1
|
Izah SC, Ogwu MC. Modeling solutions for microbial water contamination in the global south for public health protection. Front Microbiol 2025; 16:1504829. [PMID: 40241726 PMCID: PMC12001804 DOI: 10.3389/fmicb.2025.1504829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
Microbial contamination of water sources is a pressing global challenge, disproportionately affecting developing regions with inadequate infrastructure and limited access to safe drinking water. In the Global South, waterborne pathogens such as bacteria, viruses, protozoa, and helminths contribute to diseases like cholera, dysentery, and typhoid fever, resulting in severe public health burdens. Predictive modeling emerges as a pivotal tool in addressing these challenges, offering data-driven insights to anticipate contamination events and optimize mitigation strategies. This review highlights the application of predictive modeling techniques-including machine learning, hydrological simulations, and quantitative microbial risk assessment -to identify contamination hotspots, forecast pathogen dynamics, and inform water resource allocation in the Global South. Predictive models enable targeted actions to improve water safety and lower the prevalence of waterborne diseases by combining environmental, socioeconomic, and climatic factors. Water resources in the Global South are increasingly vulnerability to microbial contamination, and the challenge is exacerbated by rapid urbanization, climate variability, and insufficient sanitation infrastructure. This review underscores the importance of region-specific modeling approaches. Case studies from sub-Saharan Africa and South Asia demonstrated the efficacy of predictive modeling tools in guiding public health actions connected to environmental matrices, from prioritizing water treatment efforts to implementing early-warning systems during extreme weather events. Furthermore, the review explores integrating advanced technologies, such as remote sensing and artificial intelligence, into predictive frameworks, highlighting their potential to improve accuracy and scalability in resource-constrained settings. Increased funding for data collecting, predictive modeling tools, and cross-sectoral cooperation between local communities, non-governmental organizations, and governments are all recommended in the review. Such efforts are critical for developing resilient water systems capable of withstanding environmental stressors and ensuring sustainable access to safe drinking water. By leveraging predictive modeling as a core component of water management strategies, stakeholders can address microbial contamination challenges effectively, safeguard public health, and contribute to achieving the United Nations' Sustainable Development Goals.
Collapse
Affiliation(s)
- Sylvester Chibueze Izah
- Department of Community Medicine, Faculty of Clinical Sciences, Bayelsa Medical University, Yenagoa, Nigeria
| | - Matthew Chidozie Ogwu
- Goodnight Family Department of Sustainable Development, Living Learning Center, Appalachian State University, Boone, NC, United States
| |
Collapse
|
2
|
Islam MMM, Bondelind M, Bergion V, Sokolova E. Changing climate and socio-economic conditions as part of quantitative microbial risk assessment of surface drinking water sources: a review. JOURNAL OF WATER AND HEALTH 2025; 23:507-528. [PMID: 40298269 DOI: 10.2166/wh.2025.486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/15/2025] [Indexed: 04/30/2025]
Abstract
Climate and socio-economic changes are expected to significantly impact waterborne pathogens and associated health risks, yet the full extent of these effects remains unclear. Accurate quantification of these risks is crucial for informing effective interventions and policy decisions. Quantitative microbial risk assessment (QMRA) serves as a valuable tool for estimating the risk of infection caused by microorganisms in drinking water. This study reviews existing QMRA studies and tools in the context of surface water and drinking water provision. Most studies have implemented various steps of the QMRA framework but often without the application of specific QMRA tools. Although several QMRA tools address climatic factors, there are currently no tools that integrate socio-economic factors into their risk assessments. This study proposes an approach for incorporating both climatic and socio-economic factors into QMRA tools. Specifically, we suggest enhancements to the Swedish QMRA tool - an open-source tool that currently does not incorporate climate and socio-economic changes. Our proposed advancements aim to systematically account for future climatic and socio-economic impacts on health risks, providing a more comprehensive microbial risk assessment tool. These recommendations are also applicable to other QMRA tools, offering a pathway for their development and improving the overall assessment of microbial health risks.
Collapse
Affiliation(s)
- M M Majedul Islam
- Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh E-mail:
| | - Mia Bondelind
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Viktor Bergion
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| | - Ekaterina Sokolova
- Department of Earth Sciences, Uppsala University, Uppsala SE-752 36, Sweden
| |
Collapse
|
3
|
Petculescu I, Hynds P, Brown RS, McDermott K, Majury A. An investigation of microbial groundwater contamination seasonality and extreme weather event interruptions using "big data", time-series analyses, and unsupervised machine learning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125790. [PMID: 39922413 DOI: 10.1016/j.envpol.2025.125790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Temporal studies of groundwater potability have historically focused on E. coli detection rates, with non-E. coli coliforms (NEC) and microbial concentrations remaining understudied by comparison. Additionally, "big data" (i.e., large, diverse datasets that grow over time) have yet to be employed for assessing the effects of high return-period extreme weather events on groundwater quality. The current investigation employed ≈1.1 million Ontarian private well samples collected between 2010 and 2021, seeking to address these knowledge gaps via applying time-series decomposition, interrupted time-series analysis (ITSA), and unsupervised machine learning to five microbial contamination parameters: E. coli and NEC concentrations (CFU/100 mL) and detection rates (%), and the calculated NEC:E. coli ratio. Time-series decompositions revealed E. coli concentrations and the NEC:E. coli ratio as complementary metrics, with concurrent interpretation of their seasonal signals indicating that localized contamination mechanisms dominate during winter months. ITSA findings highlighted the importance of hydrogeological time lags: for example, a significant E. coli detection rate increase (2.4% vs 1.8%, p = 0.02) was identified 12 weeks after the May 2017 flood event. Unsupervised machine learning spatially classified annual contamination cycles across Ontarian subregions (n = 27), with the highest inter-cluster variability identified among E. coli detection rates and the lowest among NEC detection rates and the NEC:E. coli ratio. Given the spatiotemporal consistency identified for NEC and the NEC:E. coli ratio, associated interpretations and recommendations are likely transferable across large, heterogeneous regions. The presented study may serve as a methodological blueprint for future temporal investigations employing "big" groundwater quality data.
Collapse
Affiliation(s)
- Ioan Petculescu
- School of Environmental Studies, Queen's University, 99 University Ave, Kingston, ON, Canada.
| | - Paul Hynds
- Technological University Dublin, Park House, 191 N Circular Rd, Dublin, Ireland.
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, 99 University Ave, Kingston, ON, Canada.
| | | | - Anna Majury
- School of Environmental Studies, Queen's University, 99 University Ave, Kingston, ON, Canada; Public Health Ontario, 181 Barrie St, Kingston, ON, Canada.
| |
Collapse
|
4
|
Kelly M, Hynds P, Brown RS, McDermott K, Petculescu I, Majury AL. The use of E. coli phylogrouping and microbial source tracking (non-species specific, human-specific, bovine-specific bacteroidales markers) to elucidate hydro(geo)logical contamination mechanisms in southeastern Ontario, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125080. [PMID: 39374759 DOI: 10.1016/j.envpol.2024.125080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
In Ontario, monitoring, maintenance, and treatment of private drinking systems (e.g. wells) are the responsibility of the well owner. Fecal contamination of drinking water threatens public health, particularly in rural communities which are often fully reliant on unregulated private groundwater as a primary drinking water source. Private well users face a higher risk of acute gastrointestinal illness compared to those served by municipally operated systems (Murphy et al., 2016). Accordingly, the current study sought to characterize the fecal indicator, E. coli, isolated from southeastern Ontario private groundwater wells, including phylogroups and host source. Results were examined in the context of antecedent climate and local hydrogeological setting to elucidate likely contaminant sources and pathways. A total of 737 E. coli isolates from 260 private wells were assigned to phylogroups using the Clermont PCR phylotyping method, with likely host source determined using host-specific Bacteroidales 16S rRNA RT qPCR assays. Multivariate models were developed for the main E. coli phylogroups (A, B1, B2, and D) and all microbial source tracking markers. Models were coupled for interpretation where possible, based on associations between phylogroups and MST markers. Preferential subsurface flow, and to a lesser degree, overland flow, were likely mechanisms of contamination across all models. Distinct temporal associations were found based on the fecal source. Multiple models were developed and will be discussed, in an attempt to elucidate source-specific contamination mechanisms, in support of risk assessment and appropriate protective actions.
Collapse
Affiliation(s)
- Madeleine Kelly
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| | - Paul Hynds
- Technological University Dublin, Dublin, Ireland.
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | - Ioan Petculescu
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| | - Anna L Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada.
| |
Collapse
|
5
|
Ngo H, Parmley EJ, Ricker N, Winder C, Murphy HM. Quantitative microbial risk assessment of acute gastrointestinal illness attributable to freshwater recreation in Ontario. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2024:10.17269/s41997-024-00969-4. [PMID: 39658778 DOI: 10.17269/s41997-024-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/05/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES The burden of disease associated with acute gastrointestinal illness (AGI) in Canada is estimated to be ~ 20 million cases/year. One known risk factor for developing AGI is recreation in freshwater bodies such as lakes. The proportion of cases attributable to freshwater recreation in Canada, however, is currently unknown. The study objective was to estimate the risk of developing AGI from exposure to Giardia, Cryptosporidium, Campylobacter, Escherichia coli O157:H7, norovirus, and Salmonella during freshwater recreation in Ontario, Canada. METHODS A quantitative microbial risk assessment (QMRA) was conducted to estimate the number of AGI cases per 1000 recreational events associated with freshwater recreation. QMRA utilizes four steps: hazard identification, exposure assessment, dose-response modelling, and risk characterization. A probabilistic model was developed using the following inputs accounting for uncertainty and variability: published data on pathogen prevalence and concentration in freshwaters in Ontario (hazard identification), recreator water ingestion volumes (exposure), pathogen-specific dose-response models, and ratios between numbers of infections and symptomatic disease cases to estimate illness risks (risk characterization). RESULTS The mean estimated AGI risk associated with recreation ranged from 0.8 to 36.7 cases per 1000 swimmers (5th-95th probability interval: 0-226.3 cases/1000) which is in line with previous studies conducted in Lake Ontario, as well as prior QMRAs of freshwater recreation. Upper range predicted values exceeded the Health Canada guideline of less than 20 cases per 1000 recreators. CONCLUSION This study shows that QMRA can be used to estimate disease risk in the absence of large-scale epidemiological studies. The results demonstrate a range of risk that is in line with exposure to pristine (low risk estimates) and more contaminated waters (high risk estimates) and capture the potential risk to vulnerable populations.
Collapse
Affiliation(s)
- Henry Ngo
- Water, Health, and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - E Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Charlotte Winder
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Heather M Murphy
- Water, Health, and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
6
|
Ayed LB, Ahmed SAA, Boughattas S, Karanis P. Waterborne Cryptosporidium species and Giardia duodenalis in resources of MENA: A systematic review and meta-analysis. JOURNAL OF WATER AND HEALTH 2024; 22:1491-1515. [PMID: 39212283 DOI: 10.2166/wh.2024.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/15/2024] [Indexed: 09/04/2024]
Abstract
This review explores our understanding of Cryptosporidium species and Giardia duodenalis distribution in Middle East and North African (MENA) water resources. Results emphasize that Cryptosporidium species (sp.) and G. duodenalis (oo)cysts are present in distinct categories of water in ten MENA countries. Cryptosporidium sp. proportional prevalence in the MENA region was 24.5% (95% CI 16.3-33.8), while G. duodenalis prevalence was 37.7% (95% CI 21.9-55.1). Raw wastewater and surface water were the water categories most significantly impacted. Both parasites were reported in the various types of MENA drinking waters. The most frequent species/genotypes reported were C. hominis, C. parvum, and G. duodenalis assemblage A. Despite the high prevalence of (oo)cysts reported, we should consider the absence of waterborne outbreaks. This indicates significant underestimation and underreporting of both parasites in MENA. Stakeholders should apply water contamination legislation to eradicate Cryptosporidium sp. and G. duodenalis (oo)cysts from water resources/categories.
Collapse
Affiliation(s)
- Layla Ben Ayed
- National Institute of Agronomy of Tunisia, University of Carthage, 43 Charles Nicole Street, Cité Mahrajène 1082, Tunis, Tunisia
| | | | - Sonia Boughattas
- Biomedical Research Center, Qatar University, PO. Box 2713, Doha, Qatar
| | - Panagiotis Karanis
- Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; University of Nicosia Medical School, 24005, CY-1700 Nicosia, Cyprus E-mail:
| |
Collapse
|
7
|
Mraz AL, Mutyala N, Cleary S, Seals BF. Is Personal Protective Equipment Worth the Hassle? Annual Risk of Cryptosporidiosis to Dairy Farmers and How Personal Protective Equipment and Handwashing Can Mitigate It. Microorganisms 2023; 11:2413. [PMID: 37894073 PMCID: PMC10609119 DOI: 10.3390/microorganisms11102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
Cows are known carriers of Cryptosporidium parvum (C. parvum), a protozoa that can cause the gastrointestinal illness cryptosporidiosis in humans. Despite this potential exposure, dairy farmers tend to wear personal protective equipment (PPE) to protect the milk from contamination, rather than to protect themselves from zoonotic diseases, such as cryptosporidiosis. In this study, cow feces were collected from individual cattle on dairy farms and analyzed for C. parvum using qPCR. Quantitative microbial risk assessment (QMRA) was used to determine the risk of cryptosporidiosis to the dairy farmer with and without the use of handwashing and PPE (gloves and masks). The annualized risk of cryptosporidiosis to dairy farmers was 29.08% but was reduced significantly in each of the three interventions. Among the individual interventions, glove use provided the greatest reduction in risk, bringing the annual risk of cryptosporidiosis to 4.82%. Implementing regular handwashing, the use of gloves and a mask brought the annual risk of cryptosporidiosis to 1.29%. This study provides evidence that handwashing and PPE use can significantly reduce the risk of cryptosporidiosis to farmers and is worth implementing despite potential barriers such as discomfort and cost.
Collapse
Affiliation(s)
- Alexis L. Mraz
- The Department of Public Health, School of Nursing and Health Sciences, The College of New Jersey, Ewing Township, NJ 08618, USA; (N.M.); (B.F.S.)
| | - Nandini Mutyala
- The Department of Public Health, School of Nursing and Health Sciences, The College of New Jersey, Ewing Township, NJ 08618, USA; (N.M.); (B.F.S.)
- The Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Seana Cleary
- The Department of Public Health, School of Nursing and Health Sciences, The College of New Jersey, Ewing Township, NJ 08618, USA; (N.M.); (B.F.S.)
- The Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Brenda F. Seals
- The Department of Public Health, School of Nursing and Health Sciences, The College of New Jersey, Ewing Township, NJ 08618, USA; (N.M.); (B.F.S.)
| |
Collapse
|
8
|
Borchardt MA, Kieke BA, Spencer SK, Lambertini E, Burch TR, Loge FJ. Community intervention trial for estimating risk of acute gastrointestinal illness from groundwater-supplied non-disinfected drinking water. JOURNAL OF WATER AND HEALTH 2023; 21:1209-1227. [PMID: 37756190 PMCID: wh_2023_071 DOI: 10.2166/wh.2023.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
By community intervention in 14 non-disinfecting municipal water systems, we quantified sporadic acute gastrointestinal illness (AGI) attributable to groundwater. Ultraviolet (UV) disinfection was installed on all supply wells of intervention communities. In control communities, residents continued to drink non-disinfected groundwater. Intervention and control communities switched treatments by moving UV disinfection units at the study midpoint (crossover design). Study participants (n = 1,659) completed weekly health diaries during four 12-week surveillance periods. Water supply wells were analyzed monthly for enteric pathogenic viruses. Using the crossover design, groundwater-borne AGI was not observed. However, virus types and quantity in supply wells changed through the study, suggesting that exposure was not constant. Alternatively, we compared AGI incidence between intervention and control communities within the same surveillance period. During Period 1, norovirus contaminated wells and AGI attributable risk from well water was 19% (95% CI, -4%, 36%) for children <5 years and 15% (95% CI, -9%, 33%) for adults. During Period 3, echovirus 11 contaminated wells and UV disinfection slightly reduced AGI in adults. Estimates of AGI attributable risks from drinking non-disinfected groundwater were highly variable, but appeared greatest during times when supply wells were contaminated with specific AGI-etiologic viruses.
Collapse
Affiliation(s)
- Mark A Borchardt
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, WI, USA; Current address: USDA-ARS, U.S. Dairy Forage Research Center, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, USA E-mail:
| | - Burney A Kieke
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Susan K Spencer
- National Farm Medicine Center, Marshfield Clinic Research Institute, Marshfield, WI, USA; Current address: USDA-ARS, U.S. Dairy Forage Research Center, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, USA
| | - Elisabetta Lambertini
- Department of Civil and Environmental Engineering, University of California, Davis, CA, USA; Current address: Global Alliance for Improved Nutrition, Washington, DC, USA
| | - Tucker R Burch
- U.S. Dairy Forage Research Center, U.S. Department of Agriculture - Agricultural Research Service, Marshfield, WI, USA
| | - Frank J Loge
- Department of Civil and Environmental Engineering, University of California, Davis, CA, USA
| |
Collapse
|
9
|
Lee D, Gibson JM, Brown J, Habtewold J, Murphy HM. Burden of disease from contaminated drinking water in countries with high access to safely managed water: A systematic review. WATER RESEARCH 2023; 242:120244. [PMID: 37390656 PMCID: PMC11260345 DOI: 10.1016/j.watres.2023.120244] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
The vast majority of residents of high-income countries (≥90%) reportedly have high access to safely managed drinking water. Owing perhaps to the widely held perception of near universal access to high-quality water services in these countries, the burden of waterborne disease in these contexts is understudied. This systematic review aimed to: identify population-scale estimates of waterborne disease in countries with high access to safely managed drinking water, compare methods to quantify disease burden, and identify gaps in available burden estimates. We conducted a systematic review of population-scale disease burden estimates attributed to drinking water in countries where ≥90% of the population has access to safely managed drinking water per official United Nations monitoring. We identified 24 studies reporting estimates for disease burden attributable to microbial contaminants. Across these studies, the median burden of gastrointestinal illness risks attributed to drinking water was ∼2,720 annual cases per 100,000 population. Beyond exposure to infectious agents, we identified 10 studies reporting disease burden-predominantly, cancer risks-associated with chemical contaminants. Across these studies, the median excess cancer cases attributable to drinking water was 1.2 annual cancer cases per 100,000 population. These median estimates slightly exceed WHO-recommended normative targets for disease burden attributable to drinking water and these results highlight that there remains important preventable disease burden in these contexts, particularly among marginalized populations. However, the available literature was scant and limited in geographic scope, disease outcomes, range of microbial and chemical contaminants, and inclusion of subpopulations (rural, low-income communities; Indigenous or Aboriginal peoples; and populations marginalized due to discrimination by race, ethnicity, or socioeconomic status) that could most benefit from water infrastructure investments. Studies quantifying drinking water-associated disease burden in countries with reportedly high access to safe drinking water, focusing on specific subpopulations lacking access to safe water supplies and promoting environmental justice, are needed.
Collapse
Affiliation(s)
- Debbie Lee
- Water, Health and Applied Microbiology (WHAM) Lab, Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jacqueline MacDonald Gibson
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, United States
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jemaneh Habtewold
- Water, Health and Applied Microbiology (WHAM) Lab, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, United States
| | - Heather M Murphy
- Water, Health and Applied Microbiology (WHAM) Lab, Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States; Water, Health and Applied Microbiology (WHAM) Lab, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, United States.
| |
Collapse
|
10
|
Latchmore T, Lavallee S, Hynds PD, Brown RS, Majury A. Integrating consumer risk perception and awareness with simulation-based quantitative microbial risk assessment using a coupled systems framework: A case study of private groundwater users in Ontario. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117112. [PMID: 36681033 DOI: 10.1016/j.jenvman.2022.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Private well users in Ontario are responsible for ensuring the potability of their own private drinking water source through protective actions (i.e., water treatment, well maintenance, and regular water quality testing). In the absence of regulation and limited surveillance, quantitative microbial risk assessment (QMRA) represents the most practical and robust approach to estimating the human health burden attributable to private wells. For an increasingly accurate estimation, QMRA of private well water should be represented by a coupled model, which includes both the socio-cognitive and physical aspects of private well water contamination and microbial exposure. The objective of the current study was to determine levels of waterborne exposure via well water consumption among three sub-groups (i.e., clusters) of private well users in Ontario and quantify the risk of waterborne acute gastrointestinal illness (AGI) attributed to Giardia, shiga-toxin producing E. coli (STEC) and norovirus from private drinking water sources in Ontario. Baseline simulations were utilized to explore the effect of varying socio-cognitive scenarios on model inputs (i.e., increased awareness, protective actions, aging population). The current study uses a large spatio-temporal groundwater quality dataset and cross-sectional province-wide survey to create socio-cognitive-specific QMRA simulations to estimate the risk of waterborne AGI attributed to three enteric pathogens in private drinking waters source in Ontario. Findings suggest significant differences in the level of exposure among sub-groups of private well users. Private well users within Cluster 3 are characterised by higher levels of exposure and annual illness attributable to STEC, Giardia and norovirus than Clusters 1 and 2. Provincial incidence rates of 520.9 (1522 illness per year), 532.1 (2211 illness per year) and 605.5 (5345 illness per year) cases/100,000 private well users per year were predicted for private well users associated with Clusters 1 through 3. Established models will enable development of necessary tools tailored to specific groups of at-risk well users, allowing for preventative public health management of private groundwater sources.
Collapse
Affiliation(s)
- Tessa Latchmore
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Sarah Lavallee
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Paul D Hynds
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland.
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Anna Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada.
| |
Collapse
|
11
|
Lee D, Denno D, Tarr P, Wu J, Stokdyk JP, Borchardt M, Murphy HM. Study design and methods of the Wells and Enteric disease Transmission (WET) Trial: a randomised controlled trial. BMJ Open 2023; 13:e068560. [PMID: 36863739 PMCID: PMC9990626 DOI: 10.1136/bmjopen-2022-068560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
INTRODUCTION The burden of disease attributed to drinking water from private wells is not well characterised. The Wells and Enteric disease Transmission trial is the first randomised controlled trial to estimate the burden of disease that can be attributed to the consumption of untreated private well water. To estimate the attributable incidence of gastrointestinal illness (GI) associated with private well water, we will test if the household treatment of well water by ultraviolet light (active UV device) versus sham (inactive UV device) decreases the incidence of GI in children under 5 years of age. METHODS AND ANALYSIS The trial will enrol (on a rolling basis) 908 families in Pennsylvania, USA, that rely on private wells and have a child 3 years old or younger. Participating families are randomised to either an active whole-house UV device or a sham device. During follow-up, families will respond to weekly text messages to report the presence of signs and symptoms of gastrointestinal or respiratory illness and will be directed to an illness questionnaire when signs/symptoms are present. These data will be used to compare the incidence of waterborne illness between the two study groups. A randomly selected subcohort submits untreated well water samples and biological specimens (stool and saliva) from the participating child in both the presence and absence of signs/symptoms. Samples are analysed for the presence of common waterborne pathogens (stool and water) or immunoconversion to these pathogens (saliva). ETHICS Approval has been obtained from Temple University's Institutional Review Board (Protocol 25665). The results of the trial will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04826991.
Collapse
Affiliation(s)
- Debbie Lee
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, Pennsylvania, USA
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Donna Denno
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Phillip Tarr
- Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jingwei Wu
- Epidemiology and Biostatistics, Temple University, Philadelphia, Pennsylvania, USA
| | - Joel P Stokdyk
- US Geological Survey Upper Midwest Water Science Center, Marshfield, Wisconsin, USA
| | - Mark Borchardt
- US Department of Agriculture-Agricultural Research Service, Marshfield, Wisconsin, USA
| | - Heather M Murphy
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Guelph Ontario Veterinary College, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Assessing the risk of acute gastrointestinal illness attributable to three enteric pathogens from contaminated private water wells in Ontario. Int J Hyg Environ Health 2023; 248:114077. [PMID: 36462411 DOI: 10.1016/j.ijheh.2022.114077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
The province of Ontario compromises the largest groundwater reliant population in Canada serving approximately 1.6 million individuals. Unlike municipal water systems, private well water is not required to meet water quality regulatory standards and thus source maintenance, treatment and testing remains the responsibility of the well owner. Infections associated with private drinking water systems are rarely documented given their typically sporadic nature, thus the human health effects (e.g., acute gastrointestinal illness (AGI)) on consumers remains relatively unknown, representing a significant gap in water safety management. The current study sought to quantify the risk of waterborne AGI attributed to Giardia, shiga-toxin producing E. coli (STEC) and norovirus from private drinking water sources in Ontario using Monte Carlo simulation-based quantitative microbial risk assessment (QMRA). Findings suggest that consumption of contaminated private well water in Ontario is responsible for approximately 4823 AGI cases annually, with 3464 (71.8%) and 1359 (28.1%) AGI cases predicted to occur in consolidated and unconsolidated aquifers, respectively. By pathogen, waterborne AGI was attributed to norovirus (62%; 2991/4823), Giardia (24.6%; 1186/4823) and STEC (13.4%; 646/4823). The developed QMRA framework was used to assess the potential health impacts of partial and total well water treatment system failure. In the unlikely event of total treatment failure, total mean annual illnesses are predicted to almost double (4217 to 7064 cases per year), highlighting the importance of effective water treatment and comprehensive testing programs in reducing infectious health risks attributable to private well water in Ontario. Study findings indicate significant underreporting of waterborne AGI rates at the provincial level likely biasing public health interventions and programs that are effective in monitoring and minimizing the health risk associated with private well water.
Collapse
|
13
|
Soto I, Zamorano-Illanes R, Becerra R, Palacios Játiva P, Azurdia-Meza CA, Alavia W, García V, Ijaz M, Zabala-Blanco D. A New COVID-19 Detection Method Based on CSK/QAM Visible Light Communication and Machine Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:1533. [PMID: 36772574 DOI: 10.3390/s23031533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
This article proposes a novel method for detecting coronavirus disease 2019 (COVID-19) in an underground channel using visible light communication (VLC) and machine learning (ML). We present mathematical models of COVID-19 Deoxyribose Nucleic Acid (DNA) gene transfer in regular square constellations using a CSK/QAM-based VLC system. ML algorithms are used to classify the bands present in each electrophoresis sample according to whether the band corresponds to a positive, negative, or ladder sample during the search for the optimal model. Complexity studies reveal that the square constellation N=22i×22i,(i=3) yields a greater profit. Performance studies indicate that, for BER = 10-3, there are gains of -10 [dB], -3 [dB], 3 [dB], and 5 [dB] for N=22i×22i,(i=0,1,2,3), respectively. Based on a total of 630 COVID-19 samples, the best model is shown to be XGBoots, which demonstrated an accuracy of 96.03%, greater than that of the other models, and a recall of 99% for positive values.
Collapse
Affiliation(s)
- Ismael Soto
- CIMTT, Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 9170124, Chile
| | - Raul Zamorano-Illanes
- CIMTT, Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 9170124, Chile
| | - Raimundo Becerra
- Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile
| | - Pablo Palacios Játiva
- Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile
- Escuela de Informática y Telecomunicaciones, Universidad Diego Portales, Santiago 8370190, Chile
| | - Cesar A Azurdia-Meza
- Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile
| | - Wilson Alavia
- CIMTT, Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 9170124, Chile
| | - Verónica García
- Departamento en Ciencia y Tecnología de los Alimentos, de la Universidad de Santiago de Chile, Santiago 9170124, Chile
| | - Muhammad Ijaz
- Manchester Metropolitan University, Manchester M1 5GD, UK
| | - David Zabala-Blanco
- Department of Computer Science and Industry, Universidad Católica del Maule, Talca 3480112, Chile
| |
Collapse
|
14
|
Lavallee S, Hynds PD, Brown RS, Majury A. Classification of sub-populations for quantitative risk assessment based on awareness and perception: A cross-sectional population study of private well users in Ontario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159677. [PMID: 36302430 DOI: 10.1016/j.scitotenv.2022.159677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Private well users in Ontario are responsible for protective actions, including source maintenance, treatment, and submitting samples for laboratory testing. However, low participation rates are reported, thus constituting a public health concern, as risk mitigation behaviours can directly reduce exposure to waterborne pathogens. The current study examined the combined effects of socio-demographic profile, experience(s), and "risk domains" (i.e., awareness, attitudes, risk perceptions and beliefs) on behaviours, and subsequently classified private well users in Ontario based on cognitive factors. A province-wide online survey (n = 1228) was employed to quantify Ontario well owners' awareness, perceptions, and behaviours in relation to their personal groundwater supply and local contamination sources. A scoring protocol for four risk domains was developed. Two-step cluster analysis was used to classify respondents based on individual risk domain scores. Logistic regression was employed to identify key variables associated with cluster membership (i.e., profile analysis). Overall, 1140 survey respondents were included for analyses. Three distinct clusters were identified based on two risk domains; groundwater awareness and source risk perception. Profile analyses indicate "low awareness and source risk perception" (Low A/SRP) members were more likely male, while "low awareness and moderate source risk perception" (Low A/Mod SRP) members were more likely female and bottled water users. Well users characterised as "high awareness and source risk perception" (High A/SRP) were more likely to report higher educational attainment and previous well water testing. Findings illustrate that socio-cognitive clusters and their components (i.e., demographics, awareness, attitudes, perceptions, experiences, and protective actions) are distinct based on the likelihood, frequency, and magnitude of waterborne pathogen exposures (i.e., risk-based). Risk-based clustering, when incorporated into quantitative microbial risk assessment, enables the development of effective risk management and communication initiatives that are demographically focused and tailored to specific sub-groups.
Collapse
Affiliation(s)
- Sarah Lavallee
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Paul D Hynds
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland.
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Anna Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada.
| |
Collapse
|
15
|
Latchmore T, Hynds PD, Stephen Brown R, McDermott K, Majury A. Estimating the duration and overlap of Escherichia coli contamination events in private groundwater supplies for quantitative risk assessment using a multiannual (2010-2017) provincial dataset. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119784. [PMID: 35843457 DOI: 10.1016/j.envpol.2022.119784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Approximately 1.6 million individuals in Ontario rely on private water wells. Private well water quality in Ontario remains the responsibility of the well owner, and due to the absence of regulation, quantitative microbial risk assessment (QMRA) likely represents the most effective approach to estimating and mitigating waterborne infection risk(s) from these supplies. Annual contamination duration (i.e., contaminated days per annum) represents a central input for waterborne QMRA; however, it is typically based on laboratory studies or meta-analyses, thus representing an important limitation for risk assessment, as groundwater mesocosms cannot accurately replicate subsurface conditions. The present study sought to address these limitations using a large spatio-temporal in-situ groundwater quality dataset (>700,000 samples) to evaluate aquifer-specific E. coli die-off rates (CFU/100 mL per day decline), subsequent contamination sequence duration(s) and the likelihood of overlapping contamination events. Findings indicate median E. coli die-off rates of 0.38 CFU/100 mL per day and 0.64 CFU/100 mL per day, for private wells located in unconsolidated and consolidated aquifers, respectlvely, with mean calculated contamination sequence durations of 18 days (unconsolidated) and 11 days (consolidated). Study findings support and permit development of increasingly evidence-based, regionally- and temporally-specific quantitative waterborne risk assessment.
Collapse
Affiliation(s)
- Tessa Latchmore
- School of Environmental Studies, Queen's University, 99 University Avenue, Kingston, Ontario, Canada
| | - Paul D Hynds
- Technological University Dublin, Park House, 191 N Circular Rd, Dublin, Ireland.
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, 99 University Avenue, Kingston, Ontario, Canada
| | - Kevin McDermott
- Public Health Ontario, 181 Barrie Street, Kingston, Ontario, Canada
| | - Anna Majury
- School of Environmental Studies, Queen's University, 99 University Avenue, Kingston, Ontario, Canada; Public Health Ontario, 181 Barrie Street, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Khan IUH, Murdock A, Mahmud M, Cloutier M, Benoit T, Bashar S, Patidar R, Mi R, Daneshfar B, Farenhorst A, Kumar A. Quantitative Assessment of First Nations Drinking Water Distribution Systems for Detection and Prevalence of Thermophilic Campylobacter Species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10466. [PMID: 36078183 PMCID: PMC9518054 DOI: 10.3390/ijerph191710466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Water is considered a major route for transmitting human-associated pathogens. Although microbial water quality indicators are used to test for the presence of waterborne pathogens in drinking water, the two are poorly correlated. The current study investigates the prevalence of thermophilic DNA markers specific for Campylobacter spp. (C. jejuni and C. coli) in source water and throughout the water distribution systems of two First Nations communities in Manitoba, Canada. A total of 220 water samples were collected from various points of the drinking water distribution system (DWDS) between 2016 and 2018. Target Campylobacter spp. were always (100%) detected in a home with a fiberglass (CF) cistern, as well as the community standpipe (SP). The target bacteria were also frequently detected in treated water at the Water Treatment Plant (WTP) (78%), homes with polyethylene (CP) (60%) and concrete (CC) (58%) cisterns, homes with piped (P) water (43%) and water truck (T) samples (20%), with a maximum concentration of 1.9 × 103 cells 100 mL-1 (C. jejuni) and 5.6 × 105 cells 100 mL-1 (C. coli). Similarly, target bacteria were detected in 68% of the source water samples with a maximum concentration of 4.9 × 103 cells 100 mL-1 (C. jejuni) and 8.4 × 105 cells 100 mL-1 (C. coli). Neither target Campylobacter spp. was significantly associated with free and total chlorine concentrations in water. The study results indicate that there is an immediate need to monitor Campylobacter spp. in small communities of Canada and, particularly, to improve the DWDS in First Nations communities to minimize the risk of Campylobacter infection from drinking water sources. Further research is warranted in improving/developing processes and technologies to eliminate microbial contaminants from water.
Collapse
Affiliation(s)
- Izhar U. H. Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Anita Murdock
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Maria Mahmud
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Michel Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Thomas Benoit
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sabrin Bashar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Rakesh Patidar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ruidong Mi
- Department of Soil Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bahram Daneshfar
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Annemieke Farenhorst
- Department of Soil Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
17
|
Özgüler ZÖ, Priyakanta N, Coban SC, Sezerol MA, Shaikh IA, Temel F. An acute gastroenteritis outbreak associated with a contaminated water supply system, Turkey, 2018. JOURNAL OF WATER AND HEALTH 2022; 20:1064-1070. [PMID: 35902988 DOI: 10.2166/wh.2022.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Disruption of routine monitorization and chlorination of the water supply system during a week-long holiday led to a multi-organism gastroenteritis outbreak in a district with limited laboratory support. More than a 10-fold increase in patients with gastroenteritis was reported. Enteropathogenic Escherichia coli, Enteroaggregative E. coli, and norovirus were detected in human specimen samples. The main water tank and pipes were rusted; 13 out of the 19 water samples tested positive for total Coliform (1-920 colony-forming units (CFU)/100 ml) and E. coli (1-720 CFU/100 ml). Chlorine levels were below 0.2 ppm in seven of the nine samples. Information of 1,815 cases was obtained from the hospital records with a crude attack rate of 2.9%. Cases widespread in the district increased throughout the holiday, epidemic curve revealed a point-source outbreak. The case-control study revealed that consumption of drinking tap water and using it to clean vegetables/fruits were significantly associated with the illness. While drinking only bottled water had a protective effect against the illness. The culture technique showed that the water supply samples were positive for pathogenic bacteria. Upon decision in a multi-stakeholder meeting, the water tank was cleaned, and the Municipality initiated the renovation of the water supply system.
Collapse
Affiliation(s)
- Zeynep Özge Özgüler
- General Directorate of Public Health, Ministry of Health of Turkey, Adnan Saygun St, Çankaya, Ankara, Turkey E-mail:
| | - Nayak Priyakanta
- WHO Country Office Turkey, World Health Organization, WHO Country Office Turkey, Yukarı Dikmen, Çankaya, Ankara, Turkey
| | - Serap Cetin Coban
- General Directorate of Public Health, Ministry of Health of Turkey, Adnan Saygun St, Çankaya, Ankara, Turkey E-mail:
| | - Mehmet Akif Sezerol
- General Directorate of Public Health, Ministry of Health of Turkey, Adnan Saygun St, Çankaya, Ankara, Turkey E-mail:
| | - Irshad Ali Shaikh
- WHO Country Office Turkey, World Health Organization, WHO Country Office Turkey, Yukarı Dikmen, Çankaya, Ankara, Turkey
| | - Fehminaz Temel
- General Directorate of Public Health, Ministry of Health of Turkey, Adnan Saygun St, Çankaya, Ankara, Turkey E-mail:
| |
Collapse
|
18
|
Detangling Seasonal Relationships of Fecal Contamination Sources and Correlates with Indicators in Michigan Watersheds. Microbiol Spectr 2022; 10:e0041522. [PMID: 35730960 PMCID: PMC9431008 DOI: 10.1128/spectrum.00415-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the widely acknowledged public health impacts of surface water fecal contamination, there is limited understanding of seasonal effects on (i) fate and transport processes and (ii) the mechanisms by which they contribute to water quality impairment. Quantifying relationships between land use, chemical parameters, and fecal bacterial concentrations in watersheds can help guide the monitoring and control of microbial water quality and explain seasonal differences. The goals of this study were to (i) identify seasonal differences in Escherichia coli and Bacteroides thetaiotaomicron concentrations, (ii) evaluate environmental drivers influencing microbial contamination during baseflow, snowmelt, and summer rain seasons, and (iii) relate seasonal changes in B. thetaiotaomicron to anticipated gastrointestinal infection risks. Water chemistry data collected during three hydroclimatic seasons from 64 Michigan watersheds were analyzed using seasonal linear regression models with candidate variables including crop and land use proportions, prior precipitation, chemical parameters, and variables related to both wastewater treatment and septic usage. Adaptive least absolute shrinkage and selection operator (LASSO) linear regression with bootstrapping was used to select explanatory variables and estimate coefficients. Regardless of season, wastewater treatment plant and septic system usage were consistently selected in all primary models for B. thetaiotaomicron and E. coli. Chemistry and precipitation-related variable selection depended upon season and organism. These results suggest a link between human pollution (e.g., septic systems) and microbial water quality that is dependent on flow regime. IMPORTANCE In this study, a data set of 64 Michigan watersheds was utilized to gain insights into fecal contamination sources, drivers, and chemical correlates across seasons for general E. coli and human-specific fecal indicators. Results reaffirmed a link between human-specific sources (e.g., septic systems) and microbial water quality. While the importance of human sources of fecal contamination and fate and transport variables (e.g., precipitation) remain important across seasons, this study provides evidence that fate and transport mechanisms vary with seasonal hydrologic condition and microorganism source. This study contributes to a body of research that informs prioritization of fecal contamination source control and surveillance strategy development to reduce the public health burden of surface water fecal contamination.
Collapse
|
19
|
Burch TR, Stokdyk JP, Rice N, Anderson AC, Walsh JF, Spencer SK, Firnstahl AD, Borchardt MA. Statewide Quantitative Microbial Risk Assessment for Waterborne Viruses, Bacteria, and Protozoa in Public Water Supply Wells in Minnesota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6315-6324. [PMID: 35507527 PMCID: PMC9118547 DOI: 10.1021/acs.est.1c06472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 05/22/2023]
Abstract
Infection risk from waterborne pathogens can be estimated via quantitative microbial risk assessment (QMRA) and forms an important consideration in the management of public groundwater systems. However, few groundwater QMRAs use site-specific hazard identification and exposure assessment, so prevailing risks in these systems remain poorly defined. We estimated the infection risk for 9 waterborne pathogens based on a 2-year pathogen occurrence study in which 964 water samples were collected from 145 public wells throughout Minnesota, USA. Annual risk across all nine pathogens combined was 3.3 × 10-1 (95% CI: 2.3 × 10-1 to 4.2 × 10-1), 3.9 × 10-2 (2.3 × 10-2 to 5.4 × 10-2), and 1.2 × 10-1 (2.6 × 10-2 to 2.7 × 10-1) infections person-1 year-1 for noncommunity, nondisinfecting community, and disinfecting community wells, respectively. Risk estimates exceeded the U.S. benchmark of 10-4 infections person-1 year-1 in 59% of well-years, indicating that the risk was widespread. While the annual risk for all pathogens combined was relatively high, the average daily doses for individual pathogens were low, indicating that significant risk results from sporadic pathogen exposure. Cryptosporidium dominated annual risk, so improved identification of wells susceptible to Cryptosporidium contamination may be important for risk mitigation.
Collapse
Affiliation(s)
- Tucker R. Burch
- U.S.
Department of Agriculture−Agricultural Research Service (USDA−ARS),
Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
- Laboratory
for Infectious Disease and the Environment (An Interagency Laboratory Supported By USDA-ARS and the U.S. Geological
Survey), 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
- . Phone: 715-207-9244
| | - Joel P. Stokdyk
- Laboratory
for Infectious Disease and the Environment (An Interagency Laboratory Supported By USDA-ARS and the U.S. Geological
Survey), 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
- U.S.
Geological Survey, Upper Midwest Water Science Center, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| | - Nancy Rice
- Minnesota
Department of Health, P.O. Box 64975, St. Paul, Minnesota 55164, United States
| | - Anita C. Anderson
- Minnesota
Department of Health, P.O. Box 64975, St. Paul, Minnesota 55164, United States
| | - James F. Walsh
- Minnesota
Department of Health, P.O. Box 64975, St. Paul, Minnesota 55164, United States
| | - Susan K. Spencer
- U.S.
Department of Agriculture−Agricultural Research Service (USDA−ARS),
Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
- Laboratory
for Infectious Disease and the Environment (An Interagency Laboratory Supported By USDA-ARS and the U.S. Geological
Survey), 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| | - Aaron D. Firnstahl
- Laboratory
for Infectious Disease and the Environment (An Interagency Laboratory Supported By USDA-ARS and the U.S. Geological
Survey), 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
- U.S.
Geological Survey, Upper Midwest Water Science Center, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| | - Mark A. Borchardt
- U.S.
Department of Agriculture−Agricultural Research Service (USDA−ARS),
Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
- Laboratory
for Infectious Disease and the Environment (An Interagency Laboratory Supported By USDA-ARS and the U.S. Geological
Survey), 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| |
Collapse
|
20
|
Latchmore T, Lavallee S, Boudou M, McDermott K, Brown RS, Hynds P, Majury A. Impacts of COVID-19 lockdown on private domestic groundwater sample numbers, E. coli presence and E. coli concentration across Ontario, January 2020-March 2021: An interrupted time-series analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152634. [PMID: 34974018 DOI: 10.1016/j.scitotenv.2021.152634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Approximately 1.5 million individuals in Ontario are supplied by private water wells (private groundwater supplies). Unlike municipal supplies, private well water quality remains unregulated, with owners responsible for testing, treating, and maintaining their own water supplies. The COVID-19 global pandemic and associated non-pharmaceutical interventions (NPIs) have impacted many environmental (e.g., surface water and air quality) and human (e.g., healthcare, transportation) systems over the past 15-months (January 2020 to March 2021). To date, the impact of these interventions on private groundwater systems remains largely unknown. Accordingly, the current study aimed to investigate the impact of a province-wide COVID-19 lockdown (late-March 2020) on health behaviours (i.e., private domestic groundwater sampling) and groundwater quality (via Escherichia coli (E. coli) detection and concentration) in private well water in Ontario, using time-series analyses (seasonal decomposition, interrupted time-series) of a large-spatio-temporal dataset (January 2016 to March 2021; N = 743,200 samples). Findings indicate that lockdown concurred with an immediate (p = 0.015) and sustained (p < 0.001) decrease in sampling rates, equating to approximately 2200 fewer samples received per week post-interruption. Likewise, a slightly decreased E. coli detection rate was observed approximately one month after lockdowns began (p = 0.003), while the proportion of "highly contaminated" samples (i.e., E. coli > 10 CFU/100 mL) was shown to increase within one month (p = 0.02), followed by a sustained decrease for the remainder of the year (May 2020-December 2020). Analyses strongly suggest that COVID-19 interventions resulted in discernible impacts on both well user behaviours and hydrogeological mechanisms. Findings may be used as an evidence-base for assisting policy makers, public health practitioners and private well owners in developing recommendations and mitigation strategies to manage public health risks during extreme and/or unprecedented future events.
Collapse
Affiliation(s)
- T Latchmore
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - S Lavallee
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - M Boudou
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - K McDermott
- Public Health Ontario, Kingston, Ontario, Canada
| | - R S Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - P Hynds
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland.
| | - A Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada.
| |
Collapse
|
21
|
Polkowska A, Räsänen S, Nuorti P, Maunula L, Jalava K. Assessment of Food and Waterborne Viral Outbreaks by Using Field Epidemiologic, Modern Laboratory and Statistical Methods-Lessons Learnt from Seven Major Norovirus Outbreaks in Finland. Pathogens 2021; 10:pathogens10121624. [PMID: 34959579 PMCID: PMC8707936 DOI: 10.3390/pathogens10121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022] Open
Abstract
Seven major food- and waterborne norovirus outbreaks in Western Finland during 2014–2018 were re-analysed. The aim was to assess the effectiveness of outbreak investigation tools and evaluate the Kaplan criteria. We summarised epidemiological and microbiological findings from seven outbreaks. To evaluate the Kaplan criteria, a one-stage meta-analysis of data from seven cohort studies was performed. The case was defined as a person attending an implicated function with diarrhoea, vomiting or two other symptoms. Altogether, 22% (386/1794) of persons met the case definition. Overall adjusted, 73% of norovirus patients were vomiting, the mean incubation period was 44 h (4 h to 4 days) and the median duration of illness was 46 h. As vomiting was a more common symptom in children (96%, 143/149) and diarrhoea among the elderly (92%, 24/26), symptom and age presentation should drive hypothesis formulation. The Kaplan criteria were useful in initial outbreak assessments prior to faecal results. Rapid food control inspections enabled evidence-based, public-health-driven risk assessments. This led to probability-based vehicle identification and aided in resolving the outbreak event mechanism rather than implementing potentially ineffective, large-scale public health actions such as the withdrawal of extensive food lots. Asymptomatic food handlers should be ideally withdrawn from high-risk work for five days instead of the current two days. Food and environmental samples often remain negative with norovirus, highlighting the importance of research collaborations. Electronic questionnaire and open-source novel statistical programmes provided time and resource savings. The public health approach proved useful within the environmental health area with shoe leather field epidemiology, combined with statistical analysis and mathematical reasoning.
Collapse
Affiliation(s)
- Aleksandra Polkowska
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, 33100 Tampere, Finland; (A.P.); (P.N.)
| | - Sirpa Räsänen
- Pirkanmaa Hospital District, 33520 Tampere, Finland;
| | - Pekka Nuorti
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, 33100 Tampere, Finland; (A.P.); (P.N.)
| | - Leena Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00100 Helsinki, Finland;
| | - Katri Jalava
- Department of Mathematics and Statistics, Faculty of Social Sciences, University of Helsinki, 00100 Helsinki, Finland
- Correspondence: ; Tel.: +44-73-4224-7186
| |
Collapse
|
22
|
Bell RL, Kase JA, Harrison LM, Balan KV, Babu U, Chen Y, Macarisin D, Kwon HJ, Zheng J, Stevens EL, Meng J, Brown EW. The Persistence of Bacterial Pathogens in Surface Water and Its Impact on Global Food Safety. Pathogens 2021; 10:1391. [PMID: 34832547 PMCID: PMC8617848 DOI: 10.3390/pathogens10111391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Water is vital to agriculture. It is essential that the water used for the production of fresh produce commodities be safe. Microbial pathogens are able to survive for extended periods of time in water. It is critical to understand their biology and ecology in this ecosystem in order to develop better mitigation strategies for farmers who grow these food crops. In this review the prevalence, persistence and ecology of four major foodborne pathogens, Shiga toxin-producing Escherichia coli (STEC), Salmonella, Campylobacter and closely related Arcobacter, and Listeria monocytogenes, in water are discussed. These pathogens have been linked to fresh produce outbreaks, some with devastating consequences, where, in a few cases, the contamination event has been traced to water used for crop production or post-harvest activities. In addition, antimicrobial resistance, methods improvements, including the role of genomics in aiding in the understanding of these pathogens, are discussed. Finally, global initiatives to improve our knowledge base of these pathogens around the world are touched upon.
Collapse
Affiliation(s)
- Rebecca L. Bell
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Julie A. Kase
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Lisa M. Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Kannan V. Balan
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Uma Babu
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Yi Chen
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Dumitru Macarisin
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Hee Jin Kwon
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Jie Zheng
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Eric L. Stevens
- Office of the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA;
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA;
| | - Eric W. Brown
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| |
Collapse
|
23
|
McCarthy DT, Shi B, Wang M, Catsamas S. BoSL FAL pump: A small, low-cost, easily constructed, 3D-printed peristaltic pump for sampling of waters. HARDWAREX 2021; 10:e00214. [PMID: 35607656 PMCID: PMC9123421 DOI: 10.1016/j.ohx.2021.e00214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/06/2021] [Accepted: 06/19/2021] [Indexed: 06/01/2023]
Abstract
Water sampling is an essential undertaking for water utilities and agencies to protect and enhance our natural resources. The high variability in water quality, however, often necessitates a spatially distributed sampling program which is impeded by high-cost and large sampling devices. This paper presents the BoSL FAL Pump - a low-cost, easily constructed, 3D-printed peristaltic pump which can be made from commonly available components and is sized to suit even the most space constrained installations. The pump is 38 mm in height and 28 mm in diameter, its components cost $19 AUD and the construction time is just 12 min (excluding 3D printing times). The pump is driven by a direct current motor which is commonly available, cheap and allows for flexibility in the energy supply (5-12 V). Optionally, the pump has a Hall effect sensor and magnet to detect rotation rates and pumping volumes to improve the accuracy of pumping rates/volumes. The pump can be easily controlled by commonly available microcontrollers, as demonstrated by this paper which implements the ATmega328P on the Arduino Uno R3. This paper validates the pump for long-term deployments at flow rates of up to 13 mL per minute in 0.14 mL volume increments at accuracy levels of greater than 99%. The pump itself is scalable, allowing for a wider range of pumping rates when, for example, large volume samples are required for pathogen and micropollutant detection.
Collapse
|
24
|
Tropea E, Hynds P, McDermott K, Brown RS, Majury A. Environmental adaptation of E. coli within private groundwater sources in southeastern Ontario: Implications for groundwater quality monitoring and human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117263. [PMID: 33940229 DOI: 10.1016/j.envpol.2021.117263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Groundwater quality monitoring typically employs testing for the presence of E. coli as a fecal indicator of recent ingress of human or animal fecal material. The efficacy of fecal indicator organisms is based on the primary criteria that the organism does not reproduce in the aquatic environment. However, recent studies have reported that E. coli may proliferate (i.e., has adapted to) in the external environment, including soil and surface water. To date, the presence of environmentally-adapted E. coli in groundwater has not been examined. The current study employed Clermont phylotyping and the presence of six accessory genes to identify the likely presence of adapted E. coli in private groundwater sources. E. coli isolates (n = 325) from 76 contaminated private water wells located in a southeastern Ontario watershed were compared with geographically analogous human and animal fecal E. coli isolates (n = 234). Cryptic clades III-V, a well-described environmentally-adapted Escherichia population, were identified in three separate groundwater wells, one of which exclusively comprised this adapted population. Dimensionality reduction (via Principal Component Analysis) was used to develop an "E. coli adaptation model", comprising three distinct components (groundwater, animal feces, human feces) and suggests adaptation occurs frequently in the groundwater environment. Model findings indicate that 23/76 (30.3%) wells had an entirely adapted community. Accordingly, the use of E. coli as a FIO returned a false positive result in these instances, while an additional 23/76 (30.3%) wells exhibited some evidence of adaptation (i.e., not all isolates were adapted) representing an over-estimate of the magnitude (concentration) of contamination. Study findings highlight the need to further characterize environmentally-adapted E. coli in the groundwater environment and the potential implications with respect to water quality policy, legislation and determinants of human health risk both regionally and internationally.
Collapse
Affiliation(s)
- Erica Tropea
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| | - Paul Hynds
- Technological University Dublin, Dublin, Ireland.
| | | | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Anna Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| |
Collapse
|
25
|
Zhiteneva V, Carvajal G, Shehata O, Hübner U, Drewes JE. Quantitative microbial risk assessment of a non-membrane based indirect potable water reuse system using Bayesian networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146462. [PMID: 33774303 DOI: 10.1016/j.scitotenv.2021.146462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Risk-based approaches are used to define performance standards for water and wastewater treatment to meet health-based targets and to ensure safe and reliable water quality for desired end use. In this study, a screening level QMRA for a non-membrane based indirect potable reuse (IPR) system utilizing the sequential managed aquifer recharge technology (SMART) concept was conducted. Ambient removals of norovirus, Campylobacter and Cryptosporidium in advanced water treatment (AWT) steps were combined in a probabilistic QMRA utilizing Bayesian networks constructed in Netica. Results revealed that all pathogens complied with disease burden at the 95th percentile, and according to the assumptions taken about pathogen removal, Cryptosporidium was the pathogen with the greatest risk. Through systematic sensitivity analysis, targeted scenario analysis, and backwards inferencing, critical control points for each pathogen were determined, demonstrating the usefulness of Bayesian networks as a diagnostic tool in quantifying risk of water reuse treatment scenarios.
Collapse
Affiliation(s)
- Veronika Zhiteneva
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Guido Carvajal
- Facultad de Ingeniería, Universidad Andrés Bello, Antonio Varas 880, Providencia, Santiago, Chile
| | - Omar Shehata
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany.
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| |
Collapse
|
26
|
Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis 2021; 27:140-149. [PMID: 33350905 PMCID: PMC7774540 DOI: 10.3201/eid2701.190676] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Provision of safe drinking water in the United States is a great public health achievement. However, new waterborne disease challenges have emerged (e.g., aging infrastructure, chlorine-tolerant and biofilm-related pathogens, increased recreational water use). Comprehensive estimates of the health burden for all water exposure routes (ingestion, contact, inhalation) and sources (drinking, recreational, environmental) are needed. We estimated total illnesses, emergency department (ED) visits, hospitalizations, deaths, and direct healthcare costs for 17 waterborne infectious diseases. About 7.15 million waterborne illnesses occur annually (95% credible interval [CrI] 3.88 million–12.0 million), results in 601,000 ED visits (95% CrI 364,000–866,000), 118,000 hospitalizations (95% CrI 86,800–150,000), and 6,630 deaths (95% CrI 4,520–8,870) and incurring US $3.33 billion (95% CrI 1.37 billion–8.77 billion) in direct healthcare costs. Otitis externa and norovirus infection were the most common illnesses. Most hospitalizations and deaths were caused by biofilm-associated pathogens (nontuberculous mycobacteria, Pseudomonas, Legionella), costing US $2.39 billion annually.
Collapse
|
27
|
Burch TR, Stokdyk JP, Spencer SK, Kieke BA, Firnstahl AD, Muldoon MA, Borchardt MA. Quantitative Microbial Risk Assessment for Contaminated Private Wells in the Fractured Dolomite Aquifer of Kewaunee County, Wisconsin. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:67003. [PMID: 34160247 PMCID: PMC8221031 DOI: 10.1289/ehp7815] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Private wells are an important source of drinking water in Kewaunee County, Wisconsin. Due to the region's fractured dolomite aquifer, these wells are vulnerable to contamination by human and zoonotic gastrointestinal pathogens originating from land-applied cattle manure and private septic systems. OBJECTIVE We determined the magnitude of the health burden associated with contamination of private wells in Kewaunee County by feces-borne gastrointestinal pathogens. METHODS This study used data from a year-long countywide pathogen occurrence study as inputs into a quantitative microbial risk assessment (QMRA) to predict the total cases of acute gastrointestinal illness (AGI) caused by private well contamination in the county. Microbial source tracking was used to associate predicted cases of illness with bovine, human, or unknown fecal sources. RESULTS Results suggest that private well contamination could be responsible for as many as 301 AGI cases per year in Kewaunee County, and that 230 and 12 cases per year were associated with a bovine and human fecal source, respectively. Furthermore, Cryptosporidium parvum was predicted to cause 190 cases per year, the most out of all 8 pathogens included in the QMRA. DISCUSSION This study has important implications for land use and water resource management in Kewaunee County and informs the public health impacts of consuming drinking water produced in other similarly vulnerable hydrogeological settings. https://doi.org/10.1289/EHP7815.
Collapse
Affiliation(s)
- Tucker R. Burch
- Environmentally Integrated Dairy Management Research Unit, U.S. Dairy Forage Research Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Marshfield, Wisconsin, USA
| | - Joel P. Stokdyk
- Upper Midwest Water Science Center, U.S. Geological Survey, Marshfield, Wisconsin, USA
| | - Susan K. Spencer
- Environmentally Integrated Dairy Management Research Unit, U.S. Dairy Forage Research Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Marshfield, Wisconsin, USA
| | - Burney A. Kieke
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Aaron D. Firnstahl
- Upper Midwest Water Science Center, U.S. Geological Survey, Marshfield, Wisconsin, USA
| | - Maureen A. Muldoon
- Wisconsin Geological and Natural History Survey, University of Wisconsin-Madison Division of Extension, Madison, Wisconsin, USA
| | - Mark A. Borchardt
- Environmentally Integrated Dairy Management Research Unit, U.S. Dairy Forage Research Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Marshfield, Wisconsin, USA
| |
Collapse
|
28
|
White K, Dickson-Anderson S, Majury A, McDermott K, Hynds P, Brown RS, Schuster-Wallace C. Exploration of E. coli contamination drivers in private drinking water wells: An application of machine learning to a large, multivariable, geo-spatio-temporal dataset. WATER RESEARCH 2021; 197:117089. [PMID: 33836295 DOI: 10.1016/j.watres.2021.117089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Groundwater resources are under increasing threats from contamination and overuse, posing direct threats to human and environmental health. The purpose of this study is to better understand drivers of, and relationships between, well and aquifer characteristics, sampling frequencies, and microbiological contamination indicators (specifically E. coli) as a precursor for improving knowledge and tools to assess aquifer vulnerability and well contamination within Ontario, Canada. A dataset with 795, 023 microbiological testing observations over an eight-year period (2010 to 2017) from 253,136 unique wells across Ontario was employed. Variables in this dataset include date and location of test, test results (E. coli concentration), well characteristics (well depth, location), and hydrogeological characteristics (bottom of well stratigraphy, specific capacity). Association rule analysis, univariate and bivariate analyses, regression analyses, and variable discretization techniques were utilized to identify relationships between E. coli concentration and the other variables in the dataset. These relationships can be used to identify drivers of contamination, their relative importance, and therefore potential public health risks associated with the use of private wells in Ontario. Key findings are that: i) bedrock wells completed in sedimentary or igneous rock are more susceptible to contamination events; ii) while shallow wells pose a greater risk to consumers, deep wells are also subject to contamination events and pose a potentially unanticipated risk to health of well users; and, iii) well testing practices are influenced by results of previous tests. Further, while there is a general correlation between months with the greatest testing frequencies and concentrations of E. coli occurring in samples, an offset in this timing is observed in recent years. Testing remains highest in July while peaks in adverse results occur up to three months later. The realization of these trends prompts a need to further explore the bases for such occurrences.
Collapse
Affiliation(s)
- Katie White
- Department of Civil Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, L8S 4L8, Canada
| | - Sarah Dickson-Anderson
- Department of Civil Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, L8S 4L8, Canada; Department of Geography and Planning and Global Institute for Water Security, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan, S7N 5C8, Canada.
| | - Anna Majury
- Public Health Ontario, 181 Barrie St, Kingston, Ontario, K7L 3K2, Canada; Department of Biology and Molecular Sciences, Department of Public Health Sciences, School of Environmental Studies, Queen's University, 99 University Ave, Kingston, Ontario, K7L 3N6, Canada
| | - Kevin McDermott
- Public Health Ontario, 181 Barrie St, Kingston, Ontario, K7L 3K2, Canada
| | - Paul Hynds
- Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman Dublin 7, Republic of Ireland
| | - R Stephen Brown
- Department of Chemistry and School of Environmental Studies, Queen's University, 99 University Ave, Kingston, Ontario, K7L 3N6, Canada
| | - Corinne Schuster-Wallace
- Department of Civil Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, L8S 4L8, Canada; Department of Geography and Planning and Global Institute for Water Security, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan, S7N 5C8, Canada
| |
Collapse
|
29
|
Lavallee S, Hynds PD, Brown RS, Schuster-Wallace C, Dickson-Anderson S, Di Pelino S, Egan R, Majury A. Examining influential drivers of private well users' perceptions in Ontario: A cross-sectional population study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142952. [PMID: 33127160 DOI: 10.1016/j.scitotenv.2020.142952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Private well users are responsible for managing and maintaining the quality of their drinking water source. Previous studies in Canada have reported low testing rates among well users, a cornerstone of well stewardship behaviours that can prevent the consumption of contaminated groundwater. To improve well stewardship, it is important to understand the interactions between, and the impacts of, various factors that may influence behaviours. Accordingly, the objective of the current study was to investigate the impact of socio-demographics, property characteristics, and experiences with well construction and acute gastrointestinal illness (AGI) (i.e., previous experiences) on levels of awareness, attitudes, risk perceptions, and beliefs (i.e., risk domains) among private well users in Ontario. A link to a province-wide online survey was circulated between May and August 2018 and novel "risk domain" scoring protocols were developed to classify and summarize response data. The survey was undertaken by 1228 respondents, of which 1030 completed the survey in full. Results indicate a low level of waterborne pathogen awareness, with 50.8% of respondents unaware of any groundwater associated pathogens. Respondents' geographic location, gender, and well type were significantly associated with well users' attitudes and perceptions of risk regarding their personal well water supply and the quality and quantity of local groundwater sources. Higher levels of awareness and lower risk perception scores (i.e., lower perceptions of risk) were associated with residential presence during well construction (p < 0.001 and p = 0.017, respectively). Previous case(s) of AGI within the respondent's household were significantly associated with negative attitudes towards their well water (p < 0.001) and higher risk perception scores (p = 0.025) with respect to the quantity of local groundwater sources. Results may be used to identify critical experiential control points (e.g., during well construction or after a physician confirmed AGI diagnosis) and develop improved risk management and communication strategies aimed at private well users.
Collapse
Affiliation(s)
- Sarah Lavallee
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Paul D Hynds
- Technological University Dublin, Dublin, Ireland.
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Corinne Schuster-Wallace
- Department of Geography and Planning, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | - Rylan Egan
- Department of Biology and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Anna Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Approximately 12% of the population in the US and Canada rely on federally unregulated private wells, which are common in rural areas and may be susceptible to microbiological and chemical contamination. This review identifies and summarizes recent findings on contaminants of emerging concern in well water across the US and Canada. RECENT FINDINGS Private well water quality modeling is complicated by the substantial variability in contamination sources, well construction, well depth, and the hydrogeology of the environment surrounding the well. Temporal variation in contaminant levels in wells suggests the need for monitoring efforts with greater spatial and temporal coverage. More extensive private well monitoring will help identify wells at greater risk of contamination, and in turn, public health efforts can focus on education and outreach to improve monitoring, maintaining, and treating private wells in these communities. Community interventions need to be coupled with stricter regulations and financing mechanisms that can support and protect private well owners.
Collapse
|
31
|
Chique C, Hynds P, Burke LP, Morris D, Ryan MP, O'Dwyer J. Contamination of domestic groundwater systems by verotoxigenic escherichia coli (VTEC), 2003-2019: A global scoping review. WATER RESEARCH 2021; 188:116496. [PMID: 33059158 DOI: 10.1016/j.watres.2020.116496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Verocytotoxin-producing E. coli (VTEC) are important agents of diarrhoeal disease in humans globally. As a noted waterborne disease, emphasis has been given to the study VTEC in surface waters, readily susceptible to microbial contamination. Conversely, the status of VTEC in potable groundwater sources, generally regarded as a "safe" drinking-water supply remains largely understudied. As such, this investigation presents the first scoping review seeking to determine the global prevalence of VTEC in groundwater supply sources intended for human consumption. Twenty-three peer-reviewed studies were identified and included for data extraction. Groundwater sample and supply detection rates (estimated 0.6 and 1.3%, respectively) indicate VTEC is infrequently present in domestic groundwater sources. However, where generic (fecal indicator) E. coli are present, the VTEC to E. coli ratio was found to be 9.9%, representing a latent health concern for groundwater consumers. Geographically, extracted data indicates higher VTEC detection rates in urban (5.4%) and peri‑urban (4.9%) environments than in rural areas (0.9%); however, this finding is confounded by the predominance of research studies in lower income regions. Climate trends indicate local environments classified as 'temperate' (14/554; 2.5%) and 'cold' (8/392; 2%) accounted for a majority of supply sources with VTEC present, with similar detection rates encountered among supplies sampled during periods typically characterized by 'high' precipitation (15/649; 2.3%). Proposed prevalence figures may find application in preventive risk-based catchment and groundwater quality management including development of Quantitative Microbial Risk Assessments (QMRA). Notwithstanding, to an extent, a large geographical disparity in available investigations, lack of standardized reporting, and bias in source selection, restrict the transferability of research findings. Overall, the mechanisms responsible for VTEC transport and ingress into groundwater supplies remain ambiguous, representing a critical knowledge gap, and denoting a distinctive lack of integration between hydrogeological and public health research. Key recommendations and guidelines are provided for prospective studies directed at increasingly integrative and multi-disciplinary research.
Collapse
Affiliation(s)
- C Chique
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - P Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin.
| | - L P Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - D Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - M P Ryan
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - J O'Dwyer
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
32
|
Wait K, Katner A, Gallagher D, Edwards M, Mize W, Jackson CLP, Pieper KJ. Disparities in well water outreach and assistance offered by local health departments: A North Carolina case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141173. [PMID: 32795792 DOI: 10.1016/j.scitotenv.2020.141173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/20/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Drinking water supplied by private wells is a national concern that would benefit from improved outreach and support to ensure safe drinking water quality. In North Carolina (NC), local health departments (LHDs) have private well programs that enforce statewide well construction standards, offer water testing services, and provide well water outreach and assistance. Programs were evaluated to determine their capacity and capability for well water outreach and assistance and identify differences among programs. All LHDs reported overseeing the construction of new wells as required by law. However, services provided to existing well users were offered infrequently and/or inconsistently offered. Lack of uniformity was observed in the number of LHD staff and their assigned responsibilities; the costs and availability of well water testing; and the comfort of LHD staff communicating with well owners. While the total number of staff was lower in LHDs in rural counties, the number of outreach activities and services offered was typically not related to the number of well users served. Variations in structure and capacity of well programs at LHDs have created unequal access to services and information for well users in NC. This research underscores the need to examine infrastructure that supports the well water community on a national scale.
Collapse
Affiliation(s)
- Kory Wait
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Adrienne Katner
- Department of Environmental and Occupational Health Sciences, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Daniel Gallagher
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Marc Edwards
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Wilson Mize
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Crystal Lee Pow Jackson
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Kelsey J Pieper
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
33
|
Mazumdar S, Fletcher-Lartey SM, Zajaczkowski P, Jalaludin B. Giardiasis notifications are associated with socioeconomic status in Sydney, Australia: a spatial analysis. Aust N Z J Public Health 2020; 44:508-513. [PMID: 33197099 DOI: 10.1111/1753-6405.13019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/01/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE In developed countries prolonged symptoms due to, or following, Giardia intestinalis infection can have a significant impact on the quality of life. In this research, we investigate the presence of a socioeconomic status (SES) gradient in the reporting of giardiasis in South West Sydney Local Health District (SWSLHD), New South Wales (NSW), Australia, across geographic scales. METHODS We used a large database, spatial-cluster analysis and a linear model. RESULTS Firstly, we found one spatial cluster of giardiasis in one of the most advantaged neighbourhoods of SWSLHD. Secondly, rates of giardiasis notifications were significantly and consistently lower in SWSLHD compared to an unnamed advantaged Local Health District and NSW over multiple years. Finally, we found an overall significant positive dose-response relationship between counts of giardiasis and area-level SES. CONCLUSIONS Lower reporting in disadvantaged areas may represent true differences in incidence across SES groups or may result from differential use of health services and reporting. Implications for public health: If the disparities result from differential use of health services, research should be directed toward identifying barriers and facilitators of use. If disparities result from a true difference in incidence, then the behavioural mediators between SES and giardiasis should be identified and addressed.
Collapse
Affiliation(s)
- Soumya Mazumdar
- South Western Sydney Local Health District, Division of Population Health, New South Wales.,South Western Sydney Medical School, University of New South Wales
| | | | - Patricia Zajaczkowski
- South Western Sydney Local Health District, Division of Population Health, New South Wales.,School of Life Sciences, University of Technology Sydney, New South Wales
| | - Bin Jalaludin
- South Western Sydney Local Health District, Division of Population Health, New South Wales
| |
Collapse
|
34
|
Latchmore T, Hynds P, Brown RS, Schuster-Wallace C, Dickson-Anderson S, McDermott K, Majury A. Analysis of a large spatiotemporal groundwater quality dataset, Ontario 2010-2017: Informing human health risk assessment and testing guidance for private drinking water wells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140382. [PMID: 32806349 DOI: 10.1016/j.scitotenv.2020.140382] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 05/12/2023]
Abstract
Approximately 1.5 million individuals in Ontario are supplied by private water wells (private groundwater supplies). Unlike municipal supplies, private well water quality remains unregulated, with owners responsible for testing, treating, and maintaining their own water supplies. The primary goal of this study was to assess the effect of repeat sampling of private well water in Ontario and investigate the efficacy of geographically- and/or temporally specific testing recommendations and health risk assessments. The current study combines the Well Water Information System Dataset and the Well Water Testing Dataset from 2010 to 2017, inclusive. These two large existing province-wide datasets collated over an eight-year period were merged using an integrated spatial fuzzy logic and (next)- nearest neighbour approach. Provincial sampling data from 239,244 wells (702,861 samples) were analyzed for Escherichia coli to study the relationship between sampling frequency and Escherichia coli detection. Dataset variables were delineated based on hydrogeological setting (e.g. aquifer type, overburden depth, well depth, bedrock type) and seasonality to provide an in-depth understanding of Escherichia coli detection in private well water. Findings reveal differences between detection rates in consolidated and unconsolidated aquifers (p = 0.0191), and across seasons (p < 0.0001). The variability associated with Escherichia coli detection rates was explored by estimating sentinel sampling rates for private wells sampled three times, twelve times and twenty-four times per year. As sample size increases on an annual basis, so too does detection rate, highlighting the need to address current testing frequency guidelines. Future health risk assessments for private well water should consider the impact of spatial and temporal factors on the susceptibility of this drinking water source, leading to an increasingly accurate depiction of private well water contamination and the estimated effects on human health.
Collapse
Affiliation(s)
- Tessa Latchmore
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Paul Hynds
- Technological University Dublin, Dublin, Ireland
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | | | | | - Anna Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada.
| |
Collapse
|
35
|
Chen SK, Jang CS, Chang CP. Employing indicator-based geostatistics and quantitative microbial risk analysis to assess the health risks of groundwater use for household demands on the Pingtung Plain, Taiwan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2007-2021. [PMID: 31722053 DOI: 10.1007/s10653-019-00468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Because of the limited surface water on the Pingtung Plain, Taiwan, the plain's residents frequently extract groundwater to meet their daily household water demands. The residents may experience gastrointestinal infections due to incidental ingestion of groundwater with fecal pollution. This study used indicator kriging (IK) and quantitative microbial risk analysis (QMRA) to assess the health risks of using groundwater for household cleaning and horticultural irrigation on the Pingtung Plain. First, IK was employed to determine the conditional cumulative distribution function (CCDF) of groundwater Escherichia coli (E. coli). Nonparametric Monte Carlo simulation based on established CCDF was then adopted to characterize the distributions and uncertainty of groundwater E. coli. Finally, QMRA was employed to determine health risks of groundwater use for household cleaning and horticultural irrigation, and the 95th percentiles of the risk distributions were calculated to obtain a representative risk. The study results indicated that the health risks of groundwater use ranged from 3.95 × 10-5 to 2.49 × 10-2 infections/user/year and exceeded the acceptable level, 1 × 10-4 infections/user/year, in most of the aquifers. Accordingly, residents of this plain should not directly extract groundwater for use in daily life.
Collapse
Affiliation(s)
- Shih-Kai Chen
- Department of Civil Engineering, National Taipei University of Technology, Taipei City, 106, Taiwan
| | - Cheng-Shin Jang
- Department of Leisure and Recreation Management, Kainan University, Luzhu, Taoyuan, 338, Taiwan.
| | - Chun-Pei Chang
- Department of Civil Engineering, National Taipei University of Technology, Taipei City, 106, Taiwan
| |
Collapse
|
36
|
Huang G, Liao J, Han Z, Li J, Zhu L, Lyu G, Lu L, Xie Y, Ma J. Interaction between Fungal Communities, Soil Properties, and the Survival of Invading E. coli O157:H7 in Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103516. [PMID: 32443436 PMCID: PMC7277763 DOI: 10.3390/ijerph17103516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
Pathogens that invade into the soil cancontaminate food and water, andinfect animals and human beings. It is well documented that individual bacterial phyla are well correlated with the survival of E. coliO157 (EcO157), while the interaction betweenthe fungal communities and EcO157 survival remains largely unknown. In this study, soil samples from Tongliao, Siping, and Yanji in northeast China were collected and characterized. Total DNA was extracted for fungal and bacterial community characterization. EcO157 cells were spiked into the soils, and their survival behavior was investigated. Results showed that both fungal and bacterial communities were significantly correlated (p < 0.01) with the survival of EcO157 in soils, and the relative abundances of fungal groups (Dothideomycetes and Sordariomycetes) and some bacterial phyla (Acidobacteria, Firmicutes, gamma- and delta-Proteobacteria)weresignificantly correlated with ttds (p < 0.01). Soil pH, EC (electric conductance) salinity, and water-soluble nitrate nitrogen were significantly correlated with survival time (time to reach the detection limit, ttd) (p < 0.05). The structural equation model indicated that fungal communities could directly influence ttds, and soil properties could indirectly influence the ttds through fungal communities. The first log reduction time (δ) was mainly correlated with soil properties, while the shape parameter (p) was largely correlated with fungal communities. Our data indicated that both fungal and bacterial communities were closely correlated (p < 0.05)with the survival of EcO157 in soils, and different fungal and bacterial groups might play different roles. Fungal communities and bacterial communities explained 5.87% and 17.32% of the overall variation of survival parameters, respectively. Soil properties explained about one-third of the overall variation of survival parameters. These findings expand our current understanding of the environmental behavior of human pathogens in soils.
Collapse
Affiliation(s)
- Guannan Huang
- Key Laboratory of Ground Water Resource and Environment, Ministry of Education, Jilin University, Changchun 130021, China;
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; (J.L.); (L.Z.); (G.L.); (L.L.); (Y.X.)
| | - Jiafen Liao
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; (J.L.); (L.Z.); (G.L.); (L.L.); (Y.X.)
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (Z.H.); (J.L.)
| | - Jiahang Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (Z.H.); (J.L.)
| | - Liyue Zhu
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; (J.L.); (L.Z.); (G.L.); (L.L.); (Y.X.)
| | - Guangze Lyu
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; (J.L.); (L.Z.); (G.L.); (L.L.); (Y.X.)
| | - Lu Lu
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; (J.L.); (L.Z.); (G.L.); (L.L.); (Y.X.)
| | - Yuang Xie
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; (J.L.); (L.Z.); (G.L.); (L.L.); (Y.X.)
| | - Jincai Ma
- Key Laboratory of Ground Water Resource and Environment, Ministry of Education, Jilin University, Changchun 130021, China;
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; (J.L.); (L.Z.); (G.L.); (L.L.); (Y.X.)
- Correspondence: ; Tel.: +86-431-85168429
| |
Collapse
|
37
|
Reynolds C, Checkley S, Chui L, Otto S, Neumann NF. Evaluating the risks associated with Shiga-toxin-producing Escherichia coli (STEC) in private well waters in Canada. Can J Microbiol 2020; 66:337-350. [PMID: 32069070 DOI: 10.1139/cjm-2019-0329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shiga-toxin-producing Escherichia coli (STEC) represent a major concern for waterborne disease outbreaks associated with consumption of contaminated groundwater. Over 4 million people rely on private groundwater systems as their primary drinking water source in Canada; many of these systems do not meet current standards for water quality. This manuscript provides a scoping overview of studies examining STEC prevalence and occurrence in groundwater, and it includes a synopsis of the environmental variables affecting survival, transport, persistence, and overall occurrence of these important pathogenic microbes in private groundwater wells used for drinking purposes.
Collapse
Affiliation(s)
- Colin Reynolds
- Environmental Health Sciences, School of Public Health, University of Alberta, Edmonton, AB T6G 2G7, Canada
| | - Sylvia Checkley
- Department of Ecosystem Public Health, Faculty of Veterinary Medicine, University of Calgary
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta
| | - Simon Otto
- Environmental Health Sciences, School of Public Health, University of Alberta, Edmonton, AB T6G 2G7, Canada
| | - Norman F Neumann
- Environmental Health Sciences, School of Public Health, University of Alberta, Edmonton, AB T6G 2G7, Canada
| |
Collapse
|
38
|
Ugas M, Pearl DL, Zentner S, Tschritter D, Briggs W, Manser D, Trotz-Williams LA. Examining the factors related to bacteriological testing of private wells in Southern Ontario. JOURNAL OF WATER AND HEALTH 2019; 17:944-956. [PMID: 31850901 DOI: 10.2166/wh.2019.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The incidence of infectious waterborne disease in Canada continues to be a public health issue and can be associated with the source of drinking water. Millions of Canadians relying on unregulated private well water are at increased risk of disease. This study examined relationships between well and owner characteristics and the frequency of microbial testing of private wells in two southern-Ontario counties. Using multi-level logistic regression models, testing frequency (i.e., at least once per year vs. less) was modeled, as both self-reported and laboratory-validated, for associations with owner and well characteristics. For the self-reported outcome, a previous adverse test result significantly increased the odds of being classified as a frequent tester, and owners with a well-head more than 16 inches (40.6 cm) above the ground were at significantly higher odds of being classified as frequent testers compared to those with well-heads less than 16 inches above the ground and those below ground level. For the model based on the laboratory-validated outcome, the odds of an owner being a frequent tester significantly varied with the length of occupancy and the occurrence of a previous adverse result. The absence of associations between other well characteristics and testing frequency suggests that well safety education could benefit these communities.
Collapse
Affiliation(s)
- Mohamed Ugas
- Department of Population Medicine, University of Guelph, Gordon Street, Guelph, ON, N1G 2W1 Canada
| | - David L Pearl
- Department of Population Medicine, University of Guelph, Gordon Street, Guelph, ON, N1G 2W1 Canada
| | - Shawn Zentner
- Wellington-Dufferin-Guelph Public Health, 160 Chancellors Way, Guelph, ON, N1G 0E1 Canada E-mail:
| | - Dana Tschritter
- School of Public Health, University of Alberta, 3-300 Edmonton Clinic Health Academy, 11405-87 Ave, Edmonton, AB, T6G 1C9 Canada
| | - Wendy Briggs
- Wellington-Dufferin-Guelph Public Health, 160 Chancellors Way, Guelph, ON, N1G 0E1 Canada E-mail:
| | - Donna Manser
- Wellington-Dufferin-Guelph Public Health, 160 Chancellors Way, Guelph, ON, N1G 0E1 Canada E-mail:
| | - Lise A Trotz-Williams
- Wellington-Dufferin-Guelph Public Health, 160 Chancellors Way, Guelph, ON, N1G 0E1 Canada E-mail:
| |
Collapse
|
39
|
Andrade L, O'Malley K, Hynds P, O'Neill E, O'Dwyer J. Assessment of two behavioural models (HBM and RANAS) for predicting health behaviours in response to environmental threats: Surface water flooding as a source of groundwater contamination and subsequent waterborne infection in the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:1019-1029. [PMID: 31390693 DOI: 10.1016/j.scitotenv.2019.06.249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 06/10/2023]
Abstract
Extreme weather events (EWEs) are increasing in frequency, posing a greater risk of adverse human health effects. As such, developing sociological and psychological based interventions is paramount to empowering individuals and communities to actively protect their own health. Accordingly, this study compared the efficacy of two established social-cognitive models, namely the Health Beliefs Model (HBM) and Risks-Attitudes-Norms-Abilities-Self-regulation (RANAS) framework, in predicting health behaviours following EWEs. Surface water flooding was used as the exemplar EWE in the current study, due to the increasing incidence of these events in the Republic of Ireland over the past decade. Levels of prior experience with flooding were considered for analyses and comparative tools included a number of variables predicting health behaviours and intervention potential scores (i.e. measure of impact of targeting each model element). Results suggest that the RANAS model provides a robust foundation for designing interventions for any level of experience with an extreme weather event, however, use of the simpler HBM may be more cost-effective among participants unacquainted with an EWE and in relatively infrequent health threat scenarios. Results provide an evidence base for researchers and policymakers to appropriately engage with populations about such threats and successfully promote spatiotemporally appropriate health behaviours in a changing climate.
Collapse
Affiliation(s)
- L Andrade
- School of Biological, Earth and Environmental Sciences, Distillery Fields, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences (iCRAG), University College Cork, Ireland
| | - K O'Malley
- Department of Psychology, University of Limerick, Limerick, Ireland
| | - P Hynds
- Irish Centre for Research in Applied Geosciences (iCRAG), University College Cork, Ireland; Environmental Sustainability & Health Institute, Technological University Dublin, Ireland.
| | - E O'Neill
- School of Architecture, Planning & Environmental Policy, University College Dublin, Ireland
| | - J O'Dwyer
- School of Biological, Earth and Environmental Sciences, Distillery Fields, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences (iCRAG), University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Hwang HT, Frey SK, Park YJ, Pintar KDM, Lapen DR, Thomas JL, Spoelstra J, Schiff SL, Brown SJ, Sudicky EA. Estimating cumulative wastewater treatment plant discharge influences on acesulfame and Escherichia coli in a highly impacted watershed with a fully-integrated modelling approach. WATER RESEARCH 2019; 157:647-662. [PMID: 31004980 DOI: 10.1016/j.watres.2019.03.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Wastewater treatment plant (WWTP) discharge is often considered a principal source of surface water contamination. In this study, a three-dimensional fully-integrated groundwater-surface water model was used to simulate the transport characteristics and cumulative loading of an artificial sweetener (acesulfame) and fecal indicator bacteria (Escherichia coli) from WWTPs within a 6800 km2 mixed-use, highly impacted watershed in Ontario, Canada. The model, which employed 3.5 × 106 computational nodes and 15 layers, facilitated a comprehensive assessment of groundwater-surface water interactions under high and low flow conditions; processes typically not accounted for in WWTP cumulative effects models. Simulations demonstrate that the model had significant capacity in reproducing the average and transient multi-year groundwater and surface water flow conditions in the watershed. As a proxy human-specific conservative tracer, acesulfame was useful for model validation and to help inform the representation of watershed-scale transport processes. Using a uniform WWTP acesulfame loading rate of 7.14 mg person-1 day-1, the general spatial trends and magnitudes of the acesulfame concentration profile along the main river reach within the watershed were reproduced; however, model performance was improved by tuning individual WWTP loading rates. Although instream dilution and groundwater-surface water interactions were strongly dependent on flow conditions, the main reach primarily consisted of groundwater discharge zones. For this reason, hydrodynamic dispersion in the hyporheic zone is shown as the predominant mechanism driving acesulfame into near-stream shallow groundwater, while under high flow conditions, the simulations demonstrate the potential for advective flushing of the shallow groundwater. Regarding the cumulative impact of the WWTPs on E. coli concentrations in the surface flow system, simulated transient E. coli levels downstream of WWTPs in the watershed were significantly lower than observed values, thus highlighting the potential importance of other sources of E. coli in the watershed.
Collapse
Affiliation(s)
- Hyoun-Tae Hwang
- Aquanty Inc., Waterloo, Ontario, Canada; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - S K Frey
- Aquanty Inc., Waterloo, Ontario, Canada; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| | - Young-Jin Park
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - K D M Pintar
- FoodNet Canada, Public Health Agency of Canada, Ottawa, ON, Canada
| | - D R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food, Ottawa, Ontario, Canada
| | - J L Thomas
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - J Spoelstra
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada; Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - S L Schiff
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - S J Brown
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - E A Sudicky
- Aquanty Inc., Waterloo, Ontario, Canada; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
41
|
Emelko MB, Schmidt PJ, Borchardt MA. Confirming the need for virus disinfection in municipal subsurface drinking water supplies. WATER RESEARCH 2019; 157:356-364. [PMID: 30970285 DOI: 10.1016/j.watres.2019.03.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Enteric viruses pose the greatest acute human health risks associated with subsurface drinking water supplies, yet quantitative risk assessment tools have rarely been used to develop health-based targets for virus treatment in drinking water sourced from these supplies. Such efforts have previously been hampered by a lack of consensus concerning a suitable viral reference pathogen and dose-response model as well as difficulties in quantifying pathogenic viruses in water. A reverse quantitative microbial risk assessment (QMRA) framework and quantitative polymerase chain reaction data for norovirus genogroup I in subsurface drinking water supplies were used herein to evaluate treatment needs for such water supplies. Norovirus was not detected in over 90% of samples, which emphasizes the need to consider the spatially and/or temporally intermittent patterns of enteric pathogen contamination in subsurface water supplies. Collectively, this analysis reinforces existing recommendations that a minimum 4-log treatment goal is needed for enteric viruses in groundwater in absence of well-specific monitoring information. This result is sensitive to the virus dose-response model used as there is approximately a 3-log discrepancy among virus dose-response models in the existing literature. This emphasizes the need to address the uncertainties and lack of consensus related to various QMRA modelling approaches and the analytical limitations that preclude more accurate description of virus risks.
Collapse
Affiliation(s)
- M B Emelko
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave. W. Waterloo, Ontario, N2L 3G1, Canada.
| | - P J Schmidt
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave. W. Waterloo, Ontario, N2L 3G1, Canada
| | - M A Borchardt
- Agricultural Research Service, U.S. Department of Agriculture, Marshfield, WI, 54449, United States
| |
Collapse
|
42
|
Farahat A, Mahmoud MT, Khalil A. Assessment of the Risk Associated with E. coli Bacterial Intrusion in Drinking Water Distribution Networks. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-018-3344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
43
|
Brunn A, Fisman DN, Sargeant JM, Greer AL. The Influence of Climate and Livestock Reservoirs on Human Cases of Giardiasis. ECOHEALTH 2019; 16:116-127. [PMID: 30350000 PMCID: PMC6430827 DOI: 10.1007/s10393-018-1385-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 05/23/2023]
Abstract
Giardia duodenalis is an intestinal parasite which causes diarrhoeal illness in people. Zoonotic subtypes found in livestock may contribute to human disease occurrence through runoff of manure into multi-use surface water. This study investigated temporal associations among selected environmental variables and G. duodenalis occurrence in livestock reservoirs on human giardiasis incidence using data collected in the Waterloo Health Region, Ontario, Canada. The study objectives were to: (1) evaluate associations between human cases and environmental variables between 1 June 2006 and 31 December 2013, and (2) evaluate associations between human cases, environmental variables and livestock reservoirs using a subset of this time series, with both analyses controlling for seasonal and long-term trends. Human disease incidence exhibited a seasonal trend but no annual trend. A Poisson multivariable regression model identified an inverse association with water level lagged by 1 month (IRR = 0.10, 95% CI 0.01, 0.85, P < 0.05). Case crossover analysis found varying associations between lagged variables including livestock reservoirs (1 week), mean air temperature (3 weeks), river water level (1 week) and flow rate (1 week), and precipitation (4 weeks). This study contributes to our understanding of epidemiologic relationships influencing human giardiasis cases in Ontario, Canada.
Collapse
Affiliation(s)
- Ariel Brunn
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - David N Fisman
- Department of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Jan M Sargeant
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, ON, Canada
- Arrell Food Institute, University of Guelph, Guelph, ON, Canada
| | - Amy L Greer
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
- Centre for Public Health and Zoonoses, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
44
|
Hamouda MA, Jin X, Xu H, Chen F. Quantitative microbial risk assessment and its applications in small water systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:993-1002. [PMID: 30248886 DOI: 10.1016/j.scitotenv.2018.07.228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/07/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Quantitative microbial risk assessment (QMRA) has been mainstreamed in many large municipal water systems as part of a paradigm shift in the drinking water industry towards water safety planning and risk-based system assessment. Small water systems (SWSs) are generally more vulnerable to typical water system hazards, and consequently have a higher risk of waterborne disease outbreak. In this paper, a review of experiences in implementing QMRA in SWSs helps elaborate the sources of risks and highlights some of the challenges facing SWSs in developed countries. A critical review of the important elements for practical implementation of QMRA was conducted. The investigation focuses on aspects related to challenges in identifying relevant hazards to SWSs to create failure scenarios, acquiring monitoring data for pathogens' concentrations in source water, estimating treatment efficiencies of typical small system technologies, and access to software tools to support successful implementation. The review helped outline ways through which SWSs can overcome the identified challenges in implementing QMRA. An adjusted framework for implementing QMRA for small water systems was formulated and discussed.
Collapse
Affiliation(s)
- Mohamed A Hamouda
- Department of Civil and Environmental Engineering, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates; National Water Center, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Xiaohui Jin
- Walkerton Clean Water Centre, 20 Ontario Rd., P.O. Box 160, Walkerton, Ontario N0G 2V0, Canada
| | - Heli Xu
- QuantWave Technologies Inc., 50 Westmount Road North, Waterloo, ON N2L 6N9, Canada
| | - Fei Chen
- QuantWave Technologies Inc., 50 Westmount Road North, Waterloo, ON N2L 6N9, Canada
| |
Collapse
|
45
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cacciò S, Chalmers R, Deplazes P, Devleesschauwer B, Innes E, Romig T, van der Giessen J, Hempen M, Van der Stede Y, Robertson L. Public health risks associated with food-borne parasites. EFSA J 2018; 16:e05495. [PMID: 32625781 PMCID: PMC7009631 DOI: 10.2903/j.efsa.2018.5495] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parasites are important food‐borne pathogens. Their complex lifecycles, varied transmission routes, and prolonged periods between infection and symptoms mean that the public health burden and relative importance of different transmission routes are often difficult to assess. Furthermore, there are challenges in detection and diagnostics, and variations in reporting. A Europe‐focused ranking exercise, using multicriteria decision analysis, identified potentially food‐borne parasites of importance, and that are currently not routinely controlled in food. These are Cryptosporidium spp., Toxoplasma gondii and Echinococcus spp. Infection with these parasites in humans and animals, or their occurrence in food, is not notifiable in all Member States. This Opinion reviews current methods for detection, identification and tracing of these parasites in relevant foods, reviews literature on food‐borne pathways, examines information on their occurrence and persistence in foods, and investigates possible control measures along the food chain. The differences between these three parasites are substantial, but for all there is a paucity of well‐established, standardised, validated methods that can be applied across the range of relevant foods. Furthermore, the prolonged period between infection and clinical symptoms (from several days for Cryptosporidium to years for Echinococcus spp.) means that source attribution studies are very difficult. Nevertheless, our knowledge of the domestic animal lifecycle (involving dogs and livestock) for Echinoccocus granulosus means that this parasite is controllable. For Echinococcus multilocularis, for which the lifecycle involves wildlife (foxes and rodents), control would be expensive and complicated, but could be achieved in targeted areas with sufficient commitment and resources. Quantitative risk assessments have been described for Toxoplasma in meat. However, for T. gondii and Cryptosporidium as faecal contaminants, development of validated detection methods, including survival/infectivity assays and consensus molecular typing protocols, are required for the development of quantitative risk assessments and efficient control measures.
Collapse
|
46
|
Abstract
A gastrointestinal outbreak was reported among 154 diners who attended a Christmas buffet on the 9 and 10 December 2016. A retrospective cohort study was undertaken. Faecal samples, water, ice and an air ventilation device were tested for indicators and routine pathogens. Altogether 26% (24/91) fulfilled the case definition of having typical viral gastrointestinal symptoms. Norovirus genogroup I was detected in faecal samples from three cases. One of these cases tested positive also for sapovirus and had a family member testing positive for both norovirus and sapovirus. A diner who drank water or drinks with ice cubes (risk ratios (RR) 6.5, 95% confidence intervals (CI) 1.5–113.0) or both (RR 8.2, 95% CI 1.7–145.5) had an increased risk in a dose-response manner. Ice cubes from three vending machines had high levels of heterotrophic bacteria. A faulty air ventilation valve in the space where the ice cube machine was located was considered a likely cause of this outbreak. Leaking air ventilation valves may represent a neglected route of transmission in viral gastrointestinal outbreaks.
Collapse
|
47
|
Daley K, Jamieson R, Rainham D, Truelstrup Hansen L. Wastewater treatment and public health in Nunavut: a microbial risk assessment framework for the Canadian Arctic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32860-32872. [PMID: 28224339 DOI: 10.1007/s11356-017-8566-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Wastewater management in Canadian Arctic communities is influenced by several geographical factors including climate, remoteness, population size, and local food-harvesting practices. Most communities use trucked collection services and basic treatment systems, which are capable of only low-level pathogen removal. These systems are typically reliant solely on natural environmental processes for treatment and make use of existing lagoons, wetlands, and bays. They are operated in a manner such that partially treated wastewater still containing potentially hazardous microorganisms is released into the terrestrial and aquatic environment at random times. Northern communities rely heavily on their local surroundings as a source of food, drinking water, and recreation, thus creating the possibility of human exposure to wastewater effluent. Human exposure to microbial hazards present in municipal wastewater can lead to acute gastrointestinal illness or more severe disease. Although estimating the actual disease burdens associated with wastewater exposures in Arctic communities is challenging, waterborne- and sanitation-related illness is believed to be comparatively higher than in other parts of Canada. This review offers a conceptual framework and evaluation of current knowledge to enable the first microbial risk assessment of exposure scenarios associated with food-harvesting and recreational activities in Arctic communities, where simplified wastewater systems are being operated.
Collapse
Affiliation(s)
- Kiley Daley
- Centre for Water Resources Studies, Dalhousie University, Halifax, NS, Canada.
| | - Rob Jamieson
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Daniel Rainham
- Environmental Science Program, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
48
|
O'Gorman M, Penner S. Water infrastructure and well-being among First Nations, Métis and Inuit individuals in Canada: what does the data tell us? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33038-33055. [PMID: 29423693 DOI: 10.1007/s11356-018-1258-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
This paper documents the association between water and sanitation infrastructure and health indicators in Canada for First Nations, Métis and Inuit individuals living on and off-reserve in Canada. We use two data sources: the Aboriginal Peoples Survey and a survey conducted in a First Nations community in northern Manitoba-St. Theresa Point First Nation. We find statistically significant relationships between water infrastructure and health status in both sources of data. In particular, among individuals living off-reserve, contaminated water is associated with a 5-7% lower likelihood of reporting good self-rated health and a 4% higher probability of reporting a health condition or stomach problem. Those in St. Theresa Point First Nation without running water are four times more likely to report an illness relative to those with running water. Off-reserve, this likely suggests a need for improved public education on the management of private water supplies and more frequent water testing. Our case study suggests that further investment in water/sanitation infrastructure and housing is needed in the community.
Collapse
|
49
|
Viral tools for detection of fecal contamination and microbial source tracking in wastewater from food industries and domestic sewage. J Virol Methods 2018; 262:79-88. [PMID: 30336954 DOI: 10.1016/j.jviromet.2018.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 10/07/2018] [Indexed: 12/27/2022]
Abstract
Alternative indicators may be more suitable than thermotolerant coliform bacteria to assess enteric virus pollution in environmental waters and their removal from wastewaters. In this study, F-specific RNA bacteriophages (F-RNAPh) showed to be potential viral indicators of fecal contamination when they were quantified from domestic and food-industrial effluents containing human, chicken, swine or bovine wastes. In addition, they showed to be resistant to the primary and secondary treatments of the wastewater treatment plants. The viable F-RNAPh count showed correlation with viable thermotolerant coliforms but also with human polyomaviruses (HPyV) quantified by a new molecular method. In domestic effluents, F-RNAPh and HPyV indicators significantly correlated with a human viral pathogen, norovirus, while the bacterial indicator did not, being then better predictors of the behavior of enteric pathogenic viruses. In addition, we assessed human, bovine and fowl microbial source tracking markers, based on the molecular detections of human polyomavirus, bovine polyomavirus, and fowl adenovirus, respectively. The techniques implemented extend the range of viruses detected, since they target different viral types simultaneously. These markers could be applied when multiple source pollution is suspected, contributing to making decisions on public health interventions.
Collapse
|
50
|
Shrestha S, Nakamura T, Magome J, Aihara Y, Kondo N, Haramoto E, Malla B, Shindo J, Nishida K. Groundwater use and diarrhoea in urban Nepal: novel application of a geostatistical interpolation technique linking environmental and epidemiologic survey data. Int Health 2018; 10:324-332. [PMID: 29850867 PMCID: PMC6104707 DOI: 10.1093/inthealth/ihy037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/06/2018] [Accepted: 04/24/2018] [Indexed: 01/29/2023] Open
Abstract
Background Groundwater is a common domestic water source in developing countries, but is persistently contaminated with enteropathogens. However, studies on determinants of diarrhoea have predominantly focused on piped water. This study examines the relationship between groundwater microbial quality and household diarrhoea occurrence (HDO). Methods Considering it as a proxy of enteropathogens, this study analysed Escherichia coli concentrations in groundwater wells. Ordinary kriging, a geostatistical technique in geographic information systems, was used to interpolate the E. coli concentration to survey points that had secondary survey data (n=942). The relationship between E. coli and HDO using simple and multivariate statistical analyses in SPSS was analysed. Results A total of 77% of households used groundwater. One-third of households were without piped-water access (PWA), and these households were significantly more likely to use groundwater than those with PWA. Of the 87 households that reported HDO, 77% were groundwater users. Of the groundwater users, the households with HDO consumed groundwater with significantly higher E. coli concentrations than the households without HDO. Of the households without PWA, the increase in the E. coli concentration increased the odds of HDO (adjusted odds ratio=3.15; 95% CI=1.07-9.22). Conclusion It is suggested that the groundwater microbial quality is a risk factor for HDO and illustrates this by an application of an interpolation technique relevant for developing countries.
Collapse
Affiliation(s)
- Sadhana Shrestha
- Interdisciplinary Centre for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Japan
| | - Takashi Nakamura
- Interdisciplinary Centre for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Japan
| | - Jun Magome
- Interdisciplinary Centre for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Japan
| | - Yoko Aihara
- Kobe Gakuin University, 518 Arise Ikawadani-Cho Nishi-ku, Kobe City, Japan
| | - Naoki Kondo
- School of Public Health, The University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo, Japan
| | - Eiji Haramoto
- Interdisciplinary Centre for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Japan
| | - Bikash Malla
- Interdisciplinary Centre for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Japan
| | - Junko Shindo
- Interdisciplinary Centre for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Japan
| | - Kei Nishida
- Interdisciplinary Centre for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Japan
| |
Collapse
|