1
|
Hong H, Kang M, Haymowicz A, Le HNM, Kim E, Yang SM, Ha SD, Kim HJ, Park SH. Genetic characterization and in silico serotyping of 62 Salmonella enterica isolated from Korean poultry operations. BMC Genomics 2025; 26:166. [PMID: 39979844 PMCID: PMC11841271 DOI: 10.1186/s12864-025-11358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The conventional method of antigen-based serotyping for Salmonella poses challenges due to the necessity of utilizing over 150 antisera. More recently, in silico Salmonella serotyping has emerged as a predictive alternative. The purpose of this study was to predict the serovars of 62 Salmonella enterica strains isolated from Korean poultry operations and their genetic characteristics using whole genome sequencing. The analysis employed diverse methods, including ribosomal, and core genome multi-locus sequence typing (MLST), based on Salmonella In Silico Typing Resource (SISTR). Pangenome, clusters of orthologous groups (COG) analysis, and identification of virulence and antibiotic resistance genes were conducted. RESULTS Salmonella enterica subspecies enterica serovars were observed and clustered based on the pangenome and phylogenetic tree: 21 Salmonella Albany (Albany), 13 Salmonella Bareilly (Bareilly), and 28 Salmonella Mbandaka (Mbandaka). The most frequently observed sequence types for the three serovars were ST292 in Albany, ST203 in Bareilly, and ST413 in Mbandaka. 18 antibiotic resistance genes showed varying presences based on the serovars, including Albany (qacEdelta1, tet(D), CARB-3 (blaCARB-3), and dfrA1) and Bareilly (aac(6')-ly). Intriguingly, a mutated gyrA (Ser83 → Phe, serine to phenylalanine) was observed in all 21 Albany strains, whereas Bareilly and Mbandaka carried the wild-type gyrA. Among 130 virulence genes analyzed, 107 were present in all 62 Salmonella strains, with Mbandaka strains exhibiting a higher prevalence of virulence genes related to fimbrial adherence compared to those of Albany and Bareilly. CONCLUSIONS The study identified distinct genetic characteristics among the three Salmonella serovars using whole genome sequencing. Albany carried a unique mutation in gyrA, occurring in the quinolone resistance-determining region. Additionally, the virulence gene profile of Mbandaka differed from the other serovars, particularly in fimbrial adherence genes. These findings demonstrate the effectiveness of in silico approaches in predicting Salmonella serovars and highlight genetic differences that may inform strategies for antibiotic resistance and virulence control, such as developing rapid diagnostic tools to detect the AMR (e.g. tet (D), and gyrA) or targeting serovar-specific virulence factors like fimbrial adherence genes in Mbandaka to mitigate pathogenicity.
Collapse
Affiliation(s)
- Hyunhee Hong
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Miseon Kang
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
- Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Avery Haymowicz
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Hoang Ngoc Minh Le
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Eiseul Kim
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Seung Min Yang
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Republic of Korea
| | - Hyun Jung Kim
- Department of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR, 97331, USA.
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, Republic of Korea.
| |
Collapse
|
2
|
Gobena T, Mengistu DA. Impact of Climate Variability on Foodborne Diarrheal Disease: Systematic Review and Meta-Analysis. Public Health Rev 2025; 46:1607859. [PMID: 40047003 PMCID: PMC11879746 DOI: 10.3389/phrs.2025.1607859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/07/2025] [Indexed: 05/11/2025] Open
Abstract
OBJECTIVE To determine the impacts of climate variability on foodborne diarrhoeal disease worldwide. METHODS This work was performed based on PRISMA guideline. Articles were retrieved from the PubMed, MEDLINE, Web of Science, Scopus, DOAJ, and Google Scholar. The search was made using Boolean logic operators, medical subject headings, and main keywords related to foodborne diarrheal disease. STATA version 17 was used to perform an analysis. The quality of the articles was evaluated using Joanna Briggs Institute appraisal tools. RESULTS The present study included 54 articles with an estimates of 103 findings. An increases in temperature, relative humidity, precipitation, rainfall, and flooding were associated with 4% [RR: 1.04; 95% CI: 1.03, 1.05], 3% [RR: 1.03; 95% CI: 1.01, 1.06], 2% [RR: 1.02; 95% CI: 1.01, 1.03], 1% [RR: 1.01; 95% CI: 1.00, 1.02], and 42% [RR: 1.42; 95% CI: 1.26, 1.57] increases in foodborne diarrhoeal disease, respectively. CONCLUSION There was a significant association between foodborne diarrhoeal disease and climate variability, and indicate the need for building a climate-resilient food safety system to reduce foodborne diarrheal disease. SYSTEMATIC REVIEW REGISTRATION identifier CRD42024532430.
Collapse
|
3
|
Damtew YT, Tong M, Varghese BM, Anikeeva O, Hansen A, Dear K, Driscoll T, Zhang Y, Capon T, Bi P. The impact of temperature on non-typhoidal Salmonella and Campylobacter infections: an updated systematic review and meta-analysis of epidemiological evidence. EBioMedicine 2024; 109:105393. [PMID: 39418985 PMCID: PMC11530612 DOI: 10.1016/j.ebiom.2024.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND As temperatures rise, the transmission and incidence of enteric infections such as those caused by Salmonella and Campylobacter increase. This study aimed to review and synthesise the available evidence on the effects of exposure to ambient temperatures on non-typhoidal Salmonella and Campylobacter infections. METHODS A systematic search was conducted for peer-reviewed epidemiological studies published between January 1990 and March 2024, in PubMed, Scopus, Embase, and Web of Science databases. Original observational studies using ecological time-series, case-crossover or case-series study designs reporting the association between ambient temperature and non-typhoidal Salmonella and Campylobacter infections in the general population were included. A random-effects meta-analysis was performed to pool the relative risks (RRs) per 1 °C temperature increase, and further meta regression, and subgroup analyses by climate zone, temperature metrics, temporal resolution, lag period, and continent were conducted. The Navigation Guide systematic review methodology framework was used to assess the quality and strength of evidence. The study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO). FINDINGS Out of 3472 results, 44 studies were included in this systematic review encompassing over one million cases each of Salmonella and Campylobacter infections. Geographically, the 44 studies covered 27 countries across five continents and most of the studies were from high income countries. The meta-analysis incorporated 23 Salmonella studies (65 effect estimates) and 15 Campylobacter studies (24 effect estimates). For each 1 °C rise in temperature, the risk of non-typhoidal Salmonella and Campylobacter infections increased by 5% (RR: 1.05, 95% CI: 1.04-1.06), and 5% (RR: 1.05, 95% CI: 1.04-1.07%), respectively, with varying risks across different climate zones. The overall evidence was evaluated as being of "high" quality, and the strength of the evidence was determined to be "sufficient" for both infections. INTERPRETATION These findings emphasise the relationship between temperature and the incidence of Salmonella and Campylobacter infections. It is crucial to exercise caution when generalising these findings, given the limited number of studies conducted in low and middle-income countries. Nevertheless, the results demonstrate the importance of implementing focused interventions and adaptive measures, such as the establishment of localised early warning systems and preventive strategies that account for climatic fluctuations. Furthermore, our research emphasises the ongoing need for surveillance and research efforts to monitor and understand the changing dynamics of temperature-related enteric infections in the context of climate change. FUNDING Australian Research Council Discovery Projects grant (ARC DP200102571) Program.
Collapse
Affiliation(s)
- Yohannes Tefera Damtew
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia; College of Health and Medical Sciences, Haramaya University, P.O.BOX 138, Dire Dawa, Ethiopia.
| | - Michael Tong
- National Centre for Epidemiology and Population Health, ANU College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia.
| | - Blesson Mathew Varghese
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Olga Anikeeva
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Alana Hansen
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Keith Dear
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Tim Driscoll
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia.
| | - Ying Zhang
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales 2006, Australia.
| | - Tony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, Victoria, Australia.
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
4
|
Su YJ. The first time devastating food poisoning happened in Taiwan - Bongkrekic acid poisoning. Taiwan J Obstet Gynecol 2024; 63:614-617. [PMID: 39266139 DOI: 10.1016/j.tjog.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 09/14/2024] Open
Abstract
Bongkrekic acid (BKA), a rarely happened foodborne toxin by Burkholderia gladioli pathovar cocovenenans (Burkholderia cocovenenans) might leads to devastating life-threatening condition after eating meal contaminated BKA. Unbelievable event from March 19, 2024, to March 24, 2024, there was an outbreak of BAP in a luxury shopping area of eastern Taipei, Taiwan. Most of the victims are young to middle-aged people who made a tour over there and ate the cooked wet rice noodles. Of them, 13 males and 20 females, aged 40.9 ± 14.7 years old visited or were sent by ambulances to the emergency department presenting with watery diarrhea, and vomiting. Some progressed to severe hepatic and renal failure, altered mental status, disseminated intravascular coagulation, and fatalities within several hours within 2 days. The primary health workers especially emergency physicians need to keep in mind of BKA poisoning is quite different in presentations from other infectious colitis commonly seen before. Knowing the toxic-kinetic and toxic-dynamic mechanisms is important to farseeing the presentation of these BAP patients. Throughout this outbreak, we gathered abundant experiences in mitigating and managing these debilitated patients. Aggressively supportive care and early liver transplantation if there is no concurrent inflammatory process and the patient's condition is tolerable to surgical intervention saves lives. For food safety education, it is crucial to enhance our understanding of inhibiting BKA production and promote proper food preservation methods and a suitable environment to ensure food safety.
Collapse
Affiliation(s)
- Yu-Jang Su
- Toxicology Division, Department of Emergency Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan; MacKay Junior College of Medicine, Nursing, and Management, Taipei City 11260, Taiwan; Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan.
| |
Collapse
|
5
|
Manchal N, Young MK, Castellanos ME, Leggat P, Adegboye O. A systematic review and meta-analysis of ambient temperature and precipitation with infections from five food-borne bacterial pathogens. Epidemiol Infect 2024; 152:e98. [PMID: 39168633 PMCID: PMC11736460 DOI: 10.1017/s0950268824000839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 08/23/2024] Open
Abstract
Studies on climate variables and food pathogens are either pathogen- or region-specific, necessitating a consolidated view on the subject. This study aims to systematically review all studies on the association of ambient temperature and precipitation on the incidence of gastroenteritis and bacteraemia from Salmonella, Shigella, Campylobacter, Vibrio, and Listeria species. PubMed, Ovid MEDLINE, Scopus, and Web of Science databases were searched up to 9 March 2023. We screened 3,204 articles for eligibility and included 83 studies in the review and three in the meta-analysis. Except for one study on Campylobacter, all showed a positive association between temperature and Salmonella, Shigella, Vibrio sp., and Campylobacter gastroenteritis. Similarly, most of the included studies showed that precipitation was positively associated with these conditions. These positive associations were found regardless of the effect measure chosen. The pooled incidence rate ratio (IRR) for the three studies that included bacteraemia from Campylobacter and Salmonella sp. was 1.05 (95 per cent confidence interval (95% CI): 1.03, 1.06) for extreme temperature and 1.09 (95% CI: 0.99, 1.19) for extreme precipitation. If current climate trends continue, our findings suggest these pathogens would increase patient morbidity, the need for hospitalization, and prolonged antibiotic courses.
Collapse
Affiliation(s)
- Naveen Manchal
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Megan K. Young
- Metro North Public Health Unit, Metro North Hospital and Health Service, Brisbane, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
- Faculty of Medicine, School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Maria Eugenia Castellanos
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD, Australia
| | - Peter Leggat
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD, Australia
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Centre for Vector-Borne and Neglected Tropical Diseases, James Cook University, Townsville, QLD, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
6
|
Karodia AB, Shaik T, Qekwana DN. Occurrence of Salmonella spp. in animal patients and the hospital environment at a veterinary academic hospital in South Africa. Vet World 2024; 17:922-932. [PMID: 38798288 PMCID: PMC11111710 DOI: 10.14202/vetworld.2024.922-932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/21/2024] [Indexed: 05/29/2024] Open
Abstract
Background and Aims Nosocomial infections caused by Salmonella spp. are common in veterinary facilities. The early identification of high-risk patients and sources of infection is important for mitigating the spread of infections to animal patients and humans. This study investigated the occurrence of Salmonella spp. among patients at a veterinary academic hospital in South Africa. In addition, this study describes the environmental factors that contribute to the spread of Salmonella spp. in the veterinary facility. Materials and Methods This study used a dataset of Salmonella-positive animals and environmental samples submitted to the bacteriology laboratory between 2012 and 2019. The occurrence of Salmonella isolates at the veterinary hospital was described based on source, month, season, year, and location. Proportions and 95% confidence intervals were calculated for each variable. Results A total of 715 Salmonella isolates were recorded, of which 67.6% (483/715) came from animals and the remainder (32.4%, 232/715) came from environmental samples. The highest proportion (29.2%) of Salmonella isolates was recorded in 2016 and most isolates were reported in November (17.4%). The winter season had the lowest (14.6%) proportion of isolates reported compared to spring (31.3%), summer (27.8%), and autumn (26.4%). Salmonella Typhimurium (20.0%) was the most frequently reported serotype among the samples tested, followed by Salmonella Anatum (11.2%). Among the positive animal cases, most (86.3%) came from equine clinics. Most reported isolates differed based on animal species with S. Typhimurium being common in equines and S. Anatum in bovines. Conclusion In this study, S. Typhimurium emerged as the predominant strain in animal and environmental samples. Equines were the most affected animals; however, Salmonella serotypes were also detected in the production animals. Environmental contamination was also a major source of Salmonella species in this study. To reduce the risk of transmission, strict infection prevention and control measures (biosecurity) must be implemented.
Collapse
Affiliation(s)
- Ayesha Bibi Karodia
- Department of Paraclinical Sciences, Section Veterinary Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Tahiyya Shaik
- Department of Paraclinical Sciences, Section Veterinary Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Daniel Nenene Qekwana
- Department of Paraclinical Sciences, Section Veterinary Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
7
|
Ormsby MJ, White HL, Metcalf R, Oliver DM, Feasey NA, Quilliam RS. Enduring pathogenicity of African strains of Salmonella on plastics and glass in simulated peri-urban environmental waste piles. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132439. [PMID: 37734312 DOI: 10.1016/j.jhazmat.2023.132439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
In low- and middle-income countries, plastic has become a major constituent of landfills and urban dump sites. Environmental plastic pollution can also provide a novel surface for the formation of microbial biofilm, which often includes pathogenic bacteria and viruses. Here, under conditions simulating a peri-urban waste pile typical of an African informal settlement, we aimed to determine if pathogenic Salmonella spp. can retain their virulence following a prolonged period of desiccation on the surfaces of environmental plastic and glass. We show that clinically (and environmentally) relevant strains of Salmonella including S. Enteritidis, S. Typhimurium and S. Typhi can persist on plastic and glass for at least 28-days and that temperature (which increases with the depth of an urban waste pile) is a key determinant of this survival. All three strains of Salmonella retained their pathogenicity (determined by using a Galleria mellonella model of infection) following their recovery from the plastisphere indicating that plastics in the environment can act as reservoirs for human pathogens and could facilitate their persistence for extended periods of time. Pathogens colonising environmental plastic waste therefore pose a heightened public health risk, particularly in areas where people are frequently exposed to plastic pollution.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Nicholas A Feasey
- Malawi-Liverpool Wellcome Research Programme, Blantyre, Malawi; Kamuzu University of Health Sciences, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
8
|
Xu R, Yu P, Liu Y, Chen G, Yang Z, Zhang Y, Wu Y, Beggs PJ, Zhang Y, Boocock J, Ji F, Hanigan I, Jay O, Bi P, Vargas N, Leder K, Green D, Quail K, Huxley R, Jalaludin B, Hu W, Dennekamp M, Vardoulakis S, Bone A, Abrahams J, Johnston FH, Broome R, Capon T, Li S, Guo Y. Climate change, environmental extremes, and human health in Australia: challenges, adaptation strategies, and policy gaps. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 40:100936. [PMID: 38116505 PMCID: PMC10730315 DOI: 10.1016/j.lanwpc.2023.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 12/21/2023]
Abstract
Climate change presents a major public health concern in Australia, marked by unprecedented wildfires, heatwaves, floods, droughts, and the spread of climate-sensitive infectious diseases. Despite these challenges, Australia's response to the climate crisis has been inadequate and subject to change by politics, public sentiment, and global developments. This study illustrates the spatiotemporal patterns of selected climate-related environmental extremes (heatwaves, wildfires, floods, and droughts) across Australia during the past two decades, and summarizes climate adaptation measures and actions that have been taken by the national, state/territory, and local governments. Our findings reveal significant impacts of climate-related environmental extremes on the health and well-being of Australians. While governments have implemented various adaptation strategies, these plans must be further developed to yield concrete actions. Moreover, Indigenous Australians should not be left out in these adaptation efforts. A collaborative, comprehensive approach involving all levels of government is urgently needed to prevent, mitigate, and adapt to the health impacts of climate change.
Collapse
Affiliation(s)
- Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Pei Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yanming Liu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Zhengyu Yang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yiwen Zhang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Paul J. Beggs
- Faculty of Science and Engineering, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ying Zhang
- Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jennifer Boocock
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7005, Australia
| | - Fei Ji
- NSW Department of Planning and Environment, Sydney, NSW 2150, Australia
| | - Ivan Hanigan
- WHO Collaborating Centre for Climate Change and Health Impact Assessment, School of Population Health, Curtin University, Perth, WA 6102, Australia
| | - Ollie Jay
- Heat and Health Research Incubator, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicole Vargas
- Heat and Health Research Incubator, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- School of Medicine and Psychology, College of Health & Medicine, The Australian National University, Canberra, ACT 2601, Australia
| | - Karin Leder
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Donna Green
- School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Katie Quail
- School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rachel Huxley
- Faculty of Health, Deakin University, Melbourne, VIC 3125, Australia
| | - Bin Jalaludin
- School of Population Health, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wenbiao Hu
- School of Public Health & Social Work, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Martine Dennekamp
- Environment Protection Authority Victoria, Melbourne, VIC 3053, Australia
| | - Sotiris Vardoulakis
- Healthy Environments And Lives (HEAL) National Research Network, College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia
| | - Angie Bone
- Monash Sustainable Development Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Jonathan Abrahams
- Monash University Disaster Resilience Initiative, Melbourne, VIC 3800, Australia
| | - Fay H. Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7005, Australia
| | - Richard Broome
- The New South Wales Ministry of Health, Sydney, NSW 2065, Australia
| | - Tony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
9
|
Zhao J, Cheng H, Wang Z, Fu P, Guo Y, Yang S. Attribution Analysis of Foodborne Disease Outbreaks Related to Meat and Meat Products in China, 2002-2017. Foodborne Pathog Dis 2022; 19:839-847. [PMID: 36257634 DOI: 10.1089/fpd.2022.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study aimed to understand the epidemiological characteristics of foodborne disease outbreaks related to meat and meat products in China from 2002 to 2017. Data collected from the National Foodborne Diseases Surveillance System and searched databases were analyzed. From 2002 to 2017, China reported 2815 outbreaks caused by foodborne diseases related to meat and meat products, resulting in 52,122 illnesses and 25,361 hospitalizations, and 96 deaths. Outbreaks were markedly seasonal and concentrated from May to September, accounting for 66.93%. Outbreaks were concentrated mainly in China's eastern coastal and southern regions. Unidimensional attribution analysis revealed that livestock meat was the most commonly implicated food category causing the outbreaks, accounting for 28.67%. Bacteria were the most common pathogenic cause of outbreaks, accounting for 51.94%. Clostridium botulinum was the most common pathogenic cause of death, accounting for 34.38%. Improper processing was the most common contributing factor, accounting for 27.89%. Households were the most common food preparation location causing the outbreak, accounting for 34.39%. Two-dimensional and multidimensional attribution analysis found that Salmonella contamination occurred in different locations and regions, mainly caused by various contributing factors and improper processing. Nitrite poisoning is caused by improper processing in households in East China. Bacterial causes were the commonest agents associated with foodborne diseases related to meat and meat products, and improving the safety and quality of meat and meat product should be a priority.
Collapse
Affiliation(s)
- Jie Zhao
- School of Public Health, Weifang Medical University, Weifang, China
| | - Han Cheng
- School of Public Health, Weifang Medical University, Weifang, China
| | - Zhiyuan Wang
- School of Public Health, Weifang Medical University, Weifang, China
| | - Ping Fu
- Division of Risk Surveillance II, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yunchang Guo
- Division of Risk Surveillance II, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Shuxiang Yang
- School of Public Health, Weifang Medical University, Weifang, China
| |
Collapse
|
10
|
Yabsley SH, Meade J, Hibburt TD, Martin JM, Boardman WSJ, Nicolle D, Walker MJ, Turbill C, Welbergen JA. Variety is the spice of life: Flying-foxes exploit a variety of native and exotic food plants in an urban landscape mosaic. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.907966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Generally, urbanization is a major threat to biodiversity; however, urban areas also provide habitats that some species can exploit. Flying-foxes (Pteropus spp.) are becoming increasingly urbanized; which is thought to be a result of increased availability and temporal stability of urban food resources, diminished natural food resources, or both. Previous research has shown that urban-roosting grey-headed flying-foxes (Pteropus poliocephalus) preferentially forage in human-modified landscapes. However, which land-use areas and food plants support its presence in urban areas is unknown. We tracked nine P. poliocephalus roosting in Adelaide, South Australia, between December 2019 and May 2020, using global positioning systems (GPS), to investigate how individuals used the urban landscape mosaic for feeding. The most frequently visited land-use category was “residential” (40% of fixes) followed by “road-side,” “reserves” and “primary production” (13–14% each). However, “reserves” were visited four times more frequently than expected from their areal availability, followed by the “residential” and “road-side” categories that were visited approximately twice more than expected each; in contrast, the “primary production” category was visited approximately five times less than expected. These results suggest that while residential areas provide most foraging resources supporting Adelaide’s flying-fox population, reserves contain foraging resources that are particularly attractive to P. poliocephalus. Primary production land was relatively less utilized, presumably because it contains few food resources. Throughout, flying-foxes visited an eclectic mixture of diet plants (49 unique species), with a majority of feeding fixes (63%) to locally indigenous Australian native species; however, in residential areas 53% of feeding visits were to non-locally indigenous species, vs only 13% in reserves. Flowering and fruiting phenology records of the food plants visited further indicated that non-locally indigenous species increase the temporal availability of foraging resources for P. poliocephalus in urban Adelaide. Our findings demonstrate the importance of residential areas for urban-roosting P. poliocephalus, and suggest that the anthropogenic mixture of food resources available in the urban landscape mosaic supports the species’ year-round presence in urban areas. Our results further highlight the importance of conserving natural habitats within the urban landscape mosaic, and stress the need for accounting for wildlife responses to urban greening initiatives.
Collapse
|
11
|
Robinson EJ, Gregory J, Mulvenna V, Segal Y, Sullivan SG. Effect of Temperature and Rainfall on Sporadic Salmonellosis Notifications in Melbourne, Australia 2000-2019: A Time-Series Analysis. Foodborne Pathog Dis 2022; 19:341-348. [PMID: 35404147 DOI: 10.1089/fpd.2021.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Weather can impact infectious disease transmission, particularly for heat-sensitive pathogens, such as Salmonella. We conducted an ecological time-series analysis to estimate short-term associations between nonoutbreak-related notifications of Salmonella and weather conditions-temperature and rainfall-in Melbourne, Australia from 2000 to 2019. Distributed lag nonlinear models were created to analyze weather-salmonellosis associations and potential lag times on a weekly time scale, controlling for seasonality and long-term trends. Warmer temperatures were associated with increased risk of notification. Effects were temporally lagged, with the highest associations observed for warm temperatures 2-6 (greatest at 4) weeks before notification. The overall estimated relative risk of salmonellosis increased twofold at 33°C compared to the average weekly temperature (20.35°C) for the 8-week period preceding the disease notification. For Salmonella Typhimurium alone, this occurred at temperatures over 32°C. There were no statistically significant associations with rainfall and notification rates in any of the analyses performed. This study demonstrates the short-term influences of warm temperatures on Salmonella infections in Melbourne over a 20-year period. Salmonelloses are already the second most notified gastrointestinal diseases in Victoria, and these findings suggest that notifications may increase with increasing temperatures. This evidence contributes to previous findings that indicate concerns for public health with continued warm weather.
Collapse
Affiliation(s)
- Elizabeth J Robinson
- School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Joy Gregory
- Victorian Government Department of Health, Melbourne, Australia
| | - Vanora Mulvenna
- Victorian Government Department of Health, Melbourne, Australia
| | - Yonatan Segal
- Victorian Government Department of Jobs, Precincts and Regions, Melbourne, Australia
| | - Sheena G Sullivan
- School of Population and Global Health, The University of Melbourne, Melbourne, Australia.,WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, and Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
12
|
Chua PLC, Ng CFS, Tobias A, Seposo XT, Hashizume M. Associations between ambient temperature and enteric infections by pathogen: a systematic review and meta-analysis. Lancet Planet Health 2022; 6:e202-e218. [PMID: 35278387 DOI: 10.1016/s2542-5196(22)00003-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Numerous studies have quantified the associations between ambient temperature and enteric infections, particularly all-cause enteric infections. However, the temperature sensitivity of enteric infections might be pathogen dependent. Here, we sought to identify pathogen-specific associations between ambient temperature and enteric infections. METHODS We did a systematic review and meta-analysis by searching PubMed, Web of Science, and Scopus for peer-reviewed research articles published from Jan 1, 2000, to Dec 31, 2019, and also hand searched reference lists of included articles and excluded reviews. We included studies that quantified the effects of ambient temperature increases on common pathogen-specific enteric infections in humans. We excluded studies that expressed ambient temperature as a categorical or diurnal range, or in a standardised format. Two authors screened the search results, one author extracted data from eligible studies, and four authors verified the data. We obtained the overall risks by pooling the relative risks of enteric infection by pathogen for each 1°C temperature rise using random-effects modelling and robust variance estimation for the correlated effect estimates. Between-study heterogeneity was measured using I2, τ2, and Q-statistic. Publication bias was determined using funnel plot asymmetry and the trim-and-fill method. Differences among pathogen-specific pooled estimates were determined using subgroup analysis of taxa-specific meta-analysis. The study protocol was not registered but followed the PRISMA guidelines. FINDINGS We identified 2981 articles via database searches and 57 articles from scanning reference lists of excluded reviews and included articles, of which 40 were eligible for pathogen-specific meta-analyses. The overall increased risks of incidence per 1°C temperature rise, expressed as relative risks, were 1·05 (95% CI 1·04-1·07; I2 97%) for salmonellosis, 1·07 (1·04-1·10; I2 99%) for shigellosis, 1·02 (1·01-1·04; I2 98%) for campylobacteriosis, 1·05 (1·04-1·07; I2 36%) for cholera, 1·04 (1·01-1·07; I2 98%) for Escherichia coli enteritis, and 1·15 (1·07-1·24; I2 0%) for typhoid. Reduced risks per 1°C temperature increase were 0·96 (95% CI 0·90-1·02; I2 97%) for rotaviral enteritis and 0·89 (0·81-0·99; I2 96%) for noroviral enteritis. There was evidence of between-pathogen differences in risk for bacterial infections but not for viral infections. INTERPRETATION Temperature sensitivity of enteric infections can vary according to the enteropathogen causing the infection, particularly for bacteria. Thus, we encourage a pathogen-specific health adaptation approach, such as vaccination, given the possibility of increasingly warm temperatures in the future. FUNDING Japan Society for the Promotion of Science (Kakenhi) Grant-in-Aid for Scientific Research.
Collapse
Affiliation(s)
- Paul L C Chua
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
| | - Chris Fook Sheng Ng
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Aurelio Tobias
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan; Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain
| | - Xerxes T Seposo
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
13
|
Gong B, Li H, Feng Y, Zeng S, Zhuo Z, Luo J, Chen X, Li X. Prevalence, Serotype Distribution and Antimicrobial Resistance of Non-Typhoidal Salmonella in Hospitalized Patients in Conghua District of Guangzhou, China. Front Cell Infect Microbiol 2022; 12:805384. [PMID: 35186792 PMCID: PMC8847451 DOI: 10.3389/fcimb.2022.805384] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella infection is a major public health concern worldwide, has contributed to an increased economic burden on the health systems. Non-typhoidal Salmonella (NTS) is a common cause of bacterial enteritis in humans, causing 93.8 million cases of gastroenteritis globally each year, with 155,000 deaths. Guangzhou city is situated in the south of China and has a sub-tropical climate, the heat and heavy rainfall helps the spread of NTS. However, no information of NTS infection is available in humans in Conghua District, the largest administrative district of Guangzhou. To understand the prevalence, serotype distribution, risk factors and drug resistance of NTS infection in humans in the survey area, an epidemiological investigation was conducted in hospitalized patients in Conghua District in Guangzhou, China. A total of 255 fecal specimens were collected from hospitalized patients (one each), with a questionnaire for each participant, and NTS infection was identified by culture, as well as serotypes confirmed by slide agglutination tests. An average prevalence of 20.39% (52/255) was observed and three serogroups were identified—serogroup B (n = 46), serogroup C1 (n = 4) and serogroup D1 (n = 2). Among them, Salmonella Typhimurium (n = 39) was the most common serotype. Children aged <3 years were observed to have a statistically higher prevalence of NTS infection than adults (25.15% versus 4.65%, P = 0.006); children with artificial feeding had a statistically higher prevalence than those with breastfeeding (30.77% versus 8.33%, P = 0.044). Antimicrobial resistance testing revealed that the majority of strains were resistant to ampicillin (92.16%), as well as 47.06% of all strains were multi-drug resistant. Therefore, it is necessary to continuous monitoring and rational use of antibiotics, which will be helpful to reduce the prevalence of resistant strains. These data will aid in making efficient control strategies to intervene with and prevent occurrence of salmonellosis.
Collapse
Affiliation(s)
- Baiyan Gong
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Hong Li
- Obstetrics Department, Second People’s Hospital of Yibin, Yibin, China
| | - Yulian Feng
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Shihan Zeng
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
- KingMed School of Laboratory Medicine of Guangzhou Medical University, Guangzhou, China
| | - Zhenxu Zhuo
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Jiajun Luo
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Xiankai Chen
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
| | - Xiaoyan Li
- Fifth Affiliated Hospital, Southern Medical University, Clinical Laboratory, Guangzhou, China
- *Correspondence: Xiaoyan Li,
| |
Collapse
|
14
|
Paz S, Majeed A, Christophides GK. Climate change impacts on infectious diseases in the Eastern Mediterranean and the Middle East (EMME)-risks and recommendations. CLIMATIC CHANGE 2021; 169:40. [PMID: 34980932 PMCID: PMC8716574 DOI: 10.1007/s10584-021-03300-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
The Eastern Mediterranean and Middle East (EMME) region has rapid population growth, large differences in socio-economic levels between developed and developing countries, migration, increased water demand, and ecosystems degradation. The region is experiencing a significant warming trend with longer and warmer summers, increased frequency and severity of heat waves, and a drier climate. While climate change plays an important role in contributing to political instability in the region through displacement of people, food insecurity, and increased violence, it also increases the risks of vector-, water-, and food-borne diseases. Poorer and less educated people, young children and the elderly, migrants, and those with long-term health problems are at highest risk. A result of the inequalities among EMME countries is an inconsistency in the availability of reliable evidence about the impacts on infectious diseases. To help address this gap, a search of the literature was conducted as a basis for related recommended responses and suggested actions for preparedness and prevention. Since climate change already impacts the health of vulnerable populations in the EMME and will have a greater impact in future years, risk assessment and timely design and implementation of health preparedness and adaptation strategies are essential. Joint national and cross-border infectious diseases management systems for more effective preparedness and prevention are needed, supported by interventions that improve the environment. Without such cooperation and effective interventions, climate change will lead to an increasing morbidity and mortality in the EMME from infectious diseases, with a higher risk for the most vulnerable populations.
Collapse
Affiliation(s)
- Shlomit Paz
- Department of Geography and Environmental Studies, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838 Haifa, Israel
| | - Azeem Majeed
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | - George K. Christophides
- Department of Life Sciences, Imperial College London, London, UK
- Climate and Atmosphere Research Centre,, The Cyprus Institute, Nicosia, Cyprus
| |
Collapse
|
15
|
Somorin YM, Odeyemi OA, Ateba CN. Salmonella is the most common foodborne pathogen in African food exports to the European Union: Analysis of the Rapid Alert System for Food and Feed (1999–2019). Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
The Short-term Effects of Temperature on Infectious Diarrhea among Children under 5 Years Old in Jiangsu, China: A Time-series Study (2015-2019). Curr Med Sci 2021; 41:211-218. [PMID: 33877537 PMCID: PMC8056199 DOI: 10.1007/s11596-021-2338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/20/2021] [Indexed: 11/08/2022]
Abstract
The association between meteorological factors and infectious diarrhea has been widely studied in many countries. However, investigation among children under 5 years old in Jiangsu, China remains quite limited. Data including infectious diarrhea cases among children under five years old and daily meteorological indexes in Jiangsu, China from 2015 to 2019 were collected. The lag-effects up to 21 days of daily maximum temperature (Tmax) on infectious diarrhea were explored using a quasi-Poisson regression with a distributed lag non-linear model (DLNM) approach. The cases number of infectious diarrhea was significantly associated with seasonal variation of meteorological factors, and the burden of disease mainly occurred among children aged 0–2 years old. Moreover, when the reference value was set at 16.7°C, Tmax had a significant lag-effect on cases of infectious diarrhea among children under 5 years old in Jiangsu Province, which was increased remarkably in cold weather with the highest risk at 8°C. The results of DLNM analysis implicated that the lag-effect of Tmax varied among the 13 cities in Jiangsu and had significant differences in 8 cities. The highest risk of Tmax was presented at 5 lag days in Huaian with a maximum RR of 1.18 (95% CI: 1.09, 1.29). Suzhou which had the highest number of diarrhea cases (15830 cases), had a maximum RR of 1.04 (95% CI:1.03, 1.05) on lag 15 days. Tmax is a considerable indicator to predict the epidemic of infectious diarrhea among 13 cities in Jiangsu, which reminds us that in cold seasons, more preventive strategies and measures should be done to prevent infectious diarrhea.
Collapse
|
17
|
Hall NL, Barnes S, Canuto C, Nona F, Redmond AM. Climate change and infectious diseases in Australia's Torres Strait Islands. Aust N Z J Public Health 2021; 45:122-128. [PMID: 33522674 DOI: 10.1111/1753-6405.13073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE This research seeks to identify climate-sensitive infectious diseases of concern with a present and future likelihood of increased occurrence in the geographically vulnerable Torres Strait Islands, Australia. The objective is to contribute evidence to the need for adequate climate change responses. METHODS Case data of infectious diseases with proven, potential and speculative climate sensitivity were compiled. RESULTS Five climate-sensitive diseases in the Torres Strait and Cape York region were identified as of concern: tuberculosis, dengue, Ross River virus, melioidosis and nontuberculous mycobacterial infection. The region constitutes 0.52% of Queensland's population but has a disproportionately high proportion of the state's cases: 20.4% of melioidosis, 2.4% of tuberculosis and 2.1% of dengue. CONCLUSIONS The Indigenous Torres Strait Islander peoples intend to remain living on their traditional country long-term, yet climate change brings risks of both direct and indirect human health impacts. Implications for public health: Climate-sensitive infections pose a disproportionate burden and ongoing risk to Torres Strait Islander peoples. Addressing the causes of climate change is the responsibility of various agencies in parallel with direct action to minimise or prevent infections. All efforts should privilege Torres Strait Islander peoples' voices to self-determine response actions.
Collapse
Affiliation(s)
- Nina L Hall
- School of Public Health, The University of Queensland
| | - Samuel Barnes
- School of Public Health, The University of Queensland
| | - Condy Canuto
- School of Public Health, The University of Queensland
| | - Francis Nona
- School of Public Health, The University of Queensland
| | - Andrew M Redmond
- Faculty of Medicine, The University of Queensland
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Queensland
| |
Collapse
|
18
|
Jiang Z, Anwar TM, Peng X, Biswas S, Elbediwi M, Li Y, Fang W, Yue M. Prevalence and antimicrobial resistance of Salmonella recovered from pig-borne food products in Henan, China. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
19
|
Kynčl J, Špačková M, Fialová A, Kyselý J, Malý M. Influence of air temperature and implemented veterinary measures on the incidence of human salmonellosis in the Czech Republic during 1998-2017. BMC Public Health 2021; 21:55. [PMID: 33407314 PMCID: PMC7788966 DOI: 10.1186/s12889-020-10122-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/23/2020] [Indexed: 12/02/2022] Open
Abstract
Background The aim of our study was to analyse the influence of air temperature and implemented veterinary measures on salmonellosis incidence in the Czech Republic (CZ). Methods We conducted a descriptive analysis of salmonellosis as reported to the Czech national surveillance system during 1998–2017 and evaluated the influence of applied veterinary measures (started in January 2008) on salmonellosis incidence by comparing two 9-year periods (1998–2006, 2009–2017). Using a generalized additive model, we analysed association between monthly mean air temperature and log-transformed salmonellosis incidence over the entire twenty-year period. Results A total of 410,533 salmonellosis cases were reported during the study period in the CZ. Annual mean incidences of salmonellosis were 313.0/100,000 inhabitants before and 99.0/100,000 inhabitants after implementation of the veterinary measures. The time course of incidence was non-linear, with a sharp decline during 2006–2010. Significant association was found between disease incidence and air temperature. On average, the data indicated that within a common temperature range every 1 °C rise in air temperature contributed to a significant 6.2% increase in salmonellosis cases. Conclusions Significant non-linear effects of annual trend, within-year seasonality, and air temperature on the incidence of salmonellosis during 1998–2017 were found. Our study also demonstrates significant direct effect of preventive veterinary measures taken in poultry in reducing incidence of human salmonellosis in the CZ. The annual mean number of salmonellosis cases in the period after introducing the veterinary measures was only 32.5% of what it had been in the previous period.
Collapse
Affiliation(s)
- Jan Kynčl
- Department of Infectious Diseases Epidemiology, Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 49/48, 100 00, Prague, Czech Republic.,Department of Epidemiology and Biostatistics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Špačková
- Department of Infectious Diseases Epidemiology, Centre for Epidemiology and Microbiology, National Institute of Public Health, Šrobárova 49/48, 100 00, Prague, Czech Republic.
| | - Alena Fialová
- Department of Epidemiology and Biostatistics, Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Biostatistics, National Institute of Public Health, Prague, Czech Republic
| | - Jan Kyselý
- Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Marek Malý
- Department of Biostatistics, National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
20
|
Ke Y, Lu W, Liu W, Zhu P, Chen Q, Zhu Z. Non-typhoidal Salmonella infections among children in a tertiary hospital in Ningbo, Zhejiang, China, 2012-2019. PLoS Negl Trop Dis 2020; 14:e0008732. [PMID: 33017418 PMCID: PMC7561262 DOI: 10.1371/journal.pntd.0008732] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/15/2020] [Accepted: 08/18/2020] [Indexed: 11/23/2022] Open
Abstract
Background Non-typhoidal Salmonella (NTS), a common cause of diarrheal enterocolitis, may also cause severe invasive diseases. Limited information on NTS infections in children is available in China. Methods We performed a retrospective study of children admitted to the Ningbo Women and Children’s Hospital with culture-confirmed NTS infections between January 2012 and December 2019. Clinical and microbiological information were collected. We compared demographic, clinical and antibiotic resistance variables of invasive NTS (iNTS) infections and non-invasive NTS (non-iNTS) infections, and explored associations between hospitalizations for pediatric NTS infections and temperature and rainfall. Results A total of 166 pediatric hospitalizations due to NTS infection were identified during the 8-year study period. Most of the 166 children were <5 years old (93.4%). The primary serotype was Salmonella Typhimurium (62.6%). Of 166 children with NTS infections, 11 had invasive infection. Compared to 155 children with non-iNTS infections, we found that iNTS infections were more likely to occur in infants ≤6 months or children with an underlying medical condition of leukemia at admission, but iNTS infections less often presented with a symptom of diarrhea (P <0.05 in all cases). The resistance rates of non-iNTS isolates to ceftazidime, ceftriaxone, cefepime, and aztreonam were significantly higher than those of iNTS isolates (P <0.05 in all cases). In addition, compared with iNTS isolates, non-iNTS isolates were significantly associated with resistance to ≥4 CLSI (Clinical and Laboratory Standard Institute) classes (P = 0.041, OR: 0.089, 95% CI: 0.009–0.901) and ≥2 first-line treatment agents (P = 0.040, OR: 0.159, 95% CI: 0.028–0.916). On the other hand, we found that seasonal NTS hospitalizations were positively associated with average seasonal temperature (r = 0.961, P = 0.039) and average monthly rainfall (r = 0.921, P <0.001). Conclusion Non-iNTS accounts for the majority of infections in this study; infants ≤6 months and children with underlying medical conditions of leukemia are more likely to have invasive infection. The rates of antibiotic resistance in the iNTS isolates are generally lower than those in the non-iNTS isolates. On the other hand, high temperatures and heavy rainfall are positively associated with NTS hospitalizations among children in Ningbo. Non-typhoidal Salmonella (NTS) infection is a foodborne disease with a global heavy burden. NTS usually causes diarrheal enterocolitis in humans and may also cause severe invasive NTS (iNTS) infections. Antimicrobial agents are not recommended for non-severe NTS diarrhea, but they are recommended for people at risk of severe or invasive infection. However, the recognition of iNTS infection among children is difficult before culture. We studied children who had NTS infections in a tertiary pediatric hospital in Ningbo and found that iNTS infections were more likely to occur in infants ≤6 months or children with an underlying medical condition of leukemia at admission, while diarrhea was more common in children with non-iNTS infections. The high rates of antibiotic resistance among children with NTS in Ningbo calls for continuous NTS surveillance. On the other hand, high temperatures and heavy rainfall were positively associated with NTS hospitalizations among children. These findings may help us to improve measures for the prevention, diagnosis and treatment of NTS infections among children.
Collapse
Affiliation(s)
- Yefang Ke
- Department of Clinical Laboratory, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Wenbo Lu
- Department of Clinical Laboratory, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Wenyuan Liu
- Department of Clinical Laboratory, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Pan Zhu
- Neonatal Intensive Care Unit, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Qunying Chen
- Department of Clinical Laboratory, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Zhe Zhu
- Department of Blood Transfusion, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
- * E-mail:
| |
Collapse
|
21
|
Zhang J, Khan S, Chousalkar KK. Development of PMAxx TM-Based qPCR for the Quantification of Viable and Non-viable Load of Salmonella From Poultry Environment. Front Microbiol 2020; 11:581201. [PMID: 33072053 PMCID: PMC7536286 DOI: 10.3389/fmicb.2020.581201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022] Open
Abstract
Determining the viable and non-viable load of foodborne pathogens in animal production can be useful in reducing the number of human outbreaks. In this study, we optimized a PMAxxTM-based qPCR for quantifying viable and non-viable load of Salmonella from soil collected from free range poultry environment. The optimized nucleic acid extraction method resulted in a significantly higher (P < 0.05) yield and quality of DNA from the pure culture and Salmonella inoculated soil samples. The optimized primer for the amplification of the invA gene fragment showed high target specificity and a minimum detection limit of 102 viable Salmonella from soil samples. To test the optimized PMAxxTM-based qPCR assay, soil obtained from a free range farm was inoculated with Salmonella Enteritidis or Salmonella Typhimurium, incubated at 5, 25, and 37°C over 6 weeks. The survivability of Salmonella Typhimurium was significantly higher than Salmonella Enteritidis. Both the serovars showed moisture level dependent survivability, which was significantly higher at 5°C compared with 25°C and 37°C. The PMAxxTM-based qPCR was more sensitive in quantifying the viable load compared to the culture method used in the study. Data obtained in the current study demonstrated that the optimized PMAxxTM-based qPCR is a suitable assay for quantification of a viable and non-viable load of Salmonella from poultry environment. The developed assay has applicability in poultry diagnostics for determining the load of important Salmonella serovars containing invA.
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
22
|
Tran DN, Doan VQ, Nguyen VT, Khan A, Thai PK, Cunrui H, Chu C, Schak E, Phung D. Spatial patterns of health vulnerability to heatwaves in Vietnam. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:863-872. [PMID: 32086569 DOI: 10.1007/s00484-020-01876-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/28/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
The increasing frequency and intensity of heat events have weighty impacts on public health in Vietnam, but their effects vary across regions. In this study, we have applied a vulnerability assessment framework (VAF) to systematically assess the spatial pattern of health vulnerability to heatwaves in Vietnam. The VAF was computed as the function of three dimensions: exposure, sensitivity, and adaptive capacity, with the indicators for each dimension derived from the relevant literature, consultation with experts, and available data. An analytic hierarchy process (AHP) was used to determine the weight of indicators. Each province in Vietnam's vulnerability to the health impacts of heatwaves was evaluated by applying the vulnerability index, computed using 13 indicators (sensitivity index, 9; adaptive capacity index, 3; and exposure index, 1). As a result of this analysis, this study has identified heatwave vulnerability 'hotspots', primarily in the Southeast, Central Highlands, and South Central Coast of Vietnam. However, these hotspots are not necessarily the same as the area most vulnerable to climate change, because some areas that are more sensitive to heatwaves may have a higher capacity to adapt to them due to a host of factors including their population characteristics (e.g. rates of the elderly or children), socio-economic and geographical conditions, and the availability of air-conditioners. This kind of information, provided by the vulnerability index framework, allows policymakers to determine how to more efficiently allocate resources and devise appropriate interventions to minimise the impact of heatwaves with strategies tailored to each region of Vietnam.
Collapse
Affiliation(s)
- Dang Ngoc Tran
- The Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Department of Environmental Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Van Quang Doan
- Centre for Computational Sciences, the University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Vien Truong Nguyen
- Department of Environmental Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Ansar Khan
- Department of Geography, Lalbaba College, Howrah, India
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Huang Cunrui
- Health Management and Policy, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Cordia Chu
- Centre for Environment and Population Health, School of Medicine, Griffith University, Brisbane, Australia
| | - Elena Schak
- Centre for Environment and Population Health, School of Medicine, Griffith University, Brisbane, Australia
| | - Dung Phung
- Centre for Environment and Population Health, School of Medicine, Griffith University, Brisbane, Australia.
- School of Medicine, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD, 4222, Australia.
| |
Collapse
|
23
|
Linares C, Díaz J, Negev M, Martínez GS, Debono R, Paz S. Impacts of climate change on the public health of the Mediterranean Basin population - Current situation, projections, preparedness and adaptation. ENVIRONMENTAL RESEARCH 2020; 182:109107. [PMID: 32069750 DOI: 10.1016/j.envres.2019.109107] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 05/04/2023]
Abstract
The Mediterranean Basin is undergoing a warming trend with longer and warmer summers, an increase in the frequency and the severity of heat waves, changes in precipitation patterns and a reduction in rainfall amounts. In this unique populated region, which is characterized by significant gaps in the socio-economic levels particularly between the North (Europe) and South (Africa), parallel with population growth and migration, increased water demand and forest fires risk - the vulnerability of the Mediterranean population to human health risks increases significantly. Indeed, climatic changes impact the health of the Mediterranean population directly through extreme heat, drought or storms, or indirectly by changes in water availability, food provision and quality, air pollution and other stressors. The main health effects are related to extreme weather events (including extreme temperatures and floods), changes in the distribution of climate-sensitive diseases and changes in environmental and social conditions. The poorer countries, particularly in North Africa and the Levant, are at highest risk. Climate change affects the vulnerable sectors of the region, including an increasingly older population, with a larger percentage of those with chronic diseases, as well as poor people, which are therefore more susceptible to the effects of extreme temperatures. For those populations, a better surveillance and control systems are especially needed. In view of the climatic projections and the vulnerability of Mediterranean countries, climate change mitigation and adaptation become ever more imperative. It is important that prevention Health Action Plans will be implemented, particularly in those countries that currently have no prevention plans. Most adaptation measures are "win-win situation" from a health perspective, including reducing air pollution or providing shading solutions. Additionally, Mediterranean countries need to enhance cross-border collaboration, as adaptation to many of the health risks requires collaboration across borders and also across the different parts of the basin.
Collapse
Affiliation(s)
- Cristina Linares
- National School of Public Health. Carlos III Institute of Health, Madrid, Spain
| | - Julio Díaz
- National School of Public Health. Carlos III Institute of Health, Madrid, Spain
| | - Maya Negev
- School of Public Health, University of Haifa, Israel
| | | | | | - Shlomit Paz
- Department of Geography and Environmental Studies, University of Haifa, Israel.
| |
Collapse
|
24
|
Bhandari D, Bi P, Sherchand JB, Dhimal M, Hanson-Easey S. Assessing the effect of climate factors on childhood diarrhoea burden in Kathmandu, Nepal. Int J Hyg Environ Health 2019; 223:199-206. [PMID: 31537454 DOI: 10.1016/j.ijheh.2019.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION This study was undertaken to assess the effect of climate variability on diarrhoeal disease burden among children under 5 years of age living in Kathmandu, Nepal. The researchers sought to predict future risk of childhood diarrhoea under different climate change scenarios to advance the evidence base available to public health decision-makers, and the Nepalese infection control division, in planning for climate impacts. METHODS A time series study was conducted using the monthly case count of diarrhoeal disease (2003-2013) among children under 5 years of age living in Kathmandu, Nepal. A quasi Poisson generalised linear equation with distributed lag linear model was fitted to estimate the lagged effect of monthly maximum temperature and rainfall on childhood diarrhoea. The environmental framework of comparative risk assessment was used to assess the environmental burden of diarrhoea within this population. RESULTS A total of 219,774 cases of diarrhoeal disease were recorded during the study period with a median value of 1286 cases per month. The results of a regression model revealed that the monthly count of diarrhoea cases increased by 8.1% (RR: 1.081; 95% CI: 1.02-1.14) per 1 °C increase in maximum temperature above the monthly average recorded within that month. Similarly, rainfall was found to have significant effect on the monthly diarrhoea count, with a 0.9% (RR; 1.009; 95% CI: 1.004-1.015) increase in cases for every 10 mm increase in rainfall above the monthly cumulative value recorded within that month. It was estimated that 7.5% (95% CI: 2.2%-12.5%) of the current burden of diarrhoea among children under 5 years of age could be attributed to climatic factors (maximum temperature), and projected that 1357 (UI: 410-2274) additional cases of childhood diarrhoea could be climate attributable by the year 2050 under low-risk scenario (0.9 °C increase in maximum temperature). CONCLUSION It is estimated that there exists a significant association (p < 0.05) between childhood diarrhoea and an increase in maximum temperature and rainfall in Kathmandu, Nepal. The findings of this study may inform the conceptualization and design of early warning systems for the prediction and control of childhood diarrhoea, based upon the observed pattern of climate change in Kathmandu.
Collapse
Affiliation(s)
- Dinesh Bhandari
- The University of Adelaide, School of Public Health, Adelaide, South Australia, Australia.
| | - Peng Bi
- The University of Adelaide, School of Public Health, Adelaide, South Australia, Australia.
| | - Jeevan Bahadur Sherchand
- Public Health Research Laboratory, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal.
| | | | - Scott Hanson-Easey
- The University of Adelaide, School of Public Health, Adelaide, South Australia, Australia.
| |
Collapse
|
25
|
Welch K, Shipp-Hilts A, Eidson M, Saha S, Zansky S. Salmonella and the changing environment: systematic review using New York State as a model. JOURNAL OF WATER AND HEALTH 2019; 17:179-195. [PMID: 30942769 DOI: 10.2166/wh.2018.224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Salmonella is a public health concern, for which a complex interplay between host, agent, and environment exists. An improved understanding of causal processes can be used to better gauge the causes and trajectory of Salmonella in a changing environment. This would be useful in determining the impact of climate change on the New York State (NYS) environment, the effect of climate change on Salmonella in NYS, factors contributing to Salmonella vulnerability in humans, and aspects of climate change and Salmonella which necessitate further research. A systematic review was conducted to study associations between Salmonella and the environment. Using the search criteria, a total of 91 relevant articles were identified from four electronic databases. Key information was abstracted, organized, and synthesized to identify causal processes and linkages between climate change, the environment of NYS, and Salmonella-related outcomes, as well as risk factors to characterize Salmonella vulnerabilities. Three inter-related domains were identified for consideration and application to epidemiological research to confirm and extrapolate disease patterns using climate change scenarios: improved quantification of causal relationships, inclusion of factors linked to sectors not immediately associated with the exposure and outcome, and increased capacity to validate models in diverse settings.
Collapse
Affiliation(s)
- Kevin Welch
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, 1 University Place, Rensselaer, New York, 12144, USA and Office of Public Health Practice, New York State Department of Health, 1092 Corning Tower, Albany, New York, 12237, USA E-mail:
| | - Asante Shipp-Hilts
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, 1 University Place, Rensselaer, New York, 12144, USA and Office of Public Health Practice, New York State Department of Health, 1092 Corning Tower, Albany, New York, 12237, USA E-mail:
| | - Millicent Eidson
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, 1 University Place, Rensselaer, New York, 12144, USA and Office of Public Health Practice, New York State Department of Health, 1092 Corning Tower, Albany, New York, 12237, USA E-mail:
| | - Shubhayu Saha
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, Georgia, 30322, USA
| | - Shelley Zansky
- Bureau of Communicable Disease Control, New York State Department of Health, 651 Corning Tower, Albany, New York, 12237, USA
| |
Collapse
|
26
|
Epidemiological Survey and Retrospective Analysis of Salmonella Infections between 2000 and 2017 in Warmia and Masuria Voivodship in Poland. ACTA ACUST UNITED AC 2019; 55:medicina55030074. [PMID: 30897848 PMCID: PMC6473649 DOI: 10.3390/medicina55030074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/26/2019] [Accepted: 03/15/2019] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Salmonellosis is a major foodborne bacterial infection throughout the world. Epidemiological surveillance is one of the key factors to reduce the number of infections caused by this pathogen in both humans and animals. The first outcome measure was the prevalence of non-typhoid Salmonella (NTS) infections between 2000 and 2017 among the population of the predominantly agricultural and touristic Polish region of Warmia and Masuria (WaM). The second outcome measure was the comparison of the NTS hospitalization rate of all registered NTS cases, an investigation of the monthly reports of infections, and the exploration of the annual minimal and maximal NTS infection number in WaM in the above-mentioned time period. The last outcome was a comparison of the prevalence of NTS infections in the region and in its administrative districts by considering both rural and urban municipalities three years before and three years after the accession of Poland into the European Union (EU) in 2004. Materials and Methods: The total number of infections and hospitalizations in the 19 districts of the WaM voivodship in Poland was registered monthly between 2000–2017 by the Provincial Sanitary-Epidemiological Station in Olsztyn, Poland. Results: Between 2000 and 2017, the number of diagnosed salmonellosis cases decreased significantly in WaM; the decrease was higher in urban districts than in rural ones, and the ratio of hospitalizations and the total number of NTS cases increased significantly across all districts. The lowest number of cases was reported in the winter months and was stable from 2007, whereas the highest number was reported in the summer months with a higher tendency of outbreaks. Conclusion: The falling number of salmonellosis cases in 2000–2017 in WaM reflects the general trend in Poland and Europe. The decrease of NTS infections in WaM is related to the accession of Poland into the EU.
Collapse
|
27
|
Dang TN, Honda Y, Van Do D, Pham ALT, Chu C, Huang C, Phung D. Effects of Extreme Temperatures on Mortality and Hospitalization in Ho Chi Minh City, Vietnam. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030432. [PMID: 30717328 PMCID: PMC6388260 DOI: 10.3390/ijerph16030432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
Abstract
There is a lack of research focusing on the association of temperature with mortality and hospitalization in developing countries with tropical climates and a low capacity to cope with the influences of extreme weather events. This study aimed to examine and compare the effect of temperature, including heat waves, on mortality and hospitalization in the most populous city of Vietnam. We used quasi-Poisson time series regression coupled with the distributed lag non-linear model (DLNM) to examine the overall pattern and compare the temperature-health outcome relationship. The main and added effects of heat waves were evaluated. The main effect of heat waves significantly increased the risk of all cause-specific mortality. Significant main effects of heat waves on hospitalization were observed only for elderly people and people with respiratory diseases (elderly, relative risk (RR) = 1.28, 95% confidence interval (CI) = 1.14–3.45; respiratory diseases, RR = 1.3, 95% CI = 1.19–1.42). The RRs of the main effect were substantially higher than those of the added effect in mortality; the same was applicable for hospitalizations of people with respiratory diseases and elderly people. The findings of this study have important implications for public health adaptation and prevention program implementation in the protection of residents from the adverse health effects of temperature.
Collapse
Affiliation(s)
- Tran Ngoc Dang
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
- Faculty of Public Health, University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh 70000, Vietnam.
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Dung Van Do
- Faculty of Public Health, University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh 70000, Vietnam.
| | - Anh Lan Thi Pham
- Faculty of Public Health, University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh 70000, Vietnam.
| | - Cordia Chu
- Centre for Environment and Population Health, Griffith University, Brisbane 4001, Australia.
| | - Cunrui Huang
- School of Public Health, Sun Yat-sen University, Guangzhou 510000, China.
| | - Dung Phung
- School of Public Health, Sun Yat-sen University, Guangzhou 510000, China.
- School of Medicine, Nathan Gold Coast Campus, Griffith University, Nathan QLD 4111, Australia.
| |
Collapse
|
28
|
Aik J, Heywood AE, Newall AT, Ng LC, Kirk MD, Turner R. Climate variability and salmonellosis in Singapore - A time series analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:1261-1267. [PMID: 29929293 DOI: 10.1016/j.scitotenv.2018.05.254] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/03/2018] [Accepted: 05/21/2018] [Indexed: 05/16/2023]
Abstract
Climate change is expected to bring about global warming and an increase in the frequency of extreme weather events. This may consequently influence the transmission of food-borne diseases. The short term associations between climatic conditions and Salmonella infections are well documented in temperate climates but not in the tropics. We conducted an ecological time series analysis to estimate the short term associations between non-outbreak, non-travel associated reports of Salmonella infections and observed climatic conditions from 2005 to 2015 for Singapore. We used a negative binomial time series regression model to analyse the associations on a weekly scale, controlling for season, long term trend, delayed weather effects, autocorrelation and the period where Salmonella was made legally notifiable. There were a total of 11,324 Salmonella infections reported during our study period. A 1 °C increase in mean ambient air temperature was associated with a 4.3% increase (Incidence Rate Ratio [IRR]: 1.043, 95% confidence interval [CI] = 1.003, 1.084) in reported Salmonella infections in the same week and a 6.3% increase (IRR: 1.063, 95% CI = 1.022, 1.105) three weeks later. A 1% increase in the mean relative humidity was associated with a 1.3% decrease (IRR: 0.987, 95% CI = 0.981, 0.994) in cases six weeks later, while a 10 mm increase in weekly cumulative rainfall was associated with a 0.8% increase (IRR: 1.008, 95% CI = 1.002, 1.015) in cases 2 weeks later but a 0.9% decrease (IRR: 0.991, 95% CI = 0.984, 0.998) in cases 5 weeks later. No thresholds for these weather effects were detected. This study confirms the short-term influence of climatic conditions on Salmonella infections in Singapore and the potential impact of climate change on Salmonellosis in the tropics.
Collapse
Affiliation(s)
- Joel Aik
- School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Level 3, Samuels Building, Botany Road, Kensington, New South Wales 2052, Australia; National Environment Agency, 40 Scotts Road, #13-00, 228231, Singapore.
| | - Anita E Heywood
- School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Level 3, Samuels Building, Botany Road, Kensington, New South Wales 2052, Australia
| | - Anthony T Newall
- School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Level 3, Samuels Building, Botany Road, Kensington, New South Wales 2052, Australia
| | - Lee-Ching Ng
- National Environment Agency, 40 Scotts Road, #13-00, 228231, Singapore
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 0200, Australia
| | - Robin Turner
- Biostatistics Unit, Dunedin School of Medicine, University of Otago, Ground Floor, Adams Building, 18 Frederick Street, Dunedin 9016, New Zealand
| |
Collapse
|
29
|
Phung D, Chu C, Tran DN, Huang C. Spatial variation of heat-related morbidity: A hierarchical Bayesian analysis in multiple districts of the Mekong Delta Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1559-1565. [PMID: 29801249 DOI: 10.1016/j.scitotenv.2018.05.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
This study examined spatial variability of heat-related morbidity in multiple districts of the Mekong Delta Region (MDR), Vietnam. It was conducted in 132 district/cities of the MDR. We used a series of hierarchical Bayesian models to examine the region-wide and district-specific association between temperatures and hospitalizations during the period of 2010-2013. The potential effects of seasonality, long-term trends, day of the week and holidays were controlled in the models. We also examined influences of socio-demographic factors on the temperature-hospitalization relationship. The results indicate that an increase of 5 °C in average temperature was associated with a 6.1% increase (95%CI: 5.9, 6.2) in region-wide hospital admissions. However, the district-level risks ranged from a 55.2% decrease {95%CI: (-54), (-56)} to a 24.4% increase (24.3-24.6) in admissions per 5 °C increase in average temperature. This reflects the heterogeneous magnitudes of temperature-hospitalization risk across districts. The results also indicate that temperature-hospitalization risk increased by 1.3% (95%CI: 1.2-1.4), for each increase of 1000 persons/km2 in population density, 2.1% (95%CI: 2.04-2.11) for each 1% increase in percent of females, and 2.7% (95%CI: 2.6-2.8) for each 1% increase in percent of pre-school students. In contrast, the temperature-related hospitalization risk decreased up to 6.8% {(95%CI: (-6.6)-(-6.9)} for each 1% increase in rural population. Public health intervention measures for both short-term and long-term effects of heat-related health risk should be developed with consideration of the use of city/district scale for the factors rather than the province scale. The province scale of factors does not accurately represent the variability of health risk due to exposure to high temperatures.
Collapse
Affiliation(s)
- Dung Phung
- Department of Health Policy & Management, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Cordia Chu
- Centre for Environment and Population Health, Griffith University, Queensland, Australia
| | - Dang Ngoc Tran
- Faculty of Public Health, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam
| | - Cunrui Huang
- Department of Health Policy & Management, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
de Sousa TCM, Amancio F, Hacon SDS, Barcellos C. [Climate-sensitive diseases in Brazil and the world: systematic reviewEnfermedades sensibles al clima en Brasil y el mundo: revisión sistemática]. Rev Panam Salud Publica 2018; 42:e85. [PMID: 31093113 PMCID: PMC6385874 DOI: 10.26633/rpsp.2018.85] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To survey the literature regarding climate-sensitive diseases (CSD) and the impacts of climate changes on health. METHOD This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The Lilacs, SciELO, Scopus, and PubMed databases were searched in July 2017 without temporal restrictions for articles published in in Portuguese, English and Spanish. The following search strategy was used in all databases: (climate) AND (disease) AND (sensitive). RESULTS The systematic review included 106 articles, most of which focused on dengue, malaria, and respiratory and cardiovascular diseases. The most commonly studied climate variables were temperature and precipitation. The studies revealed a relationship between the incidence of certain diseases, especially cardiovascular and respiratory diseases, dengue, malaria, and arboviral diseases, and climate conditions in different regions of the world. This relationship was analyzed considering both past data on the incidence of diseases and climate variables and projections regarding the future incidence of diseases according to expected climate variations. A greater number of studies was performed by authors originating from developed countries. The world regions most often studied were China, the United States, Australia, and Brazil. CONCLUSIONS Despite the increase in the number of published articles on this theme, a greater number of climate and environmental variables must be studied, with expansion of studies to additional regions in the world.
Collapse
Affiliation(s)
| | - Flavia Amancio
- Fundação Oswaldo Cruz (Fiocruz), Escola Nacional de Saúde Pública (ENSP), Rio de Janeiro (RJ), Brasil
| | - Sandra de Sousa Hacon
- Fundação Oswaldo Cruz (Fiocruz), Escola Nacional de Saúde Pública (ENSP), Rio de Janeiro (RJ), Brasil
| | - Christovam Barcellos
- Fundação Oswaldo Cruz (Fiocruz), Instituto de Comunicação e Informação Científica e Tecnológica em Saúde (ICICT), Rio de Janeiro (RJ), Brasil
| |
Collapse
|
31
|
The effects of ambient temperature and heatwaves on dailyCampylobactercases in Adelaide, Australia, 1990–2012. Epidemiol Infect 2017; 145:2603-2610. [DOI: 10.1017/s095026881700139x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
SUMMARYCampylobacterspp. is a commonly reported food-borne disease with major consequences for morbidity. In conjunction with predicted increases in temperature, proliferation in the survival of microorganisms in hotter environments is expected. This is likely to lead, in turn, to an increase in contamination of food and water and a rise in numbers of cases of infectious gastroenteritis. This study assessed the relationship ofCampylobacterspp. with temperature and heatwaves, in Adelaide, South Australia.We estimated the effect of (i) maximum temperature and (ii) heatwaves on dailyCampylobactercases during the warm seasons (1 October to 31 March) from 1990 to 2012 using Poisson regression models.There was no evidence of a substantive effect of maximum temperature per 1 °C rise (incidence rate ratio (IRR) 0·995, 95% confidence interval (95% CI) 0·993–0·997) nor heatwaves (IRR 0·906, 95% CI 0·800–1·026) onCampylobactercases. In relation to heatwave intensity, which is the daily maximum temperature during a heatwave, notifications decreased by 19% within a temperature range of 39–40·9 °C (IRR 0·811, 95% CI 0·692–0·952). We found little evidence of an increase in risk and lack of association betweenCampylobactercases and temperature or heatwaves in the warm seasons. Heatwave intensity may play a role in that notifications decreased with higher temperatures. Further examination of the role of behavioural and environmental factors in an effort to reduce the risk of increasedCampylobactercases is warranted.
Collapse
|
32
|
Dynamics of Salmonella Shedding and Welfare of Hens in Free-Range Egg Production Systems. Appl Environ Microbiol 2017; 83:AEM.03313-16. [PMID: 28039133 DOI: 10.1128/aem.03313-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023] Open
Abstract
The current study investigated the effect of environmental stressors (i.e., weather changes) on Salmonella shedding in free-range production systems and the correlations with behavioral and physiological measures (i.e., fecal glucocorticoid metabolites). This involved longitudinal and point-in-time surveys of Salmonella shedding and environmental contamination on four commercial free-range layer farms. The shedding of Salmonella was variable across free-range farms and in different seasons. There was no significant effect of season on the Salmonella prevalence during this investigation. In this study, the combined Salmonella most probable number (MPN) counts in environmental (including feces, egg belt, dust, nest box, and ramp) samples were highest in samples collected during the summer season (4th sampling, performed in February). The predominant serovars isolated during this study were Salmonella enterica serovar Mbandaka and Salmonella enterica serovar Typhimurium phage types 135 and 135a. These two phage types were involved in several egg product-related Salmonella outbreaks in humans. Multilocus variable-number tandem-repeat analysis (MLVA) results indicated that MLVA types detected from human food poisoning cases exhibited MLVA patterns similar to the strains isolated during this study. All Salmonella isolates (n = 209) were tested for 15 different genes involved in adhesion, invasion, and survival of Salmonella spp. We also observed variations for sopA, ironA, and misL There were no positive correlations between fecal corticosterone metabolite (FCM) and Salmonella prevalence and/or shedding in feces. Also, there were no positive correlations between Salmonella prevalence and Salmonella count (log MPN) and any of the other welfare parameters.IMPORTANCE In this study, the welfare of laying hens and Salmonella shedding were compared over a prolonged period of time in field conditions. This study investigated the long-term shedding of Salmonella serovars in a free-range egg production system. Given that there is increasing demand for free-range eggs, it is essential to understand the risks associated with such a production system.
Collapse
|
33
|
Milazzo A, Giles LC, Zhang Y, Koehler AP, Hiller JE, Bi P. Factors Influencing Knowledge, Food Safety Practices and Food Preferences During Warm Weather of Salmonella and Campylobacter Cases in South Australia. Foodborne Pathog Dis 2017; 14:125-131. [PMID: 28045552 DOI: 10.1089/fpd.2016.2201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To assess food safety practices, food shopping preferences, and eating behaviors of people diagnosed with Salmonella or Campylobacter infection in the warm seasons, and to identify socioeconomic factors associated with behavior and practices. METHODS A cross-sectional survey was conducted among Salmonella and Campylobacter cases with onset of illness from January 1 to March 31, 2013. Multivariable logistic regression analyses examined relationships between socioeconomic position and food safety knowledge and practices, shopping and food preferences, and preferences, perceptions, and knowledge about food safety information on warm days. RESULTS Respondents in our study engaged in unsafe personal and food hygiene practices. They also carried out unsafe food preparation practices, and had poor knowledge of foods associated with an increased risk of foodborne illness. Socioeconomic position did not influence food safety practices. We found that people's reported eating behaviors and food preferences were influenced by warm weather. CONCLUSIONS Our study has explored preferences and practices related to food safety in the warm season months. This is important given that warmer ambient temperatures are projected to rise, both globally and in Australia, and will have a substantial effect on the burden of infectious gastroenteritis including foodborne disease. Our results provide information about modifiable behaviors for the prevention of foodborne illness in the household in the warm weather and the need for information to be disseminated across the general population. An understanding of the knowledge and factors associated with human behavior during warmer weather is critical for public health interventions on foodborne prevention.
Collapse
Affiliation(s)
- Adriana Milazzo
- 1 School of Public Health, The University of Adelaide , Adelaide, South Australia, Australia
| | - Lynne C Giles
- 1 School of Public Health, The University of Adelaide , Adelaide, South Australia, Australia
| | - Ying Zhang
- 1 School of Public Health, The University of Adelaide , Adelaide, South Australia, Australia .,2 School of Public Health, The University of Sydney , Sydney, New South Wales, Australia
| | - Ann P Koehler
- 3 Communicable Disease Control Branch , Department for Health and Ageing, Adelaide, South Australia, Australia
| | - Janet E Hiller
- 1 School of Public Health, The University of Adelaide , Adelaide, South Australia, Australia .,4 School of Health Sciences, Swinburne University of Technology , Melbourne, Victoria, Australia
| | - Peng Bi
- 1 School of Public Health, The University of Adelaide , Adelaide, South Australia, Australia
| |
Collapse
|
34
|
|
35
|
Milazzo A, Giles LC, Zhang Y, Koehler AP, Hiller JE, Bi P. Heatwaves differentially affect risk of Salmonella serotypes. J Infect 2016; 73:231-40. [PMID: 27317378 DOI: 10.1016/j.jinf.2016.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/05/2016] [Accepted: 04/20/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Given increasing frequency of heatwaves and growing public health concerns associated with foodborne disease, we examined the relationship between heatwaves and salmonellosis in Adelaide, Australia. METHODS Poisson regression analysis with Generalised Estimating Equations was used to estimate the effect of heatwaves and the impact of intensity, duration and timing on salmonellosis and specific serotypes notified from 1990 to 2012. Distributed lag non-linear models were applied to assess the non-linear and delayed effects of temperature during heatwaves on Salmonella cases. RESULTS Salmonella typhimurium PT135 notifications were sensitive to the effects of heatwaves with a twofold (IRR 2.08, 95% CI 1.14-3.79) increase in cases relative to non-heatwave days. Heatwave intensity had a significant effect on daily counts of overall salmonellosis with a 34% increase in risk of infection (IRR 1.34, 95% CI 1.01-1.78) at >41 °C. The effects of temperature during heatwaves on Salmonella cases and serotypes were found at lags of up to 14 days. CONCLUSION This study confirms heatwaves have a significant effect on Salmonella cases, and for the first time, identifies its impact on specific serotypes and phage types. These findings will contribute to the understanding of the impact of heatwaves on salmonellosis and provide insights that could mitigate their impact.
Collapse
Affiliation(s)
- Adriana Milazzo
- School of Public Health, The University of Adelaide, Adelaide, 5000, South Australia, Australia.
| | - Lynne C Giles
- School of Public Health, The University of Adelaide, Adelaide, 5000, South Australia, Australia.
| | - Ying Zhang
- School of Public Health, The University of Adelaide, Adelaide, 5000, South Australia, Australia; School of Public Health, The University of Sydney, Sydney, 2006, New South Wales, Australia.
| | - Ann P Koehler
- Communicable Disease Control Branch, Department for Health and Ageing, Adelaide, 5000, South Australia, Australia.
| | - Janet E Hiller
- School of Public Health, The University of Adelaide, Adelaide, 5000, South Australia, Australia; School of Health Sciences, Swinburne University of Technology, Melbourne, 3122, Victoria, Australia.
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, 5000, South Australia, Australia.
| |
Collapse
|