1
|
İşlek Y, Hamzeli N, Aktaş A, Köksal Çakırlar F. Isolation and characterization a novel Acinetobacter bacteriophage with activity against several multidrug-resistant Gram-negative bacteria. Microb Pathog 2025; 203:107488. [PMID: 40090498 DOI: 10.1016/j.micpath.2025.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Acinetobacter baumannii (A. baumannii) is a notorious nosocomial pathogen that is frequently associated with multidrug resistance around the world. Endolysin is a bacteriophage-produced hydrolytic enzyme. In this study, an urban waste water sample (1 L) was collected from Istanbul. A double-agar plating technique was used for host range analysis. The purified genomic DNA sequences were performed on the Miseq. De novo assembly of the crude sequences yielded a double-stranded DNA molecule with a length of 45,679 bp and a guanine-cytosine content of 37.6%. Genome annotation revealed that the vB_AbaM_YNAF genome comprises 85 open reading frames, 23 of which are functional and do not define any tRNA-rRNA genes. Electron microscopy examination and phylogenetic analysis of the genome revealed that vB_AbaM_YNAF represents a novel origin of an unclassified Obolenskvirus belonging to the class Caudoviricetes. vB_AbaM_YNAF infected one reference and three different multidrug-resistant (MDR) strains of each of A. baumannii and K. pneumoniae. However, it did not have any effect on a reference E. coli strain. Based on all of these findings, LysYAN could be a potential agent for treating MDR-Gram-negative bacteria. Further investigations on vB_AbaM_YNAF may be beneficial for designing an alternative weapon with probable wide host-range activity to fight MDR infections.
Collapse
Affiliation(s)
- Yelda İşlek
- Department of Medical Microbiology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye; Vocational College, Kapadokya University, Nevşehir, Türkiye.
| | - Nur Hamzeli
- Department of Medical Microbiology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye; Turkish Red Crescent, Northern Marmara Regional Blood Center, İstanbul, Türkiye.
| | - Ahmet Aktaş
- Department of Medical Microbiology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye; İstanbul Provincial Health Directorate, İstanbul Public Health Laboratory No. 2, İstanbul, Türkiye
| | - Fatma Köksal Çakırlar
- Department of Medical Microbiology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| |
Collapse
|
2
|
Venkataraman S, Savithri HS, Murthy MRN. Recent advances in the structure and assembly of non-enveloped spherical viruses. Virology 2025; 606:110454. [PMID: 40081202 DOI: 10.1016/j.virol.2025.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/15/2025]
Abstract
Non-enveloped spherical viruses (NSVs) are characterized by their highly symmetrical capsids that serve to protect and encapsulate the genomes. The stability and functionality of the capsids determine their ability for survival and proliferation in harsh environments. Over four decades of structural studies using X-ray crystallography and NMR have provided static, high-resolution snapshots of several viruses. Recently, advances in cryo-electron microscopy, together with AI-based structure predictions and traditional methods, have aided in elucidating not only the structural details of complex NSVs but also the mechanistic processes underlying their assembly. The knowledge thus generated has been instrumental in critical understanding of the conformational changes and interactions associated with the coat proteins, the genome, and the auxiliary factors that regulate the capsid dynamics. This review seeks to summarize current literature regarding the structure and assembly of the NSVs and discusses how the data has facilitated a deeper understanding of their biology and phylogeny.
Collapse
Affiliation(s)
| | | | - M R N Murthy
- Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
3
|
Dos Santos Natividade R, Danzer B, Somoza V, Koehler M. Atomic force microscopy at the forefront: unveiling foodborne viruses with biophysical tools. NPJ VIRUSES 2025; 3:25. [PMID: 40295860 PMCID: PMC11971264 DOI: 10.1038/s44298-025-00107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/13/2025] [Indexed: 04/30/2025]
Abstract
Foodborne viruses are significant public health threats, capable of causing life-threatening infections and posing major risks for future pandemics. However, the development of vaccines and treatments remains limited due to gaps in understanding their biophysical properties. Among these viruses, noroviruses are currently the leading cause of viral gastroenteritis globally and are responsible for numerous foodborne outbreaks. In this review, we explore the use of biophysical methods, with a focus on atomic force microscopy (AFM), to study foodborne viruses. We demonstrate how AFM can provide crucial insights into virus-host interactions, transmission dynamics, and environmental stability. We also show that the integration of various biophysical approaches offers new opportunities for advancing our understanding of foodborne viruses, ultimately guiding the development of effective prevention strategies and antiviral therapies.
Collapse
Affiliation(s)
| | - Barbara Danzer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- School of Life Science, Technical University of Munich, Freising, Germany
| | - Veronika Somoza
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
- Chair of Nutritional Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
- TUM Junior Fellow at the Chair of Nutritional Systems Biology, Technical University of Munich, Freising, Germany.
| |
Collapse
|
4
|
Sanchez JE, Guo W, Li C, Li L, Xiao C. JRSeek: Artificial Intelligence Meets Jelly Roll Fold Classification in Viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635132. [PMID: 39974893 PMCID: PMC11838296 DOI: 10.1101/2025.01.27.635132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The jelly roll (JR) fold is the most common structural motif found in the capsid and nucleocapsid of viruses. Its pervasiveness across many different viral families motives developing a tool to predict its presence from a sequence. In the current work, logistic regression (LR) models trained on six different large language model (LLM) embeddings exhibited over 95% accuracy in differentiating JR from non-JR sequences. The dataset used for training and testing included sequences from single JR viruses, non-JR viruses, and non-virus immunoglobulin-like β-sandwich (IGLBS) proteins which closely resemble the JR fold in structure. The high accuracy is particularly remarkable given the low sequence similarity across viral families and the balanced nature of the dataset. Also, the accuracy of the models was independent of LLM embeddings, suggesting that peak accuracy for predicting viral JR folds hinges more on the data quality and quantity rather than on the specific mathematical models used. Given that many viral capsid and nucleocapsid structures have yet to be resolved, using sequence-based LLMs is a promising strategy that can readily be applied to available data. Principal Component Analysis of the Bert-U100 embeddings demonstrates that most IGLBS sequences and a subset of JR and non-JR sequences are distinguishable even before the application of the LR model, but the LR model is necessary to differentiate a subset of more ambiguous sequences. When applied to double JR folds, the Bert-U100 model was able to assign the JR motif for some viral families, providing evidence for the model's generalizability. However, for other families, this generalizability was not observed, motivating a future need to develop other models informed by double JR folds. Lastly, the Bert-U100 model was also able to predict whether sequences from a dataset of unclassified viruses produce the JR fold. Two examples are given and the JR predictions are corroborated by AlphaFold3. Altogether, this work demonstrates that JR folds can, in principle, be predicted from their sequences.
Collapse
|
5
|
Celitan E, Stanevičienė R, Servienė E, Serva S. Highly stable Saccharomyces cerevisiae L-BC capsids with versatile packing potential. Front Bioeng Biotechnol 2024; 12:1456453. [PMID: 39386045 PMCID: PMC11461329 DOI: 10.3389/fbioe.2024.1456453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Virus-like particles (VLPs) are promising nanoscaffolds in development of vaccines and nanodelivery systems. Along with efficient production in various expression systems, they also offer extensive functionalization options. Nevertheless, the ultimate integrity of VLPs is an important burden for the applicability in nanobiotechnology. In this study, we characterize the Saccharomyces cerevisiae L-BC VLPs synthesized and purified from Escherichia coli and Saccharomyces cerevisiae cells. The particles exhibited prominent size stability in buffers within a range of ionic strength conditions, pH environment and presence of magnesium ions during the long-term storage at temperatures up to 37°C. Bacteria-derived particles exhibited alleviated stability in acidic pH values, higher ionic strength and temperature compared to yeast-derived particles. Taking advantage of gene engineering, 120 copies of red fluorescent protein mCherry were successfully encapsulated into both preparations of L-BC VLPs, while passive diffusion enabled encapsulation of antimicrobial peptide nisin into the yeast-derived unmodified VLPs. Our findings indicate that L-BC VLPs generally exhibit high long-term stability under various conditions, while yeast-derived L-BC VLPs are more stable under the elevated temperatures than bacteria-derived particles. Stability studies and encapsulation of particles by different molecules involving alternative strategies delineate the L-BC VLP potential to be developed into versatile nanodelivery system.
Collapse
Affiliation(s)
- Enrika Celitan
- Laboratory of Nucleic Acid Biochemistry, Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, Vilnius, Lithuania
| | - Saulius Serva
- Laboratory of Nucleic Acid Biochemistry, Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
6
|
May ER. Inside the capsid: Revealing viral genome organization through multiscale simulations. Structure 2024; 32:652-653. [PMID: 38848682 DOI: 10.1016/j.str.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
In a recent issue of Nature, Coshic et al. employ a computational multiscale approach to package the complete HK97 viral genome into its capsid. They find both good agreement with experimental observations and shed new light on the heterogeneity of genome structures and the mechanism by which they package.
Collapse
Affiliation(s)
- Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
7
|
Arul SS, Balakrishnan B, Handanahal SS, Venkataraman S. Viral nanoparticles: Current advances in design and development. Biochimie 2024; 219:33-50. [PMID: 37573018 DOI: 10.1016/j.biochi.2023.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Viral nanoparticles (VNPs) are self-assembling, adaptable delivery systems for vaccines and other therapeutic agents used in a variety of biomedical applications. The potential of viruses to invade and infect various hosts and cells renders them suitable as potential nanocarriers, possessing distinct functional characteristics, immunogenic properties, and improved biocompatibility and biodegradability. VNPs are frequently produced through precise genetic or chemical engineering, which involves adding diverse sequences or functional payloads to the capsid protein (CP). Several spherical and helical plant viruses, bacteriophages, and animal viruses are currently being used as VNPs, or non-infectious virus-like particles (VLPs). In addition to their broad use in cancer therapy, vaccine technology, diagnostics, and molecular imaging, VNPs have made important strides in the realms of tissue engineering, biosensing, and antimicrobial prophylaxis. They are also being used in energy storage cells due to their binding and piezoelectric properties. The large-scale production of VNPs for research, preclinical testing, and clinical use is fraught with difficulties, such as those relating to cost-effectiveness, scalability, and purity. Consequently, many plants- and microorganism-based platforms are being developed, and newer viruses are being explored. The goal of the current review is to provide an overview of these advances.
Collapse
|
8
|
Shtykova EV, Dubrovin EV, Ksenofontov AL, Gifer PK, Petoukhov MV, Tokhtar VK, Sapozhnikova IM, Stavrianidi AN, Kordyukova LV, Batishchev OV. Structural Insights into Plant Viruses Revealed by Small-Angle X-ray Scattering and Atomic Force Microscopy. Viruses 2024; 16:427. [PMID: 38543792 PMCID: PMC10975137 DOI: 10.3390/v16030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/23/2024] Open
Abstract
The structural study of plant viruses is of great importance to reduce the damage caused by these agricultural pathogens and to support their biotechnological applications. Nowadays, X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are well accepted methods to obtain the 3D protein structure with the best resolution. However, for large and complex supramolecular structures such as plant viruses, especially flexible filamentous ones, there are a number of technical limitations to resolving their native structure in solution. In addition, they do not allow us to obtain structural information about dynamics and interactions with physiological partners. For these purposes, small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are well established. In this review, we have outlined the main principles of these two methods and demonstrated their advantages for structural studies of plant viruses of different shapes with relatively high spatial resolution. In addition, we have demonstrated the ability of AFM to obtain information on the mechanical properties of the virus particles that are inaccessible to other experimental techniques. We believe that these under-appreciated approaches, especially when used in combination, are valuable tools for studying a wide variety of helical plant viruses, many of which cannot be resolved by classical structural methods.
Collapse
Affiliation(s)
- Eleonora V. Shtykova
- National Research Centre, “Kurchatov Institute”, Moscow 123098, Russia; (E.V.S.)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Evgeniy V. Dubrovin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L. Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Polina K. Gifer
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Maxim V. Petoukhov
- National Research Centre, “Kurchatov Institute”, Moscow 123098, Russia; (E.V.S.)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Valeriy K. Tokhtar
- Scientific and Educational Center, Botanical Garden of the National Research University “BelSU”, Belgorod 308033, Russia;
| | - Irina M. Sapozhnikova
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Ekaterinburg 620002, Russia;
| | - Andrey N. Stavrianidi
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| |
Collapse
|
9
|
Shrivastav G, Borkotoky S, Dey D, Singh B, Malhotra N, Azad K, Jayaram B, Agarwal M, Banerjee M. Structure and energetics guide dynamic behaviour in a T = 3 icosahedral virus capsid. Biophys Chem 2024; 305:107152. [PMID: 38113782 DOI: 10.1016/j.bpc.2023.107152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Although virus capsids appear as rigid, symmetric particles in experimentally determined structures; biochemical studies suggest a significant degree of structural flexibility in the particles. We carried out all-atom simulations on the icosahedral capsid of an insect virus, Flock House Virus, which show intriguing differences in the degree of flexibility of quasi-equivalent capsid subunits consistent with previously described biological behaviour. The flexibility of all the β and γ subunits of the protein and RNA fragments is analysed and compared. Both γA subunit and RNA fragment exhibit higher flexibility than the γB and γC subunits. The capsid shell is permeable to the bidirectional movement of water molecules, and the movement is heavily influenced by the geometry of the capsid shell along specific symmetry axes. In comparison to the symmetry axes along I5 and I3, the I2 axis exhibits a slightly higher water content. This enriched water environment along I2 could play a pivotal role in facilitating the structural transitions necessary for RNA release, shedding some light on the intricate and dynamic processes underlying the viral life cycle. Our study suggests that the physical characterization of whole virus capsids is the key to identifying biologically relevant transition states in the virus life cycle and understanding the basis of virus infectivity.
Collapse
Affiliation(s)
- Gourav Shrivastav
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Subhomoi Borkotoky
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Debajit Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhumika Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nidhi Malhotra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kimi Azad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - B Jayaram
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Manish Agarwal
- Computer Services Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
10
|
Verdaguer N, Ferrer-Orta C, Garriga D. X-Ray Crystallography of Viruses. Subcell Biochem 2024; 105:135-169. [PMID: 39738946 DOI: 10.1007/978-3-031-65187-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Since the 1970s and for about 40 years, X-ray crystallography has been by far the most powerful approach for determining virus structures at close to atomic resolutions. Information provided by these studies has deeply and extensively enriched and shaped our vision of the virus world. In turn, the ever-increasing complexity and size of the virus structures being investigated have constituted a major driving force for methodological and conceptual developments in X-ray macromolecular crystallography (MX). Landmarks of the structure determination of viral particles, such as the ones from the first animal viruses or from the first membrane-containing viruses, have often been associated with methodological breakthroughs in X-ray crystallography.In recent years, the advent of new detectors with fast frame rate, high sensitivity, and low-noise background has changed the way MX data is collected, enabling new types of studies at X-ray free-electron laser and synchrotron facilities. In parallel, a very high degree of automation has been established at most MX synchrotron beamlines, allowing the screening of large number of crystals with very high throughputs. This has proved crucial for fragment-based drug design projects, of special relevance for the identification of new antiviral drugs.This change in the usage of X-ray crystallography is also mirrored in the recent advances in cryo-electron microscopy (cryo-EM), which can nowadays produce macromolecule structures at resolutions comparable to those obtained by MX. Since this technique is especially amenable for large protein assemblies, cryo-EM has progressively turned into the favored technique to study the structure of large viral particles at high resolution.In this chapter, we present the common ground of proteins and virus crystallography with an emphasis in the peculiarities of virus-related studies.
Collapse
Affiliation(s)
- Núria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain.
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Damià Garriga
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Spain
| |
Collapse
|
11
|
Jeppesen M, André I. Accurate prediction of protein assembly structure by combining AlphaFold and symmetrical docking. Nat Commun 2023; 14:8283. [PMID: 38092742 PMCID: PMC10719378 DOI: 10.1038/s41467-023-43681-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
AlphaFold can predict the structures of monomeric and multimeric proteins with high accuracy but has a limit on the number of chains and residues it can fold. Here we show that a combination of AlphaFold and all-atom symmetric docking simulations enables highly accurate prediction of the structure of complex symmetrical assemblies. We present a method to predict the structure of complexes with cubic - tetrahedral, octahedral and icosahedral - symmetry from sequence. Focusing on proteins where AlphaFold can make confident predictions on the subunit structure, 27 cubic systems were assembled with a median TM-score of 0.99 and a DockQ score of 0.72. 21 had TM-scores of above 0.9 and were categorized as acceptable- to high-quality according to DockQ. The resulting models are energetically optimized and can be used for detailed studies of intermolecular interactions in higher-order symmetrical assemblies. The results demonstrate how explicit treatment of structural symmetry can significantly expand the size and complexity of AlphaFold predictions.
Collapse
Affiliation(s)
- Mads Jeppesen
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Nonappa. Precision nanoengineering for functional self-assemblies across length scales. Chem Commun (Camb) 2023; 59:13800-13819. [PMID: 37902292 DOI: 10.1039/d3cc02205f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
As nanotechnology continues to push the boundaries across disciplines, there is an increasing need for engineering nanomaterials with atomic-level precision for self-assembly across length scales, i.e., from the nanoscale to the macroscale. Although molecular self-assembly allows atomic precision, extending it beyond certain length scales presents a challenge. Therefore, the attention has turned to size and shape-controlled metal nanoparticles as building blocks for multifunctional colloidal self-assemblies. However, traditionally, metal nanoparticles suffer from polydispersity, uncontrolled aggregation, and inhomogeneous ligand distribution, resulting in heterogeneous end products. In this feature article, I will discuss how virus capsids provide clues for designing subunit-based, precise, efficient, and error-free self-assembly of colloidal molecules. The atomically precise nanoscale proteinic subunits of capsids display rigidity (conformational and structural) and patchy distribution of interacting sites. Recent experimental evidence suggests that atomically precise noble metal nanoclusters display an anisotropic distribution of ligands and patchy ligand bundles. This enables symmetry breaking, consequently offering a facile route for two-dimensional colloidal crystals, bilayers, and elastic monolayer membranes. Furthermore, inter-nanocluster interactions mediated via the ligand functional groups are versatile, offering routes for discrete supracolloidal capsids, composite cages, toroids, and macroscopic hierarchically porous frameworks. Therefore, engineered nanoparticles with atomically precise structures have the potential to overcome the limitations of molecular self-assembly and large colloidal particles. Self-assembly allows the emergence of new optical properties, mechanical strength, photothermal stability, catalytic efficiency, quantum yield, and biological properties. The self-assembled structures allow reproducible optoelectronic properties, mechanical performance, and accurate sensing. More importantly, the intrinsic properties of individual nanoclusters are retained across length scales. The atomically precise nanoparticles offer enormous potential for next-generation functional materials, optoelectronics, precision sensors, and photonic devices.
Collapse
Affiliation(s)
- Nonappa
- Facutly of Engineering and Natural Sciences, Tampere University, FI-33720, Tampere, Finland.
| |
Collapse
|
13
|
Ni Z, Chen L, Yun T, Xie R, Ye W, Hua J, Zhu Y, Zhang C. Inactivation Performance of Pseudorabies Virus as African Swine Fever Virus Surrogate by Four Commercialized Disinfectants. Vaccines (Basel) 2023; 11:vaccines11030579. [PMID: 36992163 DOI: 10.3390/vaccines11030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
This study was based on similar physicochemical characteristics of pseudorabies virus (PRV) and African swine fever virus (ASFV). A cellular model for evaluation of disinfectants was established with PRV as an alternative marker strain. In the present study, we evaluated the disinfection performance of commonly used commercialized disinfectants on PRV to provide a reference for the selection of good ASFV disinfectants. In addition, the disinfection (anti-virus) performances for four disinfectants were investigated based on the minimum effective concentration, onset time, action time, and operating temperature. Our results demonstrated that glutaraldehyde decamethylammonium bromide solution, peracetic acid solution, sodium dichloroisocyanurate, and povidone-iodine solution effectively inactivated PRV at concentrations 0.1, 0.5, 0.5, and 2.5 g/L on different time points 30, 5, 10, and 10 min, respectively. Specifically, peracetic acid exhibits optimized overall performance. Glutaraldehyde decamethylammonium bromide is cost effective but requires a long action time and the disinfectant activity is severely affected by low temperatures. Furthermore, povidone-iodine rapidly inactivates the virus and is not affected by environmental temperature, but its application is limited by a poor dilution ratio such as for local disinfection of the skin. This study provides a reference for the selection of disinfectants for ASFV.
Collapse
Affiliation(s)
- Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ronghui Xie
- Zhejiang Provincial Center for Animal Disease Control, Hangzhou 310018, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
14
|
Yi S, Kim SY, Vincent MP, Yuk SA, Bobbala S, Du F, Scott EA. Dendritic peptide-conjugated polymeric nanovectors for non-toxic delivery of plasmid DNA and enhanced non-viral transfection of immune cells. iScience 2022; 25:104555. [PMID: 35769884 PMCID: PMC9234717 DOI: 10.1016/j.isci.2022.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 10/26/2022] Open
Abstract
Plasmid DNA (pDNA) transfection is advantageous for gene therapies requiring larger genetic elements, including "all-in-one" CRISPR/Cas9 plasmids, but is limited by toxicity as well as poor intracellular release and transfection efficiency in immune cell populations. Here, we developed a synthetic non-viral gene delivery platform composed of poly(ethylene glycol)-b-poly(propylene sulfide) copolymers linked to a cationic dendritic peptide (DP) via a reduceable bond, PEG-b-PPS-ss-DP (PPDP). A library of self-assembling PPDP polymers was synthesized and screened to identify optimal constructs capable of transfecting macrophages with small (pCMV-DsRed, 4.6 kb) and large (pL-CRISPR.EFS.tRFP, 11.7 kb) plasmids. The optimized PPDP construct transfected macrophages, fibroblasts, dendritic cells, and T cells more efficiently and with less toxicity than a commercial Lipo2K reagent, regardless of pDNA size and under standard culture conditions in the presence of serum. The PPDP technology described herein is a stimuli-responsive polymeric nanovector that can be leveraged to meet diverse challenges in gene delivery.
Collapse
Affiliation(s)
- Sijia Yi
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sun-Young Kim
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Michael P. Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Simseok A. Yuk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, USA
| | - Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Evan Alexander Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Isolation and Characterization of a Novel Siphoviridae Phage, vB_AbaS_TCUP2199, Infecting Multidrug-Resistant Acinetobacter baumannii. Viruses 2022; 14:v14061240. [PMID: 35746711 PMCID: PMC9228384 DOI: 10.3390/v14061240] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii (MDRAB) is a pathogen recognized as antimicrobial-resistant bacteria involved in healthcare-associated infections. Resistance to antibiotics has made alternative therapies necessary. Bacteriophage therapy is considered a potential solution to treat MDRAB. In this study, we isolated and characterized the phage vB_AbaS_TCUP2199 (TCUP2199), which can infect MDRAB. Morphological analysis revealed that TCUP2199 belongs to the Siphoviridae family. TCUP2199 has a wide host range, can adsorb rapidly (68.28% in 2 min), and has a burst size of 196 PFU/cell. At least 16 distinct structural proteins were visualized by SDS polyacrylamide gel electrophoresis. A stability test showed that TCUP2199 was stable at 37 °C and pH 7. Genome analysis of TCUP2199 showed that it consists of a double-stranded DNA genome of 79,572 bp with a G+C content of 40.39%, which contains 98 putative open reading frames, none of which is closely related to the bacteriophage genome sequence that was found in the public database. TCUP2199 shows similarity in genomic organization and putative packaging mechanism with Achromobacter phage JWF and Pseudoalteromonas phage KB12-38 based on protein BLAST and phylogenetic analysis. Because of those unique characteristics, we consider TCUP2199 to be a novel phage that is suitable for inclusion in a phage cocktail to treat A. baumannii infection.
Collapse
|
16
|
Yu K, Hidaka K, Sugiyama H, Endo M, Matsumura S, Ikawa Y. A hexameric ribozyme nanostructure formed by double-decker assembly of a pair of triangular ribozyme trimers. Chembiochem 2022; 23:e202100573. [PMID: 35088928 DOI: 10.1002/cbic.202100573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022]
Abstract
The modular architecture of naturally occurring ribozymes makes them a promising class of structural platforms to design and assemble three-dimensional (3D) RNA nanostructures, into which the catalytic ability of the platform ribozyme can be installed. We have constructed and analyzed RNA nanostructures with polygonal-shaped (closed) ribozyme oligomers by assembling unit RNAs derived from the Tetrahymena group I intron with a typical modular architecture. In this study, we dimerized ribozyme trimers with a triangular shape by introducing three pillar units. The resulting double-decker nanostructures containing six ribozyme units were characterized biochemically and their structures were observed by atomic force microscopy. The double-decker hexamers exhibited higher catalytic activity than the parent ribozyme trimers.
Collapse
Affiliation(s)
- Kai Yu
- University of Toyama: Toyama Daigaku, Department of Chemistry, JAPAN
| | - Kumi Hidaka
- Kyoto University: Kyoto Daigaku, Department of Chemistry, JAPAN
| | | | | | | | - Yoshiya Ikawa
- University of Toyama, Chemistry, Gofuku 3190, 930-8555, Toyama, JAPAN
| |
Collapse
|
17
|
Knobler CM, Gelbart WM. How and why RNA genomes are (partially) ordered in viral capsids. Curr Opin Virol 2021; 52:203-210. [PMID: 34959081 DOI: 10.1016/j.coviro.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
There is a long and productive progression of X-ray crystallographic and electron microscopy studies establishing the structures of the spherical/icosahedral and cylindrical/helical capsids of a wide range of virus particles. This is because of the high degree of order - down to the Angstrom scale - in the secondary/tertiary/quaternary structure of the proteins making up the capsids. In stark contradistinction, very little is known about the structure of DNA or RNA genomes inside these capsids. This is because of the relatively large extent of disorder in the confined DNA or RNA, due to several fundamental reasons: topological defects in the DNA case, and secondary/tertiary structural disorder in the RNA case. In this article we discuss the range of partial order associated with the encapsidated genomes of single-stranded RNA viruses, focusing on the contrast between mono-partite and multi-partite viruses and on the effects of sequence-specific and non-specific interactions between RNA and capsid proteins.
Collapse
Affiliation(s)
- Charles M Knobler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, United States
| | - William M Gelbart
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, United States; Molecular Biology Institute, UCLA, United States; California NanoSystems Institute, UCLA, United States.
| |
Collapse
|
18
|
Adams MC, Schiltz CJ, Heck ML, Chappie JS. Crystal structure of the potato leafroll virus coat protein and implications for viral assembly. J Struct Biol 2021; 214:107811. [PMID: 34813955 DOI: 10.1016/j.jsb.2021.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Luteoviruses, poleroviruses, and enamoviruses are insect-transmitted, agricultural pathogens that infect a wide array of plants, including staple food crops. Previous cryo-electron microscopy studies of virus-like particles show that luteovirid viral capsids are built from a structural coat protein that organizes with T = 3 icosahedral symmetry. Here, we present the crystal structure of a truncated version of the coat protein monomer from potato leafroll virus at 1.80-Å resolution. In the crystal lattice, monomers pack into flat sheets that preserve the two-fold and three-fold axes of icosahedral symmetry and show minimal structural deviations when compared to the full-length subunits of the assembled virus-like particle. These observations have important implications in viral assembly and maturation and suggest that the CP N-terminus and its interactions with RNA play an important role in generating capsid curvature.
Collapse
Affiliation(s)
- Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Carl J Schiltz
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michelle L Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA; Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, NY 14853, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Coulibaly F. virusMED: your travel guide to the virus world. IUCRJ 2021; 8:857-859. [PMID: 34804539 PMCID: PMC8562669 DOI: 10.1107/s2052252521011350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As we respond to viral epidemics and accelerate the discovery of new viruses, sifting through vast volumes of structural virology data could rapidly become an impossible task. virusMED is a curated atlas of metal/drug-binding and immunological hotspots in viral protein structures that provides a navigation guide for structure-function analysis and the development of antiviral strategies.
Collapse
Affiliation(s)
- Fasséli Coulibaly
- Infection Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
20
|
Cai B, Gong Y, Wang Z, Wang L, Chen W. Microneedle arrays integrated with living organisms for smart biomedical applications. Theranostics 2021; 11:10012-10029. [PMID: 34815801 PMCID: PMC8581439 DOI: 10.7150/thno.66478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Various living organisms have proven to influence human health significantly, either in a commensal or pathogenic manner. Harnessing the creatures may remarkably improve human healthcare and cure the intractable illness that is challenged using traditional drugs or surgical approaches. However, issues including limited biocompatibility, poor biosafety, inconvenience for personal handling, and low patient compliance greatly hinder the biomedical and clinical applications of living organisms when adopting them for disease treatment. Microneedle arrays (MNAs), emerging as a promising candidate of biomedical devices with the functional diversity and minimal invasion, have exhibited great potential in the treatment of a broad spectrum of diseases, which is expected to improve organism-based therapies. In this review, we systemically summarize the technologies employed for the integration of MNAs with specific living organisms including diverse viruses, bacteria, mammal cells and so on. Moreover, their applications such as vaccination, anti-infection, tumor therapy and tissue repairing are well illustrated. Challenges faced by current strategies, and the perspectives of integrating more living organisms, adopting smarter materials, and developing more advanced technologies in MNAs for future personalized and point-of-care medicine, are also discussed. It is believed that the combination of living organisms with functional MNAs would hold great promise in the near future due to the advantages of both biological and artificial species.
Collapse
Affiliation(s)
- Bo Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
21
|
Aliyari E, Konermann L. Atomistic Insights into the Formation of Nonspecific Protein Complexes during Electrospray Ionization. Anal Chem 2021; 93:12748-12757. [PMID: 34494821 DOI: 10.1021/acs.analchem.1c02836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Native electrospray ionization (ESI)-mass spectrometry (MS) is widely used for the detection and characterization of multi-protein complexes. A well-known problem with this approach is the possible occurrence of nonspecific protein clustering in the ESI plume. This effect can distort the results of binding affinity measurements, and it can even generate gas-phase complexes from proteins that are strictly monomeric in bulk solution. By combining experiments and molecular dynamics (MD) simulations, the current work for the first time provides detailed insights into the ESI clustering of proteins. Using ubiquitin as a model system, we demonstrate how the entrapment of more than one protein molecule in an ESI droplet can generate nonspecific clusters (e.g., dimers or trimers) via solvent evaporation to dryness. These events are in line with earlier proposals, according to which protein clustering is associated with the charged residue model (CRM). MD simulations on cytochrome c (which carries a large intrinsic positive charge) confirmed the viability of this CRM avenue. In addition, the cytochrome c data uncovered an alternative mechanism where protein-protein contacts were formed early within ESI droplets, followed by cluster ejection from the droplet surface. This second pathway is consistent with the ion evaporation model (IEM). The observation of these IEM events for large protein clusters is unexpected because the IEM has been thought to be associated primarily with low-molecular-weight analytes. In all cases, our MD simulations produced protein clusters that were stabilized by intermolecular salt bridges. The MD-generated charge states agreed with experiments. Overall, this work reveals that ESI-induced protein clustering does not follow a tightly orchestrated pathway but can proceed along different avenues.
Collapse
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
22
|
Schuphan J, Commandeur U. Analysis of Engineered Tobacco Mosaic Virus and Potato Virus X Nanoparticles as Carriers for Biocatalysts. FRONTIERS IN PLANT SCIENCE 2021; 12:710869. [PMID: 34421958 PMCID: PMC8377429 DOI: 10.3389/fpls.2021.710869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Plant virus nanoparticles are promising candidates for the development of novel materials, including nanocomposites and scaffolds/carriers for functional molecules such as enzymes. Their advantages for enzyme immobilization include a modular organization, a robust and programmable structure, and a simple, cost-effective production. However, the activity of many enzymes relies on posttranslational modification and most plant viruses replicate in the cytoplasm, so functional enzymes cannot be displayed on the virus surface by direct coat protein fusions. An alternative display system to present the Trichoderma reesei endoglucanase Cel12A on potato virus X (PVX) using SpyTag/SpyCatcher (ST/SC) technology was recently developed by the authors, which allows the carrier and enzyme to be produced separately before isopeptide conjugation. Although kinetic analysis clearly indicated efficient biocatalyst activity, the PVX carrier interfered with substrate binding. To overcome this, the suitability of tobacco mosaic virus (TMV) was tested, which can also accommodate a larger number of ST peptides. We produced TMV particles displaying ST as a new platform for the immobilization of enzymes such as Cel12A, and compared its performance to the established PVX-ST platform in terms of catalytic efficiency. Although more enzyme molecules were immobilized on the TMV-ST particles, we found that the rigid scaffold and helical spacing significantly affected enzyme activity.
Collapse
|
23
|
Large EE, Silveria MA, Zane GM, Weerakoon O, Chapman MS. Adeno-Associated Virus (AAV) Gene Delivery: Dissecting Molecular Interactions upon Cell Entry. Viruses 2021; 13:1336. [PMID: 34372542 PMCID: PMC8310307 DOI: 10.3390/v13071336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Human gene therapy has advanced from twentieth-century conception to twenty-first-century reality. The recombinant Adeno-Associated Virus (rAAV) is a major gene therapy vector. Research continues to improve rAAV safety and efficacy using a variety of AAV capsid modification strategies. Significant factors influencing rAAV transduction efficiency include neutralizing antibodies, attachment factor interactions and receptor binding. Advances in understanding the molecular interactions during rAAV cell entry combined with improved capsid modulation strategies will help guide the design and engineering of safer and more efficient rAAV gene therapy vectors.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Chapman
- Department of Biochemistry, University of Missouri, Columbia, MO 65201, USA; (E.E.L.); (M.A.S.); (G.M.Z.); (O.W.)
| |
Collapse
|
24
|
El-Demerdash A, Metwaly AM, Hassan A, Abd El-Aziz TM, Elkaeed EB, Eissa IH, Arafa RK, Stockand JD. Comprehensive Virtual Screening of the Antiviral Potentialities of Marine Polycyclic Guanidine Alkaloids against SARS-CoV-2 (COVID-19). Biomolecules 2021; 11:460. [PMID: 33808721 PMCID: PMC8003478 DOI: 10.3390/biom11030460] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The huge global expansion of the COVID-19 pandemic caused by the novel SARS-corona virus-2 is an extraordinary public health emergency. The unavailability of specific treatment against SARS-CoV-2 infection necessitates the focus of all scientists in this direction. The reported antiviral activities of guanidine alkaloids encouraged us to run a comprehensive in silico binding affinity of fifteen guanidine alkaloids against five different proteins of SARS-CoV-2, which we investigated. The investigated proteins are COVID-19 main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and a non-structural protein (nsp10) (PDB ID: 6W4H). The binding energies for all tested compounds indicated promising binding affinities. A noticeable superiority for the pentacyclic alkaloids particularly, crambescidin 786 (5) and crambescidin 826 (13) has been observed. Compound 5 exhibited very good binding affinities against Mpro (ΔG = -8.05 kcal/mol), nucleocapsid phosphoprotein (ΔG = -6.49 kcal/mol), and nsp10 (ΔG = -9.06 kcal/mol). Compound 13 showed promising binding affinities against Mpro (ΔG = -7.99 kcal/mol), spike glycoproteins (ΔG = -6.95 kcal/mol), and nucleocapsid phosphoprotein (ΔG = -8.01 kcal/mol). Such promising activities might be attributed to the long ω-fatty acid chain, which may play a vital role in binding within the active sites. The correlation of c Log P with free binding energies has been calculated. Furthermore, the SAR of the active compounds has been clarified. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies were carried out in silico for the 15 compounds; most examined compounds showed optimal to good range levels of ADMET aqueous solubility, intestinal absorption and being unable to pass blood brain barrier (BBB), non-inhibitors of CYP2D6, non-hepatotoxic, and bind plasma protein with a percentage less than 90%. The toxicity of the tested compounds was screened in silico against five models (FDA rodent carcinogenicity, carcinogenic potency TD50, rat maximum tolerated dose, rat oral LD50, and rat chronic lowest observed adverse effect level (LOAEL)). All compounds showed expected low toxicity against the tested models. Molecular dynamic (MD) simulations were also carried out to confirm the stable binding interactions of the most promising compounds, 5 and 13, with their targets. In conclusion, the examined 15 alkaloids specially 5 and 13 showed promising docking, ADMET, toxicity and MD results which open the door for further investigations for them against SARS-CoV-2.
Collapse
Affiliation(s)
- Amr El-Demerdash
- Metabolic Biology & Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. Metwaly
- Department of Pharmacognosy & Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Afnan Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza 12578, Egypt; (A.H.); (R.K.A.)
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA;
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Riyadh, Saudi Arabia;
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Reem K. Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza 12578, Egypt; (A.H.); (R.K.A.)
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt
| | - James D. Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA;
| |
Collapse
|
25
|
Bruinsma RF, Wuite GJL, Roos WH. Physics of viral dynamics. NATURE REVIEWS. PHYSICS 2021; 3:76-91. [PMID: 33728406 PMCID: PMC7802615 DOI: 10.1038/s42254-020-00267-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 05/12/2023]
Abstract
Viral capsids are often regarded as inert structural units, but in actuality they display fascinating dynamics during different stages of their life cycle. With the advent of single-particle approaches and high-resolution techniques, it is now possible to scrutinize viral dynamics during and after their assembly and during the subsequent development pathway into infectious viruses. In this Review, the focus is on the dynamical properties of viruses, the different physical virology techniques that are being used to study them, and the physical concepts that have been developed to describe viral dynamics.
Collapse
Affiliation(s)
- Robijn F. Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, California, USA
| | - Gijs J. L. Wuite
- Fysica van levende systemen, Vrije Universiteit, Amsterdam, the Netherlands
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands
| |
Collapse
|
26
|
|
27
|
Scaling Theory of a Polymer Ejecting from a Cavity into a Semi-Space. Polymers (Basel) 2020; 12:polym12123014. [PMID: 33339450 PMCID: PMC7766115 DOI: 10.3390/polym12123014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
A two-stage model is developed in order to understand the scaling behaviors of single polymers ejecting from a spherical cavity through a nanopore. The dynamics of ejection is derived by balancing the free energy change with the energy dissipation during a process. The ejection velocity is found to vary with the number of monomers in the cavity, m, as mz1/(Nx1D3z1) at the confined stage, and it turns to be m−z2 at the non-confined stage, where N is the chain length and D the cavity diameter. The exponents are shown to be z1=(3ν−1)−1, z2=2ν and x1=1/3, with ν being the Flory exponent. The profile of the velocity is carefully verified by performing Langevin dynamics simulations. The simulations further reveal that, at the starting point, the decreasing of m can be stalled for a good moment. It suggests the existence of a pre-stage that can be explained by using the concept of a classical nucleation theory. By trimming the pre-stage, the ejection time are properly studied by varying N, D, and ϕ0 (the initial volume fraction). The scaling properties of the nucleation time are also analyzed. The results fully support the predictions of the theory. The physical pictures are given for various ejection conditions that cover the entire parameter space.
Collapse
|
28
|
Simulations of Phage T7 Capsid Expansion Reveal the Role of Molecular Sterics on Dynamics. Viruses 2020; 12:v12111273. [PMID: 33171826 PMCID: PMC7695174 DOI: 10.3390/v12111273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Molecular dynamics techniques provide numerous strategies for investigating biomolecular energetics, though quantitative analysis is often only accessible for relatively small (frequently monomeric) systems. To address this limit, we use simulations in combination with a simplified energetic model to study complex rearrangements in a large assembly. We use cryo-EM reconstructions to simulate the DNA packaging-associated 3 nm expansion of the protein shell of an initially assembled phage T7 capsid (called procapsid or capsid I). This is accompanied by a disorder-order transition and expansion-associated externalization displacement of the 420 N-terminal tails of the shell proteins. For the simulations, we use an all-atom structure-based model (1.07 million atoms), which is specifically designed to probe the influence of molecular sterics on dynamics. We find that the rate at which the N-terminal tails undergo translocation depends heavily on their position within hexons and pentons. Specifically, trans-shell displacements of the hexon E subunits are the most frequent and hexon A subunits are the least frequent. The simulations also implicate numerous tail translocation intermediates during tail translocation that involve topological traps, as well as sterically induced barriers. The presented study establishes a foundation for understanding the precise relationship between molecular structure and phage maturation.
Collapse
|
29
|
Stupka I, Heddle JG. Artificial protein cages – inspiration, construction, and observation. Curr Opin Struct Biol 2020; 64:66-73. [DOI: 10.1016/j.sbi.2020.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/05/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022]
|
30
|
Quemin ERJ, Machala EA, Vollmer B, Pražák V, Vasishtan D, Rosch R, Grange M, Franken LE, Baker LA, Grünewald K. Cellular Electron Cryo-Tomography to Study Virus-Host Interactions. Annu Rev Virol 2020; 7:239-262. [PMID: 32631159 DOI: 10.1146/annurev-virology-021920-115935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses are obligatory intracellular parasites that reprogram host cells upon infection to produce viral progeny. Here, we review recent structural insights into virus-host interactions in bacteria, archaea, and eukaryotes unveiled by cellular electron cryo-tomography (cryoET). This advanced three-dimensional imaging technique of vitreous samples in near-native state has matured over the past two decades and proven powerful in revealing molecular mechanisms underlying viral replication. Initial studies were restricted to cell peripheries and typically focused on early infection steps, analyzing surface proteins and viral entry. Recent developments including cryo-thinning techniques, phase-plate imaging, and correlative approaches have been instrumental in also targeting rare events inside infected cells. When combined with advances in dedicated image analyses and processing methods, details of virus assembly and egress at (sub)nanometer resolution were uncovered. Altogether, we provide a historical and technical perspective and discuss future directions and impacts of cryoET for integrative structural cell biology analyses of viruses.
Collapse
Affiliation(s)
- Emmanuelle R J Quemin
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
| | - Emily A Machala
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Benjamin Vollmer
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Vojtěch Pražák
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Daven Vasishtan
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Rene Rosch
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
| | - Michael Grange
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Linda E Franken
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
| | - Lindsay A Baker
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Kay Grünewald
- Centre for Structural Systems Biology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, University of Hamburg, D-22607 Hamburg, Germany;
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
31
|
Parvez MK. Geometric architecture of viruses. World J Virol 2020; 9:5-18. [PMID: 32923381 PMCID: PMC7459239 DOI: 10.5501/wjv.v9.i2.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In the current SARS-CoV-2 disease (COVID-19) pandemic, the structural understanding of new emerging viruses in relation to developing effective treatment and interventions are very necessary. Viruses present remarkable differences in geometric shapes, sizes, molecular compositions and organizations. A detailed structural knowledge of a virion is essential for understanding the mechanisms of capsid assembly/disassembly, antigenicity, cell-receptor interaction, and designing therapeutic strategies. X-ray crystallography, cryo-electron microscopy and molecular simulations have elucidated atomic-level structure of several viruses. In view of this, a recently determined crystal structure of SARS-CoV-2 nucleocapsid has revealed its architecture and self-assembly very similar to that of the SARS-CoV-1 and the Middle-East respiratory syndrome virus (MERS-CoV). In structure determination, capsid symmetry is an important factor greatly contributing to its stability and balance between the packaged genome and envelope. Since the capsid protein subunits are asymmetrical, the maximum number of inter-subunit interactions can be established only when they are arranged symmetrically. Therefore, a stable capsid must be in a perfect symmetry and lowest possible free-energy. Isometric virions are spherical but geometrically icosahedrons as compared to complex virions that are both isometric and helical. Enveloped icosahedral or helical viruses are very common in animals but rare in plants and bacteria. Icosahedral capsids are defined by triangulation number (T = 1, 3, 4, 13, etc.), i.e., the identical equilateral-triangles formed of subunits. Biologically significant defective capsids with or without nucleic acids are common in enveloped alpha-, flavi- and hepadnaviruses. The self-assembling, stable and non-infectious virus-like particles have been widely exploited as vaccine candidates and therapeutic molecules delivery vehicles.
Collapse
Affiliation(s)
- Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 22451, Saudi Arabia
| |
Collapse
|
32
|
Berman HM, Vallat B, Lawson CL. The data universe of structural biology. IUCRJ 2020; 7:630-638. [PMID: 32695409 PMCID: PMC7340255 DOI: 10.1107/s205225252000562x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/21/2020] [Indexed: 05/05/2023]
Abstract
The Protein Data Bank (PDB) has grown from a small data resource for crystallographers to a worldwide resource serving structural biology. The history of the growth of the PDB and the role that the community has played in developing standards and policies are described. This article also illustrates how other biophysics communities are collaborating with the worldwide PDB to create a network of interoperating data resources. This network will expand the capabilities of structural biology and enable the determination and archiving of increasingly complex structures.
Collapse
Affiliation(s)
- Helen M. Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biological Sciences and Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Brinda Vallat
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Catherine L. Lawson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
33
|
Wilson DP. Unveiling the Hidden Rules of Spherical Viruses Using Point Arrays. Viruses 2020; 12:v12040467. [PMID: 32326043 PMCID: PMC7232142 DOI: 10.3390/v12040467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022] Open
Abstract
Since its introduction, the Triangulation number has been the most successful and ubiquitous scheme for classifying spherical viruses. However, despite its many successes, it fails to describe the relative angular orientations of proteins, as well as their radial mass distribution within the capsid. It also fails to provide any critical insight into sites of stability, modifications or possible mutations. We show how classifying spherical viruses using icosahedral point arrays, introduced by Keef and Twarock, unveils new geometric rules and constraints for understanding virus stability and key locations for exterior and interior modifications. We present a modified fitness measure which classifies viruses in an unambiguous and rigorous manner, irrespective of local surface chemistry, steric hinderance, solvent accessibility or Triangulation number. We then use these point arrays to explain the immutable surface loops of bacteriophage MS2, the relative reactivity of surface lysine residues in CPMV and the non-quasi-equivalent flexibility of the HBV dimers. We then explain how point arrays can be used as a predictive tool for site-directed modifications of capsids. This success builds on our previous work showing that viruses place their protruding features along the great circles of the asymmetric unit, demonstrating that viruses indeed adhere to these geometric constraints.
Collapse
Affiliation(s)
- David P Wilson
- Department of Physics, Kalamazoo College, Kalamazoo, MI 49006, USA
| |
Collapse
|
34
|
Benhaim MA, Lee KK. New Biophysical Approaches Reveal the Dynamics and Mechanics of Type I Viral Fusion Machinery and Their Interplay with Membranes. Viruses 2020; 12:E413. [PMID: 32276357 PMCID: PMC7232462 DOI: 10.3390/v12040413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Protein-mediated membrane fusion is a highly regulated biological process essential for cellular and organismal functions and infection by enveloped viruses. During viral entry the membrane fusion reaction is catalyzed by specialized protein machinery on the viral surface. These viral fusion proteins undergo a series of dramatic structural changes during membrane fusion where they engage, remodel, and ultimately fuse with the host membrane. The structural and dynamic nature of these conformational changes and their impact on the membranes have long-eluded characterization. Recent advances in structural and biophysical methodologies have enabled researchers to directly observe viral fusion proteins as they carry out their functions during membrane fusion. Here we review the structure and function of type I viral fusion proteins and mechanisms of protein-mediated membrane fusion. We highlight how recent technological advances and new biophysical approaches are providing unprecedented new insight into the membrane fusion reaction.
Collapse
Affiliation(s)
- Mark A. Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA;
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA;
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA 98195-7610, USA
| |
Collapse
|
35
|
Goldbourt A. Structural characterization of bacteriophage viruses by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:192-210. [PMID: 31779880 DOI: 10.1016/j.pnmrs.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/03/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Magic-angle spinning (MAS) solid-state NMR has provided structural insights into various bacteriophage systems including filamentous, spherical, and tailed bacteriophage viruses. A variety of methodologies have been utilized including elementary two and three-dimensional assignment experiments, proton-detection techniques at fast spinning speeds, non-uniform sampling, structure determination protocols, conformational dynamics revealed by recoupling of anisotropic interactions, and enhancement by dynamic nuclear polarization. This review summarizes most of the studies performed during the last decade by MAS techniques and makes comparisons with prior knowledge obtained from static and solution NMR techniques. Chemical shifts for the capsids of the various systems are reported and analyzed, and DNA shifts are reported and discussed in the context of general high molecular-weight DNA molecules. Chemical shift and torsion angle prediction techniques are compared and applied to the various phage systems. The structures of the intact M13 filamentous bacteriophage and that of the Acinetobacter phage AP205 capsid, determined using MAS-based experimental data, are presented. Finally, filamentous phages, which are highly rigid systems, show interesting dynamics at the interface of the capsid and DNA, and their mutual electrostatic interactions are shown to be mediated by highly mobile positively charged residues. Novel results obtained from recoupling the chemical shift anisotropy of a single arginine in IKe phage, which is in contact with its DNA, further demonstrate this point. MAS NMR thus provides many new insights into phage structure, and on the other hand the richness, complexity and variety of bacteriophage systems provide opportunities for new NMR methodologies and technique developments.
Collapse
Affiliation(s)
- Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
36
|
Coulibaly F. Polyhedra, spindles, phage nucleus and pyramids: Structural biology of viral superstructures. Adv Virus Res 2019; 105:275-335. [PMID: 31522707 DOI: 10.1016/bs.aivir.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Viral infection causes comprehensive rearrangements of the cell that reflect as much host defense mechanisms as virus-induced structures assembled to facilitate infection. Regardless of their pro- or antiviral role, large intracellular structures are readily detectable by microscopy and often provide a signature characteristic of a specific viral infection. The structural features and localization of these assemblies have thus been commonly used for the diagnostic and classification of viruses since the early days of virology. More recently, characterization of viral superstructures using molecular and structural approaches have revealed very diverse organizations and roles, ranging from dynamic viral factories behaving like liquid organelles to ultra-stable crystals embedding and protecting virions. This chapter reviews the structures, functions and biotechnological applications of virus-induced superstructures with a focus on assemblies that have a regular organization, for which detailed structural descriptions are available. Examples span viruses infecting all domains of life including the assembly of virions into crystalline arrays in eukaryotic and bacterial viruses, nucleus-like compartments involved in the replication of large bacteriophages, and pyramid-like structures mediating the egress of archaeal viruses. Among these superstructures, high-resolution structures are available for crystalline objects produced by insect viruses: viral polyhedra which function as the infectious form of occluded viruses, and spindles which are potent virulence factors of entomopoxviruses. In turn, some of these highly symmetrical objects have been used to develop and validate advanced structural approaches, pushing the boundary of structural biology.
Collapse
Affiliation(s)
- Fasséli Coulibaly
- Infection & Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
37
|
Cortines JR, Prevelige P. Editorial overview: Virus structure and expression. Curr Opin Virol 2019; 36:iii-v. [PMID: 31248768 DOI: 10.1016/j.coviro.2019.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juliana Reis Cortines
- Department of Virology, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Peter Prevelige
- Department of Microbiology, University of Alabama at Birmingham, UK
| |
Collapse
|
38
|
Collett S, Torresi J, Earnest-Silveira L, Christiansen D, Elbourne A, Ramsland PA. Probing and pressing surfaces of hepatitis C virus-like particles. J Colloid Interface Sci 2019; 545:259-268. [DOI: 10.1016/j.jcis.2019.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 02/09/2023]
|
39
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
40
|
The Characteristics and Genome Analysis of vB_AviM_AVP, the First Phage Infecting Aerococcus viridans. Viruses 2019; 11:v11020104. [PMID: 30691182 PMCID: PMC6409932 DOI: 10.3390/v11020104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 01/21/2023] Open
Abstract
Aerococcus viridans is an opportunistic pathogen that is clinically associated with various human and animal diseases. In this study, the first identified A. viridans phage, vB_AviM_AVP (abbreviated as AVP), was isolated and studied. AVP belongs to the family Myoviridae. AVP harbors a double-stranded DNA genome with a length of 133,806 bp and a G + C content of 34.51%. The genome sequence of AVP showed low similarity (<1% identity) to those of other phages, bacteria, or other organisms in the database. Among 165 predicted open reading frames (ORFs), there were only 69 gene products exhibiting similarity (≤65% identity) to proteins of known functions in the database. In addition, the other 36 gene products did not match any viral or prokaryotic sequences in any publicly available database. On the basis of the putative functions of the ORFs, the genome of AVP was divided into three modules: nucleotide metabolism and replication, structural components, and lysis. A phylogenetic analysis of the terminase large subunits and capsid proteins indicated that AVP represents a novel branch of phages. The observed characteristics of AVP indicate that it represents a new class of phages.
Collapse
|
41
|
Different forms of African cassava mosaic virus capsid protein within plants and virions. Virology 2019; 529:81-90. [PMID: 30684693 DOI: 10.1016/j.virol.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/04/2023]
Abstract
One geminiviral gene encodes the capsid protein (CP), which can appear as several bands after electrophoresis depending on virus and plant. African cassava mosaic virus-Nigeria CP in Nicotiana benthamiana, however, yielded one band (~ 30 kDa) in total protein extracts and purified virions, although its expression in yeast yielded two bands (~ 30, 32 kDa). Mass spectrometry of the complete protein and its tryptic fragments from virions is consistent with a cleaved start M1, acetylated S2, and partial phosphorylation at T12, S25 and S62. Mutants for additional potentially modified sites (N223A; C235A) were fully infectious and formed geminiparticles. Separation in triton acetic acid urea gels confirmed charge changes of the CP between plants and yeast indicating differential phosphorylation. If the CP gene alone was expressed in plants, multiple bands were observed like in yeast. A high turnover rate indicates that post-translational modifications promote CP decay probably via the ubiquitin-triggered proteasomal pathway.
Collapse
|
42
|
Maassen SJ, van der Schoot P, Cornelissen JJLM. Experimental and Theoretical Determination of the pH inside the Confinement of a Virus-Like Particle. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802081. [PMID: 30102454 DOI: 10.1002/smll.201802081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/17/2018] [Indexed: 06/08/2023]
Abstract
In biology, a variety of highly ordered nanometer-size protein cages is found. Such structures find increasing application in, for example, vaccination, drug delivery, and catalysis. Understanding the physiochemical properties, particularly inside the confinement of a protein cage, helps to predict the behavior and properties of new materials based on such particles. Here, the relation between the bulk solution pH and the local pH inside a model protein cage, based on virus-like particles (VLPs) built from the coat proteins of the cowpea chlorotic mottle virus, is investigated. The pH is a crucial parameter in a variety of processes and is potentially significantly influenced by the high concentration of charges residing on the interior of the VLPs. The data show a systematic more acidic pH of 0.5 unit inside the VLP compared to that of the bulk solution for pH values above pH 6, which is explained using a theoretical model based on a Donnan equilibrium. The model agrees with the experimental data over almost two orders of magnitude, while below pH 6 the experimental data point to a buffering capacity of the VLP. These results are a first step in a better understanding of the physiochemical conditions inside a protein cage.
Collapse
Affiliation(s)
- Stan J Maassen
- Laboratory of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, 7500, AE, The Netherlands
| | - Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584, CC, Utrecht, The Netherlands
| | - Jeroen J L M Cornelissen
- Laboratory of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, 7500, AE, The Netherlands
| |
Collapse
|
43
|
Recent Advancements in 3-D Structure Determination of Bacteriophages: from Negative Stain to CryoEM. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Sequence, genome organization, annotation and proteomics of the thermophilic, 47.7-kb Geobacillus stearothermophilus bacteriophage TP-84 and its classification in the new Tp84virus genus. PLoS One 2018; 13:e0195449. [PMID: 29624616 PMCID: PMC5889276 DOI: 10.1371/journal.pone.0195449] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/22/2018] [Indexed: 11/19/2022] Open
Abstract
Bacteriophage TP-84 is a well-characterized bacteriophage of historical interest. It is a member of the Siphoviridae, and infects a number of thermophilic Geobacillus (Bacillus) stearothermophilus strains. Its’ 47.7-kbp double-stranded DNA genome revealed the presence of 81 coding sequences (CDSs) coding for polypeptides of 4 kDa or larger. Interestingly, all CDSs are oriented in the same direction, pointing to a dominant transcription direction of one DNA strand. Based on a homology search, a hypothetical function could be assigned to 31 CDSs. No RNA or DNA polymerase-coding genes were found on the bacteriophage genome indicating that TP-84 relies on the host’s transcriptional and replication enzymes. The TP84 genome is tightly packed with CDSs, typically spaced by several-to-tens of bp or often overlapping. The genome contains five putative promoter-like sequences showing similarity to the host promoter consensus sequence and allowing for a 2-bp mismatch. In addition, ten putative rho-independent terminators were detected. Because the genome sequence shows essentially no similarity to any previously characterised bacteriophage, TP-84 should be considered a new species in an undefined genus within the Siphoviridae family. Thus a taxonomic proposal of a new Tp84virus genus has been accepted by the International Committee on Taxonomy of Viruses. The bioinformatics genome analysis was verified by confirmation of 33 TP-84 proteins, which included: a) cloning of a selected CDS in Escherichia coli, coding for a DNA single-stranded binding protein (SSB; gene TP84_63), b) purification and functional assays of the recombinant TP-84 SSB, which has been shown to improve PCR reactions, c) mass spectrometric (MS) analysis of TP-84 bacteriophage capsid proteins, d) purification of TP-84 endolysin activity, e) MS analysis of the host cells from infection time course.
Collapse
|
45
|
Cyrklaff M, Frischknecht F, Kudryashev M. Functional insights into pathogen biology from 3D electron microscopy. FEMS Microbiol Rev 2018; 41:828-853. [PMID: 28962014 DOI: 10.1093/femsre/fux041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023] Open
Abstract
In recent years, novel imaging approaches revolutionised our understanding of the cellular and molecular biology of microorganisms. These include advances in fluorescent probes, dynamic live cell imaging, superresolution light and electron microscopy. Currently, a major transition in the experimental approach shifts electron microscopy studies from a complementary technique to a method of choice for structural and functional analysis. Here we review functional insights into the molecular architecture of viruses, bacteria and parasites as well as interactions with their respective host cells gained from studies using cryogenic electron tomography and related methodologies.
Collapse
Affiliation(s)
- Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Max-von-Laue Strasse 3, 60438 Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt, Max-von-Laue Strasse 17, 60438 Frankfurt, Germany
| |
Collapse
|
46
|
Wang J, Liu M, Shen Y, Sun J, Shao Z, Czajkowsky DM. Compressive Force Spectroscopy: From Living Cells to Single Proteins. Int J Mol Sci 2018; 19:E960. [PMID: 29570665 PMCID: PMC5979447 DOI: 10.3390/ijms19040960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.
Collapse
Affiliation(s)
- Jiabin Wang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Meijun Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yi Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhifeng Shao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Daniel Mark Czajkowsky
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
47
|
Röder J, Dickmeis C, Fischer R, Commandeur U. Systemic Infection of Nicotiana benthamiana with Potato virus X Nanoparticles Presenting a Fluorescent iLOV Polypeptide Fused Directly to the Coat Protein. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9328671. [PMID: 29662905 PMCID: PMC5831704 DOI: 10.1155/2018/9328671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/25/2017] [Indexed: 02/01/2023]
Abstract
Plant virus-based nanoparticles can be produced in plants on a large scale and are easily modified to introduce new functions, making them suitable for applications such as vaccination and drug delivery, tissue engineering, and in vivo imaging. The latter is often achieved using green fluorescent protein and its derivatives, but the monovalent fluorescent protein iLOV is smaller and more robust. Here, we fused the iLOV polypeptide to the N-terminus of the Potato virus X (PVX) coat protein, directly or via the Foot-and-mouth disease virus 2A sequence, for expression in Nicotiana benthamiana. Direct fusion of the iLOV polypeptide did not prevent the assembly or systemic spread of the virus and we verified the presence of fusion proteins and iLOV hybrid virus particles in leaf extracts. Compared to wild-type PVX virions, the PVX particles displaying the iLOV peptide showed an atypical, intertwined morphology. Our results confirm that a direct fusion of the iLOV fluorescent protein to filamentous PVX nanoparticles offers a promising tool for imaging applications.
Collapse
Affiliation(s)
- Juliane Röder
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| | - Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
| |
Collapse
|
48
|
Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy. Viruses 2018; 10:v10020067. [PMID: 29414851 PMCID: PMC5850374 DOI: 10.3390/v10020067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
The majority of viruses on Earth form capsids built by multiple copies of one or more types of a coat protein arranged with 532 symmetry, generating an icosahedral shell. This highly repetitive structure is ideal to closely pack identical protein subunits and to enclose the nucleic acid genomes. However, the icosahedral capsid is not merely a passive cage but undergoes dynamic events to promote packaging, maturation and the transfer of the viral genome into the host. These essential processes are often mediated by proteinaceous complexes that interrupt the shell’s icosahedral symmetry, providing a gateway through the capsid. In this review, we take an inventory of molecular structures observed either internally, or at the 5-fold vertices of icosahedral DNA viruses that infect bacteria, archea and eukaryotes. Taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM) and building upon a wealth of crystallographic structures of individual components, we review the design principles of non-icosahedral structural components that interrupt icosahedral symmetry and discuss how these macromolecules play vital roles in genome packaging, ejection and host receptor-binding.
Collapse
|
49
|
Alexander MM, Mohr JP, DeBlasio SL, Chavez JD, Ziegler-Graff V, Brault V, Bruce JE, Heck MC. Insights in luteovirid structural biology guided by chemical cross-linking and high resolution mass spectrometry. Virus Res 2017; 241:42-52. [PMID: 28502641 DOI: 10.1016/j.virusres.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
Interactions among plant pathogenic viruses in the family Luteoviridae and their plant hosts and insect vectors are governed by the topology of the viral capsid, which is the sole vehicle for long distance movement of the viral genome. Previous application of a mass spectrometry-compatible cross-linker to preparations of the luteovirid Potato leafroll virus (PLRV; Luteoviridae: Polerovirus) revealed a detailed network of interactions between viral structural proteins and enabled generation of the first cross-linking guided coat protein models. In this study, we extended application of chemical cross-linking technology to the related Turnip yellows virus (TuYV; Luteoviridae: Polerovirus). Remarkably, all cross-links found between sites in the viral coat protein found for TuYV were also found in PLRV. Guided by these data, we present two models for the TuYV coat protein trimer, the basic structural unit of luteovirid virions. Additional cross-links found between the TuYV coat protein and a site in the viral protease domain suggest a possible role for the luteovirid protease in regulating the structural biology of these viruses.
Collapse
Affiliation(s)
- Mariko M Alexander
- School of Integrative Plant Science, Plant Pathology and Plant Microbe Biology Section, Cornell University, Ithaca, NY, USA; Boyce Thompson Institute, Ithaca, NY, USA
| | - Jared P Mohr
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Stacy L DeBlasio
- USDA-Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michelle Cilia Heck
- School of Integrative Plant Science, Plant Pathology and Plant Microbe Biology Section, Cornell University, Ithaca, NY, USA; Boyce Thompson Institute, Ithaca, NY, USA; USDA-Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| |
Collapse
|
50
|
Hipp K, Grimm C, Jeske H, Böttcher B. Near-Atomic Resolution Structure of a Plant Geminivirus Determined by Electron Cryomicroscopy. Structure 2017; 25:1303-1309.e3. [DOI: 10.1016/j.str.2017.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/22/2017] [Accepted: 06/15/2017] [Indexed: 01/18/2023]
|