1
|
Wang L, Bai X, Ylinen E, Zhang J, Saxén H, Matussek A. Genetic Characterization of Intimin Gene ( eae) in Clinical Shiga Toxin-Producing Escherichia coli Strains from Pediatric Patients in Finland. Toxins (Basel) 2023; 15:669. [PMID: 38133173 PMCID: PMC10748226 DOI: 10.3390/toxins15120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections cause outbreaks of severe disease in children ranging from bloody diarrhea to hemolytic uremic syndrome (HUS). The adherent factor intimin, encoded by eae, can facilitate the colonization process of strains and is frequently associated with severe disease. The purpose of this study was to examine and analyze the prevalence and polymorphisms of eae in clinical STEC strains from pediatric patients under 17 years old with and without HUS, and to assess the pathogenic risk of different eae subtypes. We studied 240 STEC strains isolated from pediatric patients in Finland with whole genome sequencing. The gene eae was present in 209 (87.1%) strains, among which 49 (23.4%) were from patients with HUS, and 160 (76.6%) were from patients without HUS. O157:H7 (126, 60.3%) was the most predominant serotype among eae-positive STEC strains. Twenty-three different eae genotypes were identified, which were categorized into five eae subtypes, i.e., γ1, β3, ε1, θ and ζ3. The subtype eae-γ1 was significantly overrepresented in strains from patients aged 5-17 years, while β3 and ε1 were more commonly found in strains from patients under 5 years. All O157:H7 strains carried eae-γ1; among non-O157 strains, strains of each serotype harbored one eae subtype. No association was observed between the presence of eae/its subtypes and HUS. However, the combination of eae-γ1+stx2a was significantly associated with HUS. In conclusion, this study demonstrated a high occurrence and genetic variety of eae in clinical STEC from pediatric patients under 17 years old in Finland, and that eae is not essential for STEC-associated HUS. However, the combination of certain eae subtypes with stx subtypes, i.e., eae-γ1+stx2a, may be used as risk predictors for the development of severe disease in children.
Collapse
Affiliation(s)
- Lei Wang
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway; (L.W.); (X.B.)
- Jinan Center for Disease Control and Prevention, Jinan 250021, China
| | - Xiangning Bai
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway; (L.W.); (X.B.)
- Department of Clinical Microbiology, Division of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Elisa Ylinen
- Department of Pediatric Nephrology and Transplantation, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; (E.Y.); (H.S.)
| | - Ji Zhang
- Fonterra Research and Development Centre, Dairy Farm Road, Palmerston North 4442, New Zealand;
| | - Harri Saxén
- Department of Pediatric Nephrology and Transplantation, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland; (E.Y.); (H.S.)
| | - Andreas Matussek
- Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway; (L.W.); (X.B.)
- Department of Clinical Microbiology, Division of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden
| |
Collapse
|
2
|
Nouws S, Verhaegen B, Denayer S, Crombé F, Piérard D, Bogaerts B, Vanneste K, Marchal K, Roosens NHC, De Keersmaecker SCJ. Transforming Shiga toxin-producing Escherichia coli surveillance through whole genome sequencing in food safety practices. Front Microbiol 2023; 14:1204630. [PMID: 37520372 PMCID: PMC10381951 DOI: 10.3389/fmicb.2023.1204630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Shiga toxin-producing Escherichia coli (STEC) is a gastrointestinal pathogen causing foodborne outbreaks. Whole Genome Sequencing (WGS) in STEC surveillance holds promise in outbreak prevention and confinement, in broadening STEC epidemiology and in contributing to risk assessment and source attribution. However, despite international recommendations, WGS is often restricted to assist outbreak investigation and is not yet fully implemented in food safety surveillance across all European countries, in contrast to for example in the United States. Methods In this study, WGS was retrospectively applied to isolates collected within the context of Belgian food safety surveillance and combined with data from clinical isolates to evaluate its benefits. A cross-sector WGS-based collection of 754 strains from 1998 to 2020 was analyzed. Results We confirmed that WGS in food safety surveillance allows accurate detection of genomic relationships between human cases and strains isolated from food samples, including those dispersed over time and geographical locations. Identifying these links can reveal new insights into outbreaks and direct epidemiological investigations to facilitate outbreak management. Complete WGS-based isolate characterization enabled expanding epidemiological insights related to circulating serotypes, virulence genes and antimicrobial resistance across different reservoirs. Moreover, associations between virulence genes and severe disease were determined by incorporating human metadata into the data analysis. Gaps in the surveillance system were identified and suggestions for optimization related to sample centralization, harmonizing isolation methods, and expanding sampling strategies were formulated. Discussion This study contributes to developing a representative WGS-based collection of circulating STEC strains and by illustrating its benefits, it aims to incite policymakers to support WGS uptake in food safety surveillance.
Collapse
Affiliation(s)
- Stéphanie Nouws
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
- IDlab, Department of Information Technology, Ghent University—IMEC, Ghent, Belgium
| | - Bavo Verhaegen
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC) and for Foodborne Outbreaks (NRL FBO), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Sarah Denayer
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC) and for Foodborne Outbreaks (NRL FBO), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Florence Crombé
- National Reference Centre for Shiga Toxin-Producing Escherichia coli (NRC STEC), Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Denis Piérard
- National Reference Centre for Shiga Toxin-Producing Escherichia coli (NRC STEC), Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kathleen Marchal
- IDlab, Department of Information Technology, Ghent University—IMEC, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
3
|
Blankenship HM, Dietrich SE, Burgess E, Wholehan J, Soehnlen M, Manning SD. Whole-Genome Sequencing of Shiga Toxin-Producing Escherichia coli for Characterization and Outbreak Investigation. Microorganisms 2023; 11:1298. [PMID: 37317272 DOI: 10.3390/microorganisms11051298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes high frequencies of foodborne infections worldwide and has been linked to numerous outbreaks each year. Pulsed-field gel electrophoresis (PFGE) has been the gold standard for surveillance until the recent transition to whole-genome sequencing (WGS). To further understand the genetic diversity and relatedness of outbreak isolates, a retrospective analysis of 510 clinical STEC isolates was conducted. Among the 34 STEC serogroups represented, most (59.6%) belonged to the predominant six non-O157 serogroups. Core genome single nucleotide polymorphism (SNP) analysis differentiated clusters of isolates with similar PFGE patterns and multilocus sequence types (STs). One serogroup O26 outbreak strain and another non-typeable (NT) strain, for instance, were identical by PFGE and clustered together by MLST; however, both were distantly related in the SNP analysis. In contrast, six outbreak-associated serogroup O5 strains clustered with five ST-175 serogroup O5 isolates, which were not part of the same outbreak as determined by PFGE. The use of high-quality SNP analyses enhanced the discrimination of these O5 outbreak strains into a single cluster. In all, this study demonstrates how public health laboratories can more rapidly use WGS and phylogenetics to identify related strains during outbreak investigations while simultaneously uncovering important genetic attributes that can inform treatment practices.
Collapse
Affiliation(s)
- Heather M Blankenship
- Bureau of Laboratories, Michigan Department of Health and Human Services, Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Stephen E Dietrich
- Bureau of Laboratories, Michigan Department of Health and Human Services, Lansing, MI 48824, USA
| | - Elizabeth Burgess
- Bureau of Laboratories, Michigan Department of Health and Human Services, Lansing, MI 48824, USA
| | - Jason Wholehan
- Bureau of Laboratories, Michigan Department of Health and Human Services, Lansing, MI 48824, USA
| | - Marty Soehnlen
- Bureau of Laboratories, Michigan Department of Health and Human Services, Lansing, MI 48824, USA
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Smith C, Griffiths A, Allison S, Hoyano D, Hoang L. Escherichia coli O103 outbreak associated with minced celery among hospitalized individuals in Victoria, British Columbia, 2021. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2022; 48:46-50. [PMID: 35273469 PMCID: PMC8856827 DOI: 10.14745/ccdr.v48i01a07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND In April 2021, a Shiga toxin-producing Escherichia coli (E. coli) (STEC) O103 outbreak was identified among patients at two hospitals in Victoria, British Columbia (BC). The objective of this study is to describe this outbreak investigation and identify issues of food safety for high-risk products prepared for vulnerable populations. METHODS Confirmed cases of E. coli O103 were reported to the Island Health communicable disease unit. The provincial public health laboratory conducted whole genome sequencing on confirmed case isolates, as per routine practice for STEC in BC. Exposure information was obtained through case interviews and review of hospital menus. Federal and local public health authorities conducted an inspection of the processing plant for the suspect source. RESULTS Six confirmed cases of E. coli O103 were identified, all related by whole genome sequencing. The majority of cases were female (67%) and the median age was 61 years (range 24-87 years). All confirmed cases were inpatients or outpatients at two hospitals and were exposed to raw minced celery within prepared sandwiches provided by hospital food services. A local processor supplied the minced celery exclusively to the two hospitals. Testing of product at the processor was infrequent, and chlorine rinse occurred before mincing. The spread of residual E. coli contamination through the mincing process, in addition to temperature abuse at the hospitals, are thought to have contributed to this outbreak. CONCLUSION Raw vegetables, such as celery, are a potential source of STEC and present a risk to vulnerable populations. Recommendations from this outbreak include more frequent testing at the processor, a review of the chlorination and mincing process and a review of hospital food services practices to mitigate temperature abuse.
Collapse
Affiliation(s)
| | | | | | | | - Linda Hoang
- British Columbia Centres for Disease Control, Vancouver, BC
| |
Collapse
|
5
|
Amadio A, Bono JL, Irazoqui M, Larzábal M, Marques da Silva W, Eberhardt MF, Riviere NA, Gally D, Manning SD, Cataldi A. Genomic analysis of shiga toxin-containing Escherichia coli O157:H7 isolated from Argentinean cattle. PLoS One 2021; 16:e0258753. [PMID: 34710106 PMCID: PMC8553066 DOI: 10.1371/journal.pone.0258753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Cattle are the main reservoir of Enterohemorrhagic Escherichia coli (EHEC), with O157:H7 the distinctive serotype. EHEC is the main causative agent of a severe systemic disease, Hemolytic Uremic Syndrome (HUS). Argentina has the highest pediatric HUS incidence worldwide with 12–14 cases per 100,000 children. Herein, we assessed the genomes of EHEC O157:H7 isolates recovered from cattle in the humid Pampas of Argentina. According to phylogenetic studies, EHEC O157 can be divided into clades. Clade 8 strains that were classified as hypervirulent. Most of the strains of this clade have a Shiga toxin stx2a-stx2c genotype. To better understand the molecular bases related to virulence, pathogenicity and evolution of EHEC O157:H7, we performed a comparative genomic analysis of these isolates through whole genome sequencing. The isolates classified as clade 8 (four strains) and clade 6 (four strains) contained 13 to 16 lambdoid prophages per genome, and the observed variability of prophages was analysed. An inter strain comparison show that while some prophages are highly related and can be grouped into families, other are unique. Prophages encoding for stx2a were highly diverse, while those encoding for stx2c were conserved. A cluster of genes exclusively found in clade 8 contained 13 genes that mostly encoded for DNA binding proteins. In the studied strains, polymorphisms in Q antiterminator, the Q-stx2A intergenic region and the O and P γ alleles of prophage replication proteins are associated with different levels of Stx2a production. As expected, all strains had the pO157 plasmid that was highly conserved, although one strain displayed a transposon interruption in the protease EspP gene. This genomic analysis may contribute to the understanding of the genetic basis of the hypervirulence of EHEC O157:H7 strains circulating in Argentine cattle. This work aligns with other studies of O157 strain variation in other populations that shows key differences in Stx2a-encoding prophages.
Collapse
Affiliation(s)
- Ariel Amadio
- Instituto de Investigación de la Cadena Láctea IDICaL (INTA-CONICET), Rafaela, Argentina
| | - James L. Bono
- U.S Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, Nebraska, United States of America
| | - Matías Irazoqui
- Instituto de Investigación de la Cadena Láctea IDICaL (INTA-CONICET), Rafaela, Argentina
| | - Mariano Larzábal
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)-CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Hurlingham, Argentina
| | - Wanderson Marques da Silva
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)-CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Hurlingham, Argentina
| | | | - Nahuel A. Riviere
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)-CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Hurlingham, Argentina
| | - David Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Angel Cataldi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO)-CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Hurlingham, Argentina
- * E-mail:
| |
Collapse
|
6
|
Antibiotic Susceptibility Profiles and Frequency of Resistance Genes in Clinical Shiga Toxin-Producing Escherichia coli Isolates from Michigan over a 14-Year Period. Antimicrob Agents Chemother 2021; 65:e0118921. [PMID: 34424041 DOI: 10.1128/aac.01189-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen that contributes to over 250,000 infections in the United States each year. Because antibiotics are not recommended for STEC infections, resistance in STEC has not been widely researched despite an increased likelihood for the transfer of resistance genes from STEC to opportunistic pathogens residing within the same microbial community. From 2001 to 2014, 969 STEC isolates were collected from Michigan patients. Antibiotic susceptibility profiles to clinically relevant antibiotics were determined using disc diffusion, while epidemiological data were used to identify factors associated with resistance. Whole-genome sequencing was used for serotyping, examining genetic relatedness, and identifying genetic determinants and mechanisms of resistance in the non-O157 isolates. Increasing frequencies of resistance to at least one antibiotic were observed over the 14 years (P = 0.01). While the non-O157 serogroups were more commonly resistant than O157 (odds ratio, 2.4; 95% confidence interval,1.43 to 4.05), the frequency of ampicillin resistance among O157 isolates was significantly higher in Michigan than the national average (P = 0.03). Genomic analysis of 321 non-O157 isolates uncovered 32 distinct antibiotic resistance genes (ARGs). Although mutations in genes encoding resistance to ciprofloxacin and ampicillin were detected in four isolates, most of the horizontally acquired ARGs conferred resistance to aminoglycosides, β-lactams, sulfonamides, and/or tetracycline. This study provides insight into the mechanisms of resistance in a large collection of clinical non-O157 STEC isolates and demonstrates that antibiotic resistance among all STEC serogroups has increased over time, prompting the need for enhanced surveillance.
Collapse
|
7
|
Tack DM, Kisselburgh HM, Richardson LC, Geissler A, Griffin PM, Payne DC, Gleason BL. Shiga Toxin-Producing Escherichia coli Outbreaks in the United States, 2010-2017. Microorganisms 2021; 9:microorganisms9071529. [PMID: 34361964 PMCID: PMC8307841 DOI: 10.3390/microorganisms9071529] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause illnesses ranging from mild diarrhea to ischemic colitis and hemolytic uremic syndrome (HUS); serogroup O157 is the most common cause. We describe the epidemiology and transmission routes for U.S. STEC outbreaks during 2010–2017. Health departments reported 466 STEC outbreaks affecting 4769 persons; 459 outbreaks had a serogroup identified (330 O157, 124 non-O157, 5 both). Among these, 361 (77%) had a known transmission route: 200 foodborne (44% of O157 outbreaks, 41% of non-O157 outbreaks), 87 person-to-person (16%, 24%), 49 animal contact (11%, 9%), 20 water (4%, 5%), and 5 environmental contamination (2%, 0%). The most common food category implicated was vegetable row crops. The distribution of O157 and non-O157 outbreaks varied by age, sex, and severity. A significantly higher percentage of STEC O157 than non-O157 outbreaks were transmitted by beef (p = 0.02). STEC O157 outbreaks also had significantly higher rates of hospitalization and HUS (p < 0.001).
Collapse
|
8
|
Variability in the Occupancy of Escherichia coli O157 Integration Sites by Shiga Toxin-Encoding Prophages. Toxins (Basel) 2021; 13:toxins13070433. [PMID: 34206386 PMCID: PMC8309913 DOI: 10.3390/toxins13070433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli O157:H7 strains often produce Shiga toxins encoded by genes on lambdoid bacteriophages that insert into multiple loci as prophages. O157 strains were classified into distinct clades that vary in virulence. Herein, we used PCR assays to examine Shiga toxin (Stx) prophage occupancy in yehV, argW, wrbA, and sbcB among 346 O157 strains representing nine clades. Overall, yehV was occupied in most strains (n = 334, 96.5%), followed by wrbA (n = 213, 61.6%), argW (n = 103, 29.8%), and sbcB (n = 93, 26.9%). Twelve occupancy profiles were identified that varied in frequency and differed across clades. Strains belonging to clade 8 were more likely to have occupied sbcB and argW sites compared to other clades (p < 0.0001), while clade 2 strains were more likely to have occupied wrbA sites (p < 0.0001). Clade 8 strains also had more than the expected number of occupied sites based on the presence of stx variants (p < 0.0001). Deletion of a 20 kb non-Stx prophage occupying yehV in a clade 8 strain resulted in an ~18-fold decrease in stx2 expression. These data highlight the complexity of Stx prophage integration and demonstrate that clade 8 strains, which were previously linked to hemolytic uremic syndrome, have unique Stx prophage occupancy profiles that can impact stx2 expression.
Collapse
|
9
|
Blankenship HM, Mosci RE, Dietrich S, Burgess E, Wholehan J, McWilliams K, Pietrzen K, Benko S, Gatesy T, Rudrik JT, Soehnlen M, Manning SD. Population structure and genetic diversity of non-O157 Shiga toxin-producing Escherichia coli (STEC) clinical isolates from Michigan. Sci Rep 2021; 11:4461. [PMID: 33627701 PMCID: PMC7904848 DOI: 10.1038/s41598-021-83775-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Non-O157 STEC are increasingly linked to foodborne infections, yet little is known about the diversity and molecular epidemiology across locations. Herein, we used whole genome sequencing to examine genetic variation in 894 isolates collected from Michigan patients between 2001 and 2018. In all, 67 serotypes representing 69 multilocus sequence types were identified. Serotype diversity increased from an average of four (2001-2006) to 17 (2008-2018) serotypes per year. The top six serogroups reported nationally caused > 60% of infections in 16 of the 18 years; serogroups O111 and O45 were associated with hospitalization as were age ≥ 65 years, diarrhea with blood and female sex. Phylogenetic analyses of seven multilocus sequence typing (MLST) loci identified three clades as well as evidence of parallel evolution and recombination. Most (95.5%) isolates belonged to one clade, which could be further differentiated into seven subclades comprising isolates with varying virulence gene profiles and serotypes. No association was observed between specific clades and the epidemiological data, suggesting that serogroup- and serotype-specific associations are more important predictors of disease outcomes than lineages defined by MLST. Molecular epidemiological studies of non-O157 STEC are important to enhance understanding of circulating strain distributions and traits, genetic variation, and factors that may impact disease risk and severity.
Collapse
Affiliation(s)
- Heather M Blankenship
- Department of Microbiology and Molecular Genetics, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, 48906, USA
| | - Rebekah E Mosci
- Department of Microbiology and Molecular Genetics, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA
| | - Stephen Dietrich
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, 48906, USA
| | - Elizabeth Burgess
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, 48906, USA
| | - Jason Wholehan
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, 48906, USA
| | - Karen McWilliams
- Michigan Department of Agriculture and Rural Development, East Lansing, MI, 48823, USA
| | - Karen Pietrzen
- Michigan Department of Agriculture and Rural Development, East Lansing, MI, 48823, USA
| | - Scott Benko
- Michigan Department of Agriculture and Rural Development, East Lansing, MI, 48823, USA
| | - Ted Gatesy
- Michigan Department of Agriculture and Rural Development, East Lansing, MI, 48823, USA
| | - James T Rudrik
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, 48906, USA
| | - Marty Soehnlen
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, 48906, USA
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
10
|
Tsutsuki H, Ogura K, Moss J, Yahiro K. Host response to the subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli. Microbiol Immunol 2020; 64:657-665. [PMID: 32902863 DOI: 10.1111/1348-0421.12841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/05/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Abstract
Shiga-toxigenic Escherichia coli (STEC) is a major bacterium responsible for disease resulting from foodborne infection, including bloody diarrhea and hemolytic uremic syndrome. STEC produces important virulence factors such as Shiga toxin (Stx) 1 and/or 2. In the STEC family, some locus of enterocyte effacement-negative STEC produce two different types of cytotoxins, namely, Stx2 and subtilase cytotoxin (SubAB). The Stx2 and SubAB cytotoxins are structurally similar and composed of one A subunit and pentamer of B subunits. The catalytically active A subunit of SubAB is a subtilase-like serine protease and specifically cleaves an endoplasmic reticulum (ER) chaperone 78-kDa glucose-regulated protein (GRP78/BiP), a monomeric ATPase that is crucial in protein folding and quality control. The B subunit binds to cell surface receptors. SubAB recognizes sialic carbohydrate-modified cell surface proteins as a receptor. After translocation into cells, SubAB is delivered to the ER, where it cleaves GRP78/BiP. SubAB-catalyzed BiP cleavage induces ER stress, which causes various cell events including inhibition of protein synthesis, suppression of nuclear factor-kappa B activation, apoptotic cell death, and stress granules formation. In this review, we describe SubAB, the SubAB receptor, and the mechanism of cell response to the toxin.
Collapse
Affiliation(s)
- Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Nouws S, Bogaerts B, Verhaegen B, Denayer S, Crombé F, De Rauw K, Piérard D, Marchal K, Vanneste K, Roosens NHC, De Keersmaecker SCJ. The Benefits of Whole Genome Sequencing for Foodborne Outbreak Investigation from the Perspective of a National Reference Laboratory in a Smaller Country. Foods 2020; 9:E1030. [PMID: 32752159 PMCID: PMC7466227 DOI: 10.3390/foods9081030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Gradually, conventional methods for foodborne pathogen typing are replaced by whole genome sequencing (WGS). Despite studies describing the overall benefits, National Reference Laboratories of smaller countries often show slower uptake of WGS, mainly because of significant investments required to generate and analyze data of a limited amount of samples. To facilitate this process and incite policy makers to support its implementation, a Shiga toxin-producing Escherichia coli (STEC) O157:H7 (stx1+, stx2+, eae+) outbreak (2012) and a STEC O157:H7 (stx2+, eae+) outbreak (2013) were retrospectively analyzed using WGS and compared with their conventional investigations. The corresponding results were obtained, with WGS delivering even more information, e.g., on virulence and antimicrobial resistance genotypes. Besides a universal, all-in-one workflow with less hands-on-time (five versus seven actual working days for WGS versus conventional), WGS-based cgMLST-typing demonstrated increased resolution. This enabled an accurate cluster definition, which remained unsolved for the 2013 outbreak, partly due to scarce epidemiological linking with the suspect source. Moreover, it allowed detecting two and one earlier circulating STEC O157:H7 (stx1+, stx2+, eae+) and STEC O157:H7 (stx2+, eae+) strains as closely related to the 2012 and 2013 outbreaks, respectively, which might have further directed epidemiological investigation initially. Although some bottlenecks concerning centralized data-sharing, sampling strategies, and perceived costs should be considered, we delivered a proof-of-concept that even in smaller countries, WGS offers benefits for outbreak investigation, if a sufficient budget is available to ensure its implementation in surveillance. Indeed, applying a database with background isolates is critical in interpreting isolate relationships to outbreaks, and leveraging the true benefit of WGS in outbreak investigation and/or prevention.
Collapse
Affiliation(s)
- Stéphanie Nouws
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
- Department of Information Technology, IDLab, imec, Ghent University, 9052 Ghent, Belgium;
| | - Bert Bogaerts
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
- Department of Information Technology, IDLab, imec, Ghent University, 9052 Ghent, Belgium;
| | - Bavo Verhaegen
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL-STEC), National Reference Laboratory for Foodborne Outbreaks (NRL-FBO), Department of Infectious diseases in humans, Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium; (B.V.); (S.D.)
| | - Sarah Denayer
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL-STEC), National Reference Laboratory for Foodborne Outbreaks (NRL-FBO), Department of Infectious diseases in humans, Foodborne Pathogens, Sciensano, 1050 Brussels, Belgium; (B.V.); (S.D.)
| | - Florence Crombé
- Department of Microbiology and Infection Control, National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC-STEC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; (F.C.); (K.D.R.); (D.P.)
| | - Klara De Rauw
- Department of Microbiology and Infection Control, National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC-STEC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; (F.C.); (K.D.R.); (D.P.)
| | - Denis Piérard
- Department of Microbiology and Infection Control, National Reference Center for Shiga Toxin-Producing Escherichia coli (NRC-STEC), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium; (F.C.); (K.D.R.); (D.P.)
| | - Kathleen Marchal
- Department of Information Technology, IDLab, imec, Ghent University, 9052 Ghent, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Genetics, University of Pretoria, Pretoria 0083, South Africa
| | - Kevin Vanneste
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
| | - Nancy H. C. Roosens
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
| | - Sigrid C. J. De Keersmaecker
- Department of Expertise and service provision, Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (S.N.); (B.B.); (K.V.); (N.H.C.R.)
| |
Collapse
|
12
|
Blankenship HM, Mosci RE, Phan Q, Fontana J, Rudrik JT, Manning SD. Genetic Diversity of Non-O157 Shiga Toxin-Producing Escherichia coli Recovered From Patients in Michigan and Connecticut. Front Microbiol 2020; 11:529. [PMID: 32300338 PMCID: PMC7145412 DOI: 10.3389/fmicb.2020.00529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are important foodborne pathogens and non-O157 serotypes have been gradually increasing in frequency. The non-O157 STEC population is diverse and is often characterized using serotyping and/or multilocus sequence typing (MLST). Although spacers within clustered regularly interspaced repeat (CRISPR) regions were shown to comprise horizontally acquired DNA elements, this region does not actively acquire spacers in STEC. Hence, it is useful for further characterizing non-O157 STEC and examining relationships between strains. Our study goal was to evaluate the genetic relatedness of 41 clinical non-O157 isolates identified in Michigan between 2001 and 2005 while comparing to 114 isolates from Connecticut during an overlapping time period. Whole genome sequencing (WGS) was performed, and sequences were extracted for serotyping, MLST and CRISPR analysis. Phylogenetic analysis of MLST and CRISPR data was performed using the Neighbor joining and unweighted pair group method with arithmetic mean (UPGMA) algorithms, respectively. In all, 29 serogroups were identified; eight were unique to Michigan and 13 to Connecticut. “Big-six” serogroup frequencies were similar by state (Michigan: 73.2%, Connecticut: 81.6%), though STEC O121 was not found in Michigan. The distribution of sequence types (STs) and CRISPR profiles was also similar across states. Interestingly, big-six serogroups such as O103 and O26, grouped into different STs located on distinct branches of the phylogeny, further confirming that serotyping alone is not adequate for evaluating strain relatedness. Comparatively, the CRISPR analysis identified 361 unique spacers that grouped into 80 different CRISPR profiles. CRISPR spacers 231 and 317 were isolated from 79.2% (n = 118) and 59.1% (n = 88) of strains, respectively, regardless of serogroup and ST. Spacer profiles clustered according to the MLST analysis, though some discrepancies were noted. Indeed, use of both MLST and CRISPR typing enhanced the discriminatory power when compared to the use of each tool separately. These data highlight the genetic diversity of clinical STEC from different locations and show that CRISPR profiling can be used alongside MLST to discriminate related strains. Use of targeted sequencing approaches are particularly helpful for sites without WGS capabilities and can help define which strains require additional characterization using more discriminatory methods.
Collapse
Affiliation(s)
- Heather M Blankenship
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Rebekah E Mosci
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Quyen Phan
- Connecticut Department of Public Health, Hartford, CT, United States
| | - John Fontana
- Connecticut Department of Public Health, Hartford, CT, United States
| | - James T Rudrik
- Bureau of Laboratories, Michigan Department of Health and Human Services, Lansing, MI, United States
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
13
|
Genetic diversity of the intimin gene (eae) in non-O157 Shiga toxin-producing Escherichia coli strains in China. Sci Rep 2020; 10:3275. [PMID: 32094410 PMCID: PMC7040016 DOI: 10.1038/s41598-020-60225-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. The increasing incidence of non-O157 STEC has posed a great risk to public health. Besides the Shiga toxin (Stx), the adherence factor, intimin, coded by eae gene plays a critical role in STEC pathogenesis. In this study, we investigated the prevalence and polymorphisms of eae gene in non-O157 STEC strains isolated from different sources in China. Among 735 non-O157 STEC strains, eae was present in 70 (9.5%) strains. Eighteen different eae genotypes were identified in 62 eae-positive STEC strains with the nucleotide identities ranging from 86.01% to 99.97%. Among which, seven genotypes were newly identified in this study. The eighteen eae genotypes can be categorized into five eae subtypes, namely β1, γ1, ε1, ζ3 and θ. Associations between eae subtypes/genotypes and serotypes as well as origins of strains were observed in this study. Strains belonging to serotypes O26:H11, O103:H2, O111:H8 are associated with particular eae subtypes, i.e., β1, ε1, θ, respectively. Most strains from diarrheal patients (7/9, 77.8%) carried eae-β1 subtype, while most isolates from cattle (23/26, 88.5%) carried eae-ζ3 subtype. This study demonstrated a genetic diversity of eae gene in non-O157 STEC strains from different sources in China.
Collapse
|
14
|
Costa M, Sucari A, Epszteyn S, Oteiza J, Gentiluomo J, Melamed C, Figueroa Y, Mingorance S, Grisaro A, Spioussas S, Almeida MB, Caruso M, Pontoni A, Signorini M, Leotta G. Comparison of six commercial systems for the detection of non-O157 STEC in meat and vegetables. Food Microbiol 2019; 84:103273. [DOI: 10.1016/j.fm.2019.103273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
15
|
Furlan JPR, Gallo IFL, de Campos ACLP, Passaglia J, Falcão JP, Navarro A, Nakazato G, Stehling EG. Molecular characterization of multidrug-resistant Shiga toxin-producing Escherichia coli harboring antimicrobial resistance genes obtained from a farmhouse. Pathog Glob Health 2019; 113:268-274. [PMID: 31757195 DOI: 10.1080/20477724.2019.1693712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) colonize the gastrointestinal tract of animals; however, STEC may also cause severe diarrheal diseases. Food-producing animals have been acting as reservoirs and disseminators of multidrug-resistant (MDR) bacteria and antimicrobial resistance genes (ARGs); however, there are few studies characterizing molecularly bacterial isolates from sheep. Therefore, this study aimed to characterize E. coli isolates obtained from feces of sheep in a Brazilian farmhouse. A total of 14 MDR E. coli isolates were obtained from 100 feces samples, six of which were classified as non-O157 STEC (stx1, stx2 and ehxA). MDR E. coli isolates presented different ARGs [blaCTX-M-Gp9, blaCMY, blaSHV, qnrS, oqxB, aac(6')-Ib, tet(A), tet(B), tet(C), sul1, sul2, and cmlA] and plasmids (IncI1, IncFrepB, IncFIB, IncFIA, IncHI1, IncK, and ColE-like). In addition, mutations in the quinolone-resistance determining region of GyrA (Ser83Leu; Asp87Asn) and ParC (Glu84Asp) were detected. PFGE showed a high genetic diversity (30.9 to 83.9%) and thirteen STs were detected (ST25, ST48, ST155, ST162, ST642, ST1247, ST1518, ST1725, ST2107, ST2522, ST3270, ST5036, and ST7100). Subtyping of the fimH gene showed seven fimH-type (25, 32, 38, 41, 54, 61, and 366). The results found in the present study showed high genetic diversity among MDR ARGs-producing E. coli obtained from a farmhouse. This study reports for the first time, the presence of MDR STEC and non-STEC belonging to ST25, ST162, ST642, ST1247, ST1518, ST1725, ST2107, ST3270, ST5036, and ST7100 in sheep, and contributes to the surveillance studies associated with One Health concept.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | - Inara Fernanda Lage Gallo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | | | - Jaqueline Passaglia
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | - Armando Navarro
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autônoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Gerson Nakazato
- Departamento de Microbiologia, Centro de Ciências Biológicas - Universidade Estadual de Londrina (UEL), Londrina, Brasil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| |
Collapse
|
16
|
Mukherjee S, Anderson CM, Mosci RE, Newton DW, Lephart P, Salimnia H, Khalife W, Rudrik JT, Manning SD. Increasing Frequencies of Antibiotic Resistant Non-typhoidal Salmonella Infections in Michigan and Risk Factors for Disease. Front Med (Lausanne) 2019; 6:250. [PMID: 31781566 PMCID: PMC6857118 DOI: 10.3389/fmed.2019.00250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/17/2019] [Indexed: 11/13/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) are important enteric pathogens causing over 1 million foodborne illnesses in the U.S. annually. The widespread emergence of antibiotic resistance in NTS isolates has limited the availability of antibiotics that can be used for therapy. Since Michigan is not part of the FoodNet surveillance system, few studies have quantified antibiotic resistance frequencies and identified risk factors for NTS infections in the state. We obtained 198 clinical NTS isolates via active surveillance at four Michigan hospitals from 2011 to 2014 for classification of serovars and susceptibility to 24 antibiotics using broth microdilution. The 198 isolates belonged to 35 different serovars with Enteritidis (36.9%) predominating followed by Typhimurium (19.5%) and Newport (9.7%), though the proportion of each varied by year, residence, and season. The number of Enteritidis and Typhimurium cases was higher in the summer, while Enteritidis cases were significantly more common among urban vs. rural residents. A total of 30 (15.2%) NTS isolates were resistant to ≥1 antibiotic and 15 (7.5%) were resistant to ≥3 antimicrobial classes; a significantly greater proportion of Typhimurium isolates were resistant compared to Enteritidis isolates and an increasing trend in the frequency of tetracycline resistance and multidrug resistance was observed over the 4-year period. Resistant infections were associated with longer hospital stays as the mean stay was 5.9 days for patients with resistant isolates relative to 4.0 days for patients infected with susceptible isolates. Multinomial logistic regression indicated that infection with serovars other than Enteritidis [Odds ratio (OR): 3.8, 95% confidence interval (CI): 1.23-11.82] as well as infection during the fall (OR: 3.0; 95% CI: 1.22-7.60) were independently associated with resistance. Together, these findings demonstrate the importance of surveillance, monitoring resistance frequencies, and identifying risk factors that can aid in the development of new prevention strategies.
Collapse
Affiliation(s)
- Sanjana Mukherjee
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Chase M Anderson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Rebekah E Mosci
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Duane W Newton
- Clinical Microbiology Laboratory, University of Michigan, Ann Arbor, MI, United States
| | - Paul Lephart
- Clinical Microbiology Laboratory, University of Michigan, Ann Arbor, MI, United States
| | - Hossein Salimnia
- Microbiology Division, Detroit Medical Center University Laboratories, Wayne State University, Detroit, MI, United States
| | - Walid Khalife
- Microbiology, Immunology & Molecular Laboratories, Sparrow Hospital, Lansing, MI, United States
| | - James T Rudrik
- Bureau of Laboratories, Michigan Department of Health and Human Services, Lansing, MI, United States
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
17
|
Furlan JPR, Gallo IFL, de Campos ACLP, Navarro A, Kobayashi RKT, Nakazato G, Stehling EG. Characterization of non-O157 Shiga toxin-producing Escherichia coli (STEC) obtained from feces of sheep in Brazil. World J Microbiol Biotechnol 2019; 35:134. [PMID: 31432266 DOI: 10.1007/s11274-019-2712-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens and may induce severe diarrheagenic diseases in humans and other animals. Non-O157 STEC have been emerging as important pathogens causing outbreaks worldwide. Bacterial resistance to antimicrobials has become a global public health problem, which involves different ecological spheres, including animals. This study aimed to characterize the resistance to antimicrobials, plasmids and virulence, as well as the serotypes and phylogenetic groups in E. coli isolated from sheep in Brazil. A total of 57 isolates were obtained and showed different antimicrobial resistance profiles. Nineteen isolates presented acquired antimicrobial resistance genes (ARGs) (blaCTX-M-Gp9, qnrB, qnrS, oqxB, oqxA, tetA, tetB, tetC, sul1 and sul2) and plasmid families (F, FIA, FIB, I1, K, HI1 and ColE-like). The stx1, stx2 and ehxA virulence genes were detected by PCR, being 50 isolates (87.7%) classified as STEC. A great diversity of serotypes was detected, being O176:HNM the most predominant. Phylogenetic group E was the most prevalent, followed by B1, A and B2. To the best of our knowledge, this is the first report in the world of blaCTX-M-Gp9 (O75, O114, O100, O128ac and O176 serogroups), qnrB and oqxB genes in non-O157 STEC in healthy sheep. The results obtained in the present study call attention to the monitoring of antimicrobial-resistant non-O157 STEC harboring acquired ARGs worldwide and indicate a zoonotic risk due to the profile of virulence, resistance and serotype found.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Inara Fernanda Lage Gallo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Armando Navarro
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autônoma de México, Ciudad Universitaria, Mexico City, Mexico
| | | | - Gerson Nakazato
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil. .,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
18
|
Manage DP, Lauzon J, Jones CM, Ward PJ, Pilarski LM, Pilarski PM, McMullen LM. Detection of pathogenic Escherichia coli on potentially contaminated beef carcasses using cassette PCR and conventional PCR. BMC Microbiol 2019; 19:175. [PMID: 31362696 PMCID: PMC6668150 DOI: 10.1186/s12866-019-1541-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over a one year period, swabs of 820 beef carcasses were tested for the presence of Shiga toxin-producing Escherichia coli by performing Polymerase Chain Reaction (PCR) in a novel technology termed "cassette PCR", in comparison to conventional liquid PCR. Cassette PCR is inexpensive and ready-to-use. The operator need only add the sample and press "go". Cassette PCR can simultaneously test multiple samples for multiple targets. Carcass swab samples were first tested for the presence of STEC genes (O157, eae, stx1 and stx2). Samples were considered to be pathogenic if positive for eae plus stx1 and/or stx2. For samples scored as pathogenic, further testing screened for 6 additional high frequency O-antigens (O26, O45, O103, O111, O121, and O145). RESULTS Of the 820 samples, 41% were pathogenic and 30% were O157 positive. Of these, 19% of samples were positive for O157 and carried potentially pathogenic E. coli (eae plus stx1 and/or stx2). Of all samples identified as carrying pathogenic E. coli, 18.9, 38.8, 41.4, 0, 36.1, and 4.1% respectively were positive for O26, O45, O103, O111, O121, and O145. To validate cassette PCR testing, conventional PCR using STEC primers was performed on each of the 820 samples. Only 148 of 3280 cassette PCR tests were discordant with conventional PCR results. However, further fractional testing showed that 110 of these 148 PCRs reflected low numbers of E. coli in the enrichment broth and could be explained as due to Poisson limiting dilution of the template, affecting both cassette PCR and conventional PCR. Of the remaining 38 discordant tests, 27 initial capillary PCRs and 10 initial conventional tests were nominally discordant between cassette and conventional PCR, perhaps reflecting human/technical error on both sides of the comparison. CONCLUSIONS Contaminated beef carcass swabs were often complex, likely harboring more than one strain of pathogenic E. coli. Cassette PCR had 98.8% concordance with parallel conventional PCR for detection of STEC genes. This indicates that cassette PCR is highly reliable for detecting multiple pathogens in beef carcass swabs from processing plants.
Collapse
Affiliation(s)
- Dammika P Manage
- Department of Oncology, University of Alberta and Cross Cancer Institute, 11560 University Ave, Edmonton, AB, T6G 1Z2, Canada
| | - Jana Lauzon
- Department of Oncology, University of Alberta and Cross Cancer Institute, 11560 University Ave, Edmonton, AB, T6G 1Z2, Canada
| | - Christina M Jones
- Department of Oncology, University of Alberta and Cross Cancer Institute, 11560 University Ave, Edmonton, AB, T6G 1Z2, Canada
| | - Patrick J Ward
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Linda M Pilarski
- Department of Oncology, University of Alberta and Cross Cancer Institute, 11560 University Ave, Edmonton, AB, T6G 1Z2, Canada
| | - Patrick M Pilarski
- Division of Physical Medicine & Rehabilitation, Department of Medicine, University of Alberta, 5-005 Katz Group Centre for Pharmacy and Health Research, Edmonton, AB, T6G 2E1, Canada
| | - Lynn M McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
19
|
Tarr GAM, Lin CY, Lorenzetti D, Chui L, Tarr PI, Hartling L, Vandermeer B, Freedman SB. Performance of commercial tests for molecular detection of Shiga toxin-producing Escherichia coli (STEC): a systematic review and meta-analysis protocol. BMJ Open 2019; 9:e025950. [PMID: 30850413 PMCID: PMC6430022 DOI: 10.1136/bmjopen-2018-025950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Rapid detection of Shiga toxin-producing Escherichia coli (STEC) enables appropriate treatment. Numerous commercially available molecular tests exist, but they vary in clinical performance. This systematic review aims to synthesise available evidence to compare the clinical performance of enzyme immunoassay (EIA) and nucleic acid amplification tests (NAATs) for the detection of STEC. METHODS AND ANALYSIS The following databases will be searched employing a standardised search strategy: Medline, Embase, Cochrane CENTRAL Register of Controlled Trials, Cochrane Database of Systematic Reviews, PubMed, Scopus and Web of Science. Grey literature will be searched under advice from a medical librarian. Independent reviewers will screen titles, abstracts and full texts of retrieved studies for relevant studies. Data will be extracted independently by two reviewers, using a piloted template. Quality Assessment of Diagnostic Accuracy Studies-2 will be employed to assess the risk of bias of individual studies, and the quality of evidence will be assessed with the Grading of Recommendations Assessment, Development and Evaluation approach. A bivariate random-effects model will be used to meta-analyse the sensitivity and specificity of commercial STEC diagnostic tests, and a hierarchical summary receiver operator characteristic curve will be constructed. Studies of single test accuracy of EIA and NAATs and studies of comparative accuracy will be analysed separately. ETHICS AND DISSEMINATION Ethics approval was not required for this systematic review and meta-analysis. Findings will be disseminated in conferences, through a peer-reviewed journal and via personal interactions with relevant stakeholders. PROSPERO REGISTRATION NUMBER CRD42018099119.
Collapse
Affiliation(s)
- Gillian A M Tarr
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Chu Yang Lin
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Diane Lorenzetti
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
- Health Sciences Library, University of Calgary, Calgary, Alberta, Canada
| | - Linda Chui
- Microbiology Section, Provincial Laboratory for Public Health-Alberta Public Laboratories, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lisa Hartling
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Ben Vandermeer
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen B Freedman
- Sections of Pediatric Emergency Medicine and Gastroenterology, Department of Pediatrics, Alberta Children's Hospital and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Non-O157 Shiga toxin-producing Escherichia coli-A poorly appreciated enteric pathogen: Systematic review. Int J Infect Dis 2018; 76:82-87. [PMID: 30223088 DOI: 10.1016/j.ijid.2018.09.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 11/22/2022] Open
Abstract
Non-O157 strains of Shiga toxin-producing Escherichia coli (STEC) are more common causes of acute diarrhea than the better-known O157 strains and have the potential for large outbreaks. This systematic review of the literature identified 129 serogroups as well as 262 different O and H antigen combinations of STEC in cases of epidemic and sporadic disease worldwide. Excluding the results from a single large outbreak of STEC O104:H4 in Germany and France in 2011, the reported frequency of dysenteric illness in patients was 26% (119 of 464) for epidemic disease and 25% (646 of 2588) for sporadic cases. Hemolytic uremic syndrome was identified in 14% of epidemic disease cases and 9% of sporadic illness cases. With the increasing use of PCR-based diagnostics, STEC strain identification may not be possible. Rapid diagnostics are needed for STEC infections to aid the clinician while allowing epidemiologists the opportunity to identify outbreaks and to trace the source of infection.
Collapse
|
21
|
Mukherjee S, Mosci RE, Anderson CM, Snyder BA, Collins J, Rudrik JT, Manning SD. Antimicrobial Drug-Resistant Shiga Toxin-Producing Escherichia coli Infections, Michigan, USA. Emerg Infect Dis 2018; 23:1609-1611. [PMID: 28820370 PMCID: PMC5572870 DOI: 10.3201/eid2309.170523] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
High frequencies of antimicrobial drug resistance were observed in O157 and non-O157 Shiga toxin–producing E. coli strains recovered from patients in Michigan during 2010–2014. Resistance was more common in non-O157 strains and independently associated with hospitalization, indicating that resistance could contribute to more severe disease outcomes.
Collapse
|
22
|
Cha W, Fratamico PM, Ruth LE, Bowman AS, Nolting JM, Manning SD, Funk JA. Prevalence and characteristics of Shiga toxin-producing Escherichia coli in finishing pigs: Implications on public health. Int J Food Microbiol 2018; 264:8-15. [DOI: 10.1016/j.ijfoodmicro.2017.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
|
23
|
Mukherjee S, Mosci RE, Anderson CM, Snyder BA, Collins J, Rudrik JT, Manning SD. Antimicrobial Drug–Resistant Shiga Toxin–Producing Escherichia coli Infections, Michigan, USA. Emerg Infect Dis 2017. [DOI: 10.3201/eid2309.17-0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Shiga Toxin (Verotoxin)-producing
Escherichia coli and Foodborne Disease:
A Review. Food Saf (Tokyo) 2017; 5:35-53. [PMID: 32231928 DOI: 10.14252/foodsafetyfscj.2016029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Shiga toxin (verotoxin)-producing Escherichia coli (STEC) is an important cause of foodborne disease. Since outcomes of the infections with STEC have a broad range of manifestation from asymptomatic infection or mild intestinal discomfort, to bloody diarrhea, hemolytic uremic syndrome (HUS), end-stage renal disease (ESRD), and death, the disease is a serious burden in public health and classified as a notifiable infectious disease in many countries. Cattle and other ruminants are considered to be the major reservoirs of STEC though isolation of STEC from other animals have been reported. Hence, the source of contamination extends to a wide range of foods, not only beef products but also fresh produce, water, and environment contaminated by excretes from the animals, mainly cattle. A low- infectious dose of STEC makes the disease relatively contagious, and causes outbreaks with unknown contamination sources and, therefore, as a preventive measure against STEC infection, it is important to obtain characteristics of prevailing STEC isolates in the region through robust surveillance. Analysis of the isolates by pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem repeat analysis (MLVA) could help finding unrecognized foodborne outbreaks due to consumption of respective contaminated sources. However, though the results of molecular analysis of the isolates could indicate linkage of sporadic cases of STEC infection, it is hardly concluded that the cases are related via contaminated food source if it were not for epidemiological information. Therefore, it is essential to combine the results of strain analysis and epidemiological investigation rapidly to detect rapidly foodborne outbreaks caused by bacteria. This article reviews STEC infection as foodborne disease and further discusses key characteristics of STEC including pathogenesis, clinical manifestation, prevention and control of STEC infection. We also present the recent situation of the disease in Japan based on the surveillance of STEC infection.
Collapse
|
25
|
Venegas-Vargas C, Henderson S, Khare A, Mosci RE, Lehnert JD, Singh P, Ouellette LM, Norby B, Funk JA, Rust S, Bartlett PC, Grooms D, Manning SD. Factors Associated with Shiga Toxin-Producing Escherichia coli Shedding by Dairy and Beef Cattle. Appl Environ Microbiol 2016; 82:5049-56. [PMID: 27342555 PMCID: PMC4968536 DOI: 10.1128/aem.00829-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen that can cause hemorrhagic colitis and hemolytic-uremic syndrome. Cattle are the primary reservoir for STEC, and food or water contaminated with cattle feces is the most common source of infections in humans. Consequently, we conducted a cross-sectional study of 1,096 cattle in six dairy herds (n = 718 animals) and five beef herds (n = 378 animals) in the summers of 2011 and 2012 to identify epidemiological factors associated with shedding. Fecal samples were obtained from each animal and cultured for STEC. Multivariate analyses were performed to identify risk factors associated with STEC positivity. The prevalence of STEC was higher in beef cattle (21%) than dairy cattle (13%) (odds ratio [OR], 1.76; 95% confidence interval [CI], 1.25, 2.47), with considerable variation occurring across herds (range, 6% to 54%). Dairy cattle were significantly more likely to shed STEC when the average temperature was >28.9°C 1 to 5 days prior to sampling (OR, 2.5; 95% CI, 1.25, 4.91), during their first lactation (OR, 1.8; 95% CI, 1.1, 2.8), and when they were <30 days in milk (OR, 3.9; 95% CI, 2.1, 7.2). These data suggest that the stress or the negative energy balance associated with lactation may result in increased STEC shedding frequencies in Michigan during the warm summer months. Future prevention strategies aimed at reducing stress during lactation or isolating high-risk animals could be implemented to reduce herd-level shedding levels and avoid transmission of STEC to susceptible animals and people. IMPORTANCE STEC shedding frequencies vary considerably across cattle herds in Michigan, and the shedding frequency of strains belonging to non-O157 serotypes far exceeds the shedding frequency of O157 strains, which is congruent with human infections in the state. Dairy cattle sampled at higher temperatures, in their first lactation, and early in the milk production stage were significantly more likely to shed STEC, which could be due to stress or a negative energy balance. Future studies should focus on the isolation of high-risk animals to decrease herd shedding levels and the potential for contamination of the food supply.
Collapse
Affiliation(s)
- Cristina Venegas-Vargas
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Scott Henderson
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Akanksha Khare
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Rebekah E Mosci
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jonathan D Lehnert
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Pallavi Singh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lindsey M Ouellette
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Bo Norby
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Julie A Funk
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Steven Rust
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Paul C Bartlett
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Daniel Grooms
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|