1
|
Ambari AM, Qhabibi FR, Desandri DR, Dwiputra B, Baravia PA, Makes IK, Radi B. Unveiling the Group A Streptococcus Vaccine-Based L-Rhamnose from Backbone of Group A Carbohydrate: Current Insight Against Acute Rheumatic Fever to Reduce the Global Burden of Rheumatic Heart Disease. F1000Res 2025; 13:132. [PMID: 39959434 PMCID: PMC11829149 DOI: 10.12688/f1000research.144903.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Group A Streptococcus (GAS) is a widely distributed bacterium that is Gram-positive and serves as the primary cause of acute rheumatic fever (ARF) episodes. Rheumatic heart disease (RHD) is a sequela resulting from repeated ARF attacks which are also caused by repeated GAS infections. ARF/RHD morbidity and mortality rates are incredibly high in low- and middle-income countries. This is closely related to poor levels of sanitation which causes the enhanced incidence of GAS infections. Management of carditis in RHD cases is quite challenging, particularly in developing countries, considering that medical treatment is only palliative, while definitive treatment often requires more invasive procedures with high costs. Preventive action through vaccination against GAS infection is one of the most effective steps as a solution in reducing RHD morbidity and mortality due to curative treatments are expensive. Various developments of M-protein-based GAS vaccines have been carried out over the last few decades and have recently begun to enter the clinical stage. Nevertheless, this vaccination generates cross-reactive antibodies that might trigger ARF assaults as a result of the resemblance between the M-protein structure and proteins found in many human tissues. Consequently, the development of a vaccine utilizing L-Rhamnose derived from the poly-rhamnose backbone of Group A Carbohydrate (GAC) commenced. The L-Rhamnose-based vaccine was chosen due to the absence of the Rhamnose biosynthesis pathway in mammalian cells including humans thus this molecule is not found in any body tissue. Recent pre-clinical studies reveal that L-Rhamnose-based vaccines provide a protective effect by increasing IgG antibody titers without causing cross-reactive antibodies in test animal tissue. These findings demonstrate that the L-Rhamnose-based vaccine possesses strong immunogenicity, which effectively protects against GAS infection while maintaining a significantly higher degree of safety.
Collapse
Affiliation(s)
- Ade Meidian Ambari
- Cardiovascular Prevention and Rehabilitation Department, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
- Cardiology and Vascular Department, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| | - Faqrizal Ria Qhabibi
- Research Assistant, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
| | - Dwita Rian Desandri
- Cardiovascular Prevention and Rehabilitation Department, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
- Cardiology and Vascular Department, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| | - Bambang Dwiputra
- Cardiovascular Prevention and Rehabilitation Department, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
- Cardiology and Vascular Department, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| | - Pirel Aulia Baravia
- Cardiovascular Prevention and Rehabilitation Department, Dr. Saiful Anwar General Hospital, Malang, East Java, 65122, Indonesia
| | - Indira Kalyana Makes
- Research Assistant, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
| | - Basuni Radi
- Cardiovascular Prevention and Rehabilitation Department, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
- Cardiology and Vascular Department, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| |
Collapse
|
2
|
Khlebnikova A, Kirshina A, Zakharova N, Ivanov R, Reshetnikov V. Current Progress in the Development of mRNA Vaccines Against Bacterial Infections. Int J Mol Sci 2024; 25:13139. [PMID: 39684849 DOI: 10.3390/ijms252313139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Bacterial infections have accompanied humanity for centuries. The discovery of the first antibiotics and the subsequent golden era of their discovery temporarily shifted the balance in this confrontation to the side of humans. Nevertheless, the excessive and improper use of antibacterial drugs and the evolution of bacteria has gotten the better of humans again. Therefore, today, the search for new antibacterial drugs or the development of alternative approaches to the prevention and treatment of bacterial infections is relevant and topical again. Vaccination is one of the most effective strategies for the prevention of bacterial infections. The success of new-generation vaccines, such as mRNA vaccines, in the fight against viral infections has prompted many researchers to design mRNA vaccines against bacterial infections. Nevertheless, the biology of bacteria and their interactions with the host's immunity are much more complex compared to viruses. In this review, we discuss structural features and key mechanisms of evasion of an immune response for nine species of bacterial pathogens against which mRNA vaccines have been developed and tested in animals. We focus on the results of experiments involving the application of mRNA vaccines against various bacterial pathogens in animal models and discuss possible options for improving the vaccines' effectiveness. This is one of the first comprehensive reviews of the use of mRNA vaccines against bacterial infections in vivo to improve our knowledge.
Collapse
Affiliation(s)
- Alina Khlebnikova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Anna Kirshina
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Natalia Zakharova
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Roman Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Vasiliy Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
3
|
Davis K, Abo YN, Steer AC, Osowicki J. Chains of misery: surging invasive group A streptococcal disease. Curr Opin Infect Dis 2024; 37:485-493. [PMID: 39259691 DOI: 10.1097/qco.0000000000001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW We describe the epidemiology of the recent global surge in invasive group A streptococcal (GAS) disease and consider its proximate and distal causes. We highlight important knowledge gaps regarding clinical management and discuss potential strategies for prevention. RECENT FINDINGS Rates of invasive GAS (iGAS) disease were increasing globally prior to the COVID-19 pandemic. Since mid-2022, following the worst years of the pandemic in 2020 and 2021, many countries with systems to monitor GAS syndromes have reported surges in cases of iGAS concurrent with increased scarlet fever, pharyngitis, and viral co-infections. The emergence of the hypervirulent M1 UK strain as a cause of iGAS, particularly in high income countries, is concerning. New data are emerging on the transmission dynamics of GAS. GAS remains universally susceptible to penicillin but there are increasing reports of macrolide and lincosamide resistance, particularly in invasive isolates, with uncertain clinical consequences. Intravenous immunoglobulin is used widely for streptococcal toxic shock syndrome and necrotizing soft tissue infections, although there is limited clinical evidence, and none from a completed randomized controlled trial. Intensive and expensive efforts at population-level control of GAS infections and postinfectious autoimmune complications have been only partially successful. The great hope for control of GAS diseases remains vaccine development. However, all modern vaccine candidates remain in the early development stage. SUMMARY In many countries, iGAS rates surged from mid-2022 in the aftermath of pandemic control measures and physical distancing. The emergence of a dominant hypervirulent strain is an important but incomplete explanation for this phenomenon. Clinical management of iGAS remains highly empirical and new data has not emerged. A vaccine remains the most likely means of achieving a sustainable reduction in the burden of iGAS.
Collapse
Affiliation(s)
- Kimberly Davis
- Tropical Diseases Research Group, Murdoch Children's Research Institute
- Department of Infection and Immunity, Monash Children's Hospital
- Department of Paediatrics, University of Melbourne
| | - Yara-Natalie Abo
- Tropical Diseases Research Group, Murdoch Children's Research Institute
- Department of Paediatrics, University of Melbourne
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital, Melbourne, Australia
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute
- Department of Paediatrics, University of Melbourne
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital, Melbourne, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute
- Department of Paediatrics, University of Melbourne
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
4
|
De Maio F, La Sorda M, Fiori B, Bianco DM, Santarelli G, Rosato R, D'Inzeo T, Posteraro B, Sanguinetti M. Reemergence of Streptococcus pyogenes Infections in a Large Italian Hospital: A déjà vu from past Years. J Epidemiol Glob Health 2024; 14:1778-1781. [PMID: 39432025 PMCID: PMC11652551 DOI: 10.1007/s44197-024-00316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
At the end of 2022 and in the following months, an increase in the incidence of Streptococcus pyogenes infections was observed in many European countries that was simultaneously accompanying to enhance of invasive infections (iGAS). We have showed a risen trend of S. pyogenes infections among preschoolers after the pandemic event. A thorough epidemiological investigation of both paediatric and adult samples positive for S. pyogenes indicate a more complex scenario leading to need of important improvement in surveillance programs.
Collapse
Affiliation(s)
- Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, Rome, 00168, Italy.
| | - Marilena La Sorda
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, Rome, 00168, Italy
| | - Barbara Fiori
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, Rome, 00168, Italy
| | - Delia Mercedes Bianco
- Department of Infection Diseases, Castle Hill Hospital, East Riding of Yorkshire, Castle Road, Cottingham, UK
| | - Giulia Santarelli
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, 00168, Italy
| | - Roberto Rosato
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, 00168, Italy
| | - Tiziana D'Inzeo
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, Rome, 00168, Italy
| | - Brunella Posteraro
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, 00168, Italy
- Department of Abdominal and Endocrine Metabolic Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, Rome, 00168, Italy
| | - Maurizio Sanguinetti
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, Rome, 00168, Italy
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, L.go F. Vito 1, Rome, 00168, Italy
| |
Collapse
|
5
|
Tang D, Khakzad H, Hjortswang E, Malmström L, Ekström S, Happonen L, Malmström J. Streptolysin O accelerates the conversion of plasminogen to plasmin. Nat Commun 2024; 15:10212. [PMID: 39587097 PMCID: PMC11589678 DOI: 10.1038/s41467-024-54173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
Group A Streptococcus (GAS) is a human-specific bacterial pathogen that can exploit the plasminogen-plasmin fibrinolysis system to dismantle blood clots and facilitate its spread and survival within the human host. In this study, we use affinity-enrichment mass spectrometry to decipher the host-pathogen protein-protein interaction between plasminogen and streptolysin O, a key cytolytic toxin produced by GAS. This interaction accelerates the conversion of plasminogen to plasmin by both the host tissue-type plasminogen activator and streptokinase, a bacterial plasminogen activator secreted by GAS. Integrative structural mass spectrometry analysis shows that the interaction induces local conformational shifts in plasminogen. These changes lead to the formation of a stabilised intermediate plasminogen-streptolysin O complex that becomes significantly more susceptible to proteolytic processing by plasminogen activators. Our findings reveal a conserved and moonlighting pathomechanistic function for streptolysin O that extends beyond its well-characterised cytolytic activity.
Collapse
Affiliation(s)
- Di Tang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Hamed Khakzad
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
| | - Elisabeth Hjortswang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Simon Ekström
- SciLifeLab, Integrated Structural Biology Platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden.
- SciLifeLab, Integrated Structural Biology Platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
McEwan TBD, De Oliveira DMP, Stares EK, Hartley-Tassell LE, Day CJ, Proctor EJ, Nizet V, Walker MJ, Jennings MP, Sluyter R, Sanderson-Smith ML. M proteins of group A Streptococcus bind hyaluronic acid via arginine-arginine/serine-arginine motifs. FASEB J 2024; 38:e70123. [PMID: 39436142 DOI: 10.1096/fj.202401301r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Tissue injury, including extracellular matrix (ECM) degradation, is a hallmark of group A Streptococcus (GAS) skin infection and is partially mediated by M proteins which possess lectin-like properties. Hyaluronic acid is a glycosaminoglycan enriched in the cutaneous ECM, yet an interaction with M proteins has yet to be explored. This study revealed that hyaluronic acid binding was conserved across phylogenetically diverse M proteins, mediated by RR/SR motifs predominantly localized in the C repeat region. Keratinocyte wound healing was decreased through the recruitment of hyaluronic acid by M proteins in an M type-specific manner. GAS strains 5448 (M1 serotype) and ALAB49 (M53 serotype) also bound hyaluronic acid via M proteins, but hyaluronic acid could increase bacterial adherence independently of M proteins. The identification of host-pathogen mechanisms that affect ECM composition and cell repair responses may facilitate the development of nonantibiotic therapeutics that arrest GAS disease progression in the skin.
Collapse
Affiliation(s)
- Tahnee B-D McEwan
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - David M P De Oliveira
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Institute for Molecular Biosciences, The Centre for Superbug Solutions, The University of Queensland, St Lucia, Queensland, Australia
| | - Emily K Stares
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - Christopher J Day
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Emma-Jayne Proctor
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Mark J Walker
- Institute for Molecular Biosciences, The Centre for Superbug Solutions, The University of Queensland, St Lucia, Queensland, Australia
| | - Michael P Jennings
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ronald Sluyter
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martina L Sanderson-Smith
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
7
|
Indraratna AD, Mytton S, Ricafrente A, Millar D, Gorman J, Azzopardi KI, Frost HR, Osowicki J, Steer AC, Skropeta D, Sanderson-Smith ML. A highly sensitive 3base™ assay for detecting Streptococcus pyogenes in saliva during controlled human pharyngitis. Talanta 2024; 276:126221. [PMID: 38776768 DOI: 10.1016/j.talanta.2024.126221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is a Gram-positive bacterium responsible for substantial human mortality and morbidity. Conventional diagnosis of GAS pharyngitis relies on throat swab culture, a low-throughput, slow, and relatively invasive 'gold standard'. While molecular approaches are becoming increasingly utilized, the potential of saliva as a diagnostic fluid for GAS infection remains largely unexplored. Here, we present a novel, high-throughput, sensitive, and robust speB qPCR assay that reliably detects GAS in saliva using innovative 3base™ technology (Genetic Signatures Limited, Sydney, Australia). The assay has been validated on baseline, acute, and convalescent saliva samples generated from the Controlled Human Infection for Vaccination Against Streptococcus (CHIVAS-M75) trial, in which healthy adult participants were challenged with emm75 GAS. In these well-defined samples, our high-throughput assay outperforms throat culture and conventional qPCR in saliva respectively, affirming the utility of the 3base™ platform, demonstrating the feasibility of saliva as a diagnostic biofluid, and paving the way for the development of novel non-invasive approaches for the detection of GAS and other oropharyngeal pathogens.
Collapse
Affiliation(s)
- Anuk D Indraratna
- Molecular Horizons, School of Chemistry & Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, New South Wales, 2522, Australia
| | - Sacha Mytton
- Genetic Signatures Limited, 7 Eliza Street, Newtown, New South Wales, 2042, Australia
| | - Alison Ricafrente
- Genetic Signatures Limited, 7 Eliza Street, Newtown, New South Wales, 2042, Australia
| | - Doug Millar
- Genetic Signatures Limited, 7 Eliza Street, Newtown, New South Wales, 2042, Australia
| | - Jody Gorman
- Molecular Horizons, School of Chemistry & Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, New South Wales, 2522, Australia
| | - Kristy I Azzopardi
- Tropical Diseases, Murdoch Children's Research Institute, 50 Flemington Road, Melbourne, Victoria, 3052, Australia
| | - Hannah R Frost
- Tropical Diseases, Murdoch Children's Research Institute, 50 Flemington Road, Melbourne, Victoria, 3052, Australia
| | - Joshua Osowicki
- Tropical Diseases, Murdoch Children's Research Institute, 50 Flemington Road, Melbourne, Victoria, 3052, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Melbourne, Victoria, 3010, Australia; Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, 50 Flemington Road, Melbourne, Victoria, 3052, Australia
| | - Andrew C Steer
- Tropical Diseases, Murdoch Children's Research Institute, 50 Flemington Road, Melbourne, Victoria, 3052, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Melbourne, Victoria, 3010, Australia; Infectious Diseases Unit, Department of General Medicine, The Royal Children's Hospital Melbourne, 50 Flemington Road, Melbourne, Victoria, 3052, Australia
| | - Danielle Skropeta
- Molecular Horizons, School of Chemistry & Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, New South Wales, 2522, Australia
| | - Martina L Sanderson-Smith
- Molecular Horizons, School of Chemistry & Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
8
|
Ratnayake HE, Eisen DP, Adegboye OA, Pak A, McBryde ES. Bacteraemia in Tropical Australia: A Review. CURRENT TROPICAL MEDICINE REPORTS 2024; 11:167-178. [DOI: 10.1007/s40475-024-00326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 01/04/2025]
Abstract
Abstract
Purpose of Review
This review discusses the trends of bacteraemia and their outcomes in tropical regions of Australia. Bacteraemia can frequently lead to severe sepsis and potentially life-threatening consequences. Epidemiology of bacteraemia is ever evolving.
Recent Findings
This review outlines the current patterns of bacteraemia in tropical regions of Australia, focusing on their outcomes and associated risk factors. The most frequently reported causes of bacteraemia were Staphylococcus aureus and Escherichia coli. There has been an increase in published incidence of Group A Streptococcus, methicillin-resistant Staphylococcus aureus and Burkholderia pseudomallei bacteraemia cases, while Streptococcus pneumoniae bacteraemia exhibited a declining trend. Factors specific to tropical environments and the higher representation of Indigenous populations in these areas were identified as contributing to the elevated incidence rates.
Summary
Bacteraemia was found to be an increasing healthcare burden to the Australian tropical regions. Ideally, linkage of existing data from healthcare settings could be utilised to obtain more accurate, comprehensive and up to date information of trends and patterns of bacteraemia.
Collapse
|
9
|
Adamkova V, Adamkova VG, Kroneislova G, Zavora J, Kroneislova M, Huptych M, Lahoda Brodska H. Increasing Rate of Fatal Streptococcus pyogenes Bacteriemia-A Challenge for Prompt Diagnosis and Appropriate Therapy in Real Praxis. Microorganisms 2024; 12:995. [PMID: 38792824 PMCID: PMC11124258 DOI: 10.3390/microorganisms12050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Streptococcus pyogenes, group A streptococci (GAS) bacteriaemia, is a life-threatening infection with high mortality, requiring fast diagnosis together with the use of appropriate antibiotic therapy as soon as possible. Our study analysed data from 93 patients with GAS bacteraemia at the General University Hospital in Prague between January 2006 and March 2024. In the years 2016-2019 there was an increase in GAS bacteraemia. Mortality in the period 2006-2019 was 21.9%; in the period 2020-2024, the mortality increased to 41.4%, p = 0.08. At the same time, in the post-2020 period, the time from hospital admission to death was reduced from 9.5 days to 3 days. A significant predictor of worse outcome in this period was high levels of procalcitonin, >35.1 µg/L (100% sensitivity and 82.35% specificity), and lactate, >5 mmol/L (90.91% sensitivity and 91.67% specificity). Myoglobin was a significant predictor in both compared periods, the AUC was 0.771, p = 0.044, and the AUC was an even 0.889, p ≤ 0.001, respectively. All isolates of S. pyogenes were susceptible to penicillin, and resistance to clindamycin was 20.3% from 2006-2019 and 10.3% in 2020-2024. Appropriate therapy was initiated in 89.1%. and 96.6%, respectively. We hypothesise that the increase in mortality after 2020 might be due to a decrease in the immune status of the population.
Collapse
Affiliation(s)
- Vaclava Adamkova
- Clinical Microbiology and ATB Centre, General University Hospital, 128 08 Prague, Czech Republic
| | | | - Gabriela Kroneislova
- Clinical Microbiology and ATB Centre, General University Hospital, 128 08 Prague, Czech Republic
| | - Jan Zavora
- Clinical Microbiology and ATB Centre, General University Hospital, 128 08 Prague, Czech Republic
- Department of Medical Microbiology, Palacky University, 779 00 Olomouc, Czech Republic
| | - Marie Kroneislova
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
- Department of Surgery, University Hospital Bulovka, 180 00 Prague, Czech Republic
| | - Michal Huptych
- Czech Institute of Informatics, Robotics and Cybernetics (CIIRC), Czech Technical University in Prague, 160 00 Prague, Czech Republic
| | | |
Collapse
|
10
|
Schiavolin L, Deneubourg G, Steinmetz J, Smeesters PR, Botteaux A. Group A Streptococcus adaptation to diverse niches: lessons from transcriptomic studies. Crit Rev Microbiol 2024; 50:241-265. [PMID: 38140809 DOI: 10.1080/1040841x.2023.2294905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Group A Streptococcus (GAS) is a major human pathogen, causing diseases ranging from mild superficial infections of the skin and pharyngeal epithelium to severe systemic and invasive diseases. Moreover, post infection auto-immune sequelae arise by a yet not fully understood mechanism. The ability of GAS to cause a wide variety of infections is linked to the expression of a large set of virulence factors and their transcriptional regulation in response to various physiological environments. The use of transcriptomics, among others -omics technologies, in addition to traditional molecular methods, has led to a better understanding of GAS pathogenesis and host adaptation mechanisms. This review focusing on bacterial transcriptomic provides new insight into gene-expression patterns in vitro, ex vivo and in vivo with an emphasis on metabolic shifts, virulence genes expression and transcriptional regulators role.
Collapse
Affiliation(s)
- Lionel Schiavolin
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Geoffrey Deneubourg
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Jenny Steinmetz
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Pierre R Smeesters
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Anne Botteaux
- Microbiology Laboratory, European Plotkin Institute of Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
11
|
Munif MR, Hart RA, Rafeek RAM, Mallawaarachchi AC, Anderson L, McMillan DJ, Sriprakash KS, Ketheesan N. Mechanisms that potentially contribute to the development of post-streptococcal glomerulonephritis. Pathog Dis 2024; 82:ftae024. [PMID: 39341789 PMCID: PMC11556339 DOI: 10.1093/femspd/ftae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Post-streptococcal glomerulonephritis (PSGN) is primarily associated with preceding group A streptococcal skin or throat infections, now mainly observed in economically disadvantaged communities. This condition significantly predisposes individuals to later-life chronic kidney disease and concurrent renal complications, with the elderly experiencing increased severity and less favourable outcomes. Streptococcal pyrogenic exotoxin B and nephritis-associated plasmin receptor are identified nephritogenic antigens (nephritogens). Pathogenesis of PSGN is multifactorial. It can involve the formation of antigen-antibody immune complexes, causing inflammatory damage to renal glomeruli. Deposition of circulating immune complexes or in situ formation of immune complexes in glomeruli, or both, results in glomerulonephritis. Additionally, molecular mimicry is hypothesized as a mechanism, wherein cross-reactivity between anti-streptococcal antibodies and glomerular intrinsic matrix proteins leads to glomerulonephritis. Besides, as observed in clinical studies, streptococcal inhibitor of complement, a streptococcal-secreted protein, can also be associated with PSGN. However, the interplay between these streptococcal antigens in the pathogenesis of PSGN necessitates further investigation. Despite the clinical significance of PSGN, the lack of credible animal models poses challenges in understanding the association between streptococcal antigens and the disease process. This review outlines the postulated mechanisms implicated in the development of PSGN with possible therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Raguib Munif
- School of Science & Technology, University of New England, NSW, Australia
- Department of Surgery and Obstetrics, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Robert A Hart
- School of Science & Technology, University of New England, NSW, Australia
| | - Rukshan A M Rafeek
- School of Science & Technology, University of New England, NSW, Australia
| | - Amali C Mallawaarachchi
- School of Clinical Medicine, University of New South Wales, NSW, Australia
- Garvan Institute of Medical Research, NSW, Australia
| | - Lyndal Anderson
- Sydney Medical School, The University of Sydney, NSW, Australia
- Royal Prince Alfred Hospital, NSW, Australia
| | - David J McMillan
- School of Science & Technology, University of New England, NSW, Australia
- School of Science, Technology, Engineering and Genecology Research Centre, University of the Sunshine Coast, Queensland, Australia
| | - Kadaba S Sriprakash
- School of Science & Technology, University of New England, NSW, Australia
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Natkunam Ketheesan
- School of Science & Technology, University of New England, NSW, Australia
- School of Science, Technology, Engineering and Genecology Research Centre, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
12
|
de Ceano-Vivas M, Molina Gutiérrez MÁ, Mellado-Sola I, García Sánchez P, Grandioso D, Calvo C. Streptococcus pyogenes infections in Spanish children before and after the COVID pandemic. Coming back to the previous incidence. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:88-92. [PMID: 37394399 DOI: 10.1016/j.eimce.2023.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/05/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Group A Streptococcus (GAS) causes mild diseases, and unfrequently invasive infections (iGAS). Following the December 2022 alert from the United Kingdom regarding the unusual increase in GAS and iGAS infections, we analyzed the incidence of GAS infections in 2018-2022 in our hospital. METHODS We conducted a retrospective study of patients seen in a pediatric emergency department (ED) diagnosed with streptococcal pharyngitis and scarlet fever and patients admitted for iGAS during last 5 years. RESULTS The incidence of GAS infections was 6.43 and 12.38/1000 ED visits in 2018 and 2019, respectively. During the COVID-19 pandemic the figures were 5.33 and 2.14/1000 ED visits in 2020 and 2021, respectively, and increased to 10.2/1000 ED visits in 2022. The differences observed were not statistically significant (p=0.352). CONCLUSIONS In our series, as in other countries, GAS infections decreased during the COVID-19 pandemic, and mild and severe cases increased considerably in 2022, but did not reach similar levels to those detected in other countries.
Collapse
Affiliation(s)
- María de Ceano-Vivas
- Pediatric Emergency Department, La Paz University Hospital, P° Castellana, 261. 28046, Madrid, Spain.
| | | | | | - Paula García Sánchez
- Pediatric Emergency Department, La Paz University Hospital, P° Castellana, 261. 28046, Madrid, Spain
| | - David Grandioso
- Hospital La Paz Institute for Health Research (IdiPAZ), P° Castellana, 261. 28046, Madrid, Spain
| | - Cristina Calvo
- Pediatric Infectious Diseases Department, La Paz University Hospital; Microbiology Department, La Paz University Hospital, P° Castellana, 261. 28046, Madrid, Spain; Translational Research Network in Pediatric Infectious Diseases (RITIP), P° Castellana, 261. 28046, Madrid, Spain; CIBER de Enfermedades Infecciosas. CIBERINFEC. ISCIII. Madrid, Spain
| |
Collapse
|
13
|
Wilde S, Dash A, Johnson A, Mackey K, Okumura CYM, LaRock CN. Detoxification of reactive oxygen species by the hyaluronic acid capsule of group A Streptococcus. Infect Immun 2023; 91:e0025823. [PMID: 37874162 PMCID: PMC10652860 DOI: 10.1128/iai.00258-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023] Open
Abstract
The pro-inflammatory cytokine IL-6 regulates antimicrobial responses that are broadly crucial in the defense against infection. Our prior work shows that IL-6 promotes the killing of the M4 serotype group A Streptococcus (GAS) but does not impact the globally disseminated M1T1 serotype associated with invasive infections. Using in vitro and in vivo infection models, we show that IL-6 induces phagocyte reactive oxygen species (ROS) that are responsible for the differential susceptibility of M4 and M1T1 GAS to IL-6-mediated defenses. Clinical isolates naturally deficient in capsule, or M1T1 strains deficient in capsule production, are sensitive to this ROS killing. The GAS capsule is made of hyaluronic acid, an antioxidant that detoxifies ROS and can protect acapsular M4 GAS when added exogenously. During in vitro interactions with macrophages and neutrophils, acapsular GAS can also be rescued with the antioxidant N-acetylcysteine, suggesting this is a major virulence contribution of the capsule. In an intradermal infection model with gp91phox -/- (chronic granulomatous disease [CGD]) mice, phagocyte ROS production had a modest effect on bacterial proliferation and the cytokine response but significantly limited the size of the bacterial lesion in the skin. These data suggest that the capsule broadly provides enhanced resistance to phagocyte ROS but is not essential for invasive infection. Since capsule-deficient strains are observed across several GAS serotypes and are competent for transmission and both mild and invasive infections, additional host or microbe factors may contribute to ROS detoxification during GAS infections.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ananya Dash
- Immunology and Molecular Pathogenesis Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Anders Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Kialani Mackey
- Department of Biology, Occidental College, Los Angeles, California, USA
| | | | - Christopher N. LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Gillins DA, Hutton M, Buckel WR. Antibiotic prescribing for adults with group A streptococcal bacteremia in a large healthcare system. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e170. [PMID: 38028920 PMCID: PMC10644168 DOI: 10.1017/ash.2023.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 12/01/2023]
Abstract
Purpose Limited data exist regarding treatment of invasive group A streptococcal (GAS) infections, including safety and efficacy of oral (PO) step-down therapy. We sought to describe current prescribing practices and clinical outcomes for patients with GAS bacteremia across a large health system, including a prespecified subset of patients who stepped down to PO antibiotics. Methods This retrospective cohort study included adult patients with a positive blood culture for GAS between July 2018 and July 2021. Primary outcomes included frequency of PO step-down, total duration of therapy, duration of intravenous (IV) therapy prior to PO switch, and antimicrobial selection. Secondary outcomes included length of stay (LOS), mortality, adverse events, and clinical failure leading to readmission within 90 days. Results In total, 280 patients met inclusion criteria. Of these, 46.7% were stepped down to PO antibiotics. Median total duration of therapy was 15 days. Median duration of IV therapy prior to PO switch was 5 days. The predominant definitive antibiotic choice was a beta-lactam. Median LOS was 5 days. Ninety-day mortality was 16.7%. One patient developed an occluded line and one developed Clostridioides difficile-associated diarrhea within 90 days. Ninety-day readmission due to clinical failure was 12.5%. Among cases of uncomplicated skin and soft tissue source, mortality (6.1% vs 2.4%) and readmission (15.2% vs 16.9%) were similar between definitive IV and PO groups. Conclusions Group A streptococcal bacteremia is a severe infection with a high readmission and mortality rate. Use of PO step-down therapy was common with similar readmission and mortality rates compared with definitive IV therapy.
Collapse
Affiliation(s)
| | - Mary Hutton
- Department of Pharmacy, Intermountain Health Utah Valley Hospital, Provo, UT, USA
| | | |
Collapse
|
15
|
Johannesen TB, Munkstrup C, Edslev SM, Baig S, Nielsen S, Funk T, Kristensen DK, Jacobsen LH, Ravn SF, Bindslev N, Gubbels S, Voldstedlund M, Jokelainen P, Hallstrøm S, Rasmussen A, Kristinsson KG, Fuglsang-Damgaard D, Dessau RB, Olsén AB, Jensen CS, Skovby A, Ellermann-Eriksen S, Jensen TG, Dzajic E, Østergaard C, Lomborg Andersen S, Hoffmann S, Andersen PH, Stegger M. Increase in invasive group A streptococcal infections and emergence of novel, rapidly expanding sub-lineage of the virulent Streptococcus pyogenes M1 clone, Denmark, 2023. Euro Surveill 2023; 28:2300291. [PMID: 37382884 PMCID: PMC10311951 DOI: 10.2807/1560-7917.es.2023.28.26.2300291] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 06/30/2023] Open
Abstract
A highly virulent sub-lineage of the Streptococcus pyogenes M1 clone has been rapidly expanding throughout Denmark since late 2022 and now accounts for 30% of the new invasive group A streptococcal infections. We aimed to investigate whether a shift in variant composition can account for the high incidence rates observed over winter 2022/23, or if these are better explained by the impact of COVID-19-related restrictions on population immunity and carriage of group A Streptococcus.
Collapse
Affiliation(s)
| | - Charlotte Munkstrup
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Sofie Marie Edslev
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sharmin Baig
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Stine Nielsen
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Tjede Funk
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | | | | | - Signe Fischer Ravn
- Data Integration and Analysis, Statens Serum Institut, Copenhagen, Denmark
| | - Niels Bindslev
- Data Integration and Analysis, Statens Serum Institut, Copenhagen, Denmark
| | - Sophie Gubbels
- Data Integration and Analysis, Statens Serum Institut, Copenhagen, Denmark
| | | | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Søren Hallstrøm
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Astrid Rasmussen
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Karl Gústaf Kristinsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Clinical Microbiology, Landspitali - the National University Hospital, Reykjavik, Iceland
| | | | - Ram B Dessau
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Zealand University Hospital, Slagelse, Denmark
| | - Agnieszka Barbara Olsén
- Department of Clinical Microbiology, Herlev and Gentofte Hospital - University Hospital, Herlev, Denmark
| | | | - Annette Skovby
- Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | | | - Thøger Gorm Jensen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, Odense, Denmark
| | - Esad Dzajic
- Clinical Diagnostic Department, Clinical Microbiology, Hospital South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Claus Østergaard
- Department of Clinical Microbiology, Lillebælt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Steen Lomborg Andersen
- Department of Clinical Microbiology, Sønderjylland Hospital, University Hospital of Southern Denmark, Aabenraa, Denmark
| | - Steen Hoffmann
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Henrik Andersen
- Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
16
|
Cavallaro M, Coelho J, Ready D, Decraene V, Lamagni T, McCarthy ND, Todkill D, Keeling MJ. Cluster detection with random neighbourhood covering: Application to invasive Group A Streptococcal disease. PLoS Comput Biol 2022; 18:e1010726. [PMID: 36449515 PMCID: PMC9744322 DOI: 10.1371/journal.pcbi.1010726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/12/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
The rapid detection of outbreaks is a key step in the effective control and containment of infectious diseases. In particular, the identification of cases which might be epidemiologically linked is crucial in directing outbreak-containment efforts and shaping the intervention of public health authorities. Often this requires the detection of clusters of cases whose numbers exceed those expected by a background of sporadic cases. Quantifying exceedances rapidly is particularly challenging when only few cases are typically reported in a precise location and time. To address such important public health concerns, we present a general method which can detect spatio-temporal deviations from a Poisson point process and estimate the odds of an isolate being part of a cluster. This method can be applied to diseases where detailed geographical information is available. In addition, we propose an approach to explicitly take account of delays in microbial typing. As a case study, we considered invasive group A Streptococcus infection events as recorded and typed by Public Health England from 2015 to 2020.
Collapse
Affiliation(s)
- Massimo Cavallaro
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
- School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- UK Health Security Agency, United Kingdom
| | | | - Derren Ready
- UK Health Security Agency, United Kingdom
- Health Protection Research Unit in Behavioural Science and Evaluation at the University of Bristol, Bristol, United Kingdom
| | | | | | - Noel D. McCarthy
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Institute of Population Health, School of Medicine, Trinity College Dublin, University of Dublin, 2 Dublin, Ireland
| | - Dan Todkill
- UK Health Security Agency, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Matt J. Keeling
- The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
- School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
17
|
The Integrative Conjugative Element ICESpyM92 Contributes to Pathogenicity of Emergent Antimicrobial-Resistant emm92 Group A Streptococcus. Infect Immun 2022; 90:e0008022. [PMID: 35913172 PMCID: PMC9387263 DOI: 10.1128/iai.00080-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial resistance-encoding mobile genetic elements (MGEs) may contribute to the disease potential of bacterial pathogens. We previously described the association of Group A Streptococcus (GAS) derived from invasive disease with increasingly frequent antimicrobial resistance (AMR). We hypothesized that a 65-kb AMR-encoding MGE (ICESpyM92), highly conserved among closely related emergent invasive emm92 GAS, contributes to GAS disease potential. Here, we provide evidence that a combination of ICESpyM92- and core genome-dependent differential gene expression (DGE) contributes to invasive disease phenotypes of emergent emm92 GAS. Using isogenic ICESpyM92 mutants generated in distinct emm92 genomic backgrounds, we determined the presence of ICESpyM92 enhances GAS virulence in a mouse subcutaneous infection model. Measurement of in vitro and ex vivo DGE indicates ICESpyM92 influences GAS global gene expression in a background-dependent manner. Our study links virulence and AMR on a unique MGE via MGE-related DGE and highlights the importance of investigating associations between AMR-encoding MGEs and pathogenicity.
Collapse
|
18
|
Lyles KV, Thomas LS, Ouellette C, Cook LCC, Eichenbaum Z. HupZ, a Unique Heme-Binding Protein, Enhances Group A Streptococcus Fitness During Mucosal Colonization. Front Cell Infect Microbiol 2022; 12:867963. [PMID: 35774404 PMCID: PMC9237417 DOI: 10.3389/fcimb.2022.867963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus (GAS) is a major pathogen that causes simple and invasive infections. GAS requires iron for metabolic processes and pathogenesis, and heme is its preferred iron source. We previously described the iron-regulated hupZ in GAS, showing that a recombinant HupZ-His6 protein binds and degrades heme. The His6 tag was later implicated in heme iron coordination by HupZ-His6. Hence, we tested several recombinant HupZ proteins, including a tag-free protein, for heme binding and degradation in vitro. We established that HupZ binds heme but without coordinating the heme iron. Heme-HupZ readily accepted exogenous imidazole as its axial heme ligand, prompting degradation. Furthermore, HupZ bound a fragment of heme c (whose iron is coordinated by the cytochrome histidine residue) and exhibited limited degradation. GAS, however, did not grow on a heme c fragment as an iron source. Heterologous HupZ expression in Lactococcus lactis increased heme b iron use. A GAS hupZ mutant showed reduced growth when using hemoglobin as an iron source, increased sensitivity to heme toxicity, and decreased fitness in a murine model for vaginal colonization. Together, the data demonstrate that HupZ contributes to heme metabolism and host survival, likely as a heme chaperone. HupZ is structurally similar to the recently described heme c-degrading enzyme, Pden_1323, suggesting that the GAS HupZ might be divergent to play a new role in heme metabolism.
Collapse
Affiliation(s)
- Kristin V. Lyles
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Lamar S. Thomas
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, NY, United States
| | - Corbett Ouellette
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Laura C. C. Cook
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, NY, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA, United States
- *Correspondence: Zehava Eichenbaum,
| |
Collapse
|
19
|
LaRock DL, Johnson AF, Wilde S, Sands JS, Monteiro MP, LaRock CN. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature 2022; 605:527-531. [PMID: 35545676 DOI: 10.1038/s41586-022-04717-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 04/01/2022] [Indexed: 12/21/2022]
Abstract
Gasdermins (GSDMs) are a family of pore-forming effectors that permeabilize the cell membrane during the cell death program pyroptosis1. GSDMs are activated by proteolytic removal of autoinhibitory carboxy-terminal domains, typically by caspase regulators1-9. However, no activator is known for one member of this family, GSDMA. Here we show that the major human pathogen group A Streptococcus (GAS) secretes a protease virulence factor, SpeB, that induces GSDMA-dependent pyroptosis. SpeB cleavage of GSDMA releases an active amino-terminal fragment that can insert into membranes to form lytic pores. GSDMA is primarily expressed in the skin10, and keratinocytes infected with SpeB-expressing GAS die of GSDMA-dependent pyroptosis. Mice have three homologues of human GSDMA, and triple-knockout mice are more susceptible to invasive infection by a pandemic hypervirulent M1T1 clone of GAS. These results indicate that GSDMA is critical in the immune defence against invasive skin infections by GAS. Furthermore, they show that GSDMs can act independently of host regulators as direct sensors of exogenous proteases. As SpeB is essential for tissue invasion and survival within skin cells, these results suggest that GSDMA can act akin to a guard protein that directly detects concerning virulence activities of microorganisms that present a severe infectious threat.
Collapse
Affiliation(s)
- Doris L LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Anders F Johnson
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Shyra Wilde
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Jenna S Sands
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Marcos P Monteiro
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta, GA, USA. .,Department of Medicine, Division of Infectious Diseases, Emory School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
20
|
Renal Interstitial Invasion by Group A Streptococcus: A Rare Presentation. Case Rep Infect Dis 2022; 2022:5881375. [PMID: 35586457 PMCID: PMC9110243 DOI: 10.1155/2022/5881375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/18/2022] [Indexed: 12/02/2022] Open
Abstract
We report the case of a 5-year-old who had interstitial invasion of his kidneys with group A Streptococcus (GAS). Glomeruli and tubules were relatively preserved. He recovered from this event and was admitted a couple of months later with dilated cardiomyopathy needing a heart transplant. To our knowledge, this is the first reported case of direct invasion of renal interstitium by GAS.
Collapse
|
21
|
Annotated Whole-Genome Multilocus Sequence Typing Schema for Scalable High-Resolution Typing of Streptococcus pyogenes. J Clin Microbiol 2022; 60:e0031522. [DOI: 10.1128/jcm.00315-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Streptococcus pyogenes
is a major human pathogen with high genetic diversity, largely created by recombination and horizontal gene transfer, making it difficult to use single nucleotide polymorphism (SNP)-based genome-wide analyses for surveillance. Using a gene-by-gene approach on 208 complete genomes of
S. pyogenes
, a novel whole-genome multilocus sequence typing (wgMLST) schema was developed, comprising 3,044 target loci.
Collapse
|
22
|
Andrejko K, Whittles LK, Lewnard JA. Health-Economic Value of Vaccination Against Group A Streptococcus in the United States. Clin Infect Dis 2022; 74:983-992. [PMID: 34192307 DOI: 10.1093/cid/ciab597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vaccines are needed to reduce the burden of group A Streptococcus (GAS). We assessed the potential health-economic value of GAS vaccines achievable through prevention of invasive disease and acute upper respiratory infections in the United States. METHODS We estimated annual incidence of invasive GAS disease and associated costs incurred from hospitalization and management of long-term sequelae, as well as productivity losses resulting from acute illness, long-term disability, and mortality. We also estimated healthcare and productivity costs associated with GAS pharyngitis, sinusitis, and acute otitis media. We estimated costs averted by prevention of invasive disease and acute upper respiratory infections for vaccines with differing efficacy profiles; our base case considered vaccines meeting the World Health Organization Preferred Product Profile (WHO-PPP) with a 6-year average duration of protection. RESULTS Costs of invasive GAS disease and acute upper respiratory infections totaled $6.08 (95% confidence interval [CI], $5.33-$6.86) billion annually. Direct effects of vaccines meeting WHO-PPP characteristics and administered at ages 12 and 18 months would avert $609 (95% CI, $558-$663) million in costs annually, primarily by preventing noninvasive disease; with an additional dose at age 5 years, averted costs would total $869 (95% CI, $798-$945) million annually. Adult vaccination at age 65 years would avert $326 (95% CI, $271-$387) million in annual costs associated with invasive GAS disease. Indirect effects of vaccination programs reducing incidence of GAS diseases across all ages by 20% would avert roughly $1 billion in costs each year. CONCLUSIONS The economic burden of GAS is substantial. Our findings should inform prioritization of GAS vaccine development and evaluation.
Collapse
Affiliation(s)
- Kristin Andrejko
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Lilith K Whittles
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.,Medical Research Council Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom.,National Institute for Health Research Health Protection Research Unit in Modeling Methodology, School of Public Health, Imperial College London, London, United Kingdom
| | - Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California, USA.,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA.,Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
23
|
Lavine N, Ohayon A, Mahroum N. Renal autoimmunity: The role of bacterial and viral infections, an extensive review. Autoimmun Rev 2022; 21:103073. [PMID: 35245692 DOI: 10.1016/j.autrev.2022.103073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 02/27/2022] [Indexed: 02/08/2023]
Abstract
Autoimmunity is a process by which the loss of self-tolerance results in an immune attack against the body own tissues and organs. For autoimmunity to occur, various elements serving as triggers were described by which infections are considered one of the leading factors. In turn, renal involvement in autoimmune diseases, whether by an organ-specific attack, or as part of a systemic disease process, is well known. As bacterial and viral infections are considered to be common triggers for autoimmunity in general, we aimed to study their association with renal autoimmunity in particular. We performed an extensive search of the recent and relevant medical literature regarding renal autoimmunity syndromes such as infection-associated glomerulonephritis and vasculitis, associated with bacterial and viral infections. By utilizing PubMed and Google Scholar search engines, over 200 articles and case reports were reviewed. Among other mechanisms, direct infection of the renal parenchyma, molecular mimicry, induction of B-cells or secretion of superantigens, bacterial and viral pathogens were found to correlate with the development of renal autoimmunity. Nevertheless, this was not true for all pathogens, as some mimic autoimmune diseases and others show a surprisingly protective effect. The exact immunopathogenesis is yet to be determined, however. For conclusion, bacterial and viral infections are linked to renal autoimmunity by both direct damage and as mediators of systemic diseases. Further research particularly on the immunopathogenetic mechanisms of renal autoimmunity associated with infections is required.
Collapse
Affiliation(s)
- Noy Lavine
- St. George School of Medicine, University of London, London, UK; Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel.
| | - Aviran Ohayon
- St. George School of Medicine, University of London, London, UK; Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel
| | - Naim Mahroum
- Zabludowicz Center for autoimmune diseases, Sheba Medical Center, Ramat-Gan, Israel; International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
24
|
Skutlaberg DH, Wiker HG, Mylvaganam H, The INFECT Study Group, Norrby-Teglund A, Skrede S. Consistent Biofilm Formation by Streptococcus pyogenes emm 1 Isolated From Patients With Necrotizing Soft Tissue Infections. Front Microbiol 2022; 13:822243. [PMID: 35250938 PMCID: PMC8895234 DOI: 10.3389/fmicb.2022.822243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesBiofilm formation has been demonstrated in muscle and soft tissue samples from patients with necrotizing soft tissue infection (NSTI) caused by Streptococcus pyogenes, but the clinical importance of this observation is not clear. Although M-protein has been shown to be important for in vitro biofilm formation in S. pyogenes, the evidence for an association between emm type and biofilm forming capacity is conflicting. Here we characterize the biofilm forming capacity in a collection of S. pyogenes isolates causing NSTI, and relate this to emm type of the isolates and clinical characteristics of the patients.MethodsBacterial isolates and clinical data were obtained from NSTI patients enrolled in a multicenter prospective observational study. Biofilm forming capacity was determined using a microtiter plate assay.ResultsAmong 57 cases, the three most frequently encountered emm types were emm1 (n = 22), emm3 (n = 13), and emm28 (n = 7). The distribution of biofilm forming capacity in emm1 was qualitatively (narrow-ranged normal distribution) and quantitatively (21/22 isolates in the intermediate range) different from other emm types (wide ranged, multimodal distribution with 5/35 isolates in the same range as emm1). There were no significant associations between biofilm forming capacity and clinical characteristics of the patients.ConclusionsThe biofilm forming capacity of emm1 isolates was uniform and differed significantly from other emm types. The impact of biofilm formation in NSTI caused by S. pyogenes on clinical outcomes remains uncertain.
Collapse
Affiliation(s)
- Dag Harald Skutlaberg
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- *Correspondence: Dag Harald Skutlaberg,
| | - Harald G. Wiker
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Haima Mylvaganam
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Steinar Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
25
|
Gouveia C, Branco J, Norte S, Arcangelo J, Alves P, Pinto M, Tavares D. Acute haematogenous osteomyelitis in Lisbon: an unexpectedly high association with myositis and arthritis. An Pediatr (Barc) 2022; 96:106-114. [DOI: 10.1016/j.anpede.2020.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
|
26
|
Lee IPA, Andam CP. Frequencies and characteristics of genome-wide recombination in Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus suis. Sci Rep 2022; 12:1515. [PMID: 35087075 PMCID: PMC8795270 DOI: 10.1038/s41598-022-04995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
Streptococcus consists of ecologically diverse species, some of which are important pathogens of humans and animals. We sought to quantify and compare the frequencies and characteristics of within-species recombination in the pan-genomes of Streptococcus agalactiae, Streptococcus pyogenes and Streptococcus suis. We used 1081, 1813 and 1204 publicly available genome sequences of each species, respectively. Based on their core genomes, S. agalactiae had the highest relative rate of recombination to mutation (11.5743) compared to S. pyogenes (1.03) and S. suis (0.57). The proportion of the species pan-genome that have had a history of recombination was 12.85%, 24.18% and 20.50% of the pan-genomes of each species, respectively. The composition of recombining genes varied among the three species, and some of the most frequently recombining genes are implicated in adhesion, colonization, oxidative stress response and biofilm formation. For each species, a total of 22.75%, 29.28% and 18.75% of the recombining genes were associated with prophages. The cargo genes of integrative conjugative elements and integrative and mobilizable elements contained genes associated with antimicrobial resistance and virulence. Homologous recombination and mobilizable pan-genomes enable the creation of novel combinations of genes and sequence variants, and the potential for high-risk clones to emerge.
Collapse
Affiliation(s)
| | - Cheryl P Andam
- University at Albany, State University of New York, New York, 12222, USA.
| |
Collapse
|
27
|
Ron M, Brosh-Nissimov T, Korenman Z, Treygerman O, Sagi O, Valinsky L, Rokney A. Invasive Multidrug-Resistant emm93.0 Streptococcus pyogenes Strain Harboring a Novel Genomic Island, Israel, 2017-2019. Emerg Infect Dis 2022; 28:118-126. [PMID: 34932442 PMCID: PMC8714194 DOI: 10.3201/eid2801.210733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Invasive group A Streptococcus (iGAS) infections have increased in Israel since 2016 as successful lineages have emerged. We report the emergence and outbreak of a multidrug-resistant S. pyogenes emm93.0, sequence type 10, among iGAS infections in Israel since 2017. This type has been observed very rarely in other countries. During this period, emm93.0 was the cause of 116 infections in Israel and became the leading type during 2018. Most of the infections were from bacteremia (75%), and most patients were male (76%). We observed infections across Israel, mainly in adults. Of note, we observed multidrug resistance for clindamycin, tetracycline, and trimethoprim/sulfamethoxazole. Whole-genome sequencing confirmed clonality among geographically disseminated isolates. The local emm93.0 sequence type 10 clone contained a novel genomic island harboring the resistance genes lsa(E), lnu(B), and ant (6)-Ia aph(3')-III. Further phenotypic and genomic studies are required to determine the prevalence of this resistance element in other iGAS types.
Collapse
|
28
|
Proteolytic Profiling of Streptococcal Pyrogenic Exotoxin B (SpeB) by Complementary HPLC-MS Approaches. Int J Mol Sci 2021; 23:ijms23010412. [PMID: 35008838 PMCID: PMC8745752 DOI: 10.3390/ijms23010412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease expressed during group A streptococcal infection that represents a major virulence factor. Although subject to several studies, its role during infection is still under debate, and its proteolytic properties remain insufficiently characterized. Here, we revisited this protease through a set of complementary approaches relying on state of-the-art HPLC-MS methods. After conceiving an efficient protocol to recombinantly express SpeB, the zymogen of the protease and its activation were characterized. Employing proteome-derived peptide libraries, a strong preference for hydrophobic and aromatic residues at P2 alongside negatively charged amino acids at P3′ to P6′ was revealed. To identify relevant in vivo substrates, native proteins were obtained from monocytic secretome and plasma to assess their cleavage under physiological conditions. Besides corroborating our findings concerning specificity, more than 200 cleaved proteins were identified, including proteins of the extracellular matrix, proteins of the immune system, and proteins involved in inflammation. Finally, the cleavage of IgG subclasses was studied in detail. This study precisely depicts the proteolytic properties of SpeB and provides a library of potential host substrates, including their exact cleavage positions, as a valuable source for further research to unravel the role of SpeB during streptococcal infection.
Collapse
|
29
|
Choi MS, Chae YJ, Choi JW, Chang JE. Potential Therapeutic Approaches through Modulating the Autophagy Process for Skin Barrier Dysfunction. Int J Mol Sci 2021; 22:7869. [PMID: 34360634 PMCID: PMC8345957 DOI: 10.3390/ijms22157869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Autophagy is an attractive process to researchers who are seeking novel potential treatments for various diseases. Autophagy plays a critical role in degrading damaged cellular organelles, supporting normal cell development, and maintaining cellular homeostasis. Because of the various effects of autophagy, recent human genome research has focused on evaluating the relationship between autophagy and a wide variety of diseases, such as autoimmune diseases, cancers, and inflammatory diseases. The skin is the largest organ in the body and provides the first line of defense against environmental hazards, including UV damage, chemical toxins, injuries, oxidative stress, and microorganisms. Autophagy takes part in endogenous defense mechanisms by controlling skin homeostasis. In this manner, regulating autophagy might contribute to the treatment of skin barrier dysfunctions. Various studies are ongoing to elucidate the association between autophagy and skin-related diseases in order to find potential therapeutic approaches. However, little evidence has been gathered about the relationship between autophagy and the skin. In this review, we highlight the previous findings of autophagy and skin barrier disorders and suggest potential therapeutic strategies. The recent research regarding autophagy in acne and skin aging is also discussed.
Collapse
Affiliation(s)
- Min Sik Choi
- Lab of Pharmacology, College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea;
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Korea;
| | - Ji Woong Choi
- College of Pharmacy, Gachon University, Incheon 21936, Korea;
| | - Ji-Eun Chang
- Lab of Pharmaceutics, College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| |
Collapse
|
30
|
Cannon JW, Bennett J, Baker MG, Carapetis JR. Time to address the neglected burden of group A Streptococcus. Med J Aust 2021; 215:94-94.e1. [PMID: 34169525 DOI: 10.5694/mja2.51149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jeffrey W Cannon
- Telethon Kids Institute, Perth, WA.,Harvard University, Boston, MA, USA
| | | | | | | |
Collapse
|
31
|
Mendes N, Miguéis C, Lindo J, Gonçalves T, Miguéis A. Retrospective study of group A Streptococcus oropharyngeal infection diagnosis using a rapid antigenic detection test in a paediatric population from the central region of Portugal. Eur J Clin Microbiol Infect Dis 2021; 40:1235-1243. [PMID: 33452546 DOI: 10.1007/s10096-021-04157-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
Group A Streptococcus (GAS) is one of the most important agents of oropharyngeal infection. To avoid unnecessary antibiotic prescription, it is recommended the confirmation of GAS infection in pharyngeal swabs using culture or rapid antigen detection test (RADT). This study aimed to retrospectively analyse the incidence of GAS oropharyngeal infection, detected by RADT, in a paediatric population in the Centre of Portugal. Data was collected from the database of the Paediatric Hospital Emergency Department (ED) regarding patients admitted with symptoms suggesting acute pharyngitis, from January 2013 to December 2018, in a total of 18,304 cases. Among these, 130 clinical files were searched for symptoms, complications and additional visits to the ED. The results showed an average GAS infection prevalence of 33%, with seasonal variation. In preschool children, especially in patients less than 3 years old, where the guidelines do not routinely encourage RADT, GAS tonsillitis assumed an unexpected importance, with 731 positive tests in a total of 3128 cases. Scarlatiniform rash and oral cavity petechiae had significant correlation with streptococcal aetiology (p < 0.05). The statistical analysis also showed that different signs and symptoms assume different weights depending on the age group of the patient. The main conclusion is that the incidence of GAS infection in the studied population is higher than generally described in preschool children, suggesting the need for a more cautious approach to children under 3 years presenting acute pharyngitis, and that RADT in this age group would contribute to a decrease in the number of unnoticed cases.
Collapse
Affiliation(s)
- Nuno Mendes
- University Clinic of Otorhinolaryngology, FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Serviço de Otorrinolaringologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Carmo Miguéis
- University Clinic of Otorhinolaryngology, FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Serviço de Otorrinolaringologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Jorge Lindo
- University Clinic of Otorhinolaryngology, FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Institute of Microbiology, FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- Institute of Microbiology, FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - António Miguéis
- University Clinic of Otorhinolaryngology, FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Serviço de Otorrinolaringologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| |
Collapse
|
32
|
Invasive Streptococcus pyogenes disease in Spain: a microbiological and epidemiological study covering the period 2007-2019. Eur J Clin Microbiol Infect Dis 2021; 40:2295-2303. [PMID: 34046804 DOI: 10.1007/s10096-021-04279-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study is to present the first nationwide microbiological and epidemiological study of invasive group A Streptococcus (iGAS) disease in Spain. One thousand eight hundred ninety-three iGAS isolates were analyzed over 2007-2019. emm typing was performed by sequencing the gene's variable 5' end, exotoxin genes were identified by PCR, and antimicrobial susceptibility explored via the E test and disk diffusion. Five hundred twenty-three isolates were associated with sepsis, 292 with cellulitis, 232 with scarlet fever, 153 with pneumonia, 141 with streptococcal toxic shock syndrome, and 94 with necrotizing fasciitis. The most prevalent emm types were emm1 (449/1893 isolates), emm89 (210/1893), emm3 (208/1893), emm4 (150/1893), emm12 (112/1893) emm6 (107/1893), emm87 (89/1893), emm28 (88/1893), emm75 (78/1893), emm77 (78/1893), emm11 (58/1893), and emm22 (35/1893). emm1, emm3, emm4, and emm6 were the predominant types affecting children (mostly respiratory infections), while emm11, emm77, and emm89 prevailed in the elderly (mostly skin infections). Each emm type was associated with one or more exotoxin gene (spe, sme, and ssa) profiles. speA was detected in 660 isolates, speB in 1829, speC in 1014, speF in 1826, speG in 1651, speJ in 716, speH in 331, smeZ in 720, and ssa in 512. Isolates with speA were associated with the most severe infections. Penicillin susceptibility was universal. Two hundred twenty-four isolates were resistant to tetracycline, 169 to erythromycin, and 81 to clindamycin. Tetracycline, erythromycin, and clindamycin resistance rates declined over the study period. The above information could serve as the basis for continued surveillance efforts designed to control disease cause by this bacterium.
Collapse
|
33
|
Improved Visual Detection of speB Gene in Streptococcus pyogenes Isolates by Real-time Loop-Mediated Isothermal Amplification Turbidimetry Method. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Group A Streptococcus (GAS) causes a wide array of clinical manifestations ranging from mild pharyngitis to suppurative and non-suppurative severe debilitating diseases. Hence, a simple, rapid detection method with high sensitivity and specificity is needed. Objectives: This study embarked on the visual detection of the streptococcal pyrogenic exotoxin B (speB) gene by real-time turbidimetry and loop-mediated isothermal amplification (RT-LAMP) methods. The real-time monitoring of the sigmoidal graph generated from a turbidimetry method was incorporated in the assay. Methods: The amplification of the speB gene was virtually observed in real-time monitoring of the graph (sigmoidal curve) generated via a turbidimeter, thus providing a “guide” to accurately estimate the time to positivity for the gene detection. Results: The targeted gene was detected at 15 min but was optimally amplified within 45 min at an isothermal temperature of 63°C with 100% specificity using an established set of primers. The formation of sigmoidal curves was correlated with other visual observations by the naked eye (from orange to green), ultra-violet light (green fluorescence), and agarose gel electrophoresis. The improved detection limit of the real-time RT-LAMP assay was also observed compared to conventional PCR assay (0.001 pg/µL versus 1 ng/µL). Conclusions: The improved visual detection of RT-LAMP assay could provide additional insight for rapid, cost-effective, and reliable identification of GAS via speB gene detection in low or middle-income countries. It could also be a very important tool to improve the healthcare management of patients infected with GAS in the future.
Collapse
|
34
|
Barnett TC, Daw JN, Walker MJ, Brouwer S. Genetic Manipulation of Group A Streptococcus-Gene Deletion by Allelic Replacement. Methods Mol Biol 2021; 2136:59-69. [PMID: 32430813 DOI: 10.1007/978-1-0716-0467-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Genetic manipulation of Streptococcus pyogenes (Group A Streptococcus, GAS) has historically been a challenging process, with considerable variation in efficiency between different strains. Here, we outline an optimized, rapid method for creating markerless isogenic mutations that combines Gibson assembly cloning with a new temperature-sensitive plasmid, pLZts. This method is highly efficient and reduces the time needed to create GAS mutants to ~2-3 weeks, with the ability to prepare multiple mutants simultaneously.
Collapse
Affiliation(s)
- Timothy C Barnett
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia. .,Centre for Child Health Research, University of Western Australia, Nedlands, WA, Australia.
| | - Jessica N Daw
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
35
|
Gouveia C, Branco J, Norte S, Arcangelo J, Alves P, Pinto M, Tavares D. [Acute haematogenous osteomyelitis in Lisbon: An unexpectedly high association with myositis and arthritis]. An Pediatr (Barc) 2021; 96:S1695-4033(21)00001-1. [PMID: 33674248 DOI: 10.1016/j.anpedi.2020.11.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/31/2020] [Accepted: 11/11/2020] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Despite the current trend towards less aggressive therapeutic approaches, acute haematogenous osteomyelitis (AHO) continues to be a challenge and is associated with significant morbidity worldwide. Our aim was to determine if 80% compliance with current protocol was achieved, identify complications and associated risk factors and analyse trends in aetiology and management of AHO in children. METHODS We conducted a longitudinal, observational, single-centre study in patients with AHO aged less than 18 years admitted to a paediatric hospital, between 2008 and 2018, divided into 2 cohorts (before and after 2014). Demographic, clinical data and disease progression were analysed. RESULTS The study included 71 children with AHO, 56% male, with a median age of 3 years (interquartile range, 1-11). We found a 1.8-fold increase of cases in the last 5 years. The causative agent was identified in 37% of cases: MSSA (54%), MRSA (4%), Streptococcus pyogenes (19%), Kingella kingae (12%), Streptococcus pneumoniae (8%), and Neisseria meningitidis (4%). Complications were identified in 45% of patients and sequelae in 3.6%. In recent years, there was an increase in myositis (30% vs. 7%; p=0.02), septic arthritis (68% vs. 37.2%; p=0.012) and in the proportion of patients treated for less than 4 weeks (37% vs. 3.5%; p=0.012), with a similar sequelae rates. The risk factors for complications were age 3 or more years, CRP levels of 20mg/l or higher, time elapsed between onset and admission of 5 or more days and positive culture, although on multivariate analysis only positive culture was significant. The presence of complications was a risk factor for sequelae at 6 months. CONCLUSIONS Our study confirms that AHO can be aggressive. The identification of risk factors for complications may be fundamental for management.
Collapse
Affiliation(s)
- Catarina Gouveia
- Unidad de Enfermedades Infecciosas, Hospital de Dona Estefânia, CHULC - EPE, Lisboa, Portugal; Nova Medical School, Faculdade de Ciências Médicas, Lisboa, Portugal.
| | - Joana Branco
- Unidad de Enfermedades Infecciosas, Hospital de Dona Estefânia, CHULC - EPE, Lisboa, Portugal
| | - Susana Norte
- Unidad de Ortopedia Pediátrica, Hospital de Dona Estefânia, CHULC - EPE, Lisboa, Portugal
| | - Joana Arcangelo
- Unidad de Ortopedia Pediátrica, Hospital de Dona Estefânia, CHULC - EPE, Lisboa, Portugal
| | - Pedro Alves
- Diagnóstico Radiológico, Centro Tecnológico e Biomédico, Hospital de Dona Estefânia, CHULC - EPE, Lisboa, Portugal
| | - Margarida Pinto
- Patología Clínica, Hospital de Dona Estefânia, CHULC - EPE, Lisboa, Portugal
| | - Delfin Tavares
- Unidad de Ortopedia Pediátrica, Hospital de Dona Estefânia, CHULC - EPE, Lisboa, Portugal
| |
Collapse
|
36
|
Avire NJ, Whiley H, Ross K. A Review of Streptococcus pyogenes: Public Health Risk Factors, Prevention and Control. Pathogens 2021; 10:248. [PMID: 33671684 PMCID: PMC7926438 DOI: 10.3390/pathogens10020248] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pyogenes, (colloquially named "group A streptococcus" (GAS)), is a pathogen of public health significance, infecting 18.1 million people worldwide and resulting in 500,000 deaths each year. This review identified published articles on the risk factors and public health prevention and control strategies for mitigating GAS diseases. The pathogen causing GAS diseases is commonly transmitted via respiratory droplets, touching skin sores caused by GAS or through contact with contaminated material or equipment. Foodborne transmission is also possible, although there is need for further research to quantify this route of infection. It was found that GAS diseases are highly prevalent in developing countries, and among indigenous populations and low socioeconomic areas in developed countries. Children, the immunocompromised and the elderly are at the greatest risk of S. pyogenes infections and the associated sequelae, with transmission rates being higher in schools, kindergartens, hospitals and residential care homes. This was attributed to overcrowding and the higher level of social contact in these settings. Prevention and control measures should target the improvement of living conditions, and personal and hand hygiene. Adherence to infection prevention and control practices should be emphasized in high-risk settings. Resource distribution by governments, especially in developed countries, should also be considered.
Collapse
Affiliation(s)
| | | | - Kirstin Ross
- Environmental Health, College of Science and Engineering, Flinders University, Adelaide 5001, Australia; (N.J.A.); (H.W.)
| |
Collapse
|
37
|
Systems Genetics Approaches in Mouse Models of Group A Streptococcal Necrotizing Soft-Tissue Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33079368 DOI: 10.1007/978-3-030-57616-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mouse models are invaluable resources for studying the pathogenesis and preclinical evaluation of therapeutics and vaccines against many human pathogens. Infections caused by group A streptococcus (GAS, Streptococcus pyogenes) are heterogeneous ranging from mild pharyngitis to severe invasive necrotizing fasciitis, a subgroup of necrotizing soft-tissue infections (NSTIs). While several strains of mice including BALB/c, C3H/HeN, CBA/J, and C57BL/10 offered significant insights, the human specificity and the interindividual variations on susceptibility or resistance to GAS infections limit their ability to mirror responses as seen in humans. In this chapter, we discuss the advanced recombinant inbred (ARI) BXD mouse model that mimics the genetic diversity as seen in humans and underpins the feasibility to map multiple genes (genetic loci) modulating GAS NSTI. GAS produces a myriad of virulence factors, including superantigens (SAg). Superantigens are potent immune toxins that activate T cells by cross-linking T cell receptors with human leukocyte antigen class-II (HLA-II) molecules expressed on antigen-presenting cells. This leads to a pro-inflammatory cytokine storm and the subsequent multiple organ damage and shock. Inbred mice are innately refractive to SAg-mediated responses. In this chapter, we discuss the versatility of the HLA-II transgenic mouse model that allowed the biological validation of known genetic associations to GAS NSTI. The combined utility of ARI-BXD and HLA-II mice as complementary approaches that offer clinically translatable insights into pathomechanisms driven by complex traits and host genetic context and novel means to evaluate the in vivo efficiency of therapies to improve outcomes of GAS NSTI are also discussed.
Collapse
|
38
|
Milaković M, Križanović S, Petrić I, Šimatović A, González-Plaza JJ, Gužvinec M, Andrašević AT, Pole L, Fuka MM, Udiković-Kolić N. Characterization of macrolide resistance in bacteria isolated from macrolide-polluted and unpolluted river sediments and clinical sources in Croatia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142357. [PMID: 33370905 DOI: 10.1016/j.scitotenv.2020.142357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Environments polluted with excessively high levels of antibiotics released from manufacturing sites can act as a source of transferable antibiotic resistance (AR) genes to human commensal and pathogenic bacteria. The aim of this study was to evaluate AR of bacteria isolated from the Sava river sediments (Croatia) at the discharge site of effluents from azithromycin production compared to those from the upstream site and isolates collected in Croatian hospitals. A total of 228 environmental strains of azithromycin-resistant bacteria were isolated and identified, with 124 from the discharge site and 104 from the upstream site. In addition, a total of 90 clinical, azithromycin-resistant streptococcal and staphylococcal isolates obtained from the Croatian Reference Center for Antibiotic Resistance Surveillance were analyzed. PCR screening of isolates on 11 relevant macrolide-resistance genes (MRGs) showed that discharge isolates had greater detection frequencies for 4 gene targets (ermB, msrE, mphE and ermF) compared to upstream isolates. Among clinical isolates, the most frequently detected gene was ermB, followed by msrD, mefE and mefC. The discharge site demonstrated a greater abundance of isolates with co-occurrence of two different MRGs (predominantly msrE-mphE) than the upstream site, but a lower abundance than the clinical sources (most commonly msrD-mefE). The simultaneous presence of three or even four MRGs was specific for the discharge and clinical isolates, but not for the upstream isolates. When MRG results were sorted by gene mechanism, the ribosomal methylation (erm) and protection genes (msr) were the most frequently detected among both the discharge and the clinical isolates. Following sequencing, high nucleotide sequence similarity was observed between ermB in the discharge isolates and the clinical streptococcal isolates, suggesting a possible transfer of the ermB gene between bacteria of clinical and environmental origin. Our study highlights the importance of environmental bacterial populations as reservoirs for clinically relevant macrolide-resistance genes.
Collapse
Affiliation(s)
- Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Stela Križanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ines Petrić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ana Šimatović
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Juan J González-Plaza
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Marija Gužvinec
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Arjana Tambić Andrašević
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Lucia Pole
- Department of Microbiology, University of Zagreb, Faculty of Agriculture, Svetošimunska 25, 10 000 Zagreb, Croatia
| | - Mirna Mrkonjić Fuka
- Department of Microbiology, University of Zagreb, Faculty of Agriculture, Svetošimunska 25, 10 000 Zagreb, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia.
| |
Collapse
|
39
|
Sølvik UØ, Boija EE, Ekvall S, Jabbour A, Breivik AC, Nordin G, Sandberg S. Performance and user-friendliness of the rapid antigen detection tests QuickVue Dipstick Strep A test and DIAQUICK Strep A Blue Dipstick for pharyngotonsillitis caused by Streptococcus pyogenes in primary health care. Eur J Clin Microbiol Infect Dis 2020; 40:549-558. [PMID: 32996031 PMCID: PMC7892498 DOI: 10.1007/s10096-020-04034-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/10/2020] [Indexed: 01/09/2023]
Abstract
Sensitivity and specificity of rapid antigen detection tests (RADTs) for detection of group A hemolytic streptococcus (GAS) vary. The purpose is to present the first SKUP (Scandinavian evaluation of laboratory equipment for point of care testing) evaluations concerning the assessment of the diagnostic performance and user-friendliness of two RADTs for detection of GAS when used under real-life conditions in primary health care. Throat samples were collected in duplicates at primary health care centers (PHCCs) from patients with symptoms of pharyngitis. The performance of QuickVue Dipstick Strep A test (307 samples) and DIAQUICK Strep A Blue Dipstick (348 samples) was evaluated using culture results at a clinical microbiology laboratory as comparison. The user-friendliness was evaluated using a questionnaire. The diagnostic sensitivity was 92% (90% confidence interval (CI) 87–96%) and 72% (90% CI 65–79%), while the diagnostic specificity was 86% (90% CI 81–90%) and 98% (90% CI 96–99%) for QuickVue Dipstick Strep A test and DIAQUICK Strep A Blue Dipstick, respectively. Both RADTs obtained acceptable assessments for user-friendliness and fulfilled SKUP’s quality goal for user-friendliness. The diagnostic sensitivity for QuickVue Dipstick Strep A test and the diagnostic specificity for DIAQUICK Strep A Blue Dipstick in this objective and supplier-independent evaluation were higher compared with previous meta-analyses of RADTs. However, the diagnostic specificity for QuickVue Dipstick Strep A test and the diagnostic sensitivity for DIAQUICK Strep A Blue Dipstick were lower compared with previous meta-analyses of RADTs.
Collapse
Affiliation(s)
- Una Ørvim Sølvik
- Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | | | | | - Afamia Jabbour
- Department of Clinical Microbiology, Office for Medical Service, Region Skåne, Lund, Sweden
| | - Anne Christin Breivik
- Noklus (Norwegian Organization for Quality Improvement of Laboratory Examinations), Haraldsplass Deaconess Hospital, Bergen, Norway
| | | | - Sverre Sandberg
- Department of Global Public Health and Primary Care, Faculty of Medicine, University of Bergen, Bergen, Norway.,Noklus (Norwegian Organization for Quality Improvement of Laboratory Examinations), Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
40
|
Haggie S, Gunasekera H, Pandit C, Selvadurai H, Robinson P, Fitzgerald DA. Paediatric empyema: worsening disease severity and challenges identifying patients at increased risk of repeat intervention. Arch Dis Child 2020; 105:886-890. [PMID: 32209557 DOI: 10.1136/archdischild-2019-318219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/06/2020] [Accepted: 03/08/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Empyema is the most common complication of pneumonia. Primary interventions include chest drainage and fibrinolytic therapy (CDF) or video-assisted thoracoscopic surgery (VATS). We describe disease trends, clinical outcomes and factors associated with reintervention. DESIGN/SETTING/PATIENTS Retrospective cohort of paediatric empyema cases requiring drainage or surgical intervention, 2011-2018, admitted to a large Australian tertiary children's hospital. RESULTS During the study, the incidence of empyema increased from 1.7/1000 to 7.1/1000 admissions (p<0.001). We describe 192 cases (174 CDF and 18 VATS), median age 3.0 years (IQR 1-5), mean fever duration prior to intervention 6.2 days (SD ±3.3 days) and 50 (26%) cases admitted to PICU. PICU admission increased during the study from 18% to 34% (p<0.001). Bacteraemia occurred in 23/192 (12%) cases. A pathogen was detected in 131/192 (68%); Streptococcus pneumoniae 75/192 (39%), S. aureus 25/192 (13%) and group A streptococcus 13/192 (7%). Reintervention occurred in 49/174 (28%) and 1/18 (6%) following primary CDF and VATS. Comparing repeat intervention with single intervention cases, a continued fever postintervention increased the likelihood for a repeat intervention (OR 1.3 per day febrile; 95% CI 1.2 to 1.4, p<0.0001). Younger age, prolonged fever preintervention and previous antibiotic treatment were not associated with initial treatment failure (all p>0.05). CONCLUSION We report increasing incidence and severity of empyema in a large tertiary hospital. One in four patients required a repeat intervention after CDF. Neither clinical variables at presentation nor early investigations were able to predict initial treatment failure.
Collapse
Affiliation(s)
- Stuart Haggie
- Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Hasantha Gunasekera
- Department of Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Chetan Pandit
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Paul Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Dominic A Fitzgerald
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
41
|
Stolarska M, Glowacka-Sobotta A, Mlynarczyk DT, Dlugaszewska J, Goslinski T, Mielcarek J, Sobotta L. Photodynamic Activity of Tribenzoporphyrazines with Bulky Periphery against Wound Bacteria. Int J Mol Sci 2020; 21:ijms21176145. [PMID: 32858898 PMCID: PMC7504025 DOI: 10.3390/ijms21176145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
Magnesium(II) tribenzoporphyrazines with phenoxybutylsulfanyl substituents were evaluated as photosensitizers in terms of their optical properties against wound bacteria. In the UV-vis spectra of analyzed tribenzoporphyrazines, typical absorption ranges were found. However, the emission properties were very weak, with fluorescence quantum yields in the range of only 0.002–0.051. What is important, they revealed moderate abilities to form singlet oxygen with the quantum yields up to 0.27. Under irradiation, the macrocycles decomposed via photobleaching mechanism with the quantum yields up to 8.64 × 10−5. The photokilling potential of tribenzoporphyrazines was assessed against Streptococcus pyogenes, Staphylococcus epidermidis, as well as various strains of Staphylococcus aureus, including methicillin-sensitive and-resistant bacteria. Both evaluated photosensitizers revealed high photodynamic potential against studied bacteria (>3 logs). S.aureus growth was reduced by over 5.9 log, methicillin-resistant S. aureus by 5.1 log, S.epidermidis by over 5.7 log, and S. pyogenes by over 4.7 log.
Collapse
Affiliation(s)
- Magdalena Stolarska
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.S.); (J.M.)
| | - Arleta Glowacka-Sobotta
- Chair and Department of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.G.)
| | - Jolanta Dlugaszewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland;
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.G.)
| | - Jadwiga Mielcarek
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.S.); (J.M.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (M.S.); (J.M.)
- Correspondence:
| |
Collapse
|
42
|
Salvà-Serra F, Jaén-Luchoro D, Jakobsson HE, Gonzales-Siles L, Karlsson R, Busquets A, Gomila M, Bennasar-Figueras A, Russell JE, Fazal MA, Alexander S, Moore ERB. Complete genome sequences of Streptococcus pyogenes type strain reveal 100%-match between PacBio-solo and Illumina-Oxford Nanopore hybrid assemblies. Sci Rep 2020; 10:11656. [PMID: 32669560 PMCID: PMC7363880 DOI: 10.1038/s41598-020-68249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023] Open
Abstract
We present the first complete, closed genome sequences of Streptococcus pyogenes strains NCTC 8198T and CCUG 4207T, the type strain of the type species of the genus Streptococcus and an important human pathogen that causes a wide range of infectious diseases. S. pyogenes NCTC 8198T and CCUG 4207T are derived from deposit of the same strain at two different culture collections. NCTC 8198T was sequenced, using a PacBio platform; the genome sequence was assembled de novo, using HGAP. CCUG 4207T was sequenced and a de novo hybrid assembly was generated, using SPAdes, combining Illumina and Oxford Nanopore sequence reads. Both strategies yielded closed genome sequences of 1,914,862 bp, identical in length and sequence identity. Combining short-read Illumina and long-read Oxford Nanopore sequence data circumvented the expected error rate of the nanopore sequencing technology, producing a genome sequence indistinguishable to the one determined with PacBio. Sequence analyses revealed five prophage regions, a CRISPR-Cas system, numerous virulence factors and no relevant antibiotic resistance genes. These two complete genome sequences of the type strain of S. pyogenes will effectively serve as valuable taxonomic and genomic references for infectious disease diagnostics, as well as references for future studies and applications within the genus Streptococcus.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden.
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden.
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden.
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden.
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain.
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Hedvig E Jakobsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
- Nanoxis Consulting AB, 400 16, Gothenburg, Sweden
| | - Antonio Busquets
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | - Margarita Gomila
- Microbiology, Department of Biology, University of the Balearic Islands, 07122, Palma, Spain
| | | | - Julie E Russell
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Mohammed Abbas Fazal
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Sarah Alexander
- National Collection of Type Cultures (NCTC), Public Health England, London, NW9 5EQ, UK
| | - Edward R B Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 413 46, Gothenburg, Sweden
| |
Collapse
|
43
|
Björck V, Påhlman LI, Bodelsson M, Petersson AC, Kander T. Morbidity and mortality in critically ill patients with invasive group A streptococcus infection: an observational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:302. [PMID: 32505194 PMCID: PMC7275847 DOI: 10.1186/s13054-020-03008-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022]
Abstract
Background Group A streptococci (GAS) are known to cause serious invasive infections, but little is known about outcomes when patients with these infections are admitted to intensive care. We wanted to describe critically ill patients with severe sepsis or septic shock due to invasive GAS (iGAS) and compare them with other patients with severe sepsis or septic shock. Methods Adult patients admitted to a general intensive care unit (ICU) in Sweden (2007–2019) were screened for severe sepsis or septic shock according to Sepsis 2 definition. Individuals with iGAS infection were identified. The outcome variables were mortality, days alive and free of vasopressors and invasive mechanical ventilation, maximum acute kidney injury score for creatinine, use of continuous renal replacement therapy and maximum Sequential Organ Failure Assessment score during the ICU stay. Age, Simplified Acute Physiology Score (SAPS 3) and iGAS were used as independent, explanatory variables in regression analysis. Cox regression was used for survival analyses. Results iGAS was identified in 53 of 1021 (5.2%) patients. Patients with iGAS presented a lower median SAPS 3 score (62 [56–72]) vs 71 [61–81]), p < 0.001), had a higher frequency of cardiovascular cause of admission to the ICU (38 [72%] vs 145 [15%], p < 0.001) and had a higher median creatinine score (173 [100–311] vs 133 [86–208] μmol/L, p < 0.019). Of the GAS isolates, 50% were serotyped emm1/T1 and this group showed signs of more pronounced circulatory and renal failure than patients with non-emm1/T1 (p = 0.036 and p = 0.007, respectively). After correction for severity of illness (SAPS 3) and age, iGAS infection was associated with lower mortality risk (95% confidence interval (CI) of hazard ratio (HR) 0.204–0.746, p < 0.001). Morbidity analyses demonstrated that iGAS patients were more likely to develop renal failure. Conclusion Critically ill patients with iGAS infection had a lower mortality risk but a higher degree of renal failure compared to similarly ill sepsis patients. emm1/T1 was found to be the most dominant serotype, and patients with emm1/T1 demonstrated more circulatory and renal failure than patients with other serotypes of iGAS.
Collapse
Affiliation(s)
- Viveka Björck
- Skåne University Hospital, Department of Clinical Sciences Lund, Anaesthesiology and Intensive Care, Lund University, SE-221 85, Lund, Sweden.
| | - Lisa I Påhlman
- Skåne University Hospital, Department of Clinical Sciences Lund, Infection Medicine, Lund University, SE-221 85, Lund, Sweden
| | - Mikael Bodelsson
- Skåne University Hospital, Department of Clinical Sciences Lund, Anaesthesiology and Intensive Care, Lund University, SE-221 85, Lund, Sweden
| | | | - Thomas Kander
- Skåne University Hospital, Department of Clinical Sciences Lund, Anaesthesiology and Intensive Care, Lund University, SE-221 85, Lund, Sweden
| |
Collapse
|
44
|
Genetic evolution of invasive emm28 Streptococcus pyogenes strains and significant association with puerperal infections in young women in Finland. Clin Microbiol Infect 2020; 27:420-427. [PMID: 32289480 PMCID: PMC7780161 DOI: 10.1016/j.cmi.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/20/2020] [Accepted: 04/04/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Streptococcus pyogenes or group A streptococcus (GAS) is a human specific pathogen that annually infects over 700 million individuals. GAS strains of type emm28 are an abundant cause of invasive infections in Europe and North America. METHODS We conducted a population-based study on bacteraemic emm28 GAS cases in Finland, from 1995 to 2015. Whole-genome sequencing (WGS) was used to genetically characterize the bacterial isolates. Bayesian analysis of the population structure was used to define genetic clades. Register-linkage analysis was performed to test for association of emm28 GAS with delivery- or postpartum-related infections. A genome-wide association study was used to search for DNA sequences associated with delivery or puerperal infections. RESULTS Among 3060 bacteraemic cases reported during the study period, 714 were caused by emm28. Women comprised a majority of cases (59 %, 422/714), and were significantly over-represented (84.4 %, 162/192, p < 0.0001) among cases in the childbearing age group (20-40 years). Register-linkage analysis revealed strong association (p < 0.0001) of emm28 bacteraemias with delivery and puerperium. In this register-linkage analysis, 120 women with GAS bacteraemia were identified and linked to delivery, infections during delivery or puerperium time. Among these the proportion of cases caused by emm28 was significantly higher than any other emm type (55.8%, 67/120, p < 0.0001). Among the four genetic subclades identified, SC1B has dominated among the bacteraemic cases since 2000. Altogether 620 of 653 (94.9%) isolates belonged to SC1B. No specific sequence or genetic clade was found nonrandomly associated with delivery or puerperal infections. CONCLUSIONS Women of childbearing age were significantly overrepresented among bacteraemic emm28 GAS cases, and in particular were strongly associated with delivery and puerperium cases over the 21 years studied. The molecular mechanisms behind these associations are unclear and warrant further investigation.
Collapse
|
45
|
Eraso JM, Kachroo P, Olsen RJ, Beres SB, Zhu L, Badu T, Shannon S, Cantu CC, Saavedra MO, Kubiak SL, Porter AR, DeLeo FR, Musser JM. Genetic heterogeneity of the Spy1336/R28-Spy1337 virulence axis in Streptococcus pyogenes and effect on gene transcript levels and pathogenesis. PLoS One 2020; 15:e0229064. [PMID: 32214338 PMCID: PMC7098570 DOI: 10.1371/journal.pone.0229064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pyogenes is a strict human pathogen responsible for more than 700 million infections annually worldwide. Strains of serotype M28 S. pyogenes are typically among the five more abundant types causing invasive infections and pharyngitis in adults and children. Type M28 strains also have an unusual propensity to cause puerperal sepsis and neonatal disease. We recently discovered that a one-nucleotide indel in an intergenic homopolymeric tract located between genes Spy1336/R28 and Spy1337 altered virulence in a mouse model of infection. In the present study, we analyzed size variation in this homopolymeric tract and determined the extent of heterogeneity in the number of tandemly-repeated 79-amino acid domains in the coding region of Spy1336/R28 in large samples of strains recovered from humans with invasive infections. Both repeat sequence elements are highly polymorphic in natural populations of M28 strains. Variation in the homopolymeric tract results in (i) changes in transcript levels of Spy1336/R28 and Spy1337 in vitro, (ii) differences in virulence in a mouse model of necrotizing myositis, and (iii) global transcriptome changes as shown by RNAseq analysis of isogenic mutant strains. Variation in the number of tandem repeats in the coding sequence of Spy1336/R28 is responsible for size variation of R28 protein in natural populations. Isogenic mutant strains in which genes encoding R28 or transcriptional regulator Spy1337 are inactivated are significantly less virulent in a nonhuman primate model of necrotizing myositis. Our findings provide impetus for additional studies addressing the role of R28 and Spy1337 variation in pathogen-host interactions.
Collapse
Affiliation(s)
- Jesus M. Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Randall J. Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Stephen B. Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Traci Badu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Sydney Shannon
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Concepcion C. Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Samantha L. Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Adeline R. Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Frank R. DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
46
|
Strain-Dependent Effect of Capsule on Transmission and Persistence in an Infant Mouse Model of Group A Streptococcus Infection. Infect Immun 2020; 88:IAI.00709-19. [PMID: 32014891 DOI: 10.1128/iai.00709-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]) is a human pathogen responsible for a wide range of diseases. Asymptomatic carriage of GAS in the human pharynx is commonplace and a potential reservoir for GAS transmission. Early studies showed that GAS transmission correlated with high bacterial burdens during the acute symptomatic phase of the disease. Human studies and the nonhuman primate model are generally impractical for investigation of the bacterial mechanisms contributing to GAS transmission and persistence. To address this gap, we adapted an infant mouse model of pneumococcal colonization and transmission to investigate factors that influence GAS transmission and persistence. The model recapitulated the direct correlation between GAS burden and transmission during the acute phase of infection observed in humans and nonhuman primates. Furthermore, our results indicate that the ratio of colonized to uncolonized hosts influences the rates of GAS transmission and persistence. We used the model to test the hypothesis that capsule production influences GAS transmission and persistence in a strain-dependent manner. We detected significant differences in rates of transmission and persistence between capsule-positive (emm3) and capsule-negative (emm87) GAS strains. Capsule was associated with higher levels of GAS shedding, independent of the strain background. In contrast to the capsule-positive emm3 strain, restoring capsule production in emm87 GAS did not increase transmissibility, and the absence of capsule enhanced persistence only in the capsule-negative (emm87) strain background. These data suggest that strain background (capsule positive versus capsule negative) influences the effect of capsule in GAS transmission and persistence and that as-yet-undefined factors are required for the transmission of capsule-negative emm types.
Collapse
|
47
|
Kachroo P, Eraso JM, Olsen RJ, Zhu L, Kubiak SL, Pruitt L, Yerramilli P, Cantu CC, Ojeda Saavedra M, Pensar J, Corander J, Jenkins L, Kao L, Granillo A, Porter AR, DeLeo FR, Musser JM. New Pathogenesis Mechanisms and Translational Leads Identified by Multidimensional Analysis of Necrotizing Myositis in Primates. mBio 2020; 11:e03363-19. [PMID: 32071274 PMCID: PMC7029145 DOI: 10.1128/mbio.03363-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023] Open
Abstract
A fundamental goal of contemporary biomedical research is to understand the molecular basis of disease pathogenesis and exploit this information to develop targeted and more-effective therapies. Necrotizing myositis caused by the bacterial pathogen Streptococcus pyogenes is a devastating human infection with a high mortality rate and few successful therapeutic options. We used dual transcriptome sequencing (RNA-seq) to analyze the transcriptomes of S. pyogenes and host skeletal muscle recovered contemporaneously from infected nonhuman primates. The in vivo bacterial transcriptome was strikingly remodeled compared to organisms grown in vitro, with significant upregulation of genes contributing to virulence and altered regulation of metabolic genes. The transcriptome of muscle tissue from infected nonhuman primates (NHPs) differed significantly from that of mock-infected animals, due in part to substantial changes in genes contributing to inflammation and host defense processes. We discovered significant positive correlations between group A streptococcus (GAS) virulence factor transcripts and genes involved in the host immune response and inflammation. We also discovered significant correlations between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness, as assessed by previously conducted genome-wide transposon-directed insertion site sequencing (TraDIS). By integrating the bacterial RNA-seq data with the fitness data generated by TraDIS, we discovered five new pathogen genes, namely, S. pyogenes 0281 (Spy0281 [dahA]), ihk-irr, slr, isp, and ciaH, that contribute to necrotizing myositis and confirmed these findings using isogenic deletion-mutant strains. Taken together, our study results provide rich new information about the molecular events occurring in severe invasive infection of primate skeletal muscle that has extensive translational research implications.IMPORTANCE Necrotizing myositis caused by Streptococcus pyogenes has high morbidity and mortality rates and relatively few successful therapeutic options. In addition, there is no licensed human S. pyogenes vaccine. To gain enhanced understanding of the molecular basis of this infection, we employed a multidimensional analysis strategy that included dual RNA-seq and other data derived from experimental infection of nonhuman primates. The data were used to target five streptococcal genes for pathogenesis research, resulting in the unambiguous demonstration that these genes contribute to pathogen-host molecular interactions in necrotizing infections. We exploited fitness data derived from a recently conducted genome-wide transposon mutagenesis study to discover significant correlation between the magnitude of bacterial virulence gene expression in vivo and pathogen fitness. Collectively, our findings have significant implications for translational research, potentially including vaccine efforts.
Collapse
Affiliation(s)
- Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Jesus M Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Samantha L Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Layne Pruitt
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Prasanti Yerramilli
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Concepcion C Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Johan Pensar
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Leslie Jenkins
- Comparative Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Lillian Kao
- Department of Surgery, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Alejandro Granillo
- Department of Internal Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
48
|
Hsieh CL, Hsieh SY, Huang HM, Lu SL, Omori H, Zheng PX, Ho YN, Cheng YL, Lin YS, Chiang-Ni C, Tsai PJ, Wang SY, Liu CC, Noda T, Wu JJ. Nicotinamide Increases Intracellular NAD + Content to Enhance Autophagy-Mediated Group A Streptococcal Clearance in Endothelial Cells. Front Microbiol 2020; 11:117. [PMID: 32117141 PMCID: PMC7026195 DOI: 10.3389/fmicb.2020.00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Group A streptococcus (GAS) is a versatile pathogen that causes a wide spectrum of diseases in humans. Invading host cells is a known strategy for GAS to avoid antibiotic killing and immune recognition. However, the underlying mechanisms of GAS resistance to intracellular killing need to be explored. Endothelial HMEC-1 cells were infected with GAS, methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella Typhimurium under nicotinamide (NAM)-supplemented conditions. The intracellular NAD+ level and cell viability were respectively measured by NAD+ quantification kit and protease-based cytotoxicity assay. Moreover, the intracellular bacteria were analyzed by colony-forming assay, transmission electron microscopy, and confocal microscopy. We found that supplementation with exogenous nicotinamide during infection significantly inhibited the growth of intracellular GAS in endothelial cells. Moreover, the NAD+ content and NAD+/NADH ratio of GAS-infected endothelial cells were dramatically increased, whereas the cell cytotoxicity was decreased by exogenous nicotinamide treatment. After knockdown of the autophagy-related ATG9A, the intracellular bacterial load was increased in nicotinamide-treated endothelial cells. The results of Western blot and transmission electron microscopy also revealed that cells treated with nicotinamide can increase autophagy-associated LC3 conversion and double-membrane formation during GAS infection. Confocal microscopy images further showed that more GAS-containing vacuoles were colocalized with lysosome under nicotinamide-supplemented conditions than without nicotinamide treatment. In contrast to GAS, supplementation with exogenous nicotinamide did not effectively inhibit the growth of MRSA or S. Typhimurium in endothelial cells. These results indicate that intracellular NAD+ homeostasis is crucial for controlling intracellular GAS infection in endothelial cells. In addition, nicotinamide may be a potential new therapeutic agent to overcome persistent infections of GAS.
Collapse
Affiliation(s)
- Cheng-Lu Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ying Hsieh
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsuan-Min Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shiou-Ling Lu
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroko Omori
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Po-Xing Zheng
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ning Ho
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology & Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Ying Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chuan Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pediatrics, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Jiunn-Jong Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
49
|
Konrad P, Hufnagel M, Berner R, Toepfner N. Long-term, single-center surveillance of non-invasive group A streptococcal (GAS) infections, emm types and emm clusters. Eur J Clin Microbiol Infect Dis 2019; 39:273-280. [PMID: 31758439 DOI: 10.1007/s10096-019-03719-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
Group A streptococci (GAS) are among the most frequent pathogens in children. Many epidemiological studies focus on specific GAS infections (such as tonsillopharyngitis or invasive disease), on GAS carriers or on post-streptococcal sequelae. By comparison, reports on regional GAS characteristics, particularly circulating non-invasive GAS in Europe, are rare. In a monocentric study, all GAS isolated from pediatric patients at a tertiary care hospital over a 6-year period (2006-2012) were characterized. GAS emm types and clusters were determined. Associated patient data were analyzed. Five hundred sixty-six GAS strains were collected. GAS tonsillopharyngitis was most common (71.6%), followed by pyoderma (6.0%), otitis media (3.7%), perineal dermatitis (3.4%), and invasive infections (1.4%). Colonizing strains represented 13.6% of GAS. GAS emm12 was most prevalent among invasive and non-invasive isolates. Emm1, emm4, emm28, and emm89 were the most frequent non-invasive GAS strains. The emm E4 cluster was most common, followed by the A-C4, A-C3, and E1. Among the GAS infections, different emm types and clusters were identified, e.g., emm4 was more common among patients with scarlet fever. Three new emm subtypes were characterized: emm29.13, emm36.7, and emm75.5. This comprehensive review of a large, local GAS cohort points to the differences between and similarities among GAS genotypes and disease manifestations, while minimizing regional variations. Considerable deviation from previous epidemiological findings is described, especially regarding the frequent detection of emm1 and emm89 in non-invasive GAS infections. Periodic updates on molecular and epidemiological GAS characteristics are needed to track the multifaceted pathogenic potential of GAS.
Collapse
Affiliation(s)
- Peter Konrad
- Department of Pediatrics, Carl Gustav Carus University Hospital, Technical University Dresden, Dresden, Germany
| | - Markus Hufnagel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Reinhard Berner
- Department of Pediatrics, Carl Gustav Carus University Hospital, Technical University Dresden, Dresden, Germany
| | - Nicole Toepfner
- Department of Pediatrics, Carl Gustav Carus University Hospital, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
50
|
Westerlund E, Valfridsson C, Yi DX, Persson JJ. The Secreted Virulence Factor NADase of Group A Streptococcus Inhibits P2X7 Receptor-Mediated Release of IL-1β. Front Immunol 2019; 10:1385. [PMID: 31275321 PMCID: PMC6591467 DOI: 10.3389/fimmu.2019.01385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022] Open
Abstract
The common human pathogen Group A Streptococcus (GAS) causes superficial as well as invasive, life-threatening diseases. An increase in the occurrence of invasive GAS infection by strains of the M1 and M89 serotypes has been correlated with increased expression of the genetically and functionally linked virulence factors streptolysin O (SLO) and β-NAD+-glycohydrolase (NADase). NADase affects host cells differently depending on its location: its SLO-dependent translocation into the cytosol can lead to cell death through β-NAD+ depletion, while extracellularly located NADase inhibits IL-1β release downstream of Nlrp3 inflammasome activation. In this study, we use a macrophage infection model to investigate the NADase-dependent inhibition of IL-1β release. We show that bacteria expressing a functional NADase evade P2X7 activation, while infection with a NADase-deficient GAS strain leads to a P2X7-mediated increase in IL-1β. Further, our data indicate that in the absence of NADase, IL-1β is released through both P2X7-dependent and -independent pathways, although the precise mechanisms of how this occur are still unclear. This study adds information about the mechanism by which NADase regulates inflammasome-dependent IL-1β release, which may in part explain why increased NADase expression correlates with bacterial virulence.
Collapse
Affiliation(s)
- Elsa Westerlund
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Christine Valfridsson
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Daisy X Yi
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Jenny J Persson
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|