1
|
Graham CD, Kaza N, Klocke BJ, Gillespie GY, Shevde LA, Carroll SL, Roth KA. Tamoxifen Induces Cytotoxic Autophagy in Glioblastoma. J Neuropathol Exp Neurol 2016; 75:946-954. [PMID: 27516117 DOI: 10.1093/jnen/nlw071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glioblastomas (GBMs) are the most common and aggressive primary human malignant brain tumors. 4-Hydroxy tamoxifen (OHT) is an active metabolite of the tamoxifen (TMX) prodrug and a well-established estrogen receptor (ER) and estrogen-related receptor antagonist. A recent study from our laboratory demonstrated that OHT induced ER-independent malignant peripheral nerve sheath tumor (MPNST) cell death by autophagic degradation of the prosurvival protein Kirsten rat sarcoma viral oncogene homolog. Because both MPNST and GBM are glial in cell origin, we hypothesized that OHT could mediate similar effects in GBM. OHT induced a concentration-dependent reduction in cell viability that was largely independent of caspase activation in a human GBM cell line and 2 patient-derived xenolines. Further, OHT induced both cytotoxic autophagy and a concentration-dependent decrease in epidermal growth factor receptor (EGFR) protein levels. A GBM cell line expressing EGFR variant III (EGFRvIII) was relatively resistant to OHT-induced death and EGFRvIII was refractory to OHT-induced degradation. Thus, OHT induces GBM cell death through a caspase-independent, autophagy-related mechanism and should be considered as a potential therapeutic agent in patients with GBM whose tumors express wild-type EGFR.
Collapse
Affiliation(s)
- Christopher D Graham
- From the Department of Pathology (CDG, NK, BJK, LAS, SLC, KAR); and Department of Neurosurgery, University of Alabama at Birmingham (GYG), Birmingham, Alabama
| | - Niroop Kaza
- From the Department of Pathology (CDG, NK, BJK, LAS, SLC, KAR); and Department of Neurosurgery, University of Alabama at Birmingham (GYG), Birmingham, Alabama
| | - Barbara J Klocke
- From the Department of Pathology (CDG, NK, BJK, LAS, SLC, KAR); and Department of Neurosurgery, University of Alabama at Birmingham (GYG), Birmingham, Alabama
| | - G Yancey Gillespie
- From the Department of Pathology (CDG, NK, BJK, LAS, SLC, KAR); and Department of Neurosurgery, University of Alabama at Birmingham (GYG), Birmingham, Alabama
| | - Lalita A Shevde
- From the Department of Pathology (CDG, NK, BJK, LAS, SLC, KAR); and Department of Neurosurgery, University of Alabama at Birmingham (GYG), Birmingham, Alabama
| | - Steven L Carroll
- From the Department of Pathology (CDG, NK, BJK, LAS, SLC, KAR); and Department of Neurosurgery, University of Alabama at Birmingham (GYG), Birmingham, Alabama
| | - Kevin A Roth
- From the Department of Pathology (CDG, NK, BJK, LAS, SLC, KAR); and Department of Neurosurgery, University of Alabama at Birmingham (GYG), Birmingham, Alabama
| |
Collapse
|
2
|
Abstract
Malignant gliomas comprise a small percentage of all cancers, but continue to cause disproportionate levels of morbidity and mortality. Despite decades of intensive effort from many disciplines--surgery, radiation oncology and medicine--they remain refractory to cure and, in most cases, even to prolonged treatment response. Comprehensive multidisciplinary treatment is well recognized as the optimal approach. While continued advances and refinement in both surgical and radiotherapy-based techniques are certain, medical therapies are expanding at a much more rapid rate. This is due, in large part, to an understanding of the molecular events that underlie cancer pathogenesis and improved laboratory techniques to manufacture and study molecules that influence this process. This review will focus on medical therapies in the treatment of malignant glioma, never losing sight of their place as one of several therapeutic modalities used to confront brain cancer.
Collapse
Affiliation(s)
- M Kelly Nicholas
- Department of Neurology, University of Chicago, 5801 South Ellis Ave., Chicago, IL 60637, USA.
| | | | | |
Collapse
|
3
|
Adornetto A, Pagliara V, Renzo GD, Arcone R. Polychlorinated biphenyls impair dibutyryl cAMP-induced astrocytic differentiation in rat C6 glial cell line. FEBS Open Bio 2013; 3:459-66. [PMID: 24251112 PMCID: PMC3829991 DOI: 10.1016/j.fob.2013.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 02/04/2023] Open
Abstract
In the central nervous system, alteration of glial cell differentiation can affect brain functions. Polychlorinated biphenyls (PCBs) are persistent environmental chemical contaminants that exert neurotoxic effects in glial and neuronal cells. We examined the effects of a commercial mixture of PCBs, Aroclor1254 (A1254) on astrocytic differentiation of glial cells, using the rat C6 cell line as in vitro model. The exposure for 24 h to sub-toxic concentrations of A1254 (3 or 9 μM) impaired dibutyryl cAMP-induced astrocytic differentiation as showed by the decrease of glial fibrillary acidic protein (GFAP) protein levels and inhibition in change of cell morphology toward an astrocytic phenotype. The A1254 inhibition was restored by the addition of a protein kinase C (PKC) inhibitor, bisindolylmaleimide (bis), therefore indicating that PCBs disturbed the cAMP-induced astrocytic differentiation of C6 cells via the PKC pathway. The phosphorylation of signal transducer and activator of transcription 3 (STAT3) is essential for cAMP-induced transcription of GFAP promoter in C6 cells. Our results indicated that the exposure to A1254 (3 or 9 μM) for 24 h suppressed cAMP-induced STAT3 phosphorylation. Moreover, A1254 reduced cAMP-dependent phosphorylation of STAT3 requires inhibition of PKC activity. Together, our results suggest that PCBs induce perturbation in cAMP/PKA and PKC signaling pathway during astrocytic differentiation of glial cells.
Collapse
Key Words
- A1254, Aroclor 1254
- Aroclor1254
- Astrocytic differentiation
- C6 glial cell line
- CNS, central nervous system
- CRE, cAMP responsive element
- CREB, cAMP-response element binding protein
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco’s Modified Eagle’s Medium
- DMSO, dimethyl sulfoxide
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GFAP, glial fibrillary acidic protein
- Glial fibrillary acidic protein (GFAP)
- MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
- NMDA, N-methyl-d-aspartate
- PCBs, polychlorinated biphenyls
- PKA, protein kinase A
- PKC, protein kinase C
- Protein kinase C (PKC)
- ROS, reactive oxygen species
- STAT3, signal transducer and activator of transcription 3
- Signal transducer and activator of transcription 3 (STAT3)
- TRE, CRE transcriptional response element
- bis, 2-[1-(3-dimethylamino-propyl)indol-3-yl]-3-(indol-3-yl) maleimide
- dbcAMP, N6,2′-O-dibutyryl cAMP
- nNOS, neuronal nitric oxide
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende, Cosenza (CS) 87036, Italy
| | | | | | | |
Collapse
|
4
|
Gandhari MK, Frazier CR, Hartenstein JS, Cloix JF, Bernier M, Wainer IW. Identification and characterization of estrogen receptor-related receptor alpha and gamma in human glioma and astrocytoma cells. Mol Cell Endocrinol 2010; 315:314-8. [PMID: 19822186 PMCID: PMC2815036 DOI: 10.1016/j.mce.2009.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/02/2009] [Indexed: 01/15/2023]
Abstract
The purpose of this study was to examine expression and function of estrogen receptor-related receptors (ERRs) in human glioma and astrocytoma cell lines. These estrogen receptor-negative cell lines expressed ERRalpha and ERRgamma proteins to varying degree in a cell context dependent manner, with U87MG glioma cells expressing both orphan nuclear receptors. Cell proliferation assays were performed in the presence of ERR isoform-specific agonists and antagonists, and the calculated EC(50) and IC(50) values were consistent with previous reported values determined in other types of cancer cell lines. Induction of luciferase expression under the control of ERR isoform-specific promoters was also observed in these cells. These results indicate that ERRalpha and ERRgamma are differentially expressed in these tumor cell lines and likely contribute to agonist-dependent ERR transcriptional activity.
Collapse
Affiliation(s)
- Mukesh K Gandhari
- Laboratory of Clinical Investigation, Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, Maryland 21224, USA
| | - Chester R Frazier
- Laboratory of Clinical Investigation, Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, Maryland 21224, USA
| | - Julia S Hartenstein
- Laboratory of Clinical Investigation, Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, Maryland 21224, USA
| | - Jean-Francois Cloix
- Laboratoire de Neurobiologie, Université d'Orléans, BP 6759, 45067 Orléans Cedex 2, France
| | - Michel Bernier
- Laboratory of Clinical Investigation, Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, Maryland 21224, USA
| | - Irving W. Wainer
- Laboratory of Clinical Investigation, Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, Maryland 21224, USA
| |
Collapse
|
5
|
Sankar T, Caramanos Z, Assina R, Villemure JG, Leblanc R, Langleben A, Arnold DL, Preul MC. Prospective serial proton MR spectroscopic assessment of response to tamoxifen for recurrent malignant glioma. J Neurooncol 2008; 90:63-76. [PMID: 18600428 DOI: 10.1007/s11060-008-9632-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 06/06/2008] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Early prediction of imminent failure during chemotherapy for malignant glioma has the potential to guide proactive alterations in treatment before frank tumor progression. We prospectively followed patients with recurrent malignant glioma receiving tamoxifen chemotherapy using proton magnetic resonance spectroscopic imaging ((1)H-MRSI) to identify intratumoral metabolic changes preceding clinical and radiological failure. METHODS We performed serial (1)H-MRSI examinations to assess intratumoral metabolite intensities in 16 patients receiving high-dose oral tamoxifen monotherapy for recurrent malignant glioma (WHO grade III or IV) as part of a phase II clinical trial. Patients were followed until treatment failure, death, or trial termination. RESULTS Patients were officially classified as responders (7 patients) or non-responders (9 patients) 8 weeks into treatment. At 8 weeks, responders and non-responders had different intratumoral intensities across all measured metabolites except choline. Beyond 8 weeks, metabolite intensities remained stable in all responders, but changed again with approaching disease progression. Choline, lipid, choline/NAA, and lactate/NAA were significantly elevated (P < 0.02), while creatine (P < 0.04) was significantly reduced, compared to stabilized levels on average 4 weeks prior to failure. Lactate was significantly elevated (P = 0.036) fully 8 weeks prior to failure. In one patient who was still responding to tamoxifen at the conclusion of the trial, metabolite intensities never deviated from 8-week levels for the duration of follow-up. CONCLUSIONS Characteristic global intratumoral metabolic changes, detectable on serial (1)H-MRSI studies, occur in response to chemotherapy for malignant glioma and may predict imminent treatment failure before actual clinical and radiological disease progression.
Collapse
Affiliation(s)
- Tejas Sankar
- Neurosurgery Research Laboratory, Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W. Thomas Road, Phoenix, AZ 85013, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Liu R, Chang SM, Prados M. Recent advances in the treatment of central nervous system tumors. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.uct.2007.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Spalding AC, Watson R, Davis ME, Kim AC, Lawrence TS, Ben-Josef E. Inhibition of protein kinase Cbeta by enzastaurin enhances radiation cytotoxicity in pancreatic cancer. Clin Cancer Res 2008; 13:6827-33. [PMID: 18006785 DOI: 10.1158/1078-0432.ccr-07-0454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Aberrant activation of protein kinase Cbeta (PKCbeta) by pancreatic cancer cells facilitates angiogenesis and tumor cell survival. Targeting PKCbeta with enzastaurin, a well-tolerated drug in clinical trials, would be expected to radiosensitize pancreatic tumors through direct antitumor and antivascular effects. EXPERIMENTAL DESIGN We tested the hypothesis that enzastaurin radiosensitizes pancreatic cancer cells in culture and in vivo through inhibition of PKCbeta. We analyzed pancreatic cancer xenografts for growth delay and microvessel density after treatment with enzastaurin, radiation, or both. We determined the effect of radiation and enzastaurin on glycogen synthase kinase 3beta, a mediator of cell death in culture and in vivo. RESULTS At concentrations attained in patients, enzastaurin reduced levels of active PKCbeta measured by phosphorylation at Thr(500) in culture and in xenografts. Enzastaurin alone did not affect pancreatic cancer cell survival, proliferation, or xenograft growth. However, enzastaurin radiosensitized pancreatic cancer cells in culture by colony formation assay. Enzastaurin alone decreased microvessel density of pancreatic cancer xenografts without appreciable effects on tumor size. When combined with radiation, enzastaurin increased radiation-induced tumor growth delay with a corresponding decrease in microvessel density. Enzastaurin inhibited radiation-induced phosphorylation of glycogen synthase kinase 3beta at Ser(9) in pancreatic cancer cells in culture and in tumor xenografts, suggesting a possible mechanism for the observed radiosensitization. CONCLUSIONS Enzastaurin inhibits PKCbeta in pancreatic cancer cells in culture, enhancing radiation cytotoxicity. Additional antivascular effects of enzastaurin were observed in vivo, resulting in greater radiosensitization. These results provide the rationale for a clinical trial in locally advanced pancreatic cancer combining enzastaurin with radiation.
Collapse
Affiliation(s)
- Aaron C Spalding
- Department of Radiation Oncology The University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Uht RM, Amos S, Martin PM, Riggan AE, Hussaini IM. The protein kinase C-eta isoform induces proliferation in glioblastoma cell lines through an ERK/Elk-1 pathway. Oncogene 2006; 26:2885-93. [PMID: 17146445 DOI: 10.1038/sj.onc.1210090] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glioblastoma multiforme (GBM) is the highest grade of astrocytoma. GBM pathogenesis has been linked to receptor tyrosine kinases and kinases further down signal-transduction pathways - in particular, members of the protein kinase C (PKC) family. The expression and activity of various PKC isoforms are increased in malignant astrocytomas, but not in non-neoplastic astrocytes. This suggests that PKC activity contributes to tumor progression. The level of PKC-eta expressed correlates with the degree of phorbol-12-myristate-13-acetate (PMA)-induced proliferation of two glioblastoma cell lines, U-1242 MG and U-251 MG. Normally, U-1242 cells do not express PKC-eta, and PMA inhibits their proliferation. Conversely, PMA increases proliferation of U-1242 cells that are stably transfected with PKC-eta (U-1242-PKC-eta). PMA treatment also stimulates proliferation of U-251 cells, which express PKC-eta. Here, we determined that extracellular signal-regulated kinase (ERK) and Elk-1 are downstream targets of PKC-eta. Elk-1-mediated transcriptional activity correlates with the PKC-eta-mediated mitogenic response. Pretreatment of U-1242-PKC-eta cells with inhibitors of PKC or MAPK/ERK kinase (MEK) (bisindolyl maleimide (BIM) or U0126, respectively) blocked both PMA-induced Elk-1 transcriptional activity and PMA-stimulated proliferation. An overexpressed dominant-negative PKC-eta reduced the mitogenic response in U-251 cells, as did reduction of Elk-1 by small interfering RNA. Taken together, these results strongly suggest that PKC-eta-mediated glioblastoma proliferation involves MEK/mitogen-activated protein (MAP) kinase phosphorylation, activation of ERK and subsequently of Elk-1. Elk-1 target genes involved in GBM proliferative responses have yet to be identified.
Collapse
Affiliation(s)
- R M Uht
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
9
|
Robins HI, Won M, Seiferheld WF, Schultz CJ, Choucair AK, Brachman DG, Demas WF, Mehta MP. Phase 2 trial of radiation plus high-dose tamoxifen for glioblastoma multiforme: RTOG protocol BR-0021. Neuro Oncol 2006; 8:47-52. [PMID: 16443947 PMCID: PMC1871929 DOI: 10.1215/s1522851705000311] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Preclinical studies support the concept that inhibition of protein kinase C (PKC) by tamoxifen (TAM) should provide both antineoplastic effects and radiosensitization. High-dose TAM (80 mg/m2 p.o. daily in divided doses) was given with and after conventional radiotherapy (XRT) to inhibit PKC-mediated signaling, which is known to be enhanced in glioblastoma (GBM). Seventy-seven patients were accrued between December 2000 and December 2001; two were ineligible and not included in the efficacy results. Pretreatment characteristics of the patients included the following: 52% were less than 60 years of age, 39% had a Zubrod score of 0, 70% had minor or no neurological symptoms, and 65% were Radiation Therapy Oncology Group-recursive partition analysis (RPA) class III and IV. Eighty-six percent of patients achieved acceptable dosing of TAM. Notable toxicity included late radiation grade 3 in two patients and thromboembolic events in 16 patients (two grade 2, 10 grade 3, three grade 4, and one grade 5), for an incidence of 20.8% (which is lower than expected, based on the literature for deep vein thrombophlebitis in GBM patients not receiving TAM). Median survival time (MST) was 9.7 months as compared (by three different statistical methodologies) to the historical GBM control database of 1457 RPA class III, IV, and V drug/XRT-treated patients. After controlling for RPA class IV, the MST was 11.3 months, which compares to the historical RPA control of 11.3 months (P = 0.37). The results obtained do not exhibit a substantial advance over those of previous studies with various XRT/drug doublets, including BCNU. However, as TAM does not have significant overlapping toxicities with most other drugs, its testing in a combined modality approach with other medications may be justified in future clinical trials. Historically, the incidence of thromboembolic events in GBM patients is approximately 30%. The lower-than-expected incidence seen here has also been observed in other high-dose TAM GBM studies. We speculate that TAM inhibited the PKC-mediated phosphorylation of coagulation factors.
Collapse
Affiliation(s)
- H Ian Robins
- Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53792-6164, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
da Rocha AB, Mans DRA, Regner A, Schwartsmann G. Targeting protein kinase C: new therapeutic opportunities against high-grade malignant gliomas? Oncologist 2002; 7:17-33. [PMID: 11854544 DOI: 10.1634/theoncologist.7-1-17] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A large body of evidence suggests that the abnormal phenotype of neoplastic astrocytes, including their excessive proliferation rate and high propensity to invade surrounding tissues, results from mutations in critical genes involved in key cellular events. These genetic alterations can affect cell-surface-associated receptors, elements of signaling pathways, or components of the cell cycle clock, conferring a gain or a loss of relevant metabolic functions of the cells. The understanding of such phenomena may allow the development of more efficacious forms of cancer treatment. Examples are therapies specifically directed against overexpressed epidermal growth factor receptor, hyperactive Ras, excessively stimulated Raf-1, overproduced ornithine decarboxylase, or aberrantly activated cyclin-dependent kinases. The applicability of some of these approaches is now being assessed in patients suffering from primary malignant central nervous system tumors that are not amenable to current therapeutic modalities. Another potentially useful therapeutic strategy against such tumors involves the inhibition of hyperactive or overexpressed protein kinase C (PKC). This strategy is justified by the decrease in cell proliferation and invasion following inhibition of the activity of this enzyme observed in preclinical glioma models. Thus, interference with PKC activity may represent a novel form of experimental cancer treatment that may simultaneously restrain the hyperproliferative state and the invasive capacity of high-grade malignant gliomas without inducing the expected toxicity of classical cytotoxic agents. Of note, the experimental use of PKC-inhibiting agents in patients with refractory high-grade malignant gliomas has indeed led to some clinical responses. The present paper reviews the current status of the biochemistry and molecular biology of PKC, as well as the possibilities for developing novel anti-PKC-based therapies for central nervous system malignancies.
Collapse
Affiliation(s)
- A B da Rocha
- South-American Office for Anticancer Drug Development (SOAD), Comprehensive Cancer Center, Lutheran University of Brazil, Canoas, RS, Brazil.
| | | | | | | |
Collapse
|
11
|
Abstract
Despite optimal clinical treatment, the prognosis for malignant gliomas remains poor. One of the primary reasons for treatment failure is not diffuse dissemination, but local invasion. Recently, there has been an increase in information regarding specific molecules that determine the aggressiveness and invasion potential of high-grade astrocytic tumors. In particular, expression of matrix metalloproteases in high-grade gliomas appears to correlate with tissue invasiveness. It is the purpose of the present review to describe the connection between alterations in growth-related genes, protease activity, and tumor biology, and how these connections may suggest potential novel therapeutic targets.
Collapse
Affiliation(s)
- Devin K Binder
- Department of Neurological Surgery, University of California, San Francisco 94143-0112, USA.
| | | |
Collapse
|
12
|
Recht LD, Salmonsen R, Rosetti R, Jang T, Pipia G, Kubiatowski T, Karim P, Ross AH, Zurier R, Litofsky NS, Burstein S. Antitumor effects of ajulemic acid (CT3), a synthetic non-psychoactive cannabinoid. Biochem Pharmacol 2001; 62:755-63. [PMID: 11551521 DOI: 10.1016/s0006-2952(01)00700-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One of the endogenous transformation products of tetrahydrocannabinol (THC) is THC-11-oic acid, and ajulemic acid (AJA; dimethylheptyl-THC-11-oic acid) is a side-chain synthetic analog of THC-11-oic acid. In preclinical studies, AJA has been found to be a potent anti-inflammatory agent without psychoactive properties. Based on recent reports suggesting antitumor effects of cannabinoids (CBs), we assessed the potential of AJA as an antitumor agent. AJA proved to be approximately one-half as potent as THC in inhibiting tumor growth in vitro against a variety of neoplastic cell lines. However, its in vitro effects lasted longer. The antitumor effect was stereospecific, suggesting receptor mediation. Unlike THC, however, whose effect was blocked by both CB(1) and CB(2) receptor antagonists, the effect of AJA was inhibited by only the CB(2) antagonist. Additionally, incubation of C6 glioma cells with AJA resulted in the formation of lipid droplets, the number of which increased over time; this effect was noted to a much greater extent after AJA than after THC and was not seen in WI-38 cells, a human normal fibroblast cell line. Analysis of incorporation of radiolabeled fatty acids revealed a marked accumulation of triglycerides in AJA-treated cells at concentrations that produced tumor growth inhibition. Finally, AJA, administered p.o. to nude mice at a dosage several orders of magnitude below that which produces toxicity, inhibited the growth of subcutaneously implanted U87 human glioma cells modestly but significantly. We conclude that AJA acts to produce significant antitumor activity and effects its actions primarily via CB(2) receptors. Its very favorable toxicity profile, including lack of psychoactivity, makes it suitable for chronic usage. Further studies are warranted to determine its optimal role as an antitumor agent.
Collapse
Affiliation(s)
- L D Recht
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bredel M. Anticancer drug resistance in primary human brain tumors. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 35:161-204. [PMID: 11336781 DOI: 10.1016/s0165-0173(01)00045-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The difficult clinical situation still associated with most types of primary human brain tumors has fostered significant interest in defining novel therapeutic modalities for this heterogeneous group of neoplasms. Beginning in the 1980s chemotherapy has been incorporated into the treatment protocol of a number of intractable brain tumors. However, it has predominantly failed to improve patient outcome. The unsatisfactory results with chemotherapeutic intervention have chiefly been attributed to tumor cell resistance. In recent years, there has been a literal explosion in our understanding about the mechanisms by which cancer cells become chemoresistant. During the course of their evolution (intrinsic resistance) or in response to chemotherapy (acquired resistance) these cells may follow a number of pathways of genetic alterations to possess a common (multidrug) or drug-specific (individual drug) resistant phenotype. Genomic aberrations, deregulation of membrane transporting proteins and cellular enzymes, and an altered susceptibility to commit to apoptosis are among the steps on the way that contribute to the genesis of chemotherapeutic treatment failure. Although, through the years we have come to yield information and inferences as to the roles that different molecular events may have in the resistance phenotype of cancer cells, the actual involvement of single genetic alterations in conferring drug resistance in primary brain tumors remains debatable. This uncertainty and, besides, the lack of proper drug resistance diagnostics, in a vicious circle, hinder the development of effective resistance-modulation strategies. Clinical non-responsiveness to chemotherapy remains a formidable obstacle to the successful treatment of brain tumors and one of the most serious problems to be solved in the therapy of these lesions. Future advances in the chemotherapeutic management of these neoplasms will come with an improved understanding of the significance and interrelationship of the multiple biological systems operative in promoting resistance to this treatment modality. The focus of this review is to summarize current knowledge concerning major drug resistance-related markers, to describe their functional interaction en route to chemoresistance, and to discuss their implication in rendering human brain tumor cells resistant to chemotherapy.
Collapse
Affiliation(s)
- M Bredel
- Department of General Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Besson A, Yong VW. Mitogenic signaling and the relationship to cell cycle regulation in astrocytomas. J Neurooncol 2001; 51:245-64. [PMID: 11407596 DOI: 10.1023/a:1010657030494] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The activity and regulation of a number of mitogenic signaling pathways is aberrant in astrocytomas, and this is thought to play a crucial role in the development of these tumors. The cascade of events leading to the formation and the progression from low-grade to high-grade astrocytomas is well characterized. These events include activating mutations, amplification, and overexpression of various growth factor receptors (e.g. epidermal growth factor receptor (EGFR), platelet derived growth factor receptor (PDGFR), c-Met), signaling intermediates (e.g. Ras and Protein kinase C (PKC)), and cell cycle regulatory molecules (e.g. mouse double minute-2 (Mdm2), cyclin-dependent kinase-4 (CDK4), and CDK6), that positively regulate proliferation and cell cycle progression. Inactivating mutations and deletions of signaling and cell cycle regulatory molecules that negatively regulate proliferation and cell cycle progression (e.g. p53, p16/INK4a, p14/ARF, p15/INK4b, retinoblastoma protein (Rb), and Phosphatase and tensin homologue deleted from chromosome 10 (PTEN)) also participate actively in the development of the transformed phenotype. Several mitogenic pathways are also stimulated via an autocrine loop, with astrocytoma cells expressing both the receptors and the respective cognate ligand. Due to the multitude of factors involved in astrocytoma pathogenesis, attempts to target a single pathway have not given satisfactory results. The simultaneous targeting of several pathways or the targeting of signaling intermediates, such as Ras or PKC, situated downstream of many growth factor receptor signaling pathways may show more efficacy in astrocytoma therapy. We will give an overview of how the combination of these aberrations drive astrocytoma cells into a relentless proliferation and how these signaling molecules may constitute relevant therapeutic targets.
Collapse
Affiliation(s)
- A Besson
- Department of Oncology, University of Calgary, Alberta, Canada
| | | |
Collapse
|
15
|
Hussaini IM, Karns LR, Vinton G, Carpenter JE, Redpath GT, Sando JJ, VandenBerg SR. Phorbol 12-myristate 13-acetate induces protein kinase ceta-specific proliferative response in astrocytic tumor cells. J Biol Chem 2000; 275:22348-54. [PMID: 10806212 DOI: 10.1074/jbc.m003203200] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC) activation has been implicated in cellular proliferation in neoplastic astrocytes. The roles for specific PKC isozymes in regulating this glial response, however, are not well understood. The aim of this study was to characterize the expression of PKC isozymes and the role of PKC-eta expression in regulating cellular proliferation in two well characterized astrocytic tumor cell lines (U-1242 MG and U-251 MG) with different properties of growth in cell culture. Both cell lines expressed an array of conventional (alpha, betaI, betaII, and gamma) and novel (theta and epsilon) PKC isozymes that can be activated by phorbol myristate acetate (PMA). Another novel PKC isozyme, PKC-eta, was only expressed by U-251 MG cells. In contrast, PKC-delta was readily detected in U-1242 MG cells but was present only at low levels in U-251 MG cells. PMA (100 nm) treatment for 24 h increased cell proliferation by over 2-fold in the U-251 MG cells, whereas it decreased the mitogenic response in the U-1242 MG cells by over 90%. When PKC-eta was stably transfected into U-1242 MG cells, PMA increased cell proliferation by 2.2-fold, similar to the response of U-251 MG cells. The cell proliferation induced by PMA in both the U-251 MG and U-1242-PKC-eta cells was blocked by the PKC inhibitor bisindolylmaleimide (0.5 micrometer) and the MEK inhibitor, PD 98059 (50 micrometer). Transient transfection of wild type U-251 with PKC-eta antisense oligonucleotide (1 micrometer) also blocked the PMA-induced increase in [(3)H]thymidine incorporation. The data demonstrate that two glioblastoma lines, with functionally distinct proliferative responses to PMA, express different novel PKC isozymes and that the differential expression of PKC-eta plays a determining role in the different proliferative capacity.
Collapse
Affiliation(s)
- I M Hussaini
- Departments of Pathology (Neuropathology), Biomedical Engineering, and Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Besson A, Yong VW. Involvement of p21(Waf1/Cip1) in protein kinase C alpha-induced cell cycle progression. Mol Cell Biol 2000; 20:4580-90. [PMID: 10848585 PMCID: PMC85854 DOI: 10.1128/mcb.20.13.4580-4590.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C (PKC) plays an important role in the regulation of glioma growth; however, the identity of the specific isoform and mechanism by which PKC fulfills this function remain unknown. In this study, we demonstrate that PKC activation in glioma cells increased their progression through the cell cycle. Of the six PKC isoforms that were present in glioma cells, PKC alpha was both necessary and sufficient to promote cell cycle progression when stimulated with phorbol 12-myristate 13-acetate. Also, decreased PKC alpha expression resulted in a marked decrease in cell proliferation. The only cell cycle-regulatory molecule whose expression was rapidly altered and increased by PKC alpha activity was the cyclin-cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1). Coimmunoprecipitation studies revealed that p21(Waf1/Cip1) upregulation was accompanied by an incorporation of p21(Waf1/Cip1) into various cyclin-CDK complexes and that the kinase activity of these complexes was increased, thus resulting in cell cycle progression. Furthermore, depletion of p21(Waf1/Cip1) by antisense strategy attenuated the PKC-induced cell cycle progression. These results suggest that PKC alpha activity controls glioma cell cycle progression through the upregulation of p21(Waf1/Cip1), which facilitates active cyclin-CDK complex formation.
Collapse
Affiliation(s)
- A Besson
- Departments of Oncology and Clinical Neurosciences, University of Calgary, Canada
| | | |
Collapse
|
17
|
Preul MC, Caramanos Z, Villemure JG, Shenouda G, LeBlanc R, Langleben A, Arnold DL. Using proton magnetic resonance spectroscopic imaging to predict in vivo the response of recurrent malignant gliomas to tamoxifen chemotherapy. Neurosurgery 2000; 46:306-18. [PMID: 10690719 DOI: 10.1097/00006123-200002000-00009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Most patients with a malignant glioma spend considerable time on a treatment protocol before their response (or nonresponse) to the therapy can be determined. Because survival time in the absence of effective therapy is short, the ability to predict the potential chemosensitivity of individual brain tumors noninvasively would represent a significant advance in chemotherapy planning. METHODS Using proton magnetic resonance spectroscopic imaging (1H MRSI), we studied 16 patients with a recurrent malignant glioma before and during treatment with high-dose orally administered tamoxifen. We evaluated whether 1H MRSI data could predict eventual therapeutic response to tamoxifen at the pretreatment and early treatment stages. RESULTS Seven patients responded to tamoxifen therapy (three with glioblastomas multiforme; four with anaplastic astrocytomas), and nine did not (six with glioblastomas multiforme; three with anaplastic astrocytomas). Responders and nonresponders exhibited no differences in their age, sex, tumor type, mean tumor volume, mean Karnofsky scale score, mean number of weeks postradiotherapy, or mean amount of prior radiation exposure. Resonance profiles across the five metabolites measured on 1H MRSI spectra (choline-containing compounds, creatine and phosphocreatine, N-acetyl groups, lactate, and lipids) differed significantly between these two groups before and during treatment. Furthermore, linear discriminant analyses based on patients' in vivo biochemical information accurately predicted individual response to tamoxifen both before and at very early treatment stages (2 and 4 wk). Similar analyses based on patient sex, age, Karnofsky scale score, tumor type, and tumor volume could not reliably predict the response to tamoxifen treatment at the same time periods. CONCLUSION It is possible to accurately predict the response of a tumor to tamoxifen on the basis of noninvasively acquired in vivo biochemical information. 1H MRSI has potential as a prognostic tool in the pharmacological treatment of recurrent malignant gliomas.
Collapse
Affiliation(s)
- M C Preul
- Department of Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Cho KK, Mikkelsen T, Lee YJ, Jiang F, Chopp M, Rosenblum ML. The role of protein kinase Calpha in U-87 glioma invasion. Int J Dev Neurosci 1999; 17:447-61. [PMID: 10571407 DOI: 10.1016/s0736-5748(99)00054-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To investigate the hypothesis that protein kinase Calpha (PKCalpha) is functional glial tumor cell invasion, stable PKCalpha sense and antisense transfected U-87 cell lines were established and PKCalpha expression characterized by Western blot and PKC activity assays. Invasion assays including barrier migration (Koochekpour et al., Extracellular matrix proteins inhibit proliferation, upregulate migration and induce morphological changes in human glioma lines. Eur. J. Cancer, 1995, 31, 375-380; Merzak et al., CD44 mediates human glioma cell adhesion and invasion in vitro. Cancer Res., 1994, 54, 3988-3992; Merzak et al., Cell surface gangliosides are involved in the control of human glioma cell invasion in vitro. Neurosci. Lett., 1994, 177, 11-16), and spheroid confrontation were used to study the relationship between PKCalpha expression and invasiveness. PKCalpha overexpressing clones show increased barrier migration (1.5x) relative to the control transfected clones. PKCalpha inhibited clones exhibited reduced invasiveness, to < 50%. In coculture with PKCalpha overexpressing clones, the remaining normal fetal rat brain aggregate volume was significantly decreased (up to 200%) but 90% of the initial brain volume was left in PKCalpha inhibited clone in the rat brain aggregate tumor spheroid confrontation. This effect was not associated with significant growth inhibition. We conclude that expression of PKCalpha in glioma-derived cell lines appears to be central to glioma invasion in vitro.
Collapse
Affiliation(s)
- K K Cho
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
19
|
Bredel M, Pollack IF, Freund JM, Rusnak J, Lazo JS. Protein kinase C inhibition by UCN-01 induces apoptosis in human glioma cells in a time-dependent fashion. J Neurooncol 1999; 41:9-20. [PMID: 10222418 DOI: 10.1023/a:1006047025425] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent studies in our laboratory have shown that UCN-01 (7-hydroxystaurosporine), which is a derivative of the non-selective protein kinase inhibitor staurosporine that exhibits relative selectivity for protein kinase C (PKC), is a potent inhibitor of glioma growth in in vitro and in vivo models. This agent exhibits both cytotoxic and cytostatic effects, depending on the time period of drug exposure. In the present study, we examined whether UCN-01-induced cytotoxicity correlated with the induction of apoptosis, and characterized further the time course of this process as a prelude to application of UCN-01 in clinical trials. We first demonstrated that the cytotoxic effects of UCN-01 were associated with the induction of morphological features of apoptosis. Secondly, we identified electrophoretic features of apoptosis semiquantitatively at a series of time points using field inversion gel electrophoresis. These studies showed a peak in the induction of high-molecular-weight DNA fragmentation after 3-6 days of drug treatment. Thirdly, we measured the percentage of cells undergoing apoptosis at various time points using a terminal transferase-catalyzed in situ end-labeling technique, which confirmed a time- and concentration-dependent increase in apoptotic cell numbers. This correlated with a progressive decrease in the percentage of cells that were viable as assessed by trypan blue exclusion. Cell killing peaked within 2-4 days after beginning UCN-01 treatment, but continued at a lower level in the ensuing days. Taken together, these studies demonstrated that extended periods of exposure to UCN-01 are needed for optimal manifestation of cytotoxic effects against glioma cells, a factor that must be taken into consideration in the design of future clinical trials with this agent for malignant gliomas.
Collapse
Affiliation(s)
- M Bredel
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
20
|
Nygaard SJ, Haugland HK, Kristoffersen EK, Lund-Johansen M, Laerum OD, Tysnes OB. Expression of annexin II in glioma cell lines and in brain tumor biopsies. J Neurooncol 1998; 38:11-8. [PMID: 9540053 DOI: 10.1023/a:1005953000523] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Annexin II is a calcium and phospholipid binding protein and a substrate for protein-tyrosine kinases. Increased levels of annexin II are observed in various cancer cells and tissues, and the molecule has been proposed as a marker of malignancy in vivo. Annexin II was expressed in four glioma cell lines (D-54MG, D-37MG, U251MG and GaMG), as determined by Western blot analyses, immunofluorescence staining and flow cytometric measurements. In addition, annexin II expression was also found in cryostat sections obtained from 15 consecutive brain tumor biopsies: Ten were histologically classified as glioblastomas, one as an astrocytoma, two as meningiomas and two as brain metastases. Cultured spheroids from the glioma cell lines and from three of the glioblastoma biopsies showed lower levels of annexin II, than found in the monolayers of the cell lines and in the freshly cut biopsies. The annexin II expression of the cell lines were not found to be related to their proliferative, migratory or invasive properties. These findings indicate that although annexin II may serve as a marker of malignancy in vivo, its expression can be reduced in vitro, and appear unrelated to malignant features of glioma cell lines.
Collapse
Affiliation(s)
- S J Nygaard
- Department of Pathology, Gade Institute, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
21
|
Bredel M, Pollack IF. The role of protein kinase C (PKC) in the evolution and proliferation of malignant gliomas, and the application of PKC inhibition as a novel approach to anti-glioma therapy. Acta Neurochir (Wien) 1998; 139:1000-13. [PMID: 9442212 DOI: 10.1007/bf01411552] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present article reviews the role of the second messenger enzyme protein kinase C (PKC) in the growth regulation of high-grade gliomas, and evaluates the efficacy of therapeutic strategies directed against PKC for blocking the proliferation of these malignancies in in vitro and in vivo models. The translation of such strategies to the treatment of patients with malignant gliomas may provide a novel approach for improving the otherwise grim outlook associated with these neoplasms.
Collapse
Affiliation(s)
- M Bredel
- Department of Neurosurgery, University of Pittsburgh School of Medicine, PA, USA
| | | |
Collapse
|
22
|
Uhm JH, Dooley NP, Villemure JG, Yong VW. Mechanisms of glioma invasion: role of matrix-metalloproteinases. Neurol Sci 1997; 24:3-15. [PMID: 9043741 DOI: 10.1017/s0317167100021028] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One of the most lethal properties of high grade gliomas is their ability to invade the surrounding normal brain tissue, as infiltrated cells often escape surgical resection and inevitably lead to tumour recurrence. The consequent poor prognosis and survival rate underscore the need to further understand and target the cellular mechanisms that underly tumour invasiveness. Proteases which degrade the surrounding stromal cells and extracellular matrix proteins have been demonstrated to be critical effectors of invasion for tumours of both central and peripheral origin. Within the nervous system, the role of metalloproteinases as well as other classes of proteases in mediating the invasive phenotype of high grade gliomas has been an intense area of research. We present in this article a review of this literature and address the possibility that these proteases and the biochemical pathways that regulate their expression, such as protein kinase C, may represent potential targets in the therapy of high grade gliomas.
Collapse
Affiliation(s)
- J H Uhm
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Canada
| | | | | | | |
Collapse
|