai Jian
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Huijuan Yang
- College of Standardization, China Jiliang University, Hangzhou 310018, PR China.
| | - Ye Tao
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, Zhejiang 311113, China
| | - Qing Shen
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
7
|
Zhang Y, Dawson R, Kong L, Tan L. Lutein supplementation for early-life health and development: current knowledge, challenges, and implications. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38795064 DOI: 10.1080/10408398.2024.2357275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Macular carotenoids, which consist of lutein, zeaxanthin, and meso-zeaxanthin, are dietary antioxidants and macular pigments in the eyes, protecting the macula from light-induced oxidative stress. Lutein is also the main carotenoid in the infant brain and is involved in cognitive development. While a few articles reviewed the role of lutein in early health and development, the current review is the first that focuses on the outcomes of lutein supplementation, either provided to mothers or to infants. Additionally, lutein status and metabolism during pregnancy and lactation, factors that limit the potential application of lutein as a nutritional intervention, and solutions to overcome the limitation are also discussed. In brief, the lutein intake in pregnant and lactating women in the United States may not be optimal. Furthermore, preterm and formula-fed infants are known to have compromised lutein status compared to term and breast-fed infants, respectively. While lutein supplementation via both maternal and infant consumption improves lutein status in infants, the application of lutein as a nutritional intervention may be compromised by its low bioavailability. Various encapsulation techniques have been developed to enhance the delivery of lutein in adult animals or human but should be further evaluated in neonatal models.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Human Nutrition, University of Alabama, Tuscaloosa, AL, USA
| | - Reece Dawson
- Department of Human Nutrition, University of Alabama, Tuscaloosa, AL, USA
| | - Lingyan Kong
- Department of Human Nutrition, University of Alabama, Tuscaloosa, AL, USA
| | - Libo Tan
- Department of Human Nutrition, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
8
|
Slykerman R, Davies N, Fuad M, Dekker J. Milk Fat Globule Membranes for Mental Health across the Human Lifespan. Foods 2024; 13:1631. [PMID: 38890860 PMCID: PMC11171857 DOI: 10.3390/foods13111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The milk fat globule membrane (MFGM) contains bioactive proteins, carbohydrates, and lipids. Polar lipids found in the MFGM play a critical role in maintaining cell membrane integrity and neuronal signalling capacity, thereby supporting brain health. This review summarises the literature on the MFGM and its phospholipid constituents for improvement of mental health across three key stages of the human lifespan, i.e., infancy, adulthood, and older age. MFGM supplementation may improve mental health by reducing neuroinflammation and supporting neurotransmitter synthesis through the gut-brain axis. Fortification of infant formula with MFGMs is designed to mimic the composition of breastmilk and optimise early gut and central nervous system development. Early behavioural and emotional development sets the stage for future mental health. In adults, promising results suggest that MFGMs can reduce the negative consequences of situational stress. Preclinical models of age-related cognitive decline suggest a role for the MFGM in supporting brain health in older age and reducing depressive symptoms. While there is preclinical and clinical evidence to support the use of MFGM supplementation for improved mental health, human studies with mental health as the primary target outcome are sparce. Further high-quality clinical trials examining the potential of the MFGM for psychological health improvement are important.
Collapse
Affiliation(s)
- Rebecca Slykerman
- Department of Psychological Medicine, The University of Auckland, Auckland 1023, New Zealand;
| | - Naomi Davies
- Department of Psychological Medicine, The University of Auckland, Auckland 1023, New Zealand;
| | - Maher Fuad
- Fonterra Cooperative Group Limited, Palmerston North 4472, New Zealand; (M.F.); (J.D.)
| | - James Dekker
- Fonterra Cooperative Group Limited, Palmerston North 4472, New Zealand; (M.F.); (J.D.)
| |
Collapse
|
9
|
Vötterl JC, Schwartz-Zimmermann HE, Lerch F, Yosi F, Sharma S, Aigensberger M, Rennhofer PM, Berthiller F, Metzler-Zebeli BU. Variations in colostrum metabolite profiles in association with sow parity. Transl Anim Sci 2024; 8:txae062. [PMID: 38863596 PMCID: PMC11165641 DOI: 10.1093/tas/txae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/26/2024] [Indexed: 06/13/2024] Open
Abstract
Information about the full spectrum of metabolites present in porcine colostrum and factors that influence metabolite abundances is still incomplete. Parity number appears to modulate the concentration of single metabolites in colostrum. This study aimed to 1) characterize the metabolome composition and 2) assess the effect of parity on metabolite profiles in porcine colostrum. Sows (n = 20) were divided into three parity groups: A) sows in parity 1 and 2 (n = 8), B) sows in parity 3 and 4 (n = 6), and C) sows in parity 5 and 6 (n = 6). Colostrum was collected within 12 h after parturition. A total of 125 metabolites were identified using targeted reversed-phase high-performance liquid chromatography-tandem mass spectrometry and anion-exchange chromatography-high resolution mass spectrometry. Gas chromatography additionally identified 19 fatty acids (FAs). Across parities, colostrum was rich in creatine and creatinine, 1,3-dioleyl-2-palmitatoylglycerol, 1,3-dipalmitoyl-2-oleoylglycerol, and sialyllactose. Alterations in colostrum concentrations were found for eight metabolites among parity groups (P < 0.05) but the effects were not linear. For instance, colostrum from parity group C comprised 75.4% more valine but 15.7%, 34.1%, and 47.9% less citric, pyruvic, and pyroglutamic acid, respectively, compared to group A (P < 0.05). By contrast, colostrum from parity group B contained 39.5% more spermidine than from group A (P < 0.05). Of the FAs, C18:1, C16:0, and C18:2 n6 were the main FAs across parities. Parity affected four FAs (C18:3n3, C14:1, C17:0ai, and C17:1), including 43.1% less α-linolenic acid (C18:3n3) in colostrum from parity group C compared to groups A and B (P < 0.05). Signature feature ranking identified 1-stearoyl-2-hydroxy-sn-glycero-3-phosphatidylcholine and the secondary bile acid hyodeoxycholic acid as the most discriminative metabolites, showing a higher variable importance in the projection score in colostrum from parity group A than from groups B and C. Overall, results provided a comprehensive overview about the metabolome composition of sow colostrum. The consequences of the changes in colostrum metabolites with increasing parity for the nutrient supply of the piglets should be investigated in the future. The knowledge gained in this study could be used to optimize feeding strategies for sows.
Collapse
Affiliation(s)
- Julia C Vötterl
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Heidi E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| | - Frederike Lerch
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, >University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Fitra Yosi
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Animal Science, Faculty of Agriculture, University of Sriwijaya, 30662 Palembang, Indonesia
| | - Suchitra Sharma
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Markus Aigensberger
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| | - Patrick M Rennhofer
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln, Austria
| | - Barbara U Metzler-Zebeli
- Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
10
|
Lawson Y, Mpasi P, Young M, Comerford K, Mitchell E. A review of dairy food intake for improving health among black infants, toddlers, and young children in the US. J Natl Med Assoc 2024; 116:228-240. [PMID: 38360504 DOI: 10.1016/j.jnma.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Adequate nutrition is paramount for proper growth and musculoskeletal, neurocognitive, and immunological development in infants, toddlers, and young children. Among breastfeeding mother-child dyads, this critical window of development, is impacted by both maternal and offspring dietary patterns. For mothers, their dietary patterns impact not only their own health and well-being, but also the nutrition of their breast milk - which is recommended as the sole source of food for the first 6 months of their infant's life, and as a complementary source of nutrition until at least 2 years of age. For infants and toddlers, the breast milk, formulas, and first foods they consume can have both short-term and long-term effects on their health and well-being - with important impacts on their taste perception, microbiome composition, and immune function. According to dietary intake data in the US, infants and young children meet a greater number of nutrient requirements than older children and adults, yet numerous disparities among socially disadvantaged racial/ethnic groups still provide significant challenges to achieving adequate nutrition during these early life stages. For example, Black children are at greater risk for disparities in breastfeeding, age-inappropriate complementary feeding patterns, nutrient inadequacies, food insecurity, and obesity relative to most other racial/ethnic groups in the US. For infants who do not receive adequate breast milk, which includes a disproportionate number of Black infants, dairy-based infant formulas are considered the next best option for meeting nutritional needs. Fermented dairy foods (e.g., yogurt, cheese) can serve as ideal first foods for complementary feeding, and cow's milk is recommended for introduction during the transitional feeding period to help meet the nutrient demands during this phase of rapid growth and development. Low dairy intake may put children at risk for multiple nutrient inadequacies and health disparities - some of which may have lifelong consequences on physical and mental health. A burgeoning body of research shows that in addition to breast milk, cow's milk and other dairy foods may play critical roles in supporting physical growth, neurodevelopment, immune function, and a healthy gut microbiome in early life. However, most of this research so far has been conducted in White populations and can only be extrapolated to Black infants, toddlers, and young children. Therefore, to better understand and support the health and development of this population, greater research and education efforts on the role of milk and dairy products are urgently needed. This review presents the current evidence on health disparities faced by Black children in the US from birth to four years of age, and the role that dairy foods can play in supporting the normal growth and development of this vulnerable population.
Collapse
Affiliation(s)
- Yolanda Lawson
- Associate Attending, Baylor University Medical Center, Dallas, TX, United States
| | - Priscilla Mpasi
- ChristianaCare Health System, Assistant Clinical Director Complex Care and Community Medicine, Wilmington, DE, United States
| | - Michal Young
- Emeritus, Howard University College of Medicine, Department of Pediatrics and Child Health, Washington D.C., United States
| | - Kevin Comerford
- OMNI Nutrition Science; California Dairy Research Foundation, Davis, CA, United States.
| | - Edith Mitchell
- Sidney Kimmel Cancer at Jefferson, Philadelphia, PA, United States
| |
Collapse
|
11
|
Zhang Y, Kong L, Lawrence JC, Tan L. Utilization of Biopolymer-Based Lutein Emulsion as an Effective Delivery System to Improve Lutein Bioavailability in Neonatal Rats. Nutrients 2024; 16:422. [PMID: 38337704 PMCID: PMC10857328 DOI: 10.3390/nu16030422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Newborns' eyes and brains are prone to oxidative stress. Lutein has antioxidant properties and is the main component of macular pigment essential for protecting the retina, but has low bioavailability, thereby limiting its potential as a nutritional supplement. Oil-in-water emulsions have been used as lutein delivery systems. In particular, octenylsuccinated (OS) starch is a biopolymer-derived emulsifier safe to use in infant foods, while exhibiting superior emulsifying capacity. This study determined the effects of an OS starch-stabilized lutein emulsion on lutein bioavailability in Sprague-Dawley neonatal rats. In an acute study, 10-day-old pups received a single oral dose of free lutein or lutein emulsion, with subsequent blood sampling over 24 h to analyze pharmacokinetics. The lutein emulsion group had a 2.12- and 1.91-fold higher maximum serum lutein concentration and area under the curve, respectively, compared to the free lutein group. In two daily dosing studies, oral lutein was given from postnatal day 5 to 18. Blood and tissue lutein concentrations were measured. The results indicated that the daily intake of lutein emulsion led to a higher lutein concentration in circulation and key tissues compared to free lutein. The OS starch-stabilized emulsion could be an effective and safe lutein delivery system for newborns.
Collapse
Affiliation(s)
| | | | | | - Libo Tan
- Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, AL 35487, USA; (Y.Z.); (L.K.); (J.C.L.)
| |
Collapse
|
12
|
Biagioli V, Volpedo G, Riva A, Mainardi P, Striano P. From Birth to Weaning: A Window of Opportunity for Microbiota. Nutrients 2024; 16:272. [PMID: 38257165 PMCID: PMC10819289 DOI: 10.3390/nu16020272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: The first 1000 days of life constitute a critical window of opportunity for microbiota development. Nutrients play a crucial role in enriching and diversifying the microbiota, derived not only from solid food but also from maternal dietary patterns during gestation. (2) Methods: We conducted a comprehensive literature review using the PubMed database, covering eleven years (2013-2023). We included English-language reviews, original research papers, and meta-analyses, while excluding case reports and letters. (3) Results: Consensus in the literature emphasizes that our interaction with a multitude of microorganisms begins in the intrauterine environment and continues throughout our lives. The existing data suggest that early nutritional education programs, initiated during pregnancy and guiding infant diets during development, may influence the shaping of the gut microbiota, promoting long-term health. (4) Conclusions: Further research is necessary in the coming years to assess potential interventions and early nutritional models aimed at modulating the pediatric microbiota, especially in vulnerable populations such as premature newborns.
Collapse
Affiliation(s)
- Valentina Biagioli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Paolo Mainardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (G.V.); (A.R.); (P.M.); (P.S.)
- IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
13
|
Zhang G, He M, Xiao L, Jiao Y, Han J, Li C, Miller MJ, Zhang L. Milk fat globule membrane protects Bifidobacterium longum ssp. infantis ATCC 15697 against bile stress by modifying global transcriptional responses. J Dairy Sci 2024; 107:91-104. [PMID: 37678788 DOI: 10.3168/jds.2023-23591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023]
Abstract
The milk fat globule membrane (MFGM) can protect probiotic bacteria from bile stress. However, its potential mechanism has not been reported. In this study, the viability, morphology and gene transcriptional response of Bifidobacterium longum ssp. infantis ATCC 15697 (BI_15697) stressed by bile salts with or without MFGM were investigated. It was shown that MFGM alleviated the reduction in BI_15697 population induced by 0.2% porcine bile stress and restored the population to the control levels. MFGM ameliorated the shrunken, fragmented appearance and irregular morphology of BI_15697 and maintained cell integrity disrupted by bile stress. RNA-sequencing results showed that MFGM increased transport of glucose and raffinose and decreased that of branched-chain amino acids (BCAA) in the presence of bile salts. MFGM stimulated the expression of genes involved in the synthesis of raffinose in galactose metabolism and the metabolism of BCAA, suggesting that MFGM stimulated the accumulation of raffinose and BCAA in the presence of bile. In addition, MFGM stimulated the expression of 2 bile efflux transporters under bile stress. Together, the multifactorial response helps BI_15697 excrete bile salts and maintain cellular integrity in response to bile stress. This study proposes a mechanism for the protection of BI_15697 against bile salt stress by MFGM, thereby providing a molecular basis for its application in incorporation of probiotics.
Collapse
Affiliation(s)
- Gongsheng Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingxue He
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lihong Xiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuehua Jiao
- Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jianchun Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150030, China.
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Lu J, Zhu T, Dai Y, Xing L, Jinqi L, Zhou S, Kong C. The effect of heat treatment on the lactosylation of milk proteins. J Dairy Sci 2023; 106:8321-8330. [PMID: 37641337 DOI: 10.3168/jds.2023-23526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 08/31/2023]
Abstract
Protein lactosylation is a significant modification that occurs during the heat treatment of dairy products, causing changes in proteins' physical-chemical and nutritional properties. Knowledge of the detailed lactosylation information on milk proteins under various heat treatments is important for selecting appropriate thermo-processing and identifying markers to monitor heat load in dairy products. In the present study, we used proteomics techniques to investigate lactosylated proteins under different heating temperatures. We observed a total of 123 lactosylated lysines in 65 proteins, with lactosylation even occurring in raw milk. The number of lactosylated lysines and proteins increased moderately at 75°C to 130°C, but dramatically at 140°C. We found that 6 out of 10, 9 out of 16, 6 out of 12, and 5 out of 15 lysine residues in κ-casein, β-lactoglobulin, α-lactalbumin, and αS1-casein, respectively, were lactosylated under the applied heating treatment. Moreover, different lactosylation states of individual lysines and proteins can indicate the intensity of heating processes. Lactosylation of K14 in β-lactoglobulin could distinguish pasteurized and UHT milk, while lactosylation of lactotransferrin can reflect moderate heat treatment of products.
Collapse
Affiliation(s)
- Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Tong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lina Xing
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liu Jinqi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chunli Kong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
15
|
Ma Q, Zhang X, Li X, Liu L, Liu S, Hao D, Bora AFM, Kouame KJEP, Xu Y, Liu W, Li J. Novel trends and challenges in fat modification of next-generation infant formula: Considering the structure of milk fat globules to improve lipid digestion and metabolism of infants. Food Res Int 2023; 174:113574. [PMID: 37986523 DOI: 10.1016/j.foodres.2023.113574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Differences in the composition and structure of lipid droplets in infant formula (IF) and human milk (HM) can affect the fat digestion of infants, leading to high risk of metabolic diseases during later stages of growth. Recently, interest in simulating HM fat (HMF) has gradually increased due to its beneficial functions for infants. Much research focuses on the simulation of fatty acids and triacylglycerols. Enzymatic combined with new technologies such as carbodiimide coupling immobilization enzymes, solvent-free synthesis, and microbial fermentation can improve the yield of simulated HMF. Furthermore, fat modification in next-generation IF requires attention to the impact on the structure and function of milk fat globules (MFG). This review also summarizes the latest reports on MFG structure simulation, mainly related to the addition method and sequence of membrane components, and other milk processing steps. Although some of the simulated HMF technologies and products have been applied to currently commercially available IF, the cost is still high. Furthermore, understanding the fat decomposition of simulated HMF during digestion and assessing its nutritional effects on infants later in life is also a huge challenge. New process development and more clinical studies are needed to construct and evaluate simulated HMF in the future.
Collapse
Affiliation(s)
- Qian Ma
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Shuming Liu
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Donghai Hao
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Yanling Xu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Wenli Liu
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Jiajun Li
- Heilongjiang Yaolan Dairy Technology Stock Company Ltd, Harbin 150010, China
| |
Collapse
|
16
|
Wooding FBP, Kinoshita M. Milk fat globule membrane: formation and transformation. J DAIRY RES 2023; 90:367-375. [PMID: 38226400 DOI: 10.1017/s0022029923000742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The milk fat globule membrane (MFGM) is formed by complex cell biological processes in the lactating mammary epithelial cell which result in the release of the milk fat globule (MFG) into the secretory alveolus. The MFG is bounded by a continuous unit membrane (UM), separated from the MFG lipid by a thin layer of cytoplasm. This unique apocrine secretion process has been shown in all of the mammary species so far investigated. Once the MFG is released into the alveolus there is a considerable transformation of the UM with its attached cytoplasm. This is the MFGM. The transformation is stable and expressed milk shows the same transformed MFGM structure. Again, this transformation of structure is common to all mammalian species so far investigated. However, the explanation of the transformation very much depends on the method of investigation. Transmission electron microscope (TEM) studies suggest a literal breakdown to a discontinuous UM plus cytoplasm in patches and strands, whereas more recent confocal laser scanning light microscopy (CLSM) studies indicate a separation, in a continuous UM, of two phases, one liquid ordered and the other liquid disordered. This review is designed to show that the TEM and CLSM results show different views of the same structures once certain deficiencies in techniques are factored in.
Collapse
Affiliation(s)
- F B Peter Wooding
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, UK
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Abubakar B, Usman D, Sanusi KO, Azmi NH, Imam MU. Preventive Epigenetic Mechanisms of Functional Foods for Type 2 Diabetes. DIABETOLOGY 2023; 4:259-277. [DOI: 10.3390/diabetology4030023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Type 2 diabetes (T2D) is a growing global health problem that requires new and effective prevention and management strategies. Recent research has highlighted the role of epigenetic changes in the development and progression of T2D, and the potential of functional foods as a complementary therapy for the disease. This review aims to provide an overview of the current state of knowledge on the preventive epigenetic mechanisms of functional foods in T2D. We provide background information on T2D and its current treatment approaches, an explanation of the concept of epigenetics, and an overview of the different functional foods with demonstrated preventive epigenetic effects in T2D. We also discuss the epigenetic mechanisms by which these functional foods prevent or manage T2D, and the studies that have investigated their preventive epigenetic effects. In addition, we revisit works on the beneficial influence of functional foods against the programming and complications of parentally-triggered offspring diabetes. We also suggest, albeit based on scarce data, that epigenetic inheritance mechanistically mediates the impacts of functional nutrition against the metabolic risk of diabetes in offspring. Finally, our review highlights the importance of considering the preventive epigenetic mechanisms of functional foods as a potential avenue for the development of new prevention and management strategies for T2D.
Collapse
Affiliation(s)
- Bilyaminu Abubakar
- Department of Pharmacology and Toxicology, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
| | - Dawoud Usman
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
- Department of Physiology, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
| | - Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
- Department of Physiology, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
| | - Nur Hanisah Azmi
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
- Department of Medical Biochemistry, Usmanu Danfodiyo University, Sokoto P.M.B. 2346, Nigeria
| |
Collapse
|
18
|
González HF, Malpeli A, Fasano V, Pescio LG, Sterin-Speziale NB, Visentin S. Fatty Acid Percentage Distribution in Complex Lipids of Breast Milk From Mothers on a Low Docosahexaenoic Acid Diet. J Pediatr Gastroenterol Nutr 2023; 77:e8-e11. [PMID: 36930974 DOI: 10.1097/mpg.0000000000003775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The aim of this study was to assess the fatty acid (FA) percentage distribution in complex lipids of breast milk from mothers on a low docosahexaenoic acid (DHA) diet. We performed a descriptive, cross-sectional study of milk samples (n = 14) collected 90 days after delivery and analyzed them using gas chromatography, thin-layer chromatography, and the Fiske-Subbarow method. Complex lipid distribution was 40.70 ± 5.11% sphingomyelin (SM), 26.03 ± 5.98% phosphatidylethanolamine (PE), 21.12 ± 2.32% phosphatidylcholine, 7.94 ± 1.96% phosphatidylserine, and 4.22 ± 1.25% phosphatidylinositol. Median DHA and arachidonic acid values were 0.13% (0.12; 0.18) and 0.42% (0.33; 0.53), respectively. Mean FA percentage in SM and PE was as follows: palmitic acid, 34.45 ± 1.94% and 5.38 ± 0.94%; oleic acid, 16.50 ± 4.07% and 9.43 ± 4.05%; linoleic acid, 5.91 ± 4.69% and 9.05 ± 4.5%. DHA was not detectable in SM, but it was found in PE (55.33 ± 14.46). In conclusion, breast milk of mothers on a low DHA diet contained 55% DHA in PE, but no DHA in SM.
Collapse
Affiliation(s)
- Horacio F González
- From IDIP - Instituto de Desarrollo e Investigaciones Pediátricas "Prof Dr. Fernando E. Viteri" (Hospital de Niños "Sor María Ludovica" de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina
| | - Agustina Malpeli
- From IDIP - Instituto de Desarrollo e Investigaciones Pediátricas "Prof Dr. Fernando E. Viteri" (Hospital de Niños "Sor María Ludovica" de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina
| | - Victoria Fasano
- From IDIP - Instituto de Desarrollo e Investigaciones Pediátricas "Prof Dr. Fernando E. Viteri" (Hospital de Niños "Sor María Ludovica" de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina
- the Departamento de Matemática, Facultad Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Lucila G Pescio
- Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Norma B Sterin-Speziale
- IQUIFIB - Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- the Laboratorio Nacional de Investigación y Servicios de Péptidos y Proteínas - Espectrometría de Masa (LANAIS PROEM), Buenos Aires, Argentina
| | - Silvana Visentin
- From IDIP - Instituto de Desarrollo e Investigaciones Pediátricas "Prof Dr. Fernando E. Viteri" (Hospital de Niños "Sor María Ludovica" de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina
| |
Collapse
|
19
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
20
|
Chitchumroonchokchai C, Riedl K, García-Cano I, Chaves F, Walsh KR, Jimenez-Flores R, Failla ML. Efficient in vitro digestion of lipids and proteins in bovine milk fat globule membrane ingredient (MFGMi) and whey-casein infant formula with added MFGMi. J Dairy Sci 2023; 106:3086-3097. [PMID: 36935237 DOI: 10.3168/jds.2022-22763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/12/2022] [Indexed: 03/19/2023]
Abstract
The relative immaturity of the infant digestive system has the potential to affect the bioavailability of dietary lipids, proteins, and their digested products. We performed a lipidomic analysis of a commercial bovine milk fat globule membrane ingredient (MFGMi) and determined the profile of lipids and proteins in the bioaccessible fraction after in vitro digestion of both the ingredient and whey-casein-based infant formula without and with MFGMi. Test materials were digested using a static 2-phase in vitro model, with conditions simulating those in the infant gut. The extent of digestion and the bioaccessibility of various classes of neutral and polar lipids were monitored by measuring a wide targeted lipid profile using direct infusion-mass spectrometry. Digestion of abundant proteins in the ingredient and whey-casein infant formula containing the ingredient was determined by denaturing PAGE with imaging of Coomassie Brilliant Blue stained bands. Cholesterol esters, diacylglycerides, triacylglycerides, phosphatidylcholines, and phosphatidylethanolamines in MFGMi were hydrolyzed readily during in vitro digestion, which resulted in marked increases in the amounts of free fatty acids and lyso-phospholipids in the bioaccessible fraction. In contrast, sphingomyelins, ceramides, and gangliosides were largely resistant to simulated digestion. Proteins in MFGMi and the infant formulas also were hydrolyzed efficiently. The results suggest that neutral lipids, cholesterol esters, phospholipids, and proteins in MFGMi are digested efficiently during conditions that simulate the prandial lumen of the stomach and small intestine of infants. Also, supplementation of whey-casein-based infant formula with MFGMi did not appear to alter the profiles of lipids and proteins in the bioaccessible fraction after digestion.
Collapse
Affiliation(s)
| | - Kenneth Riedl
- Nutrient and Phytochemical Analytics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus 43210
| | - Israel García-Cano
- Department of Nutrition, National Institute of Medical Sciences and Nutrition, Tlalpan, Mexico City, 14080, Mexico
| | - Fabio Chaves
- Nutrient and Phytochemical Analytics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus 43210
| | - Kelly R Walsh
- Reckitt, Mead Johnson Nutrition Institute, Evansville, IN 47721
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus 43210.
| | - Mark L Failla
- Human Nutrition Program, The Ohio State University, Columbus 43210.
| |
Collapse
|
21
|
Han L, Huang Q, Yang J, Lu W, Hu M, Yang Y, Zhu H, Pang K, Yang G. Proteomic analysis of milk fat globule membranes from small-sized milk fat globules and their function in promoting lipid droplet fusion in bovine mammary epithelial cells. Food Funct 2023; 14:2304-2312. [PMID: 36752527 DOI: 10.1039/d2fo03476j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In mammary epithelial cells, milk fat is synthesized as lipid droplets and secreted in the form of globules. Milk fat globules (MFGs) are covered by a lipid-protein membrane known as the milk fat globule membrane (MFGM). We randomly divided 12 Holstein cows into control and conjugated linoleic acid (CLA) groups. The control group was fed a basal diet, while the CLA group was fed the basal diet + CLA (15 g per kg DM) for 10 days. Cow performance, milk composition, and MFG size were measured daily. On day 10, we extracted MFGM proteins (n = 3) and identified them via quantitative proteomic analysis. We investigated the effects of the MFGM proteins from control and CLA-treated milk on the lipid droplet formation in MAC-T cells. Compared with the control group, the CLA group had reduced milk fat content (3.39 g/100 mL vs. 2.45 g/100 mL) and MFG size parameters (D[4,3] of 3.85 μm vs. 3.37 μm; D[3,2] of 3.24 μm vs. 2.83 μm). The specific surface area (SSA) increased in the CLA group. A total of 361 differentially expressed proteins were identified in the CLA group by iTRAQ quantitative proteomic analysis. Among these proteins, 100 were upregulated and 251 were downregulated (p < 0.05). In MAC-T cells, CLA-MFGM proteins increased the diameter of the lipid droplets to 1.32 μm. CLA-MFGM proteins decreased the proportion of the small lipid droplets (15.33% vs. 47.78%) and increased the proportion of the large lipid droplets (25.04% vs. 11.65%). CLA-MFGM proteins promoted lipid droplet fusion. Therefore, MFGM proteins play an important role in the regulation of the lipid droplet size.
Collapse
Affiliation(s)
- Liqiang Han
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China.
| | - Qixue Huang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China.
| | - JingNa Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China.
| | - Wenyan Lu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China.
| | - Mingyue Hu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China.
| | - Yanbin Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China.
| | - Heshui Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China.
| | - Kun Pang
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464399, P. R. China
| | - Guoyu Yang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, P. R. China
| |
Collapse
|
22
|
De Bhowmick G, Guieysse B, Everett DW, Reis MG, Thum C. Novel source of microalgal lipids for infant formula. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
23
|
Señoráns M, Gallo V, Calvo MV, Fontecha J. Lipidomic and Proteomic Profiling of the Milk Fat Globule Membrane from Different Industrial By-Products of the Butter and Butter Oil Manufacturing Process. Foods 2023; 12:foods12040750. [PMID: 36832824 PMCID: PMC9956092 DOI: 10.3390/foods12040750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Recent studies have demonstrated the positive effects of regular intake of milk fat globule membranes (MFGMs) on neural and cognitive development, as well as immune and gastrointestinal health in infants and elders. Dairy products and by-products generated from the butter and butter oil manufacturing process are valuable sources of MFGM. Thus, in view of the growing need to reduce by-products and waste, it is crucial to foster research aimed at the valorization of dairy by-products rich in MFGM. For this purpose, all the by-products coming from butter and butter oil production (from raw milk to the related by-products) were used to study the MFGM isolated fractions, followed by their characterization through a combined lipidomic and proteomic approach. The patterns of polar lipids and proteins indicated that buttermilk (BM), butterserum (BS), and their mix (BM-BS blend) are the most suitable by-products to be employed as starting material for the isolation and purification of MFGMs, thus obtaining MFGM-enriched ingredients for the manufacture of products with high biological activity.
Collapse
|
24
|
Guan K, Qi X, Chen H, Ma Y. The cytoprotection of milk-derived MFG-E8 on mitochondria-injured L6 cell via mediation of Akt/bcl-2/bax-caspase-3 signaling pathway. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
26
|
Huang QX, Yang J, Hu M, Lu W, Zhong K, Wang Y, Yang G, Loor JJ, Han L. Milk fat globule membrane proteins are involved in controlling the size of milk fat globules during conjugated linoleic acid-induced milk fat depression. J Dairy Sci 2022; 105:9179-9190. [PMID: 36175227 DOI: 10.3168/jds.2022-22131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
Abstract
Milk fat globule membrane (MFGM) proteins surround the triacylglycerol core comprising milk fat globules (MFG). We previously detected a decrease in the size of fat globules during conjugated linoleic acid (CLA)-induced milk fat depression (MFD), and other studies have reported that some MFGM proteins play a central role in regulating mammary cellular lipid droplet size. However, little is known about the relationship between MFD, MFG size, and MFGM proteins in bovine milk. The aim of this study was to investigate the profile of MFGM proteins during MFD induced by CLA. Sixteen mid-lactating Holstein cows (145 ± 24 d in milk) with similar body condition and parity were divided into control and CLA groups over a 10-d period. Cows were fed a basal diet (control, n = 8) or control plus 15 g/kg of dry matter (DM) CLA (n = 8) to induce MFD. Cow performance, milk composition, and MFG size were measured daily. On d 10, MFGM proteins were extracted and identified by quantitative proteomic analysis, and western blotting was used to verify a subset of the identified MFGM proteins. Compared with controls, supplemental CLA did not affect milk production, DM intake, or milk protein and lactose contents. However, CLA reduced milk fat content (3.73 g/100 mL vs. 2.47 g/100 mL) and the size parameters volume-related diameter D[4,3] (3.72 μm vs. 3.35 μm) and surface area-related diameter D[3,2] (3.13 μm vs. 2.80 μm), but increased specific surface area of MFG (1,905 m2/kg vs. 2,188 m2/kg). In total, 177 differentially expressed proteins were detected in milk from cows with CLA-induced MFD, 60 of which were upregulated and 117 downregulated. Correlation analysis showed that MFG size was negatively correlated with various proteins, including XDH and FABP3, and positively correlated with MFG-E8, RAB19, and APOA1. The results provide evidence for an important role of MFGM proteins in regulating MFG diameter, and they facilitate a mechanistic understanding of diet-induced MFD.
Collapse
Affiliation(s)
- Qi Xue Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Jingna Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Mingyue Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Wenyan Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Kai Zhong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Yueying Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Guoyu Yang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, P. R. China
| | - Juan J Loor
- Department of Animal Science and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Liqiang Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| |
Collapse
|
27
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
28
|
Zhang H, Xu Y, Zhao C, Xue Y, Tan D, Wang S, Jia M, Wu H, Ma A, Chen G. Milk lipids characterization in relation to different heat treatments using lipidomics. Food Res Int 2022; 157:111345. [DOI: 10.1016/j.foodres.2022.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
|
29
|
Salim M, Eason T, Boyd BJ. Opportunities for milk and milk-related systems as 'new' low-cost excipient drug delivery materials. Adv Drug Deliv Rev 2022; 183:114139. [PMID: 35143892 DOI: 10.1016/j.addr.2022.114139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/09/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022]
Abstract
Milk is well recognised as an amazing delivery system for essential lipids, poorly soluble nutrients, sugars, amino acids and delivery of critical biological molecules to sustain the infant and adult alike. It is also a safe and abundant resource with potential to act as a low-cost material for formulation of medicines, especially for paediatric patients and those in low economy settings. However, its use in low cost formulations has never developed beyond preclinical evaluation. Reasons for this are several-fold including variable composition and therefore regulatory challenges, as well as a lack of clear understanding around when milk or milk-related materials like infant formula could best be deployed by linking drug properties with excipient composition attributes, especially when taking digestion into account. This review collects the current understanding around these issues. It is apparent from the evolving understanding that while milk may be a bridge too far for translation as an excipient, infant formula is positioned to play a key role in the future because, as a powder-based excipient, it has the performance benefits of milk powder together with the controlled specifications during manufacture and versatility of application to function as a low cost lipid excipient to enable potential translation for the oral delivery of poorly water soluble drugs for key populations including paediatrics and low economy medicines.
Collapse
|
30
|
Mudgil P. Antimicrobial Tear Lipids in the Ocular Surface Defense. Front Cell Infect Microbiol 2022; 12:866900. [PMID: 35433501 PMCID: PMC9008483 DOI: 10.3389/fcimb.2022.866900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/05/2022] Open
Abstract
The concept of antimicrobial lipids as effectors of innate host defense is an emerging field. There is limited knowledge on the antimicrobial role of lipids in the ocular environment. Tears act as first line of defense to protect the ocular surface from infections. Antimicrobial effects of tear lipids have been demonstrated using meibomian lipids that are the source of majority of lipids in tears. This article describes the knowledge available on the antimicrobial role of tear lipids at the ocular surface and the antimicrobial potential of various lipid classes present in tears that can contribute to antimicrobial protection of the eye. Like other mucosal secretions, tears contain many proteins and lipids with known antimicrobial effects. The antimicrobial defense of tears is far stronger than can be demonstrated by the effects of individual compounds many of which are present in low concentrations but synergistic and additive interactions between them provide substantial antimicrobial protection to the ocular surface. It is inferred that antimicrobial lipids play important role in innate defense of tears, and cooperative interactions between various antimicrobial lipids and proteins in tears provide a potent host defense mechanism that is effective against a broad spectrum of pathogens and renders self-sterilizing properties to tears for keeping the microbial load low at the ocular surface.
Collapse
|
31
|
Bagel A, Sergentet D. Shiga Toxin-Producing Escherichia coli and Milk Fat Globules. Microorganisms 2022; 10:496. [PMID: 35336072 PMCID: PMC8953591 DOI: 10.3390/microorganisms10030496] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic Gram-negative bacteria. While raw milk cheese consumption is healthful, contamination with pathogens such as STEC can occur due to poor hygiene practices at the farm level. STEC infections cause mild to serious symptoms in humans. The raw milk cheese-making process concentrates certain milk macromolecules such as proteins and milk fat globules (MFGs), allowing the intrinsic beneficial and pathogenic microflora to continue to thrive. MFGs are surrounded by a biological membrane, the milk fat globule membrane (MFGM), which has a globally positive health effect, including inhibition of pathogen adhesion. In this review, we provide an update on the adhesion between STEC and raw MFGs and highlight the consequences of this interaction in terms of food safety, pathogen detection, and therapeutic development.
Collapse
Affiliation(s)
- Arthur Bagel
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
| | - Delphine Sergentet
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes-French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), VetAgro Sup—Campus Vétérinaire, Université de Lyon, Marcy-l’Etoile, 69280 Lyon, France
| |
Collapse
|
32
|
Wang C, Qiao X, Gao Z, Jiang L, Mu Z. Advancement on Milk Fat Globule Membrane: Separation, Identification, and Functional Properties. Front Nutr 2022; 8:807284. [PMID: 35155526 PMCID: PMC8832003 DOI: 10.3389/fnut.2021.807284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Dairy products have become more common in people's daily diets in recent years, and numerous useful components derived from milk are widely employed in the food industry. Milk fat globule membrane (MFGM) is a kind of film that encases milk fat globules, and has been shown to have a high nutritional value. In this work, the protein, lipid, carbohydrate, and other components of MFGM are discussed, and also common separation, preparation, and analysis technologies, physicochemical properties, and functional features of MFGM are reviewed, to provide some guidance for the development and utilization of MFGM.
Collapse
Affiliation(s)
- Cong Wang
- Center of Experimental Instrument, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Inner Mongolia Mengniu Dairy Industry (Group) Co., Ltd., Hohhot, China
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyu Qiao
- Center of Experimental Instrument, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zengli Gao
- Inner Mongolia Mengniu Dairy Industry (Group) Co., Ltd., Hohhot, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhishen Mu
- Inner Mongolia Mengniu Dairy Industry (Group) Co., Ltd., Hohhot, China
| |
Collapse
|
33
|
Zeinali LI, Giuliano S, Lakshminrusimha S, Underwood MA. Intestinal Dysbiosis in the Infant and the Future of Lacto-Engineering to Shape the Developing Intestinal Microbiome. Clin Ther 2021; 44:193-214.e1. [PMID: 34922744 DOI: 10.1016/j.clinthera.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE The goal of this study was to review the role of human milk in shaping the infant intestinal microbiota and the potential of human milk bioactive molecules to reverse trends of increasing intestinal dysbiosis and dysbiosis-associated diseases. METHODS This narrative review was based on recent and historic literature. FINDINGS Human milk immunoglobulins, oligosaccharides, lactoferrin, lysozyme, milk fat globule membranes, and bile salt-stimulating lipase are complex multifunctional bioactive molecules that, among other important functions, shape the composition of the infant intestinal microbiota. IMPLICATIONS The co-evolution of human milk components and human milk-consuming commensal anaerobes many thousands of years ago resulted in a stable low-diversity infant microbiota. Over the past century, the introduction of antibiotics and modern hygiene practices plus changes in the care of newborns have led to significant alterations in the intestinal microbiota, with associated increases in risk of dysbiosis-associated disease. A better understanding of mechanisms by which human milk shapes the intestinal microbiota of the infant during a vulnerable period of development of the immune system is needed to alter the current trajectory and decrease intestinal dysbiosis and associated diseases.
Collapse
Affiliation(s)
- Lida I Zeinali
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | | | | | - Mark A Underwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
34
|
Editorial: Impact beyond data. J DAIRY RES 2021; 88:1-2. [PMID: 33736713 DOI: 10.1017/s0022029921000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Monaco MH, Gross G, Donovan SM. Whey Protein Lipid Concentrate High in Milk Fat Globule Membrane Components Inhibit Porcine and Human Rotavirus in vitro. Front Pediatr 2021; 9:731005. [PMID: 34540774 PMCID: PMC8442734 DOI: 10.3389/fped.2021.731005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022] Open
Abstract
Background: The milk fat globule membrane (MFMG) is a complex milk component that has been shown to inhibit rotavirus (RV) binding to cell membranes in vitro. Herein, a whey protein lipid concentrate high in MFGM components (WPLC) and whey protein concentrate (WPC; control) were screened for anti-infective activity against porcine OSU and human Wa strains of RV in both the African Green Monkey kidney (MA104) and the human colorectal adenocarcinoma (Caco-2) cell lines. Materials and Methods: Confluent cells were exposed to OSU or Wa RV in the presence of WPLC or WPC (control) at 0, 0.1, 0.5, 1.0, 2.5, or 5 mg/ml. Infectivity was detected by immunohistochemistry and expressed as % inhibition relative to 0 mg/ml. WPLC efficacy over WPC was expressed as fold-change. One-way ANOVA analyzed data for the independent and interactive effects of concentration, test material, and RV strain. Results: Both WPLC and WPC exhibited concentration-dependent inhibition of human Wa and porcine OSU RV infectivity in MA104 and Caco-2 cells (p < 0.0001). WPLC was 1.5-4.8-fold more effective in reducing infectivity than WPC. WPLC efficacy was independent of RV strains, but varied between cell lines. WPLC and WPC at concentrations ≥0.5 mg/mL were most effective in reducing human Wa RV infectivity in MA104 cells (p < 0.0001). Conclusions: WPLC decreased infectivity of two strains for RV which differ in their dependency on sialic acid for binding to cells. Inhibition was observed in the most commonly used cell type for RV infectivity assays (MA104) and an intestinal cell line (Caco-2). An effect on virus infectivity might be a potential mechanisms of action contributing to beneficial effects of supplementation of infant formula with MGFM reducing the risk of infections and consequently diarrhea incidence in infants.
Collapse
Affiliation(s)
- Marcia H Monaco
- Department of Food Science & Human Nutrition, University of Illinois, Urbana, IL, United States
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt Benckiser/Mead Johnson Nutrition Institute, Nijmegen, Netherlands
| | - Sharon M Donovan
- Department of Food Science & Human Nutrition, University of Illinois, Urbana, IL, United States
| |
Collapse
|