1
|
Phillips RD. Neural and immune interactions linking early life stress and anhedonia. Brain Behav Immun Health 2024; 42:100881. [PMID: 39415844 PMCID: PMC11480252 DOI: 10.1016/j.bbih.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
Early experiences of stress and adversity are associated with blunted reward sensitivity and altered reward learning. Meanwhile, anhedonia is characterized by impairments in reward processing, including motivation, effort, and pleasure. Early life stress (ELS) and anhedonia share psychological, behavioral, and neurobiological correlates, and the system-level interactions that give rise to anhedonia have yet to be fully appreciated. The proposed framework uses a multilevel, multisystem approach to aid in understanding neural-immune interactions that link ELS and anhedonia. The interactions linking anhedonia and ELS presented here include reduced reward sensitivity, alterations in hypothalamic-pituitary-adrenal (HPA) axis response, elevated inflammatory cytokines or physiological markers of stress, and blunted reward circuitry functioning along the mesocorticolimbic pathway. The clinical implications and areas for future research are also discussed. Ultimately, this research may inform the development of more specific and individualized treatments for anhedonia.
Collapse
Affiliation(s)
- Rachel Deanna Phillips
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
2
|
Hanson JL, Kahhalé I, Sen S. Integrating data science and neuroscience in developmental psychopathology: Formative examples and future directions. Dev Psychopathol 2024; 36:2165-2172. [PMID: 38769837 PMCID: PMC11579249 DOI: 10.1017/s0954579424001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This commentary discusses opportunities for advancing the field of developmental psychopathology through the integration of data science and neuroscience approaches. We first review elements of our research program investigating how early life adversity shapes neurodevelopment and may convey risk for psychopathology. We then illustrate three ways that data science techniques (e.g., machine learning) can support developmental psychopathology research, such as by distinguishing between common and diverse developmental outcomes after stress exposure. Finally, we discuss logistical and conceptual refinements that may aid the field moving forward. Throughout the piece, we underscore the profound impact of Dr Dante Cicchetti, reflecting on how his work influenced our own, and gave rise to the field of developmental psychopathology.
Collapse
Affiliation(s)
- Jamie L Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Learning Research & Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Isabella Kahhalé
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Learning Research & Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sriparna Sen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Learning Research & Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Del Giacco AC, Morales AM, Jones SA, Barnes SJ, Nagel BJ. Ventral striatal-cingulate resting-state functional connectivity in healthy adolescents relates to later depression symptoms in adulthood. J Affect Disord 2024; 365:205-212. [PMID: 39134157 PMCID: PMC11438492 DOI: 10.1016/j.jad.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Depression is a significant public health concern. Identifying biopsychosocial risk factors for depression is important for developing targeted prevention. Studies have demonstrated that blunted striatal activation during reward processing is a risk factor for depression; however, few have prospectively examined whether adolescent reward-related resting-state functional connectivity (rsFC) predicts depression symptoms in adulthood and how this relates to known risk factors (e.g., childhood trauma). METHODS At baseline, 66 adolescents (mean age = 14.7, SD = 1.4, 68 % female) underwent rsFC magnetic resonance imaging and completed the Children's Depression Inventory (CDI). At follow-up (mean time between adolescent scan and adult follow-up = 10.1 years, SD = 1.6, mean adult age = 24.8 years, SD = 1.7), participants completed the Childhood Trauma Questionnaire (CTQ) and Beck Depression Inventory- Second Edition (BDI-2). Average rsFC was calculated between nodes in mesocorticolimbic reward circuitry: ventral striatum (VS), rostral anterior cingulate cortex (rACC), medial orbitofrontal cortex, and ventral tegmental area. Linear regressions assessed associations between rsFC, BDI-2, and CTQ, controlling for adolescent CDI, sex assigned at birth, and scan age (Bonferroni corrected). RESULTS Greater childhood trauma was associated with higher adulthood depression symptoms. Stronger VS-rACC rsFC during adolescence was associated with greater depression symptoms in adulthood and greater childhood trauma. LIMITATIONS The small sample size, limited depression severity, and seed-based approach are limitations. CONCLUSIONS The associations between adolescent striatal-cingulate rsFC and childhood trauma and adult depression symptoms suggest this connectivity may be an early neurobiological risk factor for depression and that early life experience plays an important role. Increased VS-rACC connectivity may represent an over-regulatory response on the striatum, commonly reported in depression, and warrants further investigation.
Collapse
Affiliation(s)
| | | | - Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, USA
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, USA
| |
Collapse
|
4
|
McIntosh R, Lobo J, Szeto A, Hidalgo M, Kolber M. Medial prefrontal cortex connectivity with the nucleus accumbens is related to HIV serostatus, perceptions of psychological stress, and monocyte expression of TNF-a. Brain Behav Immun Health 2024; 41:100844. [PMID: 39328275 PMCID: PMC11424805 DOI: 10.1016/j.bbih.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024] Open
Abstract
Post-menopausal persons living with HIV (PWH) report elevated levels of psychological stress and monocyte activation compared to persons living without HIV (PWOH). Resting state functional connectivity (rsFC) of mesolimbic brain regions underpinning stress and emotion regulation are susceptible to inflammatory insult. Although psychological stress is elevated, rsFC reduced, and CD16+ monocytes overexpressed in the brains of PWH, it is unclear whether the relationships amongst these variables differ compared to PWOH. An ethnically diverse sample of postmenopausal women, 24 PWH and 30 PWOH provided self-report mood surveys and provided peripheral blood specimens to quantify LPS-stimulated CD16+/- expression of TNF-α via flow cytometric analysis. An anatomical and resting state functional MRI scan were used to derive time-series metrics of connectivity between the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAcc) as well as the amygdala. A positive association was observed between levels of perceived stress and CD16+/- TNF-α in both LPS-stimulated and unstimulated cells. PLWH showed lower connectivity between mPFC and NAcc. In turn, lower rsFC between these regions predicted greater psychological stress and proportion of CD16-, but not CD16+, cells expression of TNF-α. Neuroimmune effects of monocyte inflammation on the functional connectivity of mesolimbic regions critical for discrimination of uncertainty-safety and reward signals were observed in an ethnically diverse sample of postmenopausal women living with and without HIV. PWH showed lower mPFC-NAcc functional connectivity, which in turn was associated with greater perceived stress.
Collapse
Affiliation(s)
- Roger McIntosh
- University of Miami, College of Arts and Sciences Department of Psychology, United States
| | - Judith Lobo
- University of California San Diego, HIV Neurobehavioral Research Program, United States
| | - Angela Szeto
- University of Miami, College of Arts and Sciences Department of Psychology, United States
| | | | - Michael Kolber
- University of Miami, Miller School of Medicine, United States
| |
Collapse
|
5
|
Quodling N, Groves S, Hoffman N, Carrick FR, Jemni M. Trauma-Based Sexually Dimorphic Changes in the Connectome and Its Association with Central Sensitization Syndromes-A Systematic Review. Brain Sci 2024; 14:1105. [PMID: 39595868 PMCID: PMC11592111 DOI: 10.3390/brainsci14111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chronic pain syndromes pose a significant global health challenge to patients and physicians with a complex relationship of biological and psychosocial factors that are only partly understood. Emerging research suggests an association between prenatal and childhood adversity and the development of somatic syndromes, particularly in females. This study aims to explore the relationship between sexual dimorphic epigenetic changes in the connectome and prenatal and early life adversity (ELA). METHODS A review of the existing literature was conducted, examining studies utilizing MRI to identify critical periods of environmental influence on neural phenotypes. RESULTS The findings indicate a significant association between prenatal and childhood adversity and the emergence of central sensitization syndromes, particularly among females. Notably, alterations in grey matter volume and neural connectivity patterns were observed, suggesting that early adverse experiences can influence pain signaling mechanisms. CONCLUSIONS Understanding the role of sex differences in brain circuitry is crucial for developing personalized pain management strategies. This study highlights the importance of considering both biological and psychosocial factors in addressing chronic pain, as interventions based predominantly on male subjects may be less effective for females. Further research is warranted to explore these differences and refine therapeutic approaches.
Collapse
Affiliation(s)
- Nicole Quodling
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA; (S.G.); (N.H.); (F.R.C.); (M.J.)
| | - Shad Groves
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA; (S.G.); (N.H.); (F.R.C.); (M.J.)
| | - Norman Hoffman
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA; (S.G.); (N.H.); (F.R.C.); (M.J.)
| | - Frederick R. Carrick
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA; (S.G.); (N.H.); (F.R.C.); (M.J.)
- Centre for Mental Health Research in Association with the University of Cambridge, Cambridge CB2 1TN, UK
- Neurology, University of Central Florida College of Medicine, Orlando, FL 23816, USA
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32827, USA
- MGH Institute for Health Professions, Boston, MA 02129, USA
| | - Monèm Jemni
- Department of Neurology, Carrick Institute, Cape Canaveral, FL 32920, USA; (S.G.); (N.H.); (F.R.C.); (M.J.)
- Centre for Mental Health Research in Association with the University of Cambridge, Cambridge CB2 1TN, UK
- Faculty of Physical Education, Ningbo University, Ningbo 315000, China
| |
Collapse
|
6
|
Wang YM, Chen LL, Wang CL, Yan C, Xie GR, Yang XH. Changed ventral striatum structural covariance and grey matter volume in depression during a one-year follow-up. Psychiatry Res Neuroimaging 2024; 344:111887. [PMID: 39236484 DOI: 10.1016/j.pscychresns.2024.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/03/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Empirical findings suggest reduced cortico-striatal structural connectivity in patients with major depressive disorder (MDD). However, the relationship between the abnormal structural covariance and one-year outcome of first-episode drug-naive patients has not been evaluated. This longitudinal study aimed to identify specific changes of ventral striatum-related brain structural covariance and grey matter volume in forty-two first-episode patients with major depression disorder compared with thirty-seven healthy controls at the baseline and the one-year follow-up conditions. At the baseline, patients showed decreased structural covariance between the left ventral striatum and the bilateral superior frontal gyrus (SFG), bilateral middle frontal gyrus (MFG), right supplementary motor area (SMA) and left precentral gyrus and increased grey matter volume at the left fusiform and left parahippocampus. At the one-year follow-up, patients showed decreased structural covariance between the left ventral striatum and the right SFG, right MFG, left precentral gyrus and left postcentral gyrus, and increased structural covariance between the right ventral striatum and the right amygdala, right hippocampus, right parahippocampus, right superior temporal pole, right insula and right olfactory bulb and decreased volume at the left SMA compared with controls. These findings suggest that specific ventral striatum connectivity changes contribute to the early brain development of the MDD.
Collapse
Affiliation(s)
- Yong-Ming Wang
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Liang-Liang Chen
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China
| | - Cheng-Lei Wang
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Guang-Rong Xie
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, China
| | - Xin-Hua Yang
- Shanghai Changning Mental Health Center, Affiliated Mental Health Center of East China Normal University, Shanghai, China.
| |
Collapse
|
7
|
Speranza L, Filiz KD, Lippiello P, Ferraro MG, Pascarella S, Miniaci MC, Volpicelli F. Enduring Neurobiological Consequences of Early-Life Stress: Insights from Rodent Behavioral Paradigms. Biomedicines 2024; 12:1978. [PMID: 39335492 PMCID: PMC11429222 DOI: 10.3390/biomedicines12091978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Stress profoundly affects physical and mental health, particularly when experienced early in life. Early-life stress (ELS) encompasses adverse childhood experiences such as abuse, neglect, violence, or chronic poverty. These stressors can induce long-lasting changes in brain structure and function, impacting areas involved in emotion regulation, cognition, and stress response. Consequently, individuals exposed to high levels of ELS are at an increased risk for mental health disorders like depression, anxiety, and post-traumatic stress disorders, as well as physical health issues, including metabolic disorders, cardiovascular disease, and cancer. This review explores the biological and psychological consequences of early-life adversity paradigms in rodents, such as maternal separation or deprivation and limited bedding or nesting. The study of these experimental models have revealed that the organism's response to ELS is complex, involving genetic and epigenetic mechanisms, and is associated with the dysregulation of physiological systems like the nervous, neuroendocrine, and immune systems, in a sex-dependent fashion. Understanding the impact of ELS is crucial for developing effective interventions and preventive strategies in humans exposed to stressful or traumatic experiences in childhood.
Collapse
Affiliation(s)
- Luisa Speranza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Kardelen Dalim Filiz
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Pellegrino Lippiello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Silvia Pascarella
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (L.S.); (K.D.F.); (P.L.); (S.P.)
| |
Collapse
|
8
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
9
|
Nogovitsyn N, Ballester P, Lasby M, Dunlop K, Ceniti AK, Squires S, Rowe J, Ho K, Suh J, Hassel S, Souza R, Casseb RF, Harris JK, Zamyadi M, Arnott SR, Strother SC, Hall G, Lam RW, Poppenk J, Lebel C, Bray S, Metzak P, MacIntosh BJ, Goldstein BI, Wang J, Rizvi SJ, MacQueen G, Addington J, Harkness KL, Rotzinger S, Kennedy SH, Frey BN. An empirical analysis of structural neuroimaging profiles in a staging model of depression. J Affect Disord 2024; 351:631-640. [PMID: 38290583 DOI: 10.1016/j.jad.2024.01.246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
We examine structural brain characteristics across three diagnostic categories: at risk for serious mental illness; first-presenting episode and recurrent major depressive disorder (MDD). We investigate whether the three diagnostic groups display a stepwise pattern of brain changes in the cortico-limbic regions. Integrated clinical and neuroimaging data from three large Canadian studies were pooled (total n = 622 participants, aged 12-66 years). Four clinical profiles were used in the classification of a clinical staging model: healthy comparison individuals with no history of depression (HC, n = 240), individuals at high risk for serious mental illness due to the presence of subclinical symptoms (SC, n = 80), first-episode depression (FD, n = 82), and participants with recurrent MDD in a current major depressive episode (RD, n = 220). Whole-brain volumetric measurements were extracted with FreeSurfer 7.1 and examined using three different types of analyses. Hippocampal volume decrease and cortico-limbic thinning were the most informative features for the RD vs HC comparisons. FD vs HC revealed that FD participants were characterized by a focal decrease in cortical thickness and global enlargement in amygdala volumes. Greater total amygdala volumes were significantly associated with earlier onset of illness in the FD but not the RD group. We did not confirm the construct validity of a tested clinical staging model, as a differential pattern of brain alterations was identified across the three diagnostic groups that did not parallel a stepwise clinical staging approach. The pathological processes during early stages of the illness may fundamentally differ from those that occur at later stages with clinical progression.
Collapse
Affiliation(s)
- Nikita Nogovitsyn
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Pedro Ballester
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Mike Lasby
- Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Katharine Dunlop
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Amanda K Ceniti
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Suicide & Depression Studies Program, St. Michael's Hospital, Toronto, ON, Canada
| | - Scott Squires
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Jessie Rowe
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Keith Ho
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada
| | - JeeSu Suh
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Roberto Souza
- Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Raphael F Casseb
- Neuroimaging Laboratory, University of Campinas, Campinas, SP, Brazil
| | | | - Mojdeh Zamyadi
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | | | - Stephen C Strother
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, ON, Canada
| | - Geoffrey Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jordan Poppenk
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Child & Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| | - Signe Bray
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Child & Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| | - Paul Metzak
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Bradley J MacIntosh
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; Hurvitz Brain Sciences Program, Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Computational Radiology & Artificial Intelligence (CRAI) Unit, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry and Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - JianLi Wang
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sakina J Rizvi
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Suicide & Depression Studies Program, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Glenda MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Susan Rotzinger
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Suicide & Depression Studies Program, St. Michael's Hospital, Toronto, ON, Canada; Krembil Research Centre, University Health Network, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Sidney H Kennedy
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Suicide & Depression Studies Program, St. Michael's Hospital, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Krembil Research Centre, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
10
|
Kavanaugh BC, Parade S, Seifer R, McLaughlin NCR, Tirrell E, Festa EK, Oberman LM, Novick AM, Carpenter LL, Tyrka AR. Childhood stress, gender, and cognitive control: Midline theta power. J Psychiatr Res 2024; 169:298-306. [PMID: 38070470 PMCID: PMC10997405 DOI: 10.1016/j.jpsychires.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 01/15/2024]
Abstract
The emergence of psychiatric symptoms is a common consequence of childhood stress exposure. However, there are a dearth of reliable clinical hallmarks or physiological biomarkers to predict post-trauma symptom emergence. The objective of this study was to examine if childhood stressors and stress-related symptoms are associated with altered midline theta power (MTP) during cognitive control demands, and how these associations interact with gender and early adversity. N = 53 children (ages 9-13 years old) from a longitudinal study of children maltreated during early childhood and non-maltreated children participated in this study. EEG recorded neural activity during a Zoo-Themed Go/No-Go task. Stress-related symptoms, recent stressful events, and other adversity experiences were identified. MTP was analyzed with clinical variables in a series of follow-up analyses. The number of stressors in the past six months was negatively correlated with MTP in those with low preschool adversity, but not in those with high preschool adversity. MTP was higher in girls than in boys, and the associations of MTP with stressors and symptoms were moderated by gender. MTP was negatively associated with stressors in the past six months in girls, while in boys, MTP was associated with stress-related symptoms. Childhood stressful events were associated with reduced MTP during cognitive control demands, and this was finding was moderated by gender and early life adversity. These preliminary findings suggest that boys and girls may process stressful experiences in distinct ways, and preschool adversity may potentially blunt the interaction between current stress and neural dynamics. However, ongoing investigation is needed.
Collapse
Affiliation(s)
- Brian C Kavanaugh
- E. P. Bradley Hospital, United States; Department of Psychiatry & Human Behavior, Brown University, United States.
| | - Stephanie Parade
- E. P. Bradley Hospital, United States; Department of Psychiatry & Human Behavior, Brown University, United States
| | - Ronald Seifer
- Frank Porter Graham Child Development Institute University of North Carolina at Chapel Hill, United States
| | - Nicole C R McLaughlin
- Department of Psychiatry & Human Behavior, Brown University, United States; Butler Hospital, United States
| | - Eric Tirrell
- Department of Psychiatry & Human Behavior, Brown University, United States; Butler Hospital, United States
| | - Elena K Festa
- Department of Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, United States
| | | | - Andrew M Novick
- Department of Psychiatry, University of Colorado - Anschutz Medical Campus, United States
| | - Linda L Carpenter
- Department of Psychiatry & Human Behavior, Brown University, United States; Butler Hospital, United States
| | - Audrey R Tyrka
- Department of Psychiatry & Human Behavior, Brown University, United States; Butler Hospital, United States
| |
Collapse
|
11
|
Zhu J, Jiao Y, Chen R, Wang XH, Han Y. Aberrant dynamic and static functional connectivity of the striatum across specific low-frequency bands in patients with autism spectrum disorder. Psychiatry Res Neuroimaging 2023; 336:111749. [PMID: 37977097 DOI: 10.1016/j.pscychresns.2023.111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Dysfunctions of the striatum have been repeatedly observed in autism spectrum disorder (ASD). However, previous studies have explored the static functional connectivity (sFC) of the striatum in a single frequency band, ignoring the dynamics and frequency specificity of brain FC. Therefore, we investigated the dynamic FC (dFC) and sFC of the striatum in the slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) frequency bands. METHODS Data of 47 ASD patients and 47 typically developing (TD) controls were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. A seed-based approach was used to compute the dFC and sFC. Then, a two-sample t-test was performed. For regions showing abnormal sFC and dFC, we performed clinical correlation analysis and constructed support vector machine (SVM) models. RESULTS The middle frontal gyrus (MFG), precuneus, and medial superior frontal gyrus (mPFC) showed both dynamic and static alterations. The reduced striatal dFC in the right MFG was associated with autism symptoms. The dynamic‒static FC model had a great performance in ASD classification, with 95.83 % accuracy. CONCLUSIONS The striatal dFC and sFC were altered in ASD, which were frequency specific. Examining brain activity using dynamic and static FC provides a comprehensive view of brain activity.
Collapse
Affiliation(s)
- Junsa Zhu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China; Network Information Center, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Ran Chen
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Xun-Heng Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yunyan Han
- Public Health School of Dalian Medical University, Dalian 116000, China
| |
Collapse
|
12
|
Shah P, Kaneria A, Fleming G, Williams CRO, Sullivan RM, Lemon CH, Smiley J, Saito M, Wilson DA. Homeostatic NREM sleep and salience network function in adult mice exposed to ethanol during development. Front Neurosci 2023; 17:1267542. [PMID: 38033546 PMCID: PMC10682725 DOI: 10.3389/fnins.2023.1267542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Developmental exposure to ethanol is a leading cause of cognitive, emotional and behavioral problems, with fetal alcohol spectrum disorder (FASD) affecting more than 1:100 children. Recently, comorbid sleep deficits have been highlighted in these disorders, with sleep repair a potential therapeutic target. Animal models of FASD have shown non-REM (NREM) sleep fragmentation and slow-wave oscillation impairments that predict cognitive performance. Here we use a mouse model of perinatal ethanol exposure to explore whether reduced sleep pressure may contribute to impaired NREM sleep, and compare the function of a brain network reported to be impacted by insomnia-the Salience network-in developmental ethanol-exposed mice with sleep-deprived, saline controls. Mice were exposed to ethanol or saline on postnatal day 7 (P7) and allowed to mature to adulthood for testing. At P90, telemetered cortical recordings were made for assessment of NREM sleep in home cage before and after 4 h of sleep deprivation to assess basal NREM sleep and homeostatic NREM sleep response. To assess Salience network functional connectivity, mice were exposed to the 4 h sleep deprivation period or left alone, then immediately sacrificed for immunohistochemical analysis of c-Fos expression. The results show that developmental ethanol severely impairs both normal rebound NREM sleep and sleep deprivation induced increases in slow-wave activity, consistent with reduced sleep pressure. Furthermore, the Salience network connectome in rested, ethanol-exposed mice was most similar to that of sleep-deprived, saline control mice, suggesting a sleep deprivation-like state of Salience network function after developmental ethanol even without sleep deprivation.
Collapse
Affiliation(s)
- Prachi Shah
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Aayush Kaneria
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Gloria Fleming
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Colin R. O. Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States
| | - Christian H. Lemon
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
| | - John Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- Department of Psychiatry, New York University Medical Center, New York, NY,United States
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- Department of Psychiatry, New York University Medical Center, New York, NY,United States
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
13
|
Harris JC, Liuzzi MT, Malames BA, Larson CL, Lisdahl KM. Differences in parent and youth perceived neighborhood threat on nucleus accumbens-frontoparietal network resting state connectivity and alcohol sipping in children enrolled in the ABCD study. Front Psychiatry 2023; 14:1237163. [PMID: 37928910 PMCID: PMC10622767 DOI: 10.3389/fpsyt.2023.1237163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Purpose Evidence has shown neighborhood threat (NT) as a social driver of emotional and brain development. Few studies have examined the relationship between NT and neural function. Altered functional connectivity in the nucleus accumbens (NAcc) with the frontoparietal network (FPN) has been implicated in the development of substance use, however, little is known about perceived NT-related brain function or downstream alcohol sipping during early adolescence. This study examined the longitudinal relationship between youth and combined youth/parent perceived NT, resting state functional connectivity (RSFC) of the NAcc-FPN, and alcohol sipping behavior during late childhood and preadolescence. Methods This study used data (N = 7,744) from baseline to 2-year follow-up (FU) of the Adolescent Brain Cognitive Development Study (ABCD; Release 4.0). Relationships between youth and combined youth/parent perceive NT, alcohol sipping (baseline to two-year FU), and NAcc-FPN (left/right) connectivity, adjusting for demographics, family/peer history of alcohol use, parental monitoring and warmth, externalizing symptoms, and site, were examined in a mediation model via PROCESS in R. Results Greater youth-reported NT at baseline was significantly associated with lower RSFC between the right (but not left) NAcc-FPN holding covariates constant (R2 = 0.01, B = -0.0019 (unstandardized), F (12, 7,731) = 8.649, p = 0.0087) and increased odds of alcohol sipping at baseline up to the two-year FU (direct effect = 0.0731, 95% CI = 0.0196, 0.1267). RSFC between the right NAcc-FPN did not significantly predict alcohol sipping at the two-year FU (b = -0.0213, SE = 0.42349, p = 0.9599; 95% CI = -0.8086, 0.8512). No significant relationships were observed for combined youth/parent report predicting alcohol sipping or NAcc-FPN connectivity. Conclusion Findings suggest notable reporting differences in NT. Combined youth/parent report did not reveal significant findings; youth perceived NT was related to increased likelihood of alcohol sipping and lower neural connectivity between the right NAcc-FPN during late childhood and early adolescence. NT context - and source of reporting - may be crucial in examining links with downstream neuronal function and health behaviors. Future research should investigate reward processing and threat as the cohort ages into later adolescence.
Collapse
|
14
|
Dennison JB, Tepfer LJ, Smith DV. Tensorial independent component analysis reveals social and reward networks associated with major depressive disorder. Hum Brain Mapp 2023; 44:2905-2920. [PMID: 36880638 PMCID: PMC10089091 DOI: 10.1002/hbm.26254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Major depressive disorder (MDD) has been associated with changes in functional brain connectivity. Yet, typical analyses of functional connectivity, such as spatial independent components analysis (ICA) for resting-state data, often ignore sources of between-subject variability, which may be crucial for identifying functional connectivity patterns associated with MDD. Typically, methods like spatial ICA will identify a single component to represent a network like the default mode network (DMN), even if groups within the data show differential DMN coactivation. To address this gap, this project applies a tensorial extension of ICA (tensorial ICA)-which explicitly incorporates between-subject variability-to identify functionally connected networks using functional MRI data from the Human Connectome Project (HCP). Data from the HCP included individuals with a diagnosis of MDD, a family history of MDD, and healthy controls performing a gambling and social cognition task. Based on evidence associating MDD with blunted neural activation to rewards and social stimuli, we predicted that tensorial ICA would identify networks associated with reduced spatiotemporal coherence and blunted social and reward-based network activity in MDD. Across both tasks, tensorial ICA identified three networks showing decreased coherence in MDD. All three networks included ventromedial prefrontal cortex, striatum, and cerebellum and showed different activation across the conditions of their respective tasks. However, MDD was only associated with differences in task-based activation in one network from the social task. Additionally, these results suggest that tensorial ICA could be a valuable tool for understanding clinical differences in relation to network activation and connectivity.
Collapse
Affiliation(s)
- Jeff B. Dennison
- Department of Psychology & NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Lindsey J. Tepfer
- Department of Psychological and Brain ScienceDartmouth UniversityHanoverNew HampshireUSA
| | - David V. Smith
- Department of Psychology & NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
15
|
Hostinar CE, Swartz JR, Alen NV, Guyer AE, Hastings PD. The role of stress phenotypes in understanding childhood adversity as a transdiagnostic risk factor for psychopathology. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2023; 132:277-286. [PMID: 37126060 PMCID: PMC10153067 DOI: 10.1037/abn0000619] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Childhood adversity is a leading transdiagnostic risk factor for psychopathology, being associated with an estimated 31-62% of childhood-onset disorders and 23-42% of adult-onset disorders (Kessler et al., 2010). Major unresolved theoretical challenges stem from the nonspecific and probabilistic nature of the links between childhood adversity and psychopathology. The links are nonspecific because childhood adversity increases risk, through a range of mechanisms, for diverse forms of psychopathology and are probabilistic because not all individuals exposed to childhood adversity develop psychopathology. In this article, we propose a path forward by focusing on stress phenotypes, defined as biobehavioral patterns activated in response to stressors that can disrupt future functioning when persistent (e.g., reward seeking, social withdrawal, aggression). This review centers on the accumulating evidence that psychopathology appears to be more strongly predicted by behavior and biology during states of stress. Building on this observation, our theoretical framework proposes that we can model pathways from childhood adversity to psychopathology with greater specificity and certainty by understanding stress phenotypes, defined as patterns of behavior and their corresponding biological substrates that are elicited by stressors. This approach aims to advance our conceptualization of mediating pathways from childhood adversity to psychopathology. Understanding stress phenotypes will bring us closer to "precision mental health," a person-centered approach to identifying, preventing, and treating psychopathology. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Johnna R Swartz
- Department of Human Ecology, University of California, Davis
| | | | - Amanda E Guyer
- Department of Human Ecology, University of California, Davis
| | | |
Collapse
|
16
|
Eckstrand KL, Silk JS, Nance M, Wallace ML, Buckley N, Lindenmuth M, Flores L, Alarcón G, Quevedo K, Phillips ML, Lenniger CJ, Sammon MM, Brostowin A, Ryan N, Jones N, Forbes EE. Medial Prefrontal Cortex Activity to Reward Outcome Moderates the Association Between Victimization Due to Sexual Orientation and Depression in Youth. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1289-1297. [PMID: 36064188 PMCID: PMC9842132 DOI: 10.1016/j.bpsc.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Sexual minority youth (SMY) are 3 times more likely to experience depression than heterosexual peers. Minority stress theory posits that this association is explained by sexual orientation victimization, which acts as a stressor to impact depression. For those vulnerable to the effects of stress, victimization may worsen depression by altering activity in neural reward systems. This study examines whether neural reward systems moderate the influence of sexual orientation victimization, a common and distressing experience in SMY, on depression. METHODS A total of 81 participants ages 15 to 22 years (41% SMY, 52% marginalized race) reported sexual orientation victimization, depression severity, and anhedonia severity, and underwent a monetary reward functional magnetic resonance imaging task. Significant activation to reward > neutral outcome (pfamilywise error < .05) was determined within a meta-analytically derived Neurosynth reward mask. A univariate linear model examined the impact of reward activation and identity on victimization-depression relationships. RESULTS SMY reported higher depression (p < .001), anhedonia (p = .03), and orientation victimization (p < .001) than heterosexual youth. The bilateral ventral striatum, medial prefrontal cortex (mPFC), anterior cingulate cortex, and right orbitofrontal cortex were significantly active to reward. mPFC activation moderated associations between sexual orientation victimization and depression (p = .03), with higher depression severity observed in those with a combination of higher mPFC activation and greater orientation victimization. CONCLUSIONS Sexual orientation victimization was related to depression but only in the context of higher mPFC activation, a pattern observed in depressed youth. These novel results provide evidence for neural reward sensitivity as a vulnerability factor for depression in SMY, suggesting mechanisms for disparities, and are a first step toward a clinical neuroscience understanding of minority stress in SMY.
Collapse
Affiliation(s)
| | - Jennifer S. Silk
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Melissa Nance
- Department of Psychology, University of Missouri St. Louis, St. Louis, MO
| | | | - Nicole Buckley
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - Luis Flores
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
| | - Gabriela Alarcón
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Karina Quevedo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | | | - M. McLean Sammon
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Alyssa Brostowin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Neal Ryan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Neil Jones
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Erika E. Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA,Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
17
|
Naeem N, Zanca RM, Weinstein S, Urquieta A, Sosa A, Yu B, Sullivan RM. The Neurobiology of Infant Attachment-Trauma and Disruption of Parent-Infant Interactions. Front Behav Neurosci 2022; 16:882464. [PMID: 35935109 PMCID: PMC9352889 DOI: 10.3389/fnbeh.2022.882464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Current clinical literature and supporting animal literature have shown that repeated and profound early-life adversity, especially when experienced within the caregiver-infant dyad, disrupts the trajectory of brain development to induce later-life expression of maladaptive behavior and pathology. What is less well understood is the immediate impact of repeated adversity during early life with the caregiver, especially since attachment to the caregiver occurs regardless of the quality of care the infant received including experiences of trauma. The focus of the present manuscript is to review the current literature on infant trauma within attachment, with an emphasis on animal research to define mechanisms and translate developmental child research. Across species, the effects of repeated trauma with the attachment figure, are subtle in early life, but the presence of acute stress can uncover some pathology, as was highlighted by Bowlby and Ainsworth in the 1950s. Through rodent neurobehavioral literature we discuss the important role of repeated elevations in stress hormone corticosterone (CORT) in infancy, especially if paired with the mother (not when pups are alone) as targeting the amygdala and causal in infant pathology. We also show that following induced alterations, at baseline infants appear stable, although acute stress hormone elevation uncovers pathology in brain circuits important in emotion, social behavior, and fear. We suggest that a comprehensive understanding of the role of stress hormones during infant typical development and elevated CORT disruption of this typical development will provide insight into age-specific identification of trauma effects, as well as a better understanding of early markers of later-life pathology.
Collapse
Affiliation(s)
- Nimra Naeem
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Roseanna M. Zanca
- Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Sylvie Weinstein
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Alejandra Urquieta
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Anna Sosa
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Boyi Yu
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Regina M. Sullivan
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| |
Collapse
|
18
|
Reasoner EE, van der Plas E, Al‐Kaylani HM, Langbehn DR, Conrad AL, Schultz JL, Epping EA, Magnotta VA, Nopoulos PC. Behavioral features in child and adolescent huntingtin gene-mutation carriers. Brain Behav 2022; 12:e2630. [PMID: 35604958 PMCID: PMC9304841 DOI: 10.1002/brb3.2630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION We compared neuropsychiatric symptoms between child and adolescent huntingtin gene-mutation carriers and noncarriers. Given previous evidence of atypical striatal development in carriers, we also assessed the relationship between neuropsychiatric traits and striatal development. METHODS Participants between 6 and 18 years old were recruited from families affected by Huntington's disease and tested for the huntingtin gene expansion. Neuropsychiatric traits were assessed using the Pediatric Behavior Scale and the Behavior Rating Inventory of Executive Function. Striatal volumes were extracted from 3T neuro-anatomical images. Multivariable linear regression models were conducted to evaluate the impact of group (i.e., gene nonexpanded [GNE] or gene expanded [GE]), age, and trajectory of striatal growth on neuropsychiatric symptoms. RESULTS There were no group differences in any behavioral measure with the exception of depression/anxiety score, which was higher in the GNE group compared to the GE group (estimate = 4.58, t(129) = 2.52, FDR = 0.051). The growth trajectory of striatal volume predicted depression scores (estimate = 0.429, 95% CI 0.15:0.71, p = .0029), where a negative slope of striatal volume over time was associated with lower depression/anxiety. CONCLUSIONS The current findings show that GE children may have lower depression/anxiety compared to their peers. Previously, we observed a unique pattern of early striatal hypertrophy and continued decrement in volume over time among GE children and adolescents. In contrast, GNE individuals largely show striatal volume growth. These findings suggest that the lower scores of depression and anxiety seen in GE children and adolescents may be associated with differential growth of the striatum.
Collapse
Affiliation(s)
- Erin E. Reasoner
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Ellen van der Plas
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Hend M. Al‐Kaylani
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Douglas R. Langbehn
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Amy L. Conrad
- Stead Family Children's Hospital at the University of IowaIowa CityIowaUSA
| | - Jordan L. Schultz
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Eric A. Epping
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Vincent A. Magnotta
- Department of RadiologyUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| | - Peggy C. Nopoulos
- Department of PsychiatryUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
- Stead Family Children's Hospital at the University of IowaIowa CityIowaUSA
- Department of NeurologyUniversity of Iowa Hospital and ClinicsIowa CityIowaUSA
| |
Collapse
|
19
|
Yoon L, Rohrsetzer F, Battel L, Anés M, Manfro PH, Rohde LA, Viduani A, Zajkowska Z, Mondelli V, Kieling C, Swartz JR. Reward- and threat-related neural function associated with risk and presence of depression in adolescents: a study using a composite risk score in Brazil. J Child Psychol Psychiatry 2022; 63:579-590. [PMID: 34363203 DOI: 10.1111/jcpp.13496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Neuroimaging studies on adolescents at risk for depression have relied on a single risk factor and focused on adolescents in high-income countries. Using a composite risk score, this study aims to examine neural activity and connectivity associated with risk and presence of depression in adolescents in Brazil. METHODS Depression risk was defined with the Identifying Depression Early in Adolescence Risk Score (IDEA-RS), calculated using a prognostic model that included 11 socio-demographic risk factors. Adolescents recruited from schools in Porto Alegre were classified into a low-risk (i.e., low IDEA-RS and no lifetime depression), high-risk (i.e., high IDEA-RS and no lifetime depression), or clinically depressed group (i.e., high IDEA-RS and depression diagnosis). One hundred fifty adolescents underwent a functional MRI scan while completing a reward-related gambling and a threat-related face-matching task. We compared group differences in activity and connectivity of the ventral striatum (VS) and amygdala during the gambling and face-matching tasks, respectively, and group differences in whole-brain neural activity. RESULTS Although there was no group difference in reward-related VS or threat-related amygdala activity, the depressed group showed elevated VS activity to punishment relative to high-risk adolescents. The whole-brain analysis found reduced reward-related activity in the lateral prefrontal cortex of patients and high-risk adolescents compared with low-risk adolescents. Compared with low-risk adolescents, high-risk and depressed adolescents showed reduced threat-related left amygdala connectivity with thalamus, superior temporal gyrus, inferior parietal gyrus, precentral gyrus, and supplementary motor area. CONCLUSIONS We identified neural correlates associated with risk and presence of depression in a well-characterized sample of adolescents. These findings enhance knowledge of the neurobiological underpinnings of risk and presence of depression in Brazil. Future longitudinal studies are needed to examine whether the observed neural patterns of high-risk adolescents predict the development of depression.
Collapse
Affiliation(s)
- Leehyun Yoon
- Department of Human Ecology, University of California Davis, Davis, CA, USA
| | - Fernanda Rohrsetzer
- Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Battel
- Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Mauricio Anés
- Division of Medical Physics and Radioprotection, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Pedro H Manfro
- Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luis A Rohde
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD and Developmental Psychiatry Programs, Hospital de Clínicas de Porte Alegre, Porto Alegre, Brazil.,Institute of Developmental Psychiatry for Children and Adolescents, Porto Alegre, Brazil
| | - Anna Viduani
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Zuzanna Zajkowska
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK.,NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Christian Kieling
- Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Johnna R Swartz
- Department of Human Ecology, University of California Davis, Davis, CA, USA
| |
Collapse
|
20
|
Children's value-based decision making. Sci Rep 2022; 12:5953. [PMID: 35396382 PMCID: PMC8993860 DOI: 10.1038/s41598-022-09894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
To effectively navigate their environments, infants and children learn how to recognize events predict salient outcomes, such as rewards or punishments. Relatively little is known about how children acquire this ability to attach value to the stimuli they encounter. Studies often examine children’s ability to learn about rewards and threats using either classical conditioning or behavioral choice paradigms. Here, we assess both approaches and find that they yield different outcomes in terms of which individuals had efficiently learned the value of information presented to them. The findings offer new insights into understanding how to assess different facets of value learning in children.
Collapse
|
21
|
Rengasamy M, Brundin L, Griffo A, Panny B, Capan C, Forton C, Price RB. Cytokine and Reward Circuitry Relationships in Treatment-Resistant Depression. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:45-53. [PMID: 35252950 PMCID: PMC8889578 DOI: 10.1016/j.bpsgos.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Depressive disorders are linked to dysfunction in reward-related behaviors and corticostriatal reward circuitry. Low-grade dysregulation of the immune system, e.g., elevations in plasma interleukin 6 (IL-6) and tumor necrosis factor α, have been thought to affect corticostriatal reward circuitry. Little is presently known about the degree to which these relationships generalize to patients with treatment-resistant depression (TRD) and/or childhood trauma history. METHODS Resting-state functional connectivity between the ventral striatum (VS) and ventromedial prefrontal cortex (vmPFC) regions and plasma inflammatory marker levels (IL-6, tumor necrosis factor α) were measured in 74 adults with TRD. Regression analyses examined associations of inflammatory markers with VS-vmPFC connectivity and the moderating effects of self-reported childhood trauma on these associations, with exploratory analyses examining trauma subtypes. RESULTS IL-6 was negatively associated with VS-vmPFC connectivity (specifically for the left VS). Childhood trauma moderated the relationships between tumor necrosis factor α and VS-vmPFC connectivity (specifically for the right VS) such that greater childhood trauma severity (particularly emotional neglect) was associated with stronger cytokine-connectivity associations. CONCLUSIONS This study independently extends previously reported associations between IL-6 and reductions in corticostriatal connectivity to a high-priority clinical population of treatment-seeking patients with TRD and further suggests that childhood trauma moderates specific associations between cytokines and corticostriatal connectivity. These findings suggest that associations between elevated plasma cytokine levels and reduced corticostriatal connectivity are a potential pathophysiological mechanism generalizable to patients with TRD and that such associations may be affected by trauma severity.
Collapse
Affiliation(s)
- Manivel Rengasamy
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lena Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan
- Division of Psychiatry & Behavioral Medicine, Michigan State University, College of Human Medicine, Grand Rapids, Michigan
| | - Angela Griffo
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Benjamin Panny
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colt Capan
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan
| | - Cameron Forton
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan
| | - Rebecca B. Price
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Blair KS, Aloi J, Bashford-Largo J, Zhang R, Elowsky J, Lukoff J, Vogel S, Carollo E, Schwartz A, Pope K, Bajaj S, Tottenham N, Dobbertin M, Blair RJ. Different forms of childhood maltreatment have different impacts on the neural systems involved in the representation of reinforcement value. Dev Cogn Neurosci 2021; 53:101051. [PMID: 34953316 PMCID: PMC8714998 DOI: 10.1016/j.dcn.2021.101051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/16/2021] [Accepted: 12/13/2021] [Indexed: 01/20/2023] Open
Abstract
Background The current study aimed to address two gaps in the literature on child maltreatment, reinforcement processing and psychopathology. First, the extent to which compromised reinforcement processing might be particularly associated with either neglect or abuse. Second, the extent to which maltreatment-related compromised reinforcement processing might be associated with particular symptom sets (depression, conduct problems, anxiety) or symptomatology more generally. Methods A sample of adolescents (N = 142) aged between 14 and 18 years with varying levels of prior maltreatment participated in this fMRI study. They were scanned while performing a passive avoidance learning task, where the participant learns to respond to stimuli that engender reward and avoid responding to stimuli that engender punishment. Maltreatment (abuse and neglect) levels were assessed with the Childhood Trauma Questionnaire (CTQ). Results We found that: (i) level of neglect, but not abuse, was negatively associated with differential BOLD responses to reward-punishment within the striatum and medial frontal cortex; and (ii) differential reward-punishment responses within these neglect-associated regions were particularly negatively associated with level of conduct problems. Conclusion Our findings demonstrate the adverse neurodevelopmental impact of childhood maltreatment, particularly neglect, on reinforcement processing. Moreover, they suggest a neurodevelopmental route by which neglect might increase the risk for conduct problems.
Collapse
Affiliation(s)
- Karina S Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA.
| | - Joseph Aloi
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, USA
| | - Johannah Bashford-Largo
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Ru Zhang
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jaimie Elowsky
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jennie Lukoff
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Steven Vogel
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Erin Carollo
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Amanda Schwartz
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Kayla Pope
- Department of Psychiatry, Creighton University School of Medicine, Omaha, NE, USA
| | - Sahil Bajaj
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY, USA
| | - Matthew Dobbertin
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - R James Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| |
Collapse
|
23
|
Donofry SD, Stillman CM, Hanson JL, Sheridan M, Sun S, Loucks EB, Erickson KI. Promoting brain health through physical activity among adults exposed to early life adversity: Potential mechanisms and theoretical framework. Neurosci Biobehav Rev 2021; 131:688-703. [PMID: 34624365 PMCID: PMC8642290 DOI: 10.1016/j.neubiorev.2021.09.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Adverse childhood experiences such as abuse, neglect, and poverty, profoundly alter neurobehavioral development in a manner that negatively impacts health across the lifespan. Adults who have been exposed to such adversities exhibit premature and more severe age-related declines in brain health. Unfortunately, it remains unclear whether the negative effects of early life adversity (ELA) on brain health can be remediated through intervention in adulthood. Physical activity may represent a low-cost behavioral approach to address the long-term consequences of ELA on brain health. However, there has been limited research examining the impact of physical activity on brain health among adults with a history of ELA. Accordingly, the purpose of this review is to (1) review the influence of ELA on brain health in adulthood and (2) highlight evidence for the role of neurotrophic factors, hypothalamic-adrenal-pituitary axis regulation, inflammatory processes, and epigenetic modifications in mediating the effects of both ELA and physical activity on brain health outcomes in adulthood. We then propose a theoretical framework to guide future research in this area.
Collapse
Affiliation(s)
- Shannon D Donofry
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Psychiatric and Behavioral Health Institute, Allegheny Health Network Pittsburgh, PA, United States.
| | - Chelsea M Stillman
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jamie L Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Margaret Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shufang Sun
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, RI, United States; Mindfulness Center, Brown University, Providence, RI, United States
| | - Eric B Loucks
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, RI, United States; Mindfulness Center, Brown University, Providence, RI, United States; Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Murdoch University, College of Science, Health, Engineering, and Education, Perth, Western Australia, Australia; PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
24
|
Kennedy BV, Hanson JL, Buser NJ, van den Bos W, Rudolph KD, Davidson RJ, Pollak SD. Accumbofrontal tract integrity is related to early life adversity and feedback learning. Neuropsychopharmacology 2021; 46:2288-2294. [PMID: 34561607 PMCID: PMC8581005 DOI: 10.1038/s41386-021-01129-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Abuse, neglect, exposure to violence, and other forms of early life adversity (ELA) are incredibly common and significantly impact physical and mental development. While important progress has been made in understanding the impacts of ELA on behavior and the brain, the preponderance of past work has primarily centered on threat processing and vigilance while ignoring other potentially critical neurobehavioral processes, such as reward-responsiveness and learning. To advance our understanding of potential mechanisms linking ELA and poor mental health, we center in on structural connectivity of the corticostriatal circuit, specifically accumbofrontal white matter tracts. Here, in a sample of 77 youth (Mean age = 181 months), we leveraged rigorous measures of ELA, strong diffusion neuroimaging methodology, and computational modeling of reward learning. Linking these different forms of data, we hypothesized that higher ELA would be related to lower quantitative anisotropy in accumbofrontal white matter. Furthermore, we predicted that lower accumbofrontal quantitative anisotropy would be related to differences in reward learning. Our primary predictions were confirmed, but similar patterns were not seen in control white matter tracts outside of the corticostriatal circuit. Examined collectively, our work is one of the first projects to connect ELA to neural and behavioral alterations in reward-learning, a critical potential mechanism linking adversity to later developmental challenges. This could potentially provide windows of opportunity to address the effects of ELA through interventions and preventative programming.
Collapse
|
25
|
Hanson JL, Williams AV, Bangasser DA, Peña CJ. Impact of Early Life Stress on Reward Circuit Function and Regulation. Front Psychiatry 2021; 12:744690. [PMID: 34744836 PMCID: PMC8563782 DOI: 10.3389/fpsyt.2021.744690] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Early life stress - including experience of child maltreatment, neglect, separation from or loss of a parent, and other forms of adversity - increases lifetime risk of mood, anxiety, and substance use disorders. A major component of this risk may be early life stress-induced alterations in motivation and reward processing, mediated by changes in the nucleus accumbens (NAc) and ventral tegmental area (VTA). Here, we review evidence of the impact of early life stress on reward circuit structure and function from human and animal models, with a focus on the NAc. We then connect these results to emerging theoretical models about the indirect and direct impacts of early life stress on reward circuit development. Through this review and synthesis, we aim to highlight open research questions and suggest avenues of future study in service of basic science, as well as applied insights. Understanding how early life stress alters reward circuit development, function, and motivated behaviors is a critical first step toward developing the ability to predict, prevent, and treat stress-related psychopathology spanning mood, anxiety, and substance use disorders.
Collapse
Affiliation(s)
- Jamie L. Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexia V. Williams
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Debra A. Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Catherine J. Peña
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
26
|
Hanson JL, Nacewicz BM. Amygdala Allostasis and Early Life Adversity: Considering Excitotoxicity and Inescapability in the Sequelae of Stress. Front Hum Neurosci 2021; 15:624705. [PMID: 34140882 PMCID: PMC8203824 DOI: 10.3389/fnhum.2021.624705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Early life adversity (ELA), such as child maltreatment or child poverty, engenders problems with emotional and behavioral regulation. In the quest to understand the neurobiological sequelae and mechanisms of risk, the amygdala has been of major focus. While the basic functions of this region make it a strong candidate for understanding the multiple mental health issues common after ELA, extant literature is marked by profound inconsistencies, with reports of larger, smaller, and no differences in regional volumes of this area. We believe integrative models of stress neurodevelopment, grounded in "allostatic load," will help resolve inconsistencies in the impact of ELA on the amygdala. In this review, we attempt to connect past research studies to new findings with animal models of cellular and neurotransmitter mediators of stress buffering to extreme fear generalization onto testable research and clinical concepts. Drawing on the greater impact of inescapability over unpredictability in animal models, we propose a mechanism by which ELA aggravates an exhaustive cycle of amygdala expansion and subsequent toxic-metabolic damage. We connect this neurobiological sequela to psychosocial mal/adaptation after ELA, bridging to behavioral studies of attachment, emotion processing, and social functioning. Lastly, we conclude this review by proposing a multitude of future directions in preclinical work and studies of humans that suffered ELA.
Collapse
Affiliation(s)
- Jamie L. Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brendon M. Nacewicz
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
27
|
Morelli NM, Liuzzi MT, Duong JB, Kryza-Lacombe M, Chad-Friedman E, Villodas MT, Dougherty LR, Wiggins JL. Reward-related neural correlates of early life stress in school-aged children. Dev Cogn Neurosci 2021; 49:100963. [PMID: 34020397 PMCID: PMC8144345 DOI: 10.1016/j.dcn.2021.100963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Early life stress likely contributes to dysfunction in neural reward processing systems. However, studies to date have focused almost exclusively on adolescents and adults, measured early life stress retrospectively, and have often failed to control for concurrent levels of stress. The current study examined the contribution of prospectively measured cumulative life stress in preschool-age children on reward-related neural activation and connectivity in school-age children. METHODS Children (N = 46) and caregivers reported children's exposure to early life stress between birth and preschool age (mean = 4.8 years, SD = 0.80). At follow-up (mean age = 7.52 years, SD = .78), participants performed a child-friendly monetary incentive delay task during functional magnetic resonance imaging. RESULTS Children with higher levels of cumulative early life stress, controlling for concurrent stressful life events, exhibited aberrant patterns of neural activation and connectivity in reward- and emotion-related regions (e.g., prefrontal cortex, temporal pole, culmen), depending on the presence of a potential reward and whether or not the target was hit or missed. CONCLUSIONS Findings suggest that stress exposure during early childhood may impact neural reward processing systems earlier in development than has previously been demonstrated. Understanding how early life stress relates to alterations in reward processing could guide earlier, more mechanistic interventions.
Collapse
Affiliation(s)
- Nicholas M Morelli
- San Diego State University, University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA, 92120, United States.
| | - Michael T Liuzzi
- Department of Psychology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, United States.
| | - Jacqueline B Duong
- Department of Psychology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, United States.
| | - Maria Kryza-Lacombe
- San Diego State University, University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA, 92120, United States.
| | - Emma Chad-Friedman
- Psychology Department, University of Maryland College Park, Biology/Psychology Building, 4094 Campus Drive, College Park, MD, 20742, United States.
| | - Miguel T Villodas
- San Diego State University, University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA, 92120, United States; Department of Psychology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, United States.
| | - Lea R Dougherty
- Psychology Department, University of Maryland College Park, Biology/Psychology Building, 4094 Campus Drive, College Park, MD, 20742, United States.
| | - Jillian Lee Wiggins
- San Diego State University, University of California, San Diego Joint Doctoral Program in Clinical Psychology, 6363 Alvarado Court, Suite 103, San Diego, CA, 92120, United States; Department of Psychology, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, United States.
| |
Collapse
|
28
|
Fani N, Stenson AF, van Rooij SJH, La Barrie DL, Jovanovic T. White matter microstructure in trauma-exposed children: Associations with pubertal stage. Dev Sci 2021; 24:e13120. [PMID: 33983665 DOI: 10.1111/desc.13120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022]
Abstract
Puberty represents a critical period in maturation during which major changes in neural architecture emerge; these changes are shaped, in part, by environmental experiences, including exposure to psychological trauma. However, little is known about how trauma exposure affects white matter microstructure across pubertal stages. This was the goal of the present cross-sectional study. Forty-one male and female African-American children between ages 8-13 were recruited as part of a study of developmental trauma and received assessments of trauma exposure, including violence, and pubertal development as well as diffusion tensor imaging (DTI). Significant interactions of pubertal stage and violent trauma exposure were observed in association with a marker of white matter integrity (mean diffusivity, MD) in the corpus callosum, cingulum bundle and uncinate fasciculus. Greater violent trauma exposure was associated with lower MD in the hippocampal cingulum and uncinate fasciculus in girls, but not boys. These data from a sample of trauma-exposed children may reflect a pattern of accelerated maturation in pathways that are critical for emotion regulation as well as attention and memory processes. It appears that fronto-limbic and callosal connections are particularly sensitive to the effects of violent trauma, revealing a potential pathway through which trauma creates vulnerability for later psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
29
|
Oswald LM, Dunn KE, Seminowicz DA, Storr CL. Early Life Stress and Risks for Opioid Misuse: Review of Data Supporting Neurobiological Underpinnings. J Pers Med 2021; 11:315. [PMID: 33921642 PMCID: PMC8072718 DOI: 10.3390/jpm11040315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
A robust body of research has shown that traumatic experiences occurring during critical developmental periods of childhood when neuronal plasticity is high increase risks for a spectrum of physical and mental health problems in adulthood, including substance use disorders. However, until recently, relatively few studies had specifically examined the relationships between early life stress (ELS) and opioid use disorder (OUD). Associations with opioid use initiation, injection drug use, overdose, and poor treatment outcome have now been demonstrated. In rodents, ELS has also been shown to increase the euphoric and decrease antinociceptive effects of opioids, but little is known about these processes in humans or about the neurobiological mechanisms that may underlie these relationships. This review aims to establish a theoretical model that highlights the mechanisms by which ELS may alter opioid sensitivity, thereby contributing to future risks for OUD. Alterations induced by ELS in mesocorticolimbic brain circuits, and endogenous opioid and dopamine neurotransmitter systems are described. The limited but provocative evidence linking these alterations with opioid sensitivity and risks for OUD is presented. Overall, the findings suggest that better understanding of these mechanisms holds promise for reducing vulnerability, improving prevention strategies, and prescribing guidelines for high-risk individuals.
Collapse
Affiliation(s)
- Lynn M. Oswald
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| | - Kelly E. Dunn
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21230, USA;
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA;
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Carla L. Storr
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA;
| |
Collapse
|
30
|
Palacios-Barrios EE, Hanson JL, Barry KR, Albert WD, White SF, Skinner AT, Dodge KA, Lansford JE. Lower neural value signaling in the prefrontal cortex is related to childhood family income and depressive symptomatology during adolescence. Dev Cogn Neurosci 2021; 48:100920. [PMID: 33517111 PMCID: PMC7847970 DOI: 10.1016/j.dcn.2021.100920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022] Open
Abstract
Lower family income during childhood is related to increased rates of adolescent depression, though the underlying mechanisms are poorly understood. Evidence suggests that individuals with depression demonstrate hypoactivation in brain regions involved in reward learning and decision-making processes (e.g., portions of the prefrontal cortex). Separately, lower family income has been associated with neural alterations in similar regions. Motivated by this research, we examined associations between family income, depression, and brain activity during a reward learning and decision-making fMRI task in a sample of adolescents (full n = 94; usable n = 78; mean age = 15.2 years). We focused on brain activity for: 1) expected value (EV), the learned subjective value of an object, and 2) prediction error, the difference between EV and the actual outcome received. Regions of interest related to reward learning were examined in connection to childhood family income and parent-reported adolescent depressive symptoms. As hypothesized, lower activity in the subgenual anterior cingulate (sACC) for EV in response to approach stimuli was associated with lower childhood family income, as well as greater symptoms of depression measured one-year after the neuroimaging session. These results are consistent with the hypothesis that lower early family income leads to disruptions in reward and decision-making brain circuitry, contributing to adolescent depression.
Collapse
Affiliation(s)
| | - Jamie L Hanson
- University of Pittsburgh, Pittsburgh, PA, United States.
| | - Kelly R Barry
- University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Stuart F White
- Boys Town National Research Hospital, Boys Town, NE, United States
| | | | | | | |
Collapse
|
31
|
Rudolph KD, Davis MM, Skymba HV, Modi HH, Telzer EH. Social experience calibrates neural sensitivity to social feedback during adolescence: A functional connectivity approach. Dev Cogn Neurosci 2021; 47:100903. [PMID: 33370666 PMCID: PMC7773533 DOI: 10.1016/j.dcn.2020.100903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/27/2020] [Accepted: 12/07/2020] [Indexed: 11/28/2022] Open
Abstract
The adaptive calibration model suggests exposure to highly stressful or highly supportive early environments sensitizes the brain to later environmental input. We examined whether family and peer experiences predict neural sensitivity to social cues in 85 adolescent girls who completed a social feedback task during a functional brain scan and an interview assessing adversity. Whole-brain functional connectivity (FC) analyses revealed curvilinear associations between social experiences and FC between the ventral striatum and regions involved in emotion valuation, social cognition, and salience detection (e.g., insula, MPFC, dACC, dlPFC) during social reward processing, such that stronger FC was found at both very high and very low levels of adversity. Moreover, exposure to adversity predicted stronger FC between the amygdala and regions involved in salience detection, social cognition, and emotional memory (e.g., sgACC, precuneus, lingual gyrus, parahippocampal gyrus) during social threat processing. Analyses also revealed some evidence for blunted FC (VS-PCC for reward; amygdala-parahippocampal gyrus for threat) at very high and low levels of adversity. Overall, results suggest social experiences may play a critical role in shaping neural sensitivity to social feedback during adolescence. Future work will need to elucidate the implications of these patterns of neural function for the development of psychopathology.
Collapse
Affiliation(s)
- Karen D Rudolph
- University of Illinois at Urbana-Champaign, Department of Psychology, 603 E. Daniel St, Champaign, IL, 61820, USA.
| | - Megan M Davis
- University of Illinois at Urbana-Champaign, Department of Psychology, 603 E. Daniel St, Champaign, IL, 61820, USA
| | - Haley V Skymba
- University of Illinois at Urbana-Champaign, Department of Psychology, 603 E. Daniel St, Champaign, IL, 61820, USA
| | - Haina H Modi
- University of Illinois at Urbana-Champaign, Department of Psychology, 603 E. Daniel St, Champaign, IL, 61820, USA
| | - Eva H Telzer
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, 235 E Cameron Ave, Chapel Hill, NC, 27599, USA
| |
Collapse
|
32
|
A Social Affective Neuroscience Model of Risk and Resilience in Adolescent Depression: Preliminary Evidence and Application to Sexual and Gender Minority Adolescents. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:188-199. [PMID: 33097468 PMCID: PMC9912296 DOI: 10.1016/j.bpsc.2020.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 01/25/2023]
Abstract
Depression is a disorder of dysregulated affective and social functioning, with attenuated response to reward, heightened response to threat (perhaps especially social threat), excessive focus on negative aspects of the self, ineffective engagement with other people, and difficulty modulating all of these responses. Known risk factors provide a starting point for a model of developmental pathways to resilience, and we propose that the interplay of social threat experiences and neural social-affective systems is critical to those pathways. We describe a model of risk and resilience, review supporting evidence, and apply the model to sexual and gender minority adolescents, a population with high disparities in depression and unique social risk factors. This approach illustrates the fundamental role of a socially and developmentally informed clinical neuroscience model for understanding a population disproportionately affected by risk factors and psychopathology outcomes. We consider it a public health imperative to apply conceptual models to high-need populations to elucidate targets for effective interventions to promote healthy development and enhance resilience.
Collapse
|
33
|
Zhen S, Chowdhury A, Yu R. The neural underpinnings of allocentric thinking in a novel signaling task. Neuroimage 2021; 230:117808. [PMID: 33524583 DOI: 10.1016/j.neuroimage.2021.117808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/13/2020] [Accepted: 01/24/2021] [Indexed: 11/19/2022] Open
Abstract
The ability to adopt the perspectives of others is fundamental to effective communication in social interactions. However, the neural correlates of allocentric thinking in communicative signaling remain unclear. We adapted a novel signaling task in which the signaler was given the target word and must choose a one-word signal to help the receiver guess the target. Behavioral results suggest that speakers can use allocentric thinking to choose signals that are salient from the perspective of the receiver rather than their own point of view. At the neural level, functional magnetic resonance imaging (fMRI) data reveal that the medial prefrontal cortex (mPFC), ventral striatum, and temporal-parietal junction are more activated when signalers engage in allocentric than egocentric thinking. Moreover, functional connectivity between the mPFC and ventral striatum predicted individuals' perspective-taking ability during successful communication. These findings reveal that neural representations in the mPFC-striatum network support perspective-taking in complex social decision making, providing a new perspective on how the brain arbitrates between allocentric thinking and egocentric thinking in communication and social coordination.
Collapse
Affiliation(s)
- Shanshan Zhen
- Department of Psychology, National University of Singapore, Singapore
| | - Avijit Chowdhury
- Department of Psychology, National University of Singapore, Singapore
| | - Rongjun Yu
- Department of Management, School of Business, Hong Kong Baptist University, Hong Kong, China; Department of Sport, Physical Education and Health, Faculty of Social Sciences, Hong Kong Baptist University, Hong Kong, China; Department of Physics, Faculty of Science, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
34
|
Smith KE, Pollak SD. Early life stress and development: potential mechanisms for adverse outcomes. J Neurodev Disord 2020; 12:34. [PMID: 33327939 PMCID: PMC7745388 DOI: 10.1186/s11689-020-09337-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Chronic and/or extreme stress in early life, often referred to as early adversity, childhood trauma, or early life stress, has been associated with a wide range of adverse effects on development. However, while early life stress has been linked to negative effects on a number of neural systems, the specific mechanisms through which early life stress influences development and individual differences in children's outcomes are still not well understood. MAIN TEXT The current paper reviews the existing literature on the neurobiological effects of early life stress and their ties to children's psychological and behavioral development. CONCLUSIONS Early life stress has persistent and pervasive effects on prefrontal-hypothalamic-amygdala and dopaminergic circuits that are at least partially mediated by alterations in hypothalamic-pituitary-adrenal axis function. However, to date, this research has primarily utilized methods of assessment that focus solely on children's event exposures. Incorporating assessment of factors that influence children's interpretation of stressors, along with stressful events, has the potential to provide further insight into the mechanisms contributing to individual differences in neurodevelopmental effects of early life stress. This can aid in further elucidating specific mechanisms through which these neurobiological changes influence development and contribute to risk for psychopathology and health disorders.
Collapse
Affiliation(s)
- Karen E Smith
- Department of Psychology and Waisman Center, University of Wisconsin-Madison, 1500 S Highland Blvd, Rm 399, Madison, WI, 53705, USA.
| | - Seth D Pollak
- Department of Psychology and Waisman Center, University of Wisconsin-Madison, 1500 S Highland Blvd, Rm 399, Madison, WI, 53705, USA
| |
Collapse
|
35
|
Kujawa A, Klein DN, Pegg S, Weinberg A. Developmental trajectories to reduced activation of positive valence systems: A review of biological and environmental contributions. Dev Cogn Neurosci 2020; 43:100791. [PMID: 32510349 PMCID: PMC7225621 DOI: 10.1016/j.dcn.2020.100791] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Reduced activation of positive valence systems (PVS), including blunted neural and physiological responses to pleasant stimuli and rewards, has been shown to prospectively predict the development of psychopathology. Yet, little is known about how reduced PVS activation emerges across development or what implications it has for prevention. We review genetic, temperament, parenting, and naturalistic and laboratory stress research on neural measures of PVS and outline developmentally-informed models of trajectories of PVS activation. PVS function is partly heritable and appears to reflect individual differences in early-emerging temperament traits. Although lab-induced stressors blunt PVS activation, effects of parenting and naturalistic stress on PVS are mixed and depend on the type of stressor, developmental timing, and interactions amongst risk factors. We propose that there may be multiple, dynamic developmental trajectories to reduced PVS activation in which combinations of genes, temperament, and exposure to severe, prolonged, or uncontrollable stress may exert direct and interactive effects on PVS function. Critically, these risk factors may alter PVS developmental trajectories and/or PVS sensitivity to proximal stressors. Distinct factors may converge such that PVS activation proceeds along a typical, accelerated, chronically low, or stress-reactive trajectory. Finally, we present directions for future research with translational implications.
Collapse
Affiliation(s)
- Autumn Kujawa
- Department of Psychology and Human Development, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203-5721, United States.
| | - Daniel N Klein
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-2500, United States.
| | - Samantha Pegg
- Department of Psychology and Human Development, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203-5721, United States.
| | - Anna Weinberg
- Department of Psychology, McGill University, 2001 McGill College Avenue, Montreal, Quebec, H3A 1G1, Canada.
| |
Collapse
|
36
|
Seok BJ, Jeon S, Lee J, Cho SJ, Lee YJ, Kim SJ. Effects Of Early Trauma and Recent Stressors on Depression, Anxiety, and Anger. Front Psychiatry 2020; 11:744. [PMID: 32848923 PMCID: PMC7418937 DOI: 10.3389/fpsyt.2020.00744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Early life traumatic events and recent stressful events are known to have especially strong effects on emotional wellbeing. However, little is known about the interaction of early and recent stressors on emotions. We aimed to examine the interactive effects of early trauma and recent stressors on depression, anxiety, and anger. METHODS One hundred and seventy adults were recruited and asked to complete the Center for Epidemiological Studies Depression Scale (CES-D), the state anxiety subscale of the State-Trait Anxiety Inventory (STAI-S), and the state anger subscale of the State-Trait Anger Expression Inventory (STAXI-S). Early traumas and recent stressors were assessed during face-to-face interviews. Multiple regression analysis was performed to test whether early trauma, recent stressors, and the interaction of the two would predict CES-D, STAI-S, and STAXI-S scores. RESULTS In the multiple regression models, STAI-S scores were predicted only by recent stressors (R2 = 0.063, p = 0.001). In contrast, CES-D and STAXI-S scores were predicted only by the synergistic interaction of early trauma with recent stressors (R2 = 0.075, p < 0.001; R2 = 0.039, p = 0.01, respectively). CONCLUSIONS A synergistic interaction effect between early trauma and recent stressful events on current depression and anger was observed, indicating that the combined effects of early trauma and recent stressors are stronger than their individual effects. In contrast, anxiety was affected mainly by recent stressors. Our findings suggest that the form that emotional disturbance takes can vary depending on the timing of stressors.
Collapse
Affiliation(s)
- Bum Joon Seok
- Department of Psychiatry, Samsung Medical Center, Seoul, South Korea
| | - Sehyun Jeon
- Department of Psychiatry, Korean University Anam Hospital, Seoul, South Korea
| | - Jooyoung Lee
- Department of Psychiatry, Samsung Medical Center, Seoul, South Korea
| | - Seong-Jin Cho
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, South Korea
| | - Yu Jin Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Seog Ju Kim
- Department of Psychiatry, Samsung Medical Center, Seoul, South Korea.,Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
37
|
Lippard ET, Nemeroff CB. The Devastating Clinical Consequences of Child Abuse and Neglect: Increased Disease Vulnerability and Poor Treatment Response in Mood Disorders. Am J Psychiatry 2020; 177:20-36. [PMID: 31537091 PMCID: PMC6939135 DOI: 10.1176/appi.ajp.2019.19010020] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A large body of evidence has demonstrated that exposure to childhood maltreatment at any stage of development can have long-lasting consequences. It is associated with a marked increase in risk for psychiatric and medical disorders. This review summarizes the literature investigating the effects of childhood maltreatment on disease vulnerability for mood disorders, specifically summarizing cross-sectional and more recent longitudinal studies demonstrating that childhood maltreatment is more prevalent and is associated with increased risk for first mood episode, episode recurrence, greater comorbidities, and increased risk for suicidal ideation and attempts in individuals with mood disorders. It summarizes the persistent alterations associated with childhood maltreatment, including alterations in the hypothalamic-pituitary-adrenal axis and inflammatory cytokines, which may contribute to disease vulnerability and a more pernicious disease course. The authors discuss several candidate genes and environmental factors (for example, substance use) that may alter disease vulnerability and illness course and neurobiological associations that may mediate these relationships following childhood maltreatment. Studies provide insight into modifiable mechanisms and provide direction to improve both treatment and prevention strategies.
Collapse
Affiliation(s)
- Elizabeth T.C. Lippard
- Department of Psychiatry, Dell Medical School, University of Texas, Austin, TX, USA,Institute of Early Life Adversity Research, Dell Medical School, University of Texas, Austin, TX USA,Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX USA,Department of Psychology, University of Texas, Austin, TX, USA,Mulva Clinic for Neuroscience, Dell Medical School, University of Texas, Austin, TX
| | - Charles B. Nemeroff
- Department of Psychiatry, Dell Medical School, University of Texas, Austin, TX, USA,Institute of Early Life Adversity Research, Dell Medical School, University of Texas, Austin, TX USA,Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX USA,Mulva Clinic for Neuroscience, Dell Medical School, University of Texas, Austin, TX
| |
Collapse
|
38
|
Herzberg MP, Gunnar MR. Early life stress and brain function: Activity and connectivity associated with processing emotion and reward. Neuroimage 2019; 209:116493. [PMID: 31884055 DOI: 10.1016/j.neuroimage.2019.116493] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/10/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Investigating the developmental sequelae of early life stress has provided researchers the opportunity to examine adaptive responses to extreme environments. A large body of work has established mechanisms by which the stressful experiences of childhood poverty, maltreatment, and institutional care can impact the brain and the distributed stress systems of the body. These mechanisms are reviewed briefly to lay the foundation upon which the current neuroimaging literature has been built. More recently, developmental cognitive neuroscientists have identified a number of the effects of early adversity, including differential behavior and brain function. Among the most consistent of these findings are differences in the processing of emotion and reward-related information. The neural correlates of emotion processing, particularly frontolimbic functional connectivity, have been well studied in early life stress samples with results indicating accelerated maturation following early adversity. Reward processing has received less attention, but here the evidence suggests a deficit in reward sensitivity. It is as yet unknown whether the accelerated maturation of emotion-regulation circuits comes at the cost of delayed development in other systems, most notably the reward system. This review addresses the early life stress neuroimaging literature that has investigated emotion and reward processing, identifying important next steps in the study of brain function following adversity.
Collapse
Affiliation(s)
- Max P Herzberg
- Institute of Child Development, University of Minnesota, USA.
| | - Megan R Gunnar
- Institute of Child Development, University of Minnesota, USA
| |
Collapse
|
39
|
Ng TH, Alloy LB, Smith DV. Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. Transl Psychiatry 2019; 9:293. [PMID: 31712555 PMCID: PMC6848107 DOI: 10.1038/s41398-019-0644-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
Many neuroimaging studies have investigated reward processing dysfunction in major depressive disorder. These studies have led to the common idea that major depressive disorder is associated with blunted responses within the reward circuit, particularly in the ventral striatum. Yet, the link between major depressive disorder and reward-related responses in other regions remains inconclusive, thus limiting our understanding of the pathophysiology of major depressive disorder. To address this issue, we performed a coordinate-based meta-analysis of 41 whole-brain neuroimaging studies encompassing reward-related responses from a total of 794 patients with major depressive disorder and 803 healthy controls. Our findings argue against the common idea that major depressive disorder is primarily linked to deficits within the reward system. Instead, our results demonstrate that major depressive disorder is associated with opposing abnormalities in the reward circuit: hypo-responses in the ventral striatum and hyper-responses in the orbitofrontal cortex. The current findings suggest that dysregulated corticostriatal connectivity may underlie reward-processing abnormalities in major depressive disorder, providing an empirical foundation for a more refined understanding of abnormalities in the reward circuitry in major depressive disorder.
Collapse
Affiliation(s)
- Tommy H Ng
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Lauren B Alloy
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - David V Smith
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
40
|
McCutcheon RA, Bloomfield MAP, Dahoun T, Mehta M, Howes OD. Chronic psychosocial stressors are associated with alterations in salience processing and corticostriatal connectivity. Schizophr Res 2019; 213:56-64. [PMID: 30573409 PMCID: PMC6817361 DOI: 10.1016/j.schres.2018.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/23/2022]
Abstract
Psychosocial stressors including childhood adversity, migration, and living in an urban environment, have been associated with several psychiatric disorders, including psychotic disorders. The neural and psychological mechanisms mediating this relationship remain unclear. In parallel, alterations in corticostriatal connectivity and abnormalities in the processing of salience, are seen in psychotic disorders. Aberrant functioning of these mechanisms secondary to chronic stress exposure, could help explain how common environmental exposures are associated with a diverse range of symptoms. In the current study, we recruited two groups of adults, one with a high degree of exposure to chronic psychosocial stressors (the exposed group, n = 20), and one with minimal exposure (the unexposed group, n = 22). All participants underwent a resting state MRI scan, completed the Aberrant Salience Inventory, and performed a behavioural task - the Salience Attribution Test (SAT). The exposed group showed reduced explicit adaptive salience scores (cohen's d = 0.69, p = 0.03) and increased aberrant salience inventory scores (d = 0.65, p = 0.04). The exposed group also showed increased corticostriatal connectivity between the ventral striatum and brain regions previously implicated in salience processing. Corticostriatal connectivity in these regions negatively correlated with SAT explicit adaptive salience (r = -0.48, p = 0.001), and positively correlated with aberrant salience inventory scores (r = 0.42, p = 0.006). Furthermore, in a mediation analysis there was tentative evidence that differences in striato-cortical connectivity mediated the group differences in salience scores.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Michael A P Bloomfield
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK; Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London WC1T 7NF, UK; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London WC1E 6BT, UK; National Institute of Health Research University College London Hospitals Biomedical Research Centre, University College Hospital, Euston Road, London W1T 7DN, UK; The Traumatic Stress Clinic, St Pancras Hospital, 4 St Pancras Way, London NW1 0PE, UK
| | - Tarik Dahoun
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX37 JX, UK
| | - Mitul Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
41
|
Liu K, Zhao X, Lu X, Zhu X, Chen H, Wang M, Yan W, Jing L, Deng Y, Yu L, Wu H, Wen G, Sun X, Lv Z. Effect of selective serotonin reuptake inhibitor on prefrontal-striatal connectivity is dependent on the level of TNF-α in patients with major depressive disorder. Psychol Med 2019; 49:2608-2616. [PMID: 30520409 DOI: 10.1017/s0033291718003616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND We hypothesize that the tumor necrosis factor-α (TNF-α) may play a role in disturbing the effect of selective serotonin reuptake inhibitor (SSRI) on the striatal connectivity in patients with major depressive disorder (MDD). METHODS We performed a longitudinal observation by combining resting-state functional magnetic resonance imaging (rs-fMRI) and biochemical analyses to identify the abnormal striatal connectivity in MDD patients, and to evaluate the effect of TNF-α level on these abnormal connectivities during SSRI treatment. Eighty-five rs-fMRI scans were collected from 25 MDD patients and 35 healthy controls, and the scans were repeated for all the patients before and after a 6-week SSRI treatment. Whole-brain voxel-wise functional connectivity (FC) was calculated by correlating the rs-fMRI time courses between each voxel and the striatal seeds (i.e. spherical regions placed at the striatums). The level of TNF-α in serum was evaluated by Milliplex assay. Factorial analysis was performed to assess the interaction effects of 'TNF-α × treatment' in the regions with between-group FC difference. RESULTS Compared with controls, MDD patients showed significantly higher striatal FC in the medial prefrontal cortex (MPFC) and bilateral middle/superior temporal cortices before SSRI treatment (p < 0.001, uncorrected). Moreover, a significant interaction effect of 'TNF-α × treatment' was found in MPFC-striatum FC in MDD patients (p = 0.002), and the significance remained after adjusted for age, gender, head motion, and episode of disease. CONCLUSION These findings provide evidence that treatment-related brain connectivity change is dependent on the TNF-α level in MDD patients, and the MPFC-striatum connectivities possibly serve as an important target in the brain.
Collapse
Affiliation(s)
- Kai Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohua Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaobing Lu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiaoxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Chen
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengmeng Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weixin Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Linlin Jing
- TCM Integrated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Yanjia Deng
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Yu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Ge Wen
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuegang Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Robinson-Drummer PA, Opendak M, Blomkvist A, Chan S, Tan S, Delmer C, Wood K, Sloan A, Jacobs L, Fine E, Chopra D, Sandler C, Kamenetzky G, Sullivan RM. Infant Trauma Alters Social Buffering of Threat Learning: Emerging Role of Prefrontal Cortex in Preadolescence. Front Behav Neurosci 2019; 13:132. [PMID: 31293398 PMCID: PMC6598593 DOI: 10.3389/fnbeh.2019.00132] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Within the infant-caregiver attachment system, the primary caregiver holds potent reward value to the infant, exhibited by infants' strong preference for approach responses and proximity-seeking towards the mother. A less well-understood feature of the attachment figure is the caregiver's ability to reduce fear via social buffering, commonly associated with the notion of a "safe haven" in the developmental literature. Evidence suggests this infant system overlaps with the neural network supporting social buffering (attenuation) of fear in the adults of many species, a network known to involve the prefrontal cortex (PFC). Here, using odor-shock conditioning in young developing rats, we assessed when the infant system transitions to the adult-like PFC-dependent social buffering of threat system. Rat pups were odor-shock conditioned (0.55 mA-0.6 mA) at either postnatal day (PN18; dependent on mother) or 28 (newly independent, weaned at PN23). Within each age group, the mother was present or absent during conditioning, with PFC assessment following acquisition using 14C 2-DG autoradiography and cue testing the following day. Since the human literature suggests poor attachment attenuates the mother's ability to socially buffer the infants, half of the pups at each age were reared with an abusive mother from PN8-12. The results showed that for typical control rearing, the mother attenuated fear in both PN18 and PN28 pups, although the PFC [infralimbic (IL) and ventral prelimbic (vPL) cortices] was only engaged at PN28. Abuse rearing completely disrupted social buffering of pups by the mother at PN18. The results from PN28 pups showed that while the mother modulated learning in both control and abuse-reared pups, the behavioral and PFC effects were attenuated after maltreatment. Our data suggest that pups transition to the adult-like PFC social support circuit after independence from the mother (PN28), and this circuit remains functional after early-life trauma, although its effectiveness appears reduced. This is in sharp contrast to the effects of early life trauma during infancy, where social buffering of the infant is more robustly impacted. We suggest that the infant social buffering circuit is disengaged by early-life trauma, while the adolescent PFC-dependent social buffering circuit may use a safety signal with unreliable safety value.
Collapse
Affiliation(s)
- Patrese A. Robinson-Drummer
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
| | - Anna Blomkvist
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Stephanie Chan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Stephen Tan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Cecilia Delmer
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Kira Wood
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Aliza Sloan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, United States
| | - Lily Jacobs
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Eliana Fine
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Divija Chopra
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Neural Science, New York University, New York, NY, United States
| | - Chaim Sandler
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Giselle Kamenetzky
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
- Instituto de Investigaciones Médicas A Lanari, IDIM-CONICET, Universidad de Buenos Aires, Combatientes de Malvinas 3150 (CP 1427), Buenos Aires, Argentina
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Department of Child and Adolescent Psychiatry, Child Study Center at NYU Langone Medical Center, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
43
|
Vidal-Ribas P, Benson B, Vitale AD, Keren H, Harrewijn A, Fox NA, Pine DS, Stringaris A. Bidirectional Associations Between Stress and Reward Processing in Children and Adolescents: A Longitudinal Neuroimaging Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:893-901. [PMID: 31324591 DOI: 10.1016/j.bpsc.2019.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/01/2019] [Accepted: 05/21/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Aberrations in both neural reward processing and stress reactivity are associated with increased risk for mental illness; yet, how these two factors relate to each other remains unclear. Several studies suggest that stress exposure impacts reward function, thus increasing risk for psychopathology. However, the alternative hypothesis, in which reward dysfunction impacts stress reactivity, has been rarely examined. The current study aimed to test both hypotheses using a longitudinal design. METHODS Participants were 38 children (23 girls; 61%) from a prospective cohort study. A standard stress-exposure measure was collected at 7 years of age. Children performed a well-validated imaging reward paradigm at age 10, and a standardized acute psychological stress laboratory protocol was administered both at age 10 and at age 13. Structural equation modeling was used to examine bidirectional associations between stress and neural response to reward anticipation. RESULTS Higher exposure to stressful life events at age 7 predicted lower neural response to reward anticipation in regions of the basal ganglia at age 10, which included ventral caudate, nucleus accumbens, putamen, and globus pallidus. Lower response to reward anticipation in medial prefrontal and anterior cingulate cortex predicted higher stress reactivity at age 13. CONCLUSIONS Our findings provide support for bidirectional associations between stress and reward processing, in that stress may impact reward anticipation, but also in that reduced reward anticipation may increase susceptibility to stress.
Collapse
Affiliation(s)
- Pablo Vidal-Ribas
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Brenda Benson
- Section on Development and Affective Neuroscience, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Aria D Vitale
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Hanna Keren
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Anita Harrewijn
- Section on Development and Affective Neuroscience, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Nathan A Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland
| | - Daniel S Pine
- Section on Development and Affective Neuroscience, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Argyris Stringaris
- Mood Brain and Development Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
44
|
Resting state coupling between the amygdala and ventromedial prefrontal cortex is related to household income in childhood and indexes future psychological vulnerability to stress. Dev Psychopathol 2019; 31:1053-1066. [PMID: 31084654 DOI: 10.1017/s0954579419000592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While child poverty is a significant risk factor for poor mental health, the developmental pathways involved with these associations are poorly understood. To advance knowledge about these important linkages, the present study examined the developmental sequelae of childhood exposure to poverty in a multiyear longitudinal study. Here, we focused on exposure to poverty, neurobiological circuitry connected to emotion dysregulation, later exposure to stressful life events, and symptoms of psychopathology. We grounded our work in a biopsychosocial perspective, with a specific interest in "stress sensitization" and emotion dysregulation. Motivated by past work, we first tested whether exposure to poverty was related to changes in the resting-state coupling between two brain structures centrally involved with emotion processing and regulation (the amygdala and the ventromedial prefrontal cortex; vmPFC). As predicted, we found lower household income at age 10 was related to lower resting-state coupling between these areas at age 15. We then tested if variations in amygdala-vmPFC connectivity interacted with more contemporaneous stressors to predict challenges with mental health at age 16. In line with past reports showing risk for poor mental health is greatest in those exposed to early and then later, more contemporaneous stress, we predicted and found that lower vmPFC-amygdala coupling in the context of greater contemporaneous stress was related to higher levels of internalizing and externalizing symptoms. We believe these important interactions between neurobiology and life history are an additional vantage point for understanding risk and resiliency, and suggest avenues for prediction of psychopathology related to early life challenge.
Collapse
|
45
|
Reliability of Fronto-Amygdala Coupling during Emotional Face Processing. Brain Sci 2019; 9:brainsci9040089. [PMID: 31010224 PMCID: PMC6523743 DOI: 10.3390/brainsci9040089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022] Open
Abstract
One of the most exciting translational prospects for brain imaging research is the potential use of functional magnetic resonance imaging (fMRI) 'biomarkers' to predict an individual's risk of developing a neuropsychiatric disorder or the likelihood of responding to a particular intervention. This proposal depends critically on reliable measurements at the level of the individual. Several previous studies have reported relatively poor reliability of amygdala activation during emotional face processing, a key putative fMRI 'biomarker'. However, the reliability of amygdala connectivity measures is much less well understood. Here, we assessed the reliability of task-modulated coupling between three seed regions (left and right amygdala and the subgenual anterior cingulate cortex) and the dorsomedial frontal/cingulate cortex (DMFC), measured using a psychophysiological interaction analysis in 29 healthy individuals scanned approximately two weeks apart. We performed two runs on each day of three different emotional face-processing tasks: emotion identification, emotion matching, and gender classification. We tested both between-day reliability and within-day (between-run) reliability. We found good-to-excellent within-subject reliability of amygdala-DMFC coupling, both between days (in two tasks), and within day (in one task). This suggests that disorder-relevant regional coupling may be sufficiently reliable to be used as a predictor of treatment response or clinical risk in future clinical studies.
Collapse
|
46
|
Albott CS, Forbes MK, Anker JJ. Association of Childhood Adversity With Differential Susceptibility of Transdiagnostic Psychopathology to Environmental Stress in Adulthood. JAMA Netw Open 2018; 1:e185354. [PMID: 30646399 PMCID: PMC6324405 DOI: 10.1001/jamanetworkopen.2018.5354] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
IMPORTANCE Multivariable comorbidity research indicates that childhood adversity increases the risk for the development of common mental disorders. This risk is explained by underlying internalizing and externalizing transdiagnostic constructs that are amplified by environmental stressors. The differential susceptibility model suggests that this interaction of risk and environment is bidirectional: at-risk individuals will have worse outcomes in high-stress environments but better outcomes in in low-stress environments. OBJECTIVE To test the differential susceptibility model by examining how a history of adverse childhood experiences moderates the association between life stress and transdiagnostic psychopathology. DESIGN, SETTING, AND PARTICIPANTS Data came from the US National Epidemiological Survey on Alcohol and Related Conditions (NESARC), a population-based observational longitudinal survey administered to adults (≥18 years of age). Participants completed the survey at wave 1 (from 2001 through 2002) and wave 2 (from 2004 through 2005). Responses from 34 458 participants were used for the analyses from March 3, 2017, through October 8, 2018. MAIN OUTCOMES AND MEASURES Latent variables for internalizing-fear, internalizing-distress, externalizing, and general psychopathology were created to represent continuous levels of psychopathology in each wave. Latent variables were also created to represent continuous levels of life stress at each wave. Level of childhood adversity was characterized based on the number of types of childhood adversity experienced (no [0 types], low [1-2 types], and high [≥3 types] exposure). Analyses examined how the interaction between level of childhood adversity and adult life stress was associated with change in adult transdiagnostic psychopathology factors. RESULTS Of the 34 458 participants included in the analysis (58.0% women and 42.0% men; mean [SD] age, 46.0 [17.4] years at wave 1 and 49.0 [17.3] years at wave 2), 40.5% had no adverse childhood experiences, 34.6% had 1 to 2, and 24.9% had 3 or more. At wave 1, 61.5% of the sample endorsed at least 1 stressful life event and 27.2% met criteria for at least 1 mental disorder; at wave 2, these figures were 64.7% and 29.7%, respectively. Childhood adversity moderated the association between changes in adult life stress and changes in all transdiagnostic psychopathology factors. Specifically, higher levels of childhood adversity had a stronger association between adult life stress and adult transdiagnostic psychopathology factors. Further, significant differences between childhood adversity groups occurred in the mean scores of all transdiagnostic psychopathology factors for both increases and decreases in life stress, providing preliminary evidence of differential susceptibility. CONCLUSIONS AND RELEVANCE Results provide empirical support for childhood adversity as a differential susceptibility factor engendering heightened functional and dysfunctional reactivity to later stress.
Collapse
Affiliation(s)
- C Sophia Albott
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis
| | - Miriam K Forbes
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis
- Centre for Emotional Health, Macquarie University, Sydney, Australia
| | - Justin J Anker
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis
| |
Collapse
|
47
|
Ironside M, Kumar P, Kang MS, Pizzagalli DA. Brain mechanisms mediating effects of stress on reward sensitivity. Curr Opin Behav Sci 2018; 22:106-113. [PMID: 30349872 PMCID: PMC6195323 DOI: 10.1016/j.cobeha.2018.01.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Acute and chronic stress have dissociable effects on reward sensitivity, and a better understanding of these effects promises to elucidate the pathophysiology of stress-related disorders, particularly depression. Recent preclinical and human findings suggest that stress particularly affects reward anticipation; chronic stress perturbates dopamine signaling in the medial prefrontal cortex and ventral striatum; and such effects are further moderated by early adversities. Additionally, a systems-level approach is uncovering the interplay among striatal, limbic and control networks giving rise to stress-related, blunted reward sensitivity. Together, this cross-species confluence has not only enriched our understanding of stress-reward links but also highlighted the role of neuropeptides and opioid receptors in such effects, and thereby identified novel targets for stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Ironside
- McLean Hospital, 115 Mill St, Belmont, MA 02476, USA Telephone: +1 800-333-0338; Fax: +1 617-855-4231
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Poornima Kumar
- McLean Hospital, 115 Mill St, Belmont, MA 02476, USA Telephone: +1 800-333-0338; Fax: +1 617-855-4231
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Min-Su Kang
- McLean Hospital, 115 Mill St, Belmont, MA 02476, USA Telephone: +1 800-333-0338; Fax: +1 617-855-4231
| | - Diego A. Pizzagalli
- McLean Hospital, 115 Mill St, Belmont, MA 02476, USA Telephone: +1 800-333-0338; Fax: +1 617-855-4231
- Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| |
Collapse
|