1
|
Nicotinic regulation of experience-dependent plasticity in visual cortex. ACTA ACUST UNITED AC 2016; 110:29-36. [PMID: 27840212 DOI: 10.1016/j.jphysparis.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/19/2016] [Accepted: 11/09/2016] [Indexed: 11/20/2022]
Abstract
While the cholinergic neuromodulatory system and muscarinic acetylcholine receptors (AChRs) have been appreciated as permissive factors for developmental critical period plasticity in visual cortex, it was unknown why plasticity becomes limited after the critical period even in the presence of massive cholinergic projections to visual cortex. In this review we highlighted the recent progresses that started to shed light on the role of the nicotinic cholinergic neuromodulatory signaling on limiting juvenile form of plasticity in the adult brain. We introduce the Lynx family of proteins and Lynx1 as its representative, as endogenous proteins structurally similar to α-bungarotoxin with the ability to bind and modulate nAChRs to effectively regulate functional and structural plasticity. Remarkably, Lynx family members are expressed in distinct subpopulations of GABAergic interneurons, placing them in unique positions to potentially regulate the convergence of GABAergic and nicotinic neuromodulatory systems to regulate plasticity. Continuing studies of the potentially differential roles of Lynx family of proteins may further our understanding of the fundamentals of molecular and cell type-specific mechanisms of plasticity that we may be able to harness through nicotinic cholinergic signaling.
Collapse
|
2
|
Groleau M, Kang JI, Huppé-Gourgues F, Vaucher E. Distribution and effects of the muscarinic receptor subtypes in the primary visual cortex. Front Synaptic Neurosci 2015; 7:10. [PMID: 26150786 PMCID: PMC4472999 DOI: 10.3389/fnsyn.2015.00010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/04/2015] [Indexed: 11/13/2022] Open
Abstract
Muscarinic cholinergic receptors modulate the activity and plasticity of the visual cortex. Muscarinic receptors are divided into five subtypes that are not homogeneously distributed throughout the cortical layers and cells types. This distribution results in complex action of the muscarinic receptors in the integration of visual stimuli. Selective activation of the different subtypes can either strengthen or weaken cortical connectivity (e.g., thalamocortical vs. corticocortical), i.e., it can influence the processing of certain stimuli over others. Moreover, muscarinic receptors differentially modulate some functional properties of neurons during experience-dependent activity and cognitive processes and they contribute to the fine-tuning of visual processing. These functions are involved in the mechanisms of attention, maturation and learning in the visual cortex. This minireview describes the anatomo-functional aspects of muscarinic modulation of the primary visual cortex's (V1) microcircuitry.
Collapse
Affiliation(s)
- Marianne Groleau
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Jun Il Kang
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Frédéric Huppé-Gourgues
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
3
|
Krüger HS, Hanganu-Opatz IL. Neonatal cholinergic lesion alters the acoustic structure of infant rat vocalization but not the early cognitive development. Dev Psychobiol 2012; 55:294-308. [DOI: 10.1002/dev.21029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/02/2012] [Indexed: 11/09/2022]
|
4
|
Hanganu-Opatz IL. Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. ACTA ACUST UNITED AC 2010; 64:160-76. [PMID: 20381527 DOI: 10.1016/j.brainresrev.2010.03.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/22/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Sensory systems processing information from the environment rely on precisely formed and refined neuronal networks that build maps of sensory receptor epithelia at different subcortical and cortical levels. These sensory maps share similar principles of function and emerge according to developmental processes common in visual, somatosensory and auditory systems. Whereas molecular cues set the coarse organization of cortico-subcortical topography, its refinement is known to succeed under the influence of experience-dependent electrical activity during critical periods. However, coordinated patterns of activity synchronize the cortico-subcortical networks long before the meaningful impact of environmental inputs on sensory maps. Recent studies elucidated the cellular and network mechanisms underlying the generation of these early patterns of activity and highlighted their similarities across species. Moreover, the experience-independent activity appears to act as a functional template for the maturation of sensory networks and cortico-subcortical maps. A major goal for future research will be to analyze how this early activity interacts with the molecular cues and to determine whether it is permissive or rather supporting for the establishment of sensory topography.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Falkenried 94, Hamburg, Germany.
| |
Collapse
|
5
|
Hanganu IL, Staiger JF, Ben-Ari Y, Khazipov R. Cholinergic modulation of spindle bursts in the neonatal rat visual cortex in vivo. J Neurosci 2007; 27:5694-705. [PMID: 17522314 PMCID: PMC6672769 DOI: 10.1523/jneurosci.5233-06.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine (ACh) is known to shape the adult neocortical activity related to behavioral states and processing of sensory information. However, the impact of cholinergic input on the neonatal neuronal activity remains widely unknown. Early during development, the principal activity pattern in the primary visual (V1) cortex is the intermittent self-organized spindle burst oscillation that can be driven by the retinal waves. Here, we assessed the relationship between this early activity pattern and the cholinergic drive by either blocking or augmenting the cholinergic input and investigating the resultant effects on the activity of the rat visual cortex during the first postnatal week in vivo. Blockade of the muscarinic receptors by intracerebroventricular, intracortical, or supracortical atropine application decreased the occurrence of V1 spindle bursts by 50%, both the retina-independent and the optic nerve-mediated spindle bursts being affected. In contrast, blockade of acetylcholine esterase with physostigmine augmented the occurrence, amplitude, and duration of V1 spindle bursts. Whereas direct stimulation of the cholinergic basal forebrain nuclei increased the occurrence probability of V1 spindle bursts, their chronic immunotoxic lesion using 192 IgG-saporin decreased the occurrence of neonatal V1 oscillatory activity by 87%. Thus, the cholinergic input facilitates the neonatal V1 spindle bursts and may prime the developing cortex to operate specifically on relevant early (retinal waves) and later (visual input) stimuli.
Collapse
Affiliation(s)
- Ileana L Hanganu
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U29, 13273 Marseille, France.
| | | | | | | |
Collapse
|
6
|
Origlia N, Kuczewski N, Aztiria E, Gautam D, Wess J, Domenici L. Muscarinic acetylcholine receptor knockout mice show distinct synaptic plasticity impairments in the visual cortex. J Physiol 2006; 577:829-40. [PMID: 17023506 PMCID: PMC1890385 DOI: 10.1113/jphysiol.2006.117119] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In the present report, we focused our attention on the role played by the muscarinic acetylcholine receptors (mAChRs) in different forms of long-term synaptic plasticity. Specifically, we investigated long-term potentiation (LTP) and long-term depression (LTD) expression elicited by theta-burst stimulation (TBS) and low-frequency stimulation (LFS), respectively, in visual cortical slices obtained from different mAChR knockout (KO) mice. A normal LTP was evoked in M(1)/M(3) double KO mice, while LTP was impaired in the M(2)/M(4) double KO animals. On the other hand, LFS induced LTD in M(2)/M(4) double KO mice, but failed to do so in M(1)/M(3) KO mice. Interestingly, LFS produced LTP instead of LTD in M(1)/M(3) KO mice. Analysis of mAChR single KO mice revealed that LTP was affected only by the simultaneous absence of both M(2) and M(4) receptors. A LFS-dependent shift from LTD to LTP was also observed in slices from M(1) KO mice, while LTD was simply abolished in slices from M(3) KO mice. Using pharmacological tools, we showed that LTP in control mice was blocked by pertussis toxin, an inhibitor of G(i/o) proteins, but not by raising intracellular cAMP levels. In addition, the inhibition of phospholipase C by U73122 induced the same shift from LTD to LTP after LFS observed in M(1) single KO and M(1)/M(3) double KO mice. Our results indicate that different mAChR subtypes regulate different forms of long-term synaptic plasticity in the mouse visual cortex, activating specific G proteins and downstream intracellular mechanisms.
Collapse
|
7
|
Kuczewski N, Aztiria E, Domenici L. Developmental modulation of synaptic transmission by acetylcholine in the primary visual cortex. Brain Res 2006; 1095:43-50. [PMID: 16730341 DOI: 10.1016/j.brainres.2006.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 04/03/2006] [Accepted: 04/03/2005] [Indexed: 10/24/2022]
Abstract
Despite the evidence that cortical synaptic organization and cognitive functions are influenced by the activity of the cholinergic system during postnatal development, so far no information is available on the effects produced by acetylcholine (ACh) on synaptic transmission. In the present article, we show that the ability of visual cortex slices to respond to ACh depends on postnatal age. In adulthood, ACh exerts mainly a facilitatory action on synaptic transmission, depressing field potential (FP) amplitude only if applied at high concentrations (millimolar range). During early postnatal development, at postnatal day 13 (P13), facilitation by ACh was lacking, with depression of FP observed with concentration of ACh in the micromolar range. The magnitude of ACh facilitatory effects increases with age. The time course of ACh-dependent facilitation overlaps the developmental maturation of acetylcholinesterase (AChE), suggesting a close relationship between ACh action and AChE activity. Thus, age-dependent modification of the cholinergic modulatory action may affect cortical maturation by regulating the magnitude of synaptic transmission.
Collapse
Affiliation(s)
- Nicola Kuczewski
- Scuola Internazionale Superiore di Studi Avanzati, S.I.S.S.A., Settore di Neuroscienze Cognitive, Via Beirut 2-4, Trieste 34014, Italy
| | | | | |
Collapse
|
8
|
Choi SY, Chang J, Jiang B, Seol GH, Min SS, Han JS, Shin HS, Gallagher M, Kirkwood A. Multiple receptors coupled to phospholipase C gate long-term depression in visual cortex. J Neurosci 2006; 25:11433-43. [PMID: 16339037 PMCID: PMC6725895 DOI: 10.1523/jneurosci.4084-05.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term depression (LTD) in sensory cortices depends on the activation of NMDA receptors. Here, we report that in visual cortical slices, the induction of LTD (but not long-term potentiation) also requires the activation of receptors coupled to the phospholipase C (PLC) pathway. Using immunolesions in combination with agonists and antagonists, we selectively manipulated the activation of alpha1 adrenergic, M1 muscarinic, and mGluR5 glutamatergic receptors. Inactivation of these PLC-coupled receptors prevents the induction of LTD, but only when the three receptors were inactivated together. LTD is fully restored by activating any one of them or by supplying intracellular D-myo-inositol-1,4,5-triphosphate (IP3). LTD was also impaired by intracellular application of PLC or IP3 receptor blockers, and it was absent in mice lacking PLCbeta1, the predominant PLC isoform in the forebrain. We propose that visual cortical LTD requires a minimum of PLC activity that can be supplied independently by at least three neurotransmitter systems. This essential requirement places PLC-linked receptors in a unique position to control the induction of LTD and provides a mechanism for gating visual cortical plasticity via extra-retinal inputs in the intact organism.
Collapse
Affiliation(s)
- Se-Young Choi
- Mind/Brain Institute, Department of Neurosciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kuczewski N, Aztiria E, Leanza G, Domenici L. Selective cholinergic immunolesioning affects synaptic plasticity in developing visual cortex. Eur J Neurosci 2005; 21:1807-14. [PMID: 15869476 DOI: 10.1111/j.1460-9568.2005.04014.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cholinergic neurotransmission is known to affect activity-dependent plasticity in various areas, including the visual cortex. However, relatively little is known about the exact role of subcortical cholinergic inputs in the regulation of plastic events in this region during early postnatal development. In the present study, synaptic transmission and plasticity in the developing visual cortex were studied following selective immunotoxic removal of the basal forebrain cholinergic afferents in 4-day-old rat pups. The lesion produced dramatic cholinergic neuronal and terminal fibre loss associated with decreased mRNA levels for the M1 and M2 muscarinic receptors, as well as clear-cut impairments of long-term potentiation (LTP) in visual cortex slices. Indeed, after theta burst stimulation of layer IV a long-term depression (LTD) instead of an LTP was induced in immunolesioned slices. This functional change appears to be due to the lack of cholinergic input as exogenous application of acetylcholine prevented the shift from LTP to LTD. In addition, lesioned rats showed an increased sensitivity to acetylcholine (ACh). While application of 20 microm ACh produced a depression of the field potential in immunolesioned rat slices, in order to observe the same effect in control slices we had to increase ACh concentration to up to 200 microm. Taken together, our results indicate that deprivation of cholinergic input affects synaptic transmission and plasticity in developing visual cortex, suggesting that the cholinergic system could play an active role in the refinement of the cortical circuitry during maturation.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Acetylcholine/pharmacology
- Animals
- Animals, Newborn
- Antibodies, Monoclonal/toxicity
- Choline O-Acetyltransferase/metabolism
- Cholinergic Agents/toxicity
- Dose-Response Relationship, Drug
- Electrophysiologic Techniques, Cardiac/methods
- Female
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/pathology
- Immunotoxins/toxicity
- In Vitro Techniques
- Male
- N-Glycosyl Hydrolases
- Neuronal Plasticity/drug effects
- Neuronal Plasticity/physiology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Neurons/physiology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Receptors, Muscarinic/classification
- Receptors, Muscarinic/genetics
- Receptors, Muscarinic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Ribosome Inactivating Proteins, Type 1
- Saporins
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Visual Cortex/growth & development
- Visual Cortex/injuries
- Visual Cortex/metabolism
- Visual Cortex/pathology
Collapse
Affiliation(s)
- N Kuczewski
- International School for Advanced Studies, Cognitive Neuroscience Sector, Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | |
Collapse
|
10
|
Aztiria E, Gotti C, Domenici L. Alpha7 but not alpha4 AChR subunit expression is regulated by light in developing primary visual cortex. J Comp Neurol 2005; 480:378-91. [PMID: 15558799 DOI: 10.1002/cne.20358] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the present paper we analyzed the expression pattern of the alpha4 and alpha7 nicotinic acetylcholine receptor (nAChR) subunits in the rat visual cortex through postnatal development, to clarify whether their expression is developmentally regulated and whether eventual developmental changes are regulated by visual experience. We found that both alpha4 and alpha7 mRNA levels accumulate from postnatal day 12 (P12) before eye opening, to around P35. The immunohistochemical results indicated that both subunits are expressed throughout all cortical laminae, except layer I. Alpha4 subunit immunohistochemistry revealed significant increments in the number of positive cells in layers V and VI after eye opening. In the case of the alpha7 subunit, the number of immunoreactive cells increased in all cortical layers soon after eye opening, except in layer VI, matching the results found at the transcriptional level. In animals reared in darkness from P9 to P22, the relative amount of the alpha4 mRNA and the number of immunoreactive cells exhibited no changes. 3H-epibatidine binding experiments showed that the number of heteromeric nAChR subunits in dark-reared rats did not change with respect to age-matched controls, thus confirming the immunohistochemical results. The mRNA of the alpha7 subunit remained stable in dark-reared rats, whereas the number and distribution of immunoreactive cells changed. Moreover, the number of 125I alphabungarotoxin-binding nAChRs was significantly increased in dark-reared animals. These results indicate that visual cortex stimulation by visual input is an essential step for alpha7 nAChR normal expression, suggesting a possible role for these receptors in an experience-dependent fashion on the maturation of this cortical area.
Collapse
Affiliation(s)
- Eugenio Aztiria
- International School for Advanced Studies (ISAS-SISSA), 34014 Trieste, Italy
| | | | | |
Collapse
|
11
|
Abstract
Acetylcholine is involved in a variety of brain functions. In the visual cortex, the pattern of cholinergic innervation varies considerably across different mammalian species and across different cortical layers within the same species. The physiological effects of acetylcholine in the visual cortex display complex responses, which are likely due to cholinergic receptor subtype composition in cytoplasm membrane as well as interaction with other transmitter systems within the local neural circuitry. The functional role of acetylcholine in visual cortex is believed to improve the signal-to-noise ratio of cortical neurons during visual information processing. Available evidence suggests that acetylcholine is also involved in experience-dependent visual cortex plasticity. At the level of synaptic transmission, activation of muscarinic receptors has been shown to play a permissive role in visual cortex plasticity. Among the muscarinic receptor subtypes, the M(1) receptor seems to make a predominant contribution towards modifications of neural circuitry. The signal transduction cascade of the cholinergic pathway may act synergistically with that of the NMDA receptor pathway, whose activation is a prerequisite for cortical plasticity.
Collapse
Affiliation(s)
- Qiang Gu
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
12
|
Abstract
Recently, cholinergic afferents to cerebral cortex have met renewed attention regarding the regulation of plasticity as well as cognitive processing. My laboratory has developed a mouse neonatal basal forebrain lesion paradigm that has contributed considerably to the understanding of cholinergic mechanisms in cortical development. We have shown that transient cholinergic deafferentation, beginning at birth, precipitates alterations in neuronal differentiation and synaptic connectivity that persist into maturity, and contribute to altered cognitive behavior. These data are in general agreement with studies in rats in which the cholinergic basal forebrain is lesioned very early in development but contrast with effects of later developmental lesions. Moreover, in mouse, both morphological and behavioral consequences of the lesion are sex dependent. Studies of receptors and secondary messengers that are instrumental in morphogenesis and plasticity suggest that sex dependent molecular alterations occur within days if not hours following cortical cholinergic deafferentation.
Collapse
Affiliation(s)
- Christine F Hohmann
- Department of Biology, Morgan State University, Cold Spring Lane and Hillen Road, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA.
| |
Collapse
|
13
|
Pesavento E, Capsoni S, Domenici L, Cattaneo A. Acute cholinergic rescue of synaptic plasticity in the neurodegenerating cortex of anti-nerve-growth-factor mice. Eur J Neurosci 2002; 15:1030-6. [PMID: 11918663 DOI: 10.1046/j.1460-9568.2002.01937.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deficits in cholinergic systems innervating cerebral cortex are associated with cognitive impairment during senescence and in age-related neurodegenerative pathologies. However, little is known about the role of cholinergic pathways in modulating cortical plasticity. Basal forebrain cholinergic neurons are a major target for nerve-growth factor (NGF). In order to investigate the relationship between cholinergic innervation and cortical synaptic plasticity, we exploited a transgenic mouse model in which the activity of NGF in the adult nervous system is neutralized by the expression of blocking antibodies to NGF itself (anti-NGF mice) [Ruberti, F. et al. (2000). J. Neurosci. 20, 2589-2601]. In 6-month-old anti-NGF mice, we show that the reduction in cholinergic innervation of the cortex is associated with different forms of synaptic plasticity impairment. A local, acute increase in the availability of acetylcholine rescues these synaptic plasticity deficits, thus indicating that a cholinergic system mediates the impairment of cortical plasticity at this early stage of the neurodegenerative process triggered by NGF neutralization. Our results represent an important step in unveiling the pivotal role of cholinergic transmission in modulating adult cortical plasticity.
Collapse
Affiliation(s)
- Emanuele Pesavento
- Neuroscience Program, SISSA (International School of Advanced Studies), Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | |
Collapse
|
14
|
Expression of the nerve growth factor receptors TrkA and p75NTR in the visual cortex of the rat: development and regulation by the cholinergic input. J Neurosci 2002. [PMID: 11826120 DOI: 10.1523/jneurosci.22-03-00912.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several lines of evidence have shown that nerve growth factor (NGF), the progenitor of the neurotrophin family of growth factors, plays a fundamental role in the developmental plasticity of the rat visual cortex. However, the expression of NGF receptors (NGFRs) TrkA and p75(NTR) and the possible sites of NGF action in the visual cortex remain to be elucidated so far. Using a highly sensitive ECL immunoblot analysis, we have been able to show, in the present study, that the TrkA protein is expressed in the rat visual cortex and that it is developmentally upregulated during the critical period for cortical plasticity. In contrast, the expression level of the low-affinity NGF receptor p75(NTR) seems to remain nearly constant throughout development. In the analysis of possible pathways involved in the regulation of NGFR expression, we found that neither blockade of the visual input nor NGF administration to the visual cortex resulted in a modulation of NGFR levels of expression. On the other hand, the selective destruction of cholinergic afferents to the visual cortex caused a dramatic, but not complete, reduction of the cortical NGFRs, which suggests that these receptors are located on cholinergic terminals predominantly. At the functional level, we found that, after the elimination of the cholinergic afferents to the visual cortex, the NGF-induced increase of both acetylcholine and glutamate release from cortical synaptosomes was strongly impaired. These results indicate that the cholinergic input is an important mediator of visual cortex responsiveness to NGF action.
Collapse
|
15
|
Tropea D, Sermasi E, Domenici L. Synaptic plasticity of feedback connections in rat visual cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 118:61-7. [PMID: 10611504 DOI: 10.1016/s0165-3806(99)00130-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The issue we want to address in the present paper is to establish whether electrical stimulation of latero medial (LM) area, a secondary visual area in the rat, is able to induce Long Term Potentiation (LTP) and Long Term Depression (LTD) in primary visual cortex (V1). To this aim rat slices containing area V1 and LM were prepared at P23 and P40 and field potentials in layers 2/3 of area V1 were recorded stimulating LM. We showed that it was never possible to induce LTP in area V1, unless bicuculline, a gamma-aminobutyric acid (GABA) receptors blocker, was applied to the slice. In contrast, LTD was normally inducible. Thus, cortical gabaergic circuitry in area V1 controls LTP but not LTD elicited by stimulation of feedback connections from LM.
Collapse
Affiliation(s)
- D Tropea
- International School for Advanced Studies (SISSA)-Neuroscience Program-Via Beirut 2-4, 34014, Trieste, Italy
| | | | | |
Collapse
|
16
|
Sermasi E, Tropea D, Domenici L. A new form of synaptic plasticity is transiently expressed in the developing rat visual cortex: a modulatory role for visual experience and brain-derived neurotrophic factor. Neuroscience 1999; 91:163-73. [PMID: 10336067 DOI: 10.1016/s0306-4522(98)00598-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synaptic plasticity has been implicated in the mechanisms contributing to the shaping of the cortical circuits responsible for the transmission of the visual input in the rat primary visual cortex. However, the degree of plasticity of the thalamocortical synapse may change during development, perhaps reflecting the degree of stabilization of the circuitry subserving it. We have chosen the ability of this synapse to be first depressed and then potentiated as a specific indicator of its plasticity. In this study we have investigated how this parameter changes during development and the factors controlling it. Extracellular field potentials in cortical layers 2/3 were evoked by stimulation of the white matter in rat primary visual cortex slices prepared at different postnatal ages. Low-frequency stimulation (900 pulses at 1 Hz) of the white matter was used to induce long-term depression of field potential amplitude, whereas long-term potentiation was evoked by high-frequency stimulation consisting of three trains at 100 Hz. We provide evidence that while it is possible to potentiate previously depressed synapses soon after eye opening (postnatal day 17) this synaptic characteristic decreases rapidly thereafter. The decrease in this form of cortical synaptic plasticity closely matches the stabilization of the cortical circuitry towards an adult pattern of connectivity and function. Depressed cortical synapses cannot be potentiated in normal rats at postnatal 23, but they can be potentiated in rats reared in the dark from postnatal days 17 to 29. Moreover, application of brain-derived neurotrophic factor, known to be expressed in an activity-dependent manner, was able to restore the ability of synapses to be potentiated after long-term depression, thus indicating its important modulatory role in brain development.
Collapse
Affiliation(s)
- E Sermasi
- International School for Advanced Studies (SISSA), Neuroscience Program, Trieste, Italy
| | | | | |
Collapse
|
17
|
Sermasi E, Tropea D, Domenici L. Long term depression is expressed during postnatal development in rat visual cortex: a role for visual experience. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 113:61-5. [PMID: 10064875 DOI: 10.1016/s0165-3806(98)00190-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long term forms of synaptic plasticity and in particular LTD/LTP are both present in the mammalian visual cortex. However, while LTP is not inducible in adulthood LTD can be elicited in the mature brain, but its developmental pattern is unknown. Aim of this work was to investigate whether LTD is expressed during postnatal development and if it is modulated by visual experience. To investigate these points we have used rat primary visual cortex slices taken at different stages of functional maturation process, i.e., postnatal day 17 (P17), P23 and P30-35. LTD was assessed by measuring the amplitude of extracellular field potentials recorded in cortical layers 2/3 and elicited by low frequency stimulation to the white matter. LTD was expressed at all ages investigated without significant differences between age groups. These data indicate that LTD developmental expression is not temporally related with the period of functional maturation of rat visual cortex. Dark rearing from birth to P23 resulted in a reduction of LTD amplitude while light deprivation from P17 to P30 did not affect LTD expression in comparison to age matched control values. We suggest that light imprinting is essential for a normal LTD expression during postnatal development.
Collapse
Affiliation(s)
- E Sermasi
- International School for Advanced Studies (SISSA), Neuroscience Program, Via Beirut 2-4, 34014, Trieste, Italy
| | | | | |
Collapse
|