1
|
Zhang C, Zhu Z, Zhao J, Li Y, Zhang Z, Zheng Y. Ubiquitous light-emitting diodes: Potential threats to retinal circadian rhythms and refractive development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160809. [PMID: 36502986 DOI: 10.1016/j.scitotenv.2022.160809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The use of light-emitting diodes (LEDs) has increased considerably in the 21st century with humans living in a modern photoperiod with brighter nights and dimmer days. Prolonged exposure to LEDs, especially at night, is considered a new source of pollution because it may affect the synthesis and secretion of retinal melatonin and dopamine, resulting in negative impacts on retinal circadian clocks and potentially disrupting retinal circadian rhythms. The control of ocular refraction is believed to be related to retinal circadian rhythms. Moreover, the global prevalence of myopia has increased at an alarming rate in recent decades. The widespread use of LEDs and the rapid increase in the prevalence of myopia overlap, which is unlikely to be a coincidence. The connection among LEDs, retinal circadian rhythms, and refractive development is both fascinating and confusing. In this review, we aim to develop a systematic framework that includes LEDs, retinal circadian rhythms and refractive development. This paper summarizes the possible mechanisms by which LEDs may disrupt retinal circadian rhythms. We propose that prolonged exposure to LEDs may induce myopia by disrupting retinal circadian rhythms. Finally, we suggest several possible countermeasures to prevent LED interference on retinal circadian rhythms, with the hope of reducing the onset and progression of myopia.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhe Zhu
- Department of Ophthalmology, Eye Hospital of Shandong First Medical University, Shandong Eye Institute, Jinan 250000, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yanxia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhaoying Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
2
|
Abstract
Our sense of sight relies on photoreceptors, which transduce photons into the nervous system's electrochemical interpretation of the visual world. These precious photoreceptors can be disrupted by disease, injury, and aging. Once photoreceptors start to die, but before blindness occurs, the remaining retinal circuitry can withstand, mask, or exacerbate the photoreceptor deficit and potentially be receptive to newfound therapies for vision restoration. To maximize the retina's receptivity to therapy, one must understand the conditions that influence the state of the remaining retina. In this review, we provide an overview of the retina's structure and function in health and disease. We analyze a collection of observations on photoreceptor disruption and generate a predictive model to identify parameters that influence the retina's response. Finally, we speculate on whether the retina, with its remarkable capacity to function over light levels spanning nine orders of magnitude, uses these same adaptational mechanisms to withstand and perhaps mask photoreceptor loss.
Collapse
Affiliation(s)
- Joo Yeun Lee
- Department of Ophthalmology, University of California, San Francisco, California 94143, USA; , , ,
| | - Rachel A Care
- Department of Ophthalmology, University of California, San Francisco, California 94143, USA; , , ,
| | - Luca Della Santina
- Department of Ophthalmology, University of California, San Francisco, California 94143, USA; , , ,
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California 94143, USA
| | - Felice A Dunn
- Department of Ophthalmology, University of California, San Francisco, California 94143, USA; , , ,
| |
Collapse
|
3
|
|
4
|
Westbrook AM. A review of the neurophysiology of the turtle retina: Horizontal and bipolar cells. Clin Exp Optom 2021. [DOI: 10.1111/j.1444-0938.1994.tb03001.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
5
|
Parallel Synaptic Acetylcholine Signals Facilitate Large Monopolar Cell Repolarization and Modulate Visual Behavior in Drosophila. J Neurosci 2021; 41:2164-2176. [PMID: 33468565 DOI: 10.1523/jneurosci.2388-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/03/2020] [Accepted: 01/03/2021] [Indexed: 11/21/2022] Open
Abstract
Appropriate termination of the photoresponse in image-forming photoreceptors and downstream neurons is critical for an animal to achieve high temporal resolution. Although the cellular and molecular mechanisms of termination in image-forming photoreceptors have been extensively studied in Drosophila, the underlying mechanism of termination in their downstream large monopolar cells remains less explored. Here, we show that synaptic ACh signaling, from both amacrine cells (ACs) and L4 neurons, facilitates the rapid repolarization of L1 and L2 neurons. Intracellular recordings in female flies show that blocking synaptic ACh output from either ACs or L4 neurons leads to slow repolarization of L1 and L2 neurons. Genetic and electrophysiological studies in both male and female flies determine that L2 neurons express ACh receptors and directly receive ACh signaling. Moreover, our results demonstrate that synaptic ACh signaling from both ACs and L4 neurons simultaneously facilitates ERG termination. Finally, visual behavior studies in both male and female flies show that synaptic ACh signaling, from either ACs or L4 neurons to L2 neurons, is essential for the optomotor response of the flies in high-frequency light stimulation. Our study identifies parallel synaptic ACh signaling for repolarization of L1 and L2 neurons and demonstrates that synaptic ACh signaling facilitates L1 and L2 neuron repolarization to maintain the optomotor response of the fly on high-frequency light stimulation.SIGNIFICANCE STATEMENT The image-forming photoreceptor downstream neurons receive multiple synaptic inputs from image-forming photoreceptors and various types of interneurons. It remains largely unknown how these synaptic inputs modulate the neural activity and function of image-forming photoreceptor downstream neurons. We show that parallel synaptic ACh signaling from both amacrine cells and L4 neurons facilitates rapid repolarization of large monopolar cells in Drosophila and maintains the optomotor response of the fly on high-frequency light stimulation. This work is one of the first reports showing how parallel synaptic signaling modulates the activity of large monopolar cells and motion vision simultaneously.
Collapse
|
6
|
Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci 2020; 51:194-216. [PMID: 30270466 PMCID: PMC6441387 DOI: 10.1111/ejn.14185] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system. Dysregulation of retinal clocks not only causes retinal or ocular diseases, it also impacts the circadian rhythm of the whole body, as the light information transmitted from the retina entrains the brain clock that governs the body circadian rhythms. In this review, how circadian oscillations in various retinal cells are integrated, and how retinal diseases affect daily rhythms.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
7
|
Li L. Circadian Vision in Zebrafish: From Molecule to Cell and from Neural Network to Behavior. J Biol Rhythms 2019; 34:451-462. [DOI: 10.1177/0748730419863917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Most visual system functions, such as opsin gene expression, retinal neural transmission, light perception, and visual sensitivity, display robust day-night rhythms. The rhythms persist in constant lighting conditions, suggesting the involvement of endogenous circadian clocks. While the circadian pacemakers that control the rhythms of animal behaviors are mostly found in the forebrain and midbrain, self-sustained circadian oscillators are also present in the neural retina, where they play important roles in the regulation of circadian vision. This review highlights some of the correlative studies of the circadian control of visual system functions in zebrafish. Because zebrafish maintain a high evolutionary proximity to mammals, the findings from zebrafish research may provide insights for a better understanding of the mechanisms of circadian vision in other vertebrate species including humans.
Collapse
Affiliation(s)
- Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
8
|
Li L. Sensory Integration: Cross-Modal Communication Between the Olfactory and Visual Systems in Zebrafish. Chem Senses 2019; 44:351-356. [PMID: 31066902 DOI: 10.1093/chemse/bjz022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cross-modal sensory communication is an innate biological process that refers to the combination and/or interpretation of different types of sensory input in the brain. Often, this process conjugates with neural modulation, by which the neural signals that convey sensory information are adjusted, such as intensity, frequency, complexity, and/or novelty. Although the anatomic pathways involved in cross-modal sensory integration have been previously described, the course of development and the physiological roles of multisensory signaling integration in brain functions remain to be elucidated. In this article, I review some of the recent findings in sensory integration from research using the zebrafish models. In zebrafish, cross-modal sensory integration occurs between the olfactory and visual systems. It is mediated by the olfacto-retinal centrifugal (ORC) pathway, which originates from the terminalis nerve (TN) in the olfactory bulb and terminates in the neural retina. In the retina, the TNs synapse with the inner nuclear layer dopaminergic interplexiform cells (DA-IPCs). Through the ORC pathway, stimulation of the olfactory neurons alters the cellular activity of TNs and DA-IPCs, which in turn modulates retinal neural function and increases behavioral visual sensitivity.
Collapse
Affiliation(s)
- Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
9
|
Li L, Wojtowicz JL, Malin JH, Huang T, Lee EB, Chen Z. GnRH-mediated olfactory and visual inputs promote mating-like behaviors in male zebrafish. PLoS One 2017; 12:e0174143. [PMID: 28329004 PMCID: PMC5362193 DOI: 10.1371/journal.pone.0174143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/03/2017] [Indexed: 01/13/2023] Open
Abstract
The engagement of sexual behaviors is regulated by a number of factors which include gene expression, hormone circulation, and multi-sensory information integration. In zebrafish, when a male and a female are placed in the same container, they show mating-like behaviors regardless of whether they are kept together or separated by a net. No mating-like behaviors are observed when same-sex animals are put together. Through the olfacto-visual centrifugal pathway, activation of the terminalis nerve in the olfactory bulb increases GnRH signaling in the brain and triggers mating-like behaviors between males. In zebrafish mutants or wild-type fish in which the olfacto-visual centrifugal pathway is impaired or chemically ablated, in response to odor stimulation the mating-like behaviors between males are no longer evident. Together, the data suggest that the combination of olfactory and visual signals alter male zebrafish's mating-like behaviors via GnRH signaling.
Collapse
Affiliation(s)
- Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- * E-mail:
| | - Jennifer L. Wojtowicz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - John H. Malin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan,China
| | - Eric B. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Zijiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan,China
| |
Collapse
|
10
|
Yum SK, Moon CJ, Youn YA, Lee JH, Kim SY, Sung IK. Expanded criteria for retinopathy of prematurity screening in moderately preterm infants: Single-center pilot study. Pediatr Int 2016; 58:1158-1162. [PMID: 27038039 DOI: 10.1111/ped.12996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/11/2016] [Accepted: 03/24/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND While developed countries seek to lower the gestational age and birthweight parameters in retinopathy of prematurity (ROP) screening, older, larger infants still develop ROP in other parts of the world. The aim of this study was therefore to define criteria to identify potential ROP developers who are outliers of the common screening range. METHODS A retrospective medical record review was performed in 147 inborn moderately preterm infants admitted to the neonatal intensive care unit during the study period. Univariate and logistic regression analysis was carried out. RESULTS Forty-two infants developed ROP. Gestational age (31.4 ± 1.1 vs 32.4 ± 1.0 weeks, P = 0.000) and birthweight (1607.7 ± 339.4 vs 1846.4 ± 317.2 g, P = 0.000) were lower in those who developed ROP. Respiratory distress syndrome (P = 0.026) and documented sepsis (P = 0.003) were significant comorbidities on univariate analysis. Inotrope need >72 h starting in the first week of life (P = 0.004; OR, 5.181) and more than three transfusions of packed red blood cells (P = 0.028; OR, 3.891) were also significant, both on univariate and multivariate analysis. CONCLUSIONS In moderately preterm infants, status should be evaluated in order to effectively select candidates for ROP screening without missing potential ROP developers.
Collapse
Affiliation(s)
- Sook Kyung Yum
- Division of Neonatology, Department of Pediatrics, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Cheong-Jun Moon
- Division of Neonatology, Department of Pediatrics, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Young-Ah Youn
- Division of Neonatology, Department of Pediatrics, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Jung Hyun Lee
- Division of Neonatology, Department of Pediatrics, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - So Young Kim
- Division of Neonatology, Department of Pediatrics, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - In Kyung Sung
- Division of Neonatology, Department of Pediatrics, College of Medicine, Catholic University of Korea, Seoul, Korea
| |
Collapse
|
11
|
Vuong HE, Hardi CN, Barnes S, Brecha NC. Parallel Inhibition of Dopamine Amacrine Cells and Intrinsically Photosensitive Retinal Ganglion Cells in a Non-Image-Forming Visual Circuit of the Mouse Retina. J Neurosci 2015; 35:15955-70. [PMID: 26631476 PMCID: PMC4666919 DOI: 10.1523/jneurosci.3382-15.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022] Open
Abstract
An inner retinal microcircuit composed of dopamine (DA)-containing amacrine cells and melanopsin-containing, intrinsically photosensitive retinal ganglion cells (M1 ipRGCs) process information about the duration and intensity of light exposures, mediating light adaptation, circadian entrainment, pupillary reflexes, and other aspects of non-image-forming vision. The neural interaction is reciprocal: M1 ipRGCs excite DA amacrine cells, and these, in turn, feed inhibition back onto M1 ipRGCs. We found that the neuropeptide somatostatin [somatotropin release inhibiting factor (SRIF)] also inhibits the intrinsic light response of M1 ipRGCs and postulated that, to tune the bidirectional interaction of M1 ipRGCs and DA amacrine cells, SRIF amacrine cells would provide inhibitory modulation to both cell types. SRIF amacrine cells, DA amacrine cells, and M1 ipRGCs form numerous contacts. DA amacrine cells and M1 ipRGCs express the SRIF receptor subtypes sst(2A) and sst4 respectively. SRIF modulation of the microcircuit was investigated with targeted patch-clamp recordings of DA amacrine cells in TH-RFP mice and M1 ipRGCs in OPN4-EGFP mice. SRIF increases K(+) currents, decreases Ca(2+) currents, and inhibits spike activity in both cell types, actions reproduced by the selective sst(2A) agonist L-054,264 (N-[(1R)-2-[[[(1S*,3R*)-3-(aminomethyl)cyclohexyl]methyl]amino]-1-(1H-indol-3-ylmethyl)-2-oxoethyl]spiro[1H-indene-1,4'-piperidine]-1'-carboxamide) in DA amacrine cells and the selective sst4 agonist L-803,087 (N(2)-[4-(5,7-difluoro-2-phenyl-1H-indol-3-yl)-1-oxobutyl]-L-arginine methyl ester trifluoroacetate) in M1 ipRGCs. These parallel actions of SRIF may serve to counteract the disinhibition of M1 ipRGCs caused by SRIF inhibition of DA amacrine cells. This allows the actions of SRIF on DA amacrine cells to proceed with adjusting retinal DA levels without destabilizing light responses by M1 ipRGCs, which project to non-image-forming targets in the brain.
Collapse
Affiliation(s)
- Helen E Vuong
- Departments of Neurobiology and Molecular, Cellular, and Integrative Physiology, Stein Eye Institute, and
| | | | - Steven Barnes
- Departments of Neurobiology and Departments of Physiology and Biophysics and Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada, and Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
| | - Nicholas C Brecha
- Departments of Neurobiology and Molecular, Cellular, and Integrative Physiology, Stein Eye Institute, and CURE: Digestive Diseases Research Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California 90095, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073
| |
Collapse
|
12
|
Pfister D, Yu C, Kim DS, Li J, Drewing A, Li L. Zebrafish Olfacto-Retinal Centrifugal Axon Projection and Distribution: Effects of Gonadotropin-Releasing Hormone and Dopaminergic Signaling. Dev Neurosci 2015; 38:27-33. [PMID: 26505192 DOI: 10.1159/000439524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/19/2015] [Indexed: 11/19/2022] Open
Abstract
The terminalis neurons (TNs) have been described in teleost species. In zebrafish, the TNs are located in the olfactory bulb. The TNs synthesize and release gonadotropin-releasing hormone (GnRH) as one of the major neurotransmitters. The TNs project axons to many brain areas, which include the neural retina. In the retina, the TN axons synapse with dopaminergic interplexiform cells (DA-IPCs) and retinal ganglion cells (RGCs). In this research, we examine the role of GnRH and dopaminergic signaling in TN axon projection to the retina using the transgenic zebrafish Tg(GnRH-3::GFP). While the TNs developed at 34 h postfertilization (hpf), the first TN axons were not detected in the retina until 48-50 hpf, when the first DA-IPCs were differentiated. In developing embryos, inhibition of retinal GnRH signaling pathways severely interrupted the projection of TN axons to the retina. However, inhibition of retinal dopaminergic signaling produced little effect on TN axon projection. In adult retinas, inactivation of GnRH receptors disrupted the patterns of TN axon distribution, and depletion of DA-IPCs abolished the TN axons. When DA-IPCs regenerated, the TN axons reappeared. Together, the data suggest that in developing zebrafish retinas GnRH signaling is required for TN axon projection, whereas in adult retinas activation of GnRH and dopaminergic signaling transduction is required for normal distribution of the TN axons.
Collapse
Affiliation(s)
- Delaney Pfister
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Ind., USA
| | | | | | | | | | | |
Collapse
|
13
|
Esposti F, Johnston J, Rosa JM, Leung KM, Lagnado L. Olfactory stimulation selectively modulates the OFF pathway in the retina of zebrafish. Neuron 2013; 79:97-110. [PMID: 23849198 PMCID: PMC3710973 DOI: 10.1016/j.neuron.2013.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 01/11/2023]
Abstract
Cross-modal regulation of visual performance by olfactory stimuli begins in the retina, where dopaminergic interneurons receive projections from the olfactory bulb. However, we do not understand how olfactory stimuli alter the processing of visual signals within the retina. We investigated this question by in vivo imaging activity in transgenic zebrafish expressing SyGCaMP2 in bipolar cell terminals and GCaMP3.5 in ganglion cells. The food-related amino acid methionine reduced the gain and increased sensitivity of responses to luminance and contrast transmitted through OFF bipolar cells but not ON. The effects of olfactory stimulus were blocked by inhibiting dopamine uptake and release. Activation of dopamine receptors increased the gain of synaptic transmission in vivo and potentiated synaptic calcium currents in isolated bipolar cells. These results indicate that olfactory stimuli alter the sensitivity of the retina through the dopaminergic regulation of presynaptic calcium channels that control the gain of synaptic transmission through OFF bipolar cells. Olfactory stimuli regulate transmission of signals through retinal bipolar cells Modulation of synaptic gain and sensitivity occur in OFF bipolar cells but not ON An inhibitor of dopamine uptake blocks odor-induced changes in synaptic gain Dopamine potentiates presynaptic calcium channels in isolated bipolar cells
Collapse
Affiliation(s)
- Federico Esposti
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | | | | | | | | |
Collapse
|
14
|
Role of melatonin and its receptors in the vertebrate retina. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:211-42. [PMID: 23273863 DOI: 10.1016/b978-0-12-405210-9.00006-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melatonin is a chemical signal of darkness that is produced by retinal photoreceptors and pinealocytes. In the retina, melatonin diffuses from the photoreceptors to bind to specific receptors on a variety of inner retinal neurons to modify their activity. Potential target cells for melatonin in the inner retina are amacrine cells, bipolar cells, horizontal cells, and ganglion cells. Melatonin inhibits the release of dopamine from amacrine cells and increases the light sensitivity of horizontal cells. Melatonin receptor subtypes show differential, cell-specific patterns of expression that are likely to underlie differential functional modulation of specific retinal pathways. Melatonin potentiates rod signals to ON-type bipolar cells, via activation of the melatonin MT2 (Mel1b) receptor, suggesting that melatonin modulates the function of specific retinal circuits based on the differential distribution of its receptors. The selective and differential expression of melatonin receptor subtypes in cone circuits suggest a conserved function for melatonin in enhancing transmission from rods to second-order neurons and thus promote dark adaptation.
Collapse
|
15
|
Hammond DS, Wildsoet CF. Compensation to positive as well as negative lenses can occur in chicks reared in bright UV lighting. Vision Res 2012; 67:44-50. [PMID: 22800617 PMCID: PMC4008941 DOI: 10.1016/j.visres.2012.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
An earlier report describing a lack of compensation to imposed myopic and hyperopic defocus in chicks reared in UV lighting has led to the belief that the spatial resolving power of the UV cone photoreceptor network in chicks is not capable of decoding optical defocus. However this study used dim light rearing conditions, of less than 10 lx. The purpose of the current study was to determine if emmetropization is possible in young chicks reared under higher luminance, UV lighting conditions. Young, 4 day-old chicks were reared under diurnal near UV (390 nm) illumination set to either 20 or 200 lx while wearing a monocular defocusing lens (+20, +10, -10 or -20 D), for 7 days. Similarly treated control groups were reared under diurnal white lighting (WL) of matching illuminance. The WL and UV LED sources were set to equivalent illuminances, measured in "chick lux", calculated from radiometer readings taken through appropriate narrow band interference filters, and a mathematical model of the spectral sensitivity of the chick visual system. High resolution A-scan ultrasonography was undertaken on days 0 (before lenses were fitted), 2, 4, and 7 to track ocular dimensions and refractive errors were measured by retinoscopy on days 0 and 7. Compensation to negative lenses was unaffected by UV illuminance levels, with near full compensation being achieved under both conditions, as well as under both WL conditions. In contrast, compensation to the positive lenses was markedly impaired in 20 lx UV lighting, with increased instead of decreased axial elongation along with a myopic refractive shift being recorded with the +10D lens. Compensation under both WL conditions was again near normal for the +10D lens. However, with the +20 D lens, myopic shifts in refractive error were observed under both dim UV and WL conditions. The spatial resolving power of the UV cone photoreceptor network in the chick is sufficient to detect optical defocus and guide the emmetropization response, provided illumination is sufficiently high. However, compensation to imposed myopic defocus may be compromised, when either the amount of defocus is very high or illumination low, especially when the wavelength is restricted to the UV range.
Collapse
Affiliation(s)
- David S Hammond
- School of Optometry, University of California-Berkeley, Berkeley, CA 94720-2020, USA
| | | |
Collapse
|
16
|
Khadjevand F, Shahzadi S, Abbassian A. Reduction of negative afterimage duration in Parkinson's disease patients: a possible role for dopaminergic deficiency in the retinal Interplexiform cell layer. Vision Res 2009; 50:279-83. [PMID: 20004214 DOI: 10.1016/j.visres.2009.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 11/18/2022]
Abstract
Dopaminergic deficiency may affect Parkinson's disease patients (PD) in the central as well as the peripheral tissues. In the retina, the neuromodulatory role of the dopaminergic Interplexiform cell layer (IP) plays a major role in the retinal light adaptation and may account for the duration of the negative afterimage. Here we present results showing a significant reduction of negative afterimage duration in PD patients. This supports the hypothesis that the retinal dopaminergic system may be the main cause for the long duration of negative afterimage. We suggest that the observed reduction of afterimage duration is due to possible dopaminergic deficiency in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Fatemeh Khadjevand
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran.
| | | | | |
Collapse
|
17
|
Hayashida Y, Rodríguez CV, Ogata G, Partida GJ, Oi H, Stradleigh TW, Lee SC, Colado AF, Ishida AT. Inhibition of adult rat retinal ganglion cells by D1-type dopamine receptor activation. J Neurosci 2009; 29:15001-16. [PMID: 19940196 PMCID: PMC3236800 DOI: 10.1523/jneurosci.3827-09.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/01/2009] [Accepted: 10/22/2009] [Indexed: 11/21/2022] Open
Abstract
The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D(1a) receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D(1)-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D(1)-type receptors, SCH-23390 [R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine] reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking I(h). Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na(+) current (I(Na)) amplitude, and tetrodotoxin, at doses that reduced I(Na) as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D(1)-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the presynaptic and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing.
Collapse
Affiliation(s)
- Yuki Hayashida
- Departments of Neurobiology, Physiology, and Behavior, and
| | | | - Genki Ogata
- Departments of Neurobiology, Physiology, and Behavior, and
| | | | - Hanako Oi
- Departments of Neurobiology, Physiology, and Behavior, and
| | | | - Sherwin C. Lee
- Departments of Neurobiology, Physiology, and Behavior, and
| | | | - Andrew T. Ishida
- Departments of Neurobiology, Physiology, and Behavior, and
- Ophthalmology and Vision Science, University of California, Davis, Davis, California 95616
| |
Collapse
|
18
|
The catecholamine neuron: Historical and future perspectives. Prog Neurobiol 2009; 90:75-81. [PMID: 19853013 DOI: 10.1016/j.pneurobio.2009.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 10/09/2009] [Indexed: 01/22/2023]
Abstract
My goals for this perspective are to enumerate what I consider to have been the major discoveries in the investigations of the central catecholamine neuron systems from the synaptic, cellular and systems physiological and neurohistochemical perspectives. To do so, I will emphasize here the synaptic and physiological aspects of the central noradrenergic (NE) system, considering both the past research and what we may expect to witness in the decades ahead.
Collapse
|
19
|
Zhang HY, Li WC, Heitler WJ, Sillar KT. Electrical coupling synchronises spinal motoneuron activity during swimming in hatchling Xenopus tadpoles. J Physiol 2009; 587:4455-66. [PMID: 19635820 PMCID: PMC2766650 DOI: 10.1113/jphysiol.2009.173468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 07/20/2009] [Indexed: 12/22/2022] Open
Abstract
The role of electrical coupling between neurons in the swimming rhythm generator of Xenopus embryos has been studied using pharmacological blockade of gap junctions. A conspicuous effect of 18beta-glycyrrhetinic acid (18beta-GA) and carbenoxolone, which have been shown to block electrical coupling in this preparation, was to increase the duration of ventral root bursts throughout the spinal cord during swimming. The left-right coordination, the swimming frequency and the duration of swimming episodes were not affected by concentrations of 18beta-GA which significantly increased burst durations. However, the longitudinal coupling was affected such that 18beta-GA led to a significant correlation between rostrocaudal delays and cycle periods, which is usually only present in older larval animals. Patch clamp recordings from spinal motoneurons tested whether gap junction blockers affect the spike timing and/or firing pattern of motoneurons during fictive swimming. In the presence of 18beta-GA motoneurons continued to fire a single, but broader action potential in each cycle of swimming, and the timing of their spikes relative to the ventral root burst became more variable. 18beta-GA had no detectable effect on the resting membrane potential of motoneurons, but led to a significant increase in input resistance, consistent with the block of gap junctions. This effect did not result in increased firing during swimming, despite the fact that multiple spikes can occur in response to current injection. Applications of 18beta-GA at larval stage 42 had no discernible effect on locomotion. The results, which suggest that electrical coupling primarily functions to synchronize activity in synergistic motoneurons during embryo swimming, are discussed in the context of motor system development.
Collapse
Affiliation(s)
- Hong-Yan Zhang
- School of Biology, University of St Andrews, St Andrews KY16 9TS, Scotland, UK
| | | | | | | |
Collapse
|
20
|
Janssen-Bienhold U, Trümpler J, Hilgen G, Schultz K, Müller LPDS, Sonntag S, Dedek K, Dirks P, Willecke K, Weiler R. Connexin57 is expressed in dendro-dendritic and axo-axonal gap junctions of mouse horizontal cells and its distribution is modulated by light. J Comp Neurol 2009; 513:363-74. [PMID: 19177557 DOI: 10.1002/cne.21965] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mouse horizontal cells are coupled by gap junctions composed of connexin57. These gap junctions are regulated by ambient light via multiple neuromodulators including dopamine. In order to analyze the distribution and structure of horizontal cell gap junctions in the mouse retina, and examine the effects of light adaptation on gap junction density, we developed antibodies that detect mouse retinal connexin57. Using immunohistochemistry in retinal slices, flat-mounted retinas, and dissociated retinal cells, we showed that connexin57 is expressed in the dendrites and axon terminal processes of mouse horizontal cells. No staining was found in retinas of connexin57-deficient mice. Significantly more connexin57-positive puncta were found in the distal than in the proximal outer plexiform layer, indicating a higher level of expression in axon terminal processes than in the dendrites. We also examined the gap junctions using immunoelectron microscopy and showed that connexin57 does not form hemichannels in the horizontal cell dendritic tips. Light adaptation resulted in a significant increase in the number of connexin57-immunoreactive plaques in the outer plexiform layer, consistent with previously reported effects of light adaptation on connexin57 expression in the mouse retina. This study shows for the first time the detailed location of connexin57 expression within mouse horizontal cells, and provides the first ultrastructural data on mouse horizontal cell gap junctions.
Collapse
|
21
|
Pozdeyev N, Tosini G, Li L, Ali F, Rozov S, Lee RH, Iuvone PM. Dopamine modulates diurnal and circadian rhythms of protein phosphorylation in photoreceptor cells of mouse retina. Eur J Neurosci 2008; 27:2691-700. [PMID: 18547251 PMCID: PMC2440701 DOI: 10.1111/j.1460-9568.2008.06224.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many aspects of photoreceptor metabolism are regulated as diurnal or circadian rhythms. The nature of the signals that drive rhythms in mouse photoreceptors is unknown. Dopamine amacrine cells in mouse retina express core circadian clock genes, leading us to test the hypothesis that dopamine regulates rhythms of protein phosphorylation in photoreceptor cells. To this end we investigated the phosphorylation of phosducin, an abundant photoreceptor-specific phosphoprotein. In mice exposed to a daily light-dark cycle, robust daily rhythms of phosducin phosphorylation and retinal dopamine metabolism were observed. Phospho-phosducin levels were low during the daytime and high at night, and correlated negatively with levels of the dopamine metabolite 3,4-dihydroxyphenylacetic acid. The effect of light on phospho-phosducin levels was mimicked by pharmacological activation of dopamine D4 receptors. The amplitude of the diurnal rhythm of phospho-phosducin was reduced by > 50% in D4 receptor-knockout mice, due to higher daytime levels of phospho-phosducin. In addition, the daytime level of phospho-phosducin was significantly elevated by L-745,870, a dopamine D4 receptor antagonist. These data indicate that dopamine and other light-dependent processes cooperatively regulate the diurnal rhythm of phosducin phosphorylation. Under conditions of constant darkness a circadian rhythm of phosducin phosphorylation was observed, which correlated negatively with the circadian rhythm of 3,4-dihydroxyphenylacetic acid levels. The circadian fluctuation of phospho-phosducin was completely abolished by constant infusion of L-745,870, indicating that the rhythm of phospho-phosducin level is driven by dopamine. Thus, dopamine release in response to light and circadian clocks drives daily rhythms of protein phosphorylation in photoreceptor cells.
Collapse
Affiliation(s)
- Nikita Pozdeyev
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Wiechmann AF, Summers JA. Circadian rhythms in the eye: The physiological significance of melatonin receptors in ocular tissues. Prog Retin Eye Res 2008; 27:137-60. [DOI: 10.1016/j.preteyeres.2007.10.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Frazão R, Pinato L, da Silva AV, Britto LRG, Oliveira JA, Nogueira MI. Evidence of reciprocal connections between the dorsal raphe nucleus and the retina in the monkey Cebus apella. Neurosci Lett 2007; 430:119-23. [PMID: 18079059 DOI: 10.1016/j.neulet.2007.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/06/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
Possible connections between the retina and the raphe nuclei were investigated in the monkey Cebus apella by intraocular injection of cholera toxin B subunit (CTb). CTb-positive fibers were seen in the lateral region of the dorsal raphe nucleus (DR) on the side contralateral to the injection, and a few labeled perikarya were observed in the lateral portion of the DR on the ipsilateral side. Our findings suggest that direct and reciprocal connections between the retina and DR may exist in Cebus apella. These connections might be part of an important pathway through which the light/dark cycle influences the activity and/or functional status of raphe neurons, with potential effects on a broad set of neural and behavioral circuits.
Collapse
Affiliation(s)
- Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Brandies R, Yehuda S. The possible role of retinal dopaminergic system in visual performance. Neurosci Biobehav Rev 2007; 32:611-56. [PMID: 18061262 DOI: 10.1016/j.neubiorev.2007.09.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/23/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
It is a well-known fact that the retina is one of the tissues in the body, which is richest in dopamine (DA), yet the role of this system in various visual functions remains unclear. We have identified 13 types of DA retinal pathologies, and 15 visual functions. The pathologies were arranged in this review on a net grid, where one axis was "age" (i.e., from infancy to old age) and the other axis the level of retinal DA (i.e., from DA deficiency to DA excess, from Parkinson disorder to Schizophrenia). The available data on visual dysfunction(s) is critically presented for each of the DA pathologies. Special effort was made to evaluate whether the site of DA malfunction in the different DA pathologies and visual function is at retinal level or in higher brain centers. The mapping of DA and visual pathologies demonstrate the pivot role of retinal DA in mediating visual functions and also indicate the "missing links" in our understanding of the mechanisms underlying these relationships.
Collapse
Affiliation(s)
- R Brandies
- Department of Pharmacology, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 74100, Israel
| | | |
Collapse
|
25
|
Ribelayga C, Mangel SC. Tracer coupling between fish rod horizontal cells: modulation by light and dopamine but not the retinal circadian clock. Vis Neurosci 2007; 24:333-44. [PMID: 17640444 DOI: 10.1017/s0952523807070319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 03/21/2007] [Indexed: 11/08/2022]
Abstract
Horizontal cells are second order neurons that receive direct synaptic input from photoreceptors. In teleosts horizontal cells can be divided into two categories, cone-connected and rod-connected. Although the anatomy and physiology of fish cone horizontal cells have been extensively investigated, less is known about rod horizontal cells. This study was undertaken to determine whether light and/or the circadian clock regulate gap junctional coupling between goldfish rod horizontal cells. We used fine-tipped, microelectrode intracellular recording to monitor rod horizontal cells under various visual stimulation conditions, and tracer (biocytin) iontophoresis to visualize their morphology and evaluate the extent of coupling. Under dark-adapted conditions, rod horizontal cells were extensively coupled to cells of like-type (homologous coupling) with an average of approximately 120 cells coupled. Under these conditions, no differences were observed between day, night, the subjective day, and subjective night. In addition, under dark-adapted conditions, application of the dopamine D2-like agonist quinpirole (1 microM), the D2-like antagonist spiperone (10 microM), or the D1-like antagonist SCH23390 (10 microM) had no effect on rod horizontal cell tracer coupling. In contrast, the extent of tracer coupling was reduced by approximately 90% following repetitive light (photopic range) stimulation of the retina or application of the D1-agonist SKF38393 (10 microM) during the subjective day and night. We conclude that similarly to cone horizontal cells, rod horizontal cells are extensively coupled to one another in darkness and that the extent of coupling is dramatically reduced by bright light stimulation or dopamine D1-receptor activation. However, in contrast to cone horizontal cells whose light responses are under the control of the retinal clock, the light responses of rod horizontal cells under dark-adapted conditions were similar during the day, night, subjective day, and subjective night thus demonstrating that they are not under the influence of the circadian clock.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | |
Collapse
|
26
|
Shelley J, Dedek K, Schubert T, Feigenspan A, Schultz K, Hombach S, Willecke K, Weiler R. Horizontal cell receptive fields are reduced in connexin57-deficient mice. Eur J Neurosci 2007; 23:3176-86. [PMID: 16820008 DOI: 10.1111/j.1460-9568.2006.04848.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Horizontal cells are coupled by gap junctions; the extensive coupling of the horizontal cells is reflected in their large receptive fields, which extend far beyond the dendritic arbor of the individual cell. In the mouse retina, horizontal cells express connexin57 (Cx57). Tracer coupling of horizontal cells is impaired in Cx57-deficient mice, which suggests that the receptive fields of Cx57-deficient horizontal cells might be similarly reduced. To test this hypothesis we measured the receptive fields of horizontal cells from wildtype and Cx57-deficient mice. First, we examined the synaptic connections between horizontal cells and photoreceptors: no major morphological alterations were found. Moreover, horizontal cell spacing and dendritic field size were unaffected by Cx57 deletion. We used intracellular recordings to characterize horizontal cell receptive fields. Length constants were computed for each cell using the cell's responses to concentric light spots of increasing diameter. The length constant was dependent on the intensity of the stimulus: increasing stimulus intensity reduced the length constant. Deletion of Cx57 significantly reduced horizontal cell receptive field size. Dark resting potentials were strongly depolarized and response amplitudes reduced in Cx57-deficient horizontal cells compared to the wildtype, suggesting an altered input resistance. This was confirmed by patch-clamp recordings from dissociated horizontal cells; mean input resistance of Cx57-deficient horizontal cells was 27% lower than that of wildtype cells. These data thus provide the first quantification of mouse horizontal cell receptive field size and confirm the unique role of Cx57 in horizontal cell coupling and physiology.
Collapse
Affiliation(s)
- Jennifer Shelley
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Carrington E, Kokay IC, Duthie J, Lewis R, Mercer AR. Manipulating the light/dark cycle: effects on dopamine levels in optic lobes of the honey bee (Apis mellifera) brain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 193:167-80. [PMID: 17063341 DOI: 10.1007/s00359-006-0177-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/25/2006] [Accepted: 09/29/2006] [Indexed: 11/24/2022]
Abstract
This study examines the relationship between cyclical variations in optic-lobe dopamine levels and the circadian behavioural rhythmicity exhibited by forager bees. Our results show that changing the light-dark regimen to which bees are exposed has a significant impact not only on forager behaviour, but also on the levels of dopamine that can be detected in the optic lobes of the brain. Consistent with earlier reports, we show that foraging behaviour exhibits properties characteristic of a circadian rhythm. Foraging activity is entrained by daily light cycles to periods close to 24 h, it changes predictably in response to phase shifts in light, and it is able to free-run under constant conditions. Dopamine levels in the optic lobes also undergo cyclical variations, and fluctuations in endogenous dopamine levels are influenced significantly by alterations to the light/dark cycle. However, the time course of these changes is markedly different from changes observed at a behavioural level. No direct correlation could be identified between levels of dopamine in the optic lobes and circadian rhythmic activity of the honey bee.
Collapse
|
28
|
Wesner MF, Tan J. Contrast sensitivity in seasonal and nonseasonal depression. J Affect Disord 2006; 95:19-28. [PMID: 16793144 DOI: 10.1016/j.jad.2006.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 03/27/2006] [Indexed: 11/30/2022]
Abstract
BACKGROUND Psychophysics has been used for the early diagnosis of many diseases that affect the visual pathway including those not usually considered vision-related (e.g., Parkinson's disease). Little has been done, however, to investigate visual functioning in psychological disorders known to be effectively treated by phototherapy. We measured the static and dynamic spatial contrast detection thresholds of seasonally depressed (SAD), nonseasonally depressed (Depressed) and nondepressed (Control) individuals. METHODS Two psychophysical experiments which measured luminance contrast detection thresholds were conducted. Experiment 1 presented static, vertically oriented Gabors with center spatial frequencies ranging from 0.3 to 12.0 cpd (cycles per degree). Experiment 2 presented 0.5, 1.5 and 4.0 cpd Gabors whose phases were sinusoidally reversed at 2.0, 4.0, 8.0, 16.0, and 32.0 c/s (Hz). RESULTS SAD showed significantly greater contrast sensitivities than Controls for static spatial frequencies equal to or greater than 6.0 cpd. Depressed showed significantly greater contrast sensitivities at 6.0 cpd and 12.0 cpd. With phase modulation, the SAD group showed significantly enhanced contrast sensitivity with 4.0 cpd-2.0 Hz Gabors. All other results at lower spatial-higher temporal frequencies were not significant. LIMITATIONS Most of the subjects were drawn from the student population instead of the community or clinics, even though they met the criteria for clinical depression. Antidepressant use was not controlled for among the subjects. CONCLUSIONS These findings suggest that clinical depression can enhance contrast sensitivity when stimuli elicit strong parvocellular responses. These enhancements implicate differences in retinal functionality. Mechanisms that link neuromodulatory activity to retinal signal processing are proposed.
Collapse
Affiliation(s)
- Michael F Wesner
- Lakehead University, Department of Psychology, Thunder Bay, Canada ON P7B 5E1.
| | | |
Collapse
|
29
|
Kihara AH, de Castro LM, Moriscot AS, Hamassaki DE. Prolonged dark adaptation changes connexin expression in the mouse retina. J Neurosci Res 2006; 83:1331-41. [PMID: 16496335 DOI: 10.1002/jnr.20815] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the retina, ambient light levels influence the cell coupling provided by gap junction (GJ) channels, to compensate the visual function for various lighting conditions. However, the effects of ambient light levels on expression of connexins (Cx), the proteins that form the GJ channels, are poorly understood. In the present study, we first determined whether gene expression of specific Cx (Cx26, Cx31.1, Cx36, Cx37, Cx40, Cx43, Cx45, Cx50, and Cx57) was affected by prolonged dark adaptation. Cx mRNA relative levels were determined in mouse retinas dark adapted for 3 hr, 1 day, and 7 days by using quantitative real-time PCR. Transcript levels of some Cx were repressed after 3 hr (Cx57), 1 day (Cx45), or 7 days (Cx36 and Cx43) of dark adaptation; others were increased after 1 day (Cx50) or 7 days (Cx31.1 and Cx37); and two of them (Cx26 and Cx40) were not significantly altered. The second aim was to determine whether prolonged dark adaptation affects protein expression of two important Cx in retina: neuronal Cx36 and glial Cx43. We were able to demonstrate that important changes in protein distribution and expression also took place in retina during long-term dark adaptation. Given their localization, the specific alterations in Cx expression may reflect their distinct response to ambient light levels.
Collapse
Affiliation(s)
- Alexandre Hiroaki Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences,University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
30
|
Abstract
In the nervous system, interneuronal communication can occur via indirect or direct transmission. The mode of indirect communication involves chemical synapses, in which transmitters are released into the extracellular space to subsequently bind to the postsynaptic cell membrane. Direct communication is mediated by electrical synapses, and will be the focus of this review. The most prevalent group of electrical synapses are neuronal gap junctions (both terms are used interchangeably in this article), which directly connect the intracellular space of two cells by gap junction channels. The structural components of gap junction channels in the nervous system are connexin proteins, and, as recently identified, pannexin proteins. Connexin gap junction channels enable the intercellular, bidirectional transport of ions, metabolites, second messengers and other molecules smaller than 1 kD. More than 20 connexin genes have been found in the mouse and human genome. With the cloning of connexin36 (Cx36), a connexin protein with predominantly neuronal expression, the biochemical correlate of electrotonic transmission between neurons was identified. We outline the distribution of Cx36 as well as two other neuronal connexins (Cx57 and Cx45) in the nervous system, describing their spatial and temporal expression patterns. One focus in this review was the retina, as it shows many and diverse electrical synapses whose connexin components have been identified in fish and mammals. In view of the function of neuronal gap junctions, the network of inhibitory interneurons will be reviewed in detail, focussing on the hippocampus. Although in vivo data on pannexin proteins are still restricted to information on mRNA expression, electrophysiological data and the expression pattern in the nervous system have been included.
Collapse
Affiliation(s)
- Carola Meier
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Germany.
| | | |
Collapse
|
31
|
Yu CJ, Li L. Dopamine modulates voltage-activated potassium currents in zebrafish retinal on bipolar cells. J Neurosci Res 2006; 82:368-76. [PMID: 16206280 DOI: 10.1002/jnr.20637] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report a study of the characterization of voltage-activated potassium (K+) currents in retinal ON bipolar cells in zebrafish. At single-channels levels, the open probability of the K+ channels increased when the membrane potential was increased. The maximal open proportion was 0.76+/-0.05 under our testing conditions. In whole-cell recordings, the K+ current displayed two exponential components with the activation time constants of 11-22 msec (tau1) and 0.8-4 msec (tau2). Dopamine modulated the K+ current. Dopamine reduced the time constant tau2 when the membrane potential was depolarized to high voltages. A decrease in K+ current was seen when dopamine D1 receptors were selectively activated by SKF38393 or when the D1 receptor-coupled G-proteins were activated by GTP-gamma-S. The activation of adenylate cyclase by forskolin or the increase of intracellular cAMP concentrations by 8-Br-cAMP or Sp-cAMPS also resulted in a decrease in K+ current. Together, the data suggest that dopamine modulates the K+ current via D1 receptor-coupled G-protein pathways.
Collapse
Affiliation(s)
- Chuan-Jiang Yu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
32
|
Repérant J, Ward R, Miceli D, Rio JP, Médina M, Kenigfest NB, Vesselkin NP. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. ACTA ACUST UNITED AC 2006; 52:1-57. [PMID: 16469387 DOI: 10.1016/j.brainresrev.2005.11.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 11/24/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
The present review is a detailed survey of our present knowledge of the centrifugal visual system (CVS) of vertebrates. Over the last 20 years, the use of experimental hodological and immunocytochemical techniques has led to a considerable augmentation of this knowledge. Contrary to long-held belief, the CVS is not a unique property of birds but a constant component of the central nervous system which appears to exist in all vertebrate groups. However, it does not form a single homogeneous entity but shows a high degree of variation from one group to the next. Thus, depending on the group in question, the somata of retinopetal neurons can be located in the septo-preoptic terminal nerve complex, the ventral or dorsal thalamus, the pretectum, the optic tectum, the mesencephalic tegmentum, the dorsal isthmus, the raphé, or other rhombencephalic areas. The centrifugal visual fibers are unmyelinated or myelinated, and their number varies by a factor of 1000 (10 or fewer in man, 10,000 or more in the chicken). They generally form divergent terminals in the retina and rarely convergent ones. Their retinal targets also vary, being primarily amacrine cells with various morphological and neurochemical properties, occasionally interplexiform cells and displaced retinal ganglion cells, and more rarely orthotopic ganglion cells and bipolar cells. The neurochemical signature of the centrifugal visual neurons also varies both between and within groups: thus, several neuroactive substances used by these neurons have been identified; GABA, glutamate, aspartate, acetylcholine, serotonin, dopamine, histamine, nitric oxide, GnRH, FMRF-amide-like peptides, Substance P, NPY and met-enkephalin. In some cases, the retinopetal neurons form part of a feedback loop, relaying information from a primary visual center back to the retina, while in other, cases they do not. The evolutionary significance of this variation remains to be elucidated, and, while many attempts have been made to explain the functional role of the CVS, opinions vary as to the manner in which retinal activity is modified by this system.
Collapse
Affiliation(s)
- J Repérant
- CNRS UMR 5166, MNHN USM 0501, Département Régulation, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, C. P. 32, 7 rue Cuvier, 75231 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kihara AH, Tsurumaki AM, Ribeiro-do-Valle LE. Effects of ambient lighting on visual discrimination, forward masking and attentional facilitation. Neurosci Lett 2005; 393:36-9. [PMID: 16229950 DOI: 10.1016/j.neulet.2005.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 08/05/2005] [Accepted: 09/14/2005] [Indexed: 11/17/2022]
Abstract
Differences between neural processing underling day and night vision occur at initial transduction steps. However, comparison of a visual task performance in photopic versus scotopic situations has an intrinsic problem: ambient light levels directly affect the contrast between stimuli and background. By using a simple but innovative method, we were able to maintain the stimuli/background contrast in order to appropriately evaluate the effects of ambient lighting on visual discrimination, attentional facilitation and forward masking. Our results revealed that ambient light levels does not affect spatial accuracy in central vision, but peripheral stimuli are more rapidly recognized when presented in photopic conditions. Additionally, our data suggest that ambient lighting do not unbalance the opposing effects of attentional facilitation versus forward masking. Modulation of cell coupling that takes place in the retina triggered by ambient light levels may underlie differences in visual discrimination in photopic and scotopic conditions.
Collapse
Affiliation(s)
- Alexandre Hiroaki Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil.
| | | | | |
Collapse
|
34
|
Shen W. Repetitive light stimulation inducing glycine receptor plasticity in the retinal neurons. J Neurophysiol 2005; 94:2231-8. [PMID: 16105957 DOI: 10.1152/jn.01099.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurotransmitter receptor plasticity is a mechanism that can regulate the temporal and intensity encoding of a synapse. While this has been extensively studied as a mechanism of learning, less is known about such processes in sensory systems. This study examines modulation of glycine receptor function at the first synapse in the retina. It was found that horizontal cells, which are postsynaptic to photoreceptors, have glycine receptor currents that are enhanced when internal calcium is elevated. This can be achieved by glutamatergic synaptic input or by activation of voltage-gated calcium channels. When the retina was maintained in a dark-adapted state, the calcium levels in horizontal cells were relatively low. After a series of brief light stimuli, the internal calcium concentration in horizontal cells was elevated, and the glycine currents were faster and greater in amplitude. The increase of internal calcium levels was caused by increased transmitter release from photoreceptors. Thus glycine receptor function is state dependent and can be rapidly altered by synaptic input from photoreceptors. Light stimulation drives glycine receptor plasticity in the retinal neural network.
Collapse
Affiliation(s)
- Wen Shen
- Department of Biomedical Science, Florida Atlantic Univ., Bldg. BC-71, Rm. 229, 777 Glades Rd., Boca Raton, Florida 33431, USA.
| |
Collapse
|
35
|
Partida GJ, Lee SC, Haft-Candell L, Nichols GS, Ishida AT. DARPP-32-like immunoreactivity in AII amacrine cells of rat retina. J Comp Neurol 2005; 480:251-63. [PMID: 15515184 PMCID: PMC3232744 DOI: 10.1002/cne.20330] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous studies demonstrated that the dopamine- and adenosine 3',5'-monophosphate-regulated phosphatase inhibitor known as "DARPP-32" is present in rat, cat, monkey, and human retinas. We have followed up these studies by asking what specific cell subtypes contain DARPP-32. Using a polyclonal antibody directed against a peptide sequence of human DARPP-32, we immunostained adult rat retinas that were either transretinally sectioned or flat mounted and found DARPP-32-like immunoreactivity in some cells of the amacrine cell layer across the entire retinal surface. We report here, based on the shape and spatial distribution of these cells, their staining by an anti-parvalbumin antibody, and their juxtaposition with processes containing tyrosine hydroxylase, that DARPP-32-like immunoreactivity is present in AII amacrine cells of rat retina. These results suggest that the response of AII amacrine cells to dopamine is not mediated as simply as previously supposed.
Collapse
Affiliation(s)
| | | | | | | | - Andrew T. Ishida
- Correspondence to: Andrew Ishida at the address given above, tel & fax: (530) 752-3569,
| |
Collapse
|
36
|
Levy H, Twig G, Perlman I. Nitric oxide modulates the transfer function between cones and horizontal cells during changing conditions of ambient illumination. Eur J Neurosci 2004; 20:2963-74. [PMID: 15579150 DOI: 10.1111/j.1460-9568.2004.03758.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been suggested that nitric oxide (NO) serves as a retinal neuromodulator, adjusting retinal function to changing conditions of adaptation. We tested this hypothesis in the intact turtle retina by recording the photoresponses of L-cones and L1-horizontal cells, while changing retinal NO level and background illumination. Raising the retinal level of NO, by adding an NO donor (sodium nitroprusside) or the precursor for NO synthesis (L-arginine), induced response augmentation in L-cones and L1-horizontal cells. Lowering retinal level of NO by adding L-NAME, an inhibitor of NO synthesis, reduced the amplitudes of the photoresponses in these retinal neurons. The transfer function between L-cones and L1-horizontal cells, constructed from the photoresponses of these cells, was modified by NO and by background lights. The nonlinear transfer function, characteristic of the dark-adapted retina, became linear and of low gain when the retinal NO level was increased or by increasing the level of ambient illumination. In contrast, inhibiting NO synthesis in the light-adapted retina induced nonlinearity in the cone-to-horizontal cell transfer function similar to that seen in the dark-adapted state. NADPH diaphorase histochemistry, conducted on isolated retinal cells, demonstrated activity in cone inner segments and distal process of Müller cells. These findings support the hypothesis that NO synthesis in the distal turtle retina is triggered by background illumination, and that NO acts to adjust the modes of visual information processing in the outer plexiform layer to the conditions required during continuous background illumination.
Collapse
Affiliation(s)
- H Levy
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and the Rappaport Institute, P.O.Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
37
|
Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:113-37. [PMID: 15033583 DOI: 10.1016/j.bbamem.2003.10.023] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 10/14/2003] [Accepted: 10/14/2003] [Indexed: 01/25/2023]
Abstract
Gap junctions consist of intercellular channels dedicated to providing a direct pathway for ionic and biochemical communication between contacting cells. After an initial burst of publications describing electrical coupling in the brain, gap junctions progressively became less fashionable among neurobiologists, as the consensus was that this form of synaptic transmission would play a minimal role in shaping neuronal activity in higher vertebrates. Several new findings over the last decade (e.g. the implication of connexins in genetic diseases of the nervous system, in processing sensory information and in synchronizing the activity of neuronal networks) have brought gap junctions back into the spotlight. The appearance of gap junctional coupling in the nervous system is developmentally regulated, restricted to distinct cell types and persists after the establishment of chemical synapses, thus suggesting that this form of cell-cell signaling may be functionally interrelated with, rather than alternative to chemical transmission. This review focuses on gap junctions between neurons and summarizes the available data, derived from molecular, biological, electrophysiological, and genetic approaches, that are contributing to a new appreciation of their role in brain function.
Collapse
Affiliation(s)
- Sheriar G Hormuzdi
- Department of Clinical Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
38
|
Ambalavanan N, Whyte RK. The mismatch between evidence and practice. Common therapies in search of evidence. Clin Perinatol 2003; 30:305-31. [PMID: 12875356 DOI: 10.1016/s0095-5108(03)00021-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many therapies in neonatology persist without supportive evidence: some common therapies may actually be harmful. Evidence-based medicine is the "conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients". The best available evidence, however, is not always sound or valid evidence. Sometimes, when faced with a collection of reports that do not constitute good evidence, attempts to choose the best evidence become pointless; in this case, a statement of no good evidence is preferable. There is a continuing problem with the place of usual practice in the hierarchy of evidence; usual practice generates experience with a particular practice but no reliable information regarding how the practice compares with alternative strategies. Although clinical and institutional inertia combined with a litigious practice environment tend to uphold current practice, the field of neonatology is ripe with examples of established therapies that were subsequently shown to be harmful. It is important to focus on important long-term outcomes and as much on the possibility of harm as on the chance of benefit, especially for new therapies, before they become routine practice. In the face of inadequate evidence, it is particularly important to avoid the temptation to institute treatment guidelines that inhibit further research. Patients are better served by guidelines that recommend only strategies that are supported by strong evidence and recommend further research when the evidence is inadequate.
Collapse
Affiliation(s)
- Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, 525 New Hillman Building, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | | |
Collapse
|
39
|
Hankins MW, Lucas RJ. The primary visual pathway in humans is regulated according to long-term light exposure through the action of a nonclassical photopigment. Curr Biol 2002; 12:191-8. [PMID: 11839270 DOI: 10.1016/s0960-9822(02)00659-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The mammalian eye shows marked adaptations to time of day. Some of these modifications are not acute responses to short-term light exposure but rely upon assessments of the photic environment made over several hours. In the past, all attempts at a mechanistic understanding have assumed that these adaptations originate with light detection by one or other of the classical photoreceptor cells (rods or cones). However, previous work has demonstrated that the mammalian eye contains non-rod, non-cone photoreceptors. This study aimed to determine whether such photoreceptors contribute to retinal adaptation. RESULTS In the human retina, second-order processing of signals originating in cones takes significantly longer at night than during the day. Long-term light exposure at night is capable of reversing this effect. Here, we employed the cone ERG as a tool to examine the properties of the irradiance measurement pathway driving this reversal. Our findings indicate that this pathway (1) integrates irradiance measures over time periods ranging from at least 15 to 120 min; (2) responds to relatively bright light, having a dynamic range almost entirely outside the sensitivity of rods; (3) acts on the cone pathway primarily through a local retinal mechanism; and (4) detects light via an opsin:vitamin A photopigment (lambda(max) approximately 483 nm). CONCLUSIONS A photopigment with a spectral sensitivity profile quite different from those of the classical rod and cone opsins but matching the standard profile of an opsin:vitamin A-based pigment drives adaptations of the human primary cone visual pathway according to time of day.
Collapse
Affiliation(s)
- M W Hankins
- Department of Integrative and Molecular Neuroscience, Faculty of Medicine, Imerial College, London W6 8RF, United Kingdom.
| | | |
Collapse
|
40
|
Zhao Y, Kerscher N, Eysel U, Funke K. Changes of contrast gain in cat dorsal lateral geniculate nucleus by dopamine receptor agonists. Neuroreport 2001; 12:2939-45. [PMID: 11588607 DOI: 10.1097/00001756-200109170-00037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The modulatory effects of dopamine (DA) on the contrast gain of retino-geniculate transmission were tested with local micro-iontophoretical application of DA and the DA receptor agonists SKF38393 (SKF, D1/D5) and quinpirole (QUIN, D2/D3/D4) while recording visually induced spike activity of relay cells of the dorsal aspect of cat lateral geniculate nucleus (dLGN) in the anesthetised and paralyzed preparation. DA and QUIN could either facilitate or inhibit visual activity in a dose-dependent fashion: small amounts caused a facilitation while larger quantities resulted in a more (DA) or less (QUIN) strong inhibition. The effect of SKF was almost always suppressive and increased with the amount of drug applied. The absolute change in activity was depending on stimulus contrast and the strength of the elicited response: facilitation and inhibition of activity was proportional to stimulus contrast and response strength and thus resulted in a changed contrast gain. The results indicate that the visual deficits found in Parkinson's disease patients my be not solely related to retinal dysfunctions.
Collapse
Affiliation(s)
- Y Zhao
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
41
|
Mangel SC. Circadian clock regulation of neuronal light responses in the vertebrate retina. PROGRESS IN BRAIN RESEARCH 2001; 131:505-18. [PMID: 11420966 DOI: 10.1016/s0079-6123(01)31040-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S C Mangel
- Department of Neurobiology, University of Alabama School of Medicine, CIRC 425, 1719 6th Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
42
|
De Juan J, García M. Spinules and nematosomes in retinal horizontal cells: a "thorny" issue. PROGRESS IN BRAIN RESEARCH 2001; 131:519-37. [PMID: 11420967 DOI: 10.1016/s0079-6123(01)31041-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J De Juan
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Apdo. Correos 99, Alicante 03080, Spain.
| | | |
Collapse
|
43
|
Barlow R. Circadian and efferent modulation of visual sensitivity. PROGRESS IN BRAIN RESEARCH 2001; 131:487-503. [PMID: 11420965 DOI: 10.1016/s0079-6123(01)31039-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- R Barlow
- Center for Vision Research, Department of Ophthalmology, Upstate Medical University, 750 Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
44
|
Nir I, Haque R, Iuvone PM. Diurnal metabolism of dopamine in dystrophic retinas of homozygous and heterozygous retinal degeneration slow (rds) mice. Brain Res 2000; 884:13-22. [PMID: 11082482 DOI: 10.1016/s0006-8993(00)02855-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dopamine metabolism was studied in dystrophic retinal degeneration slow (rds) mice which carry a mutation in the rds/peripherin gene. RDS mutations in humans cause several forms of retinal degeneration. Dopamine synthesis and utilization were analyzed at various time points in the diurnal cycle in homozygous rds/rds retinas which lack photoreceptor outer segments and heterozygous rds/+ retinas which have short malformed outer segments. Homozygous retinas exhibited depressed dopamine synthesis and utilization while the heterozygous retina retained a considerable level of activity which was, nevertheless, significantly lower than that of normal retinas. By one year, heterozygous rds/+ retinas which had lost half of the photoreceptors still maintained significant levels of dopamine metabolism. Normal characteristics of dopamine metabolism such as a spike in dopamine utilization at light onset were observed in mutant retinas. However, light intensity-dependent changes in dopamine utilization were observed in normal but not rds/+ retinas. The findings of this study suggest that human patients with peripherin/rds mutations, or other mutations that result in abnormal outer segments that can still capture light, might maintain light-evoked dopamine metabolism and dopamine-dependent retinal functions during the progression of the disease, proportional to remaining levels of light capture capabilities. However, visual deficits due to reduced light-evoked dopamine metabolism and abnormal patterns of dopamine utilization could be expected in such diseased retinas.
Collapse
Affiliation(s)
- I Nir
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | |
Collapse
|
45
|
Smeets WJ, González A. Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:308-79. [PMID: 11011071 DOI: 10.1016/s0165-0173(00)00034-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comparative analysis of catecholaminergic systems in the brain and spinal cord of vertebrates forces to reconsider several aspects of the organization of catecholamine systems. Evidence has been provided for the existence of extensive, putatively catecholaminergic cell groups in the spinal cord, the pretectum, the habenular region, and cortical and subcortical telencephalic areas. Moreover, putatively dopamine- and noradrenaline-accumulating cells have been demonstrated in the hypothalamic periventricular organ of almost every non-mammalian vertebrate studied. In contrast with the classical idea that the evolution of catecholamine systems is marked by an increase in complexity going from anamniotes to amniotes, it is now evident that the brains of anamniotes contain catecholaminergic cell groups, of which the counterparts in amniotes have lost the capacity to produce catecholamines. Moreover, a segmental approach in studying the organization of catecholaminergic systems is advocated. Such an approach has recently led to the conclusion that the chemoarchitecture and connections of the basal ganglia of anamniote and amniote tetrapods are largely comparable. This review has also brought together data about the distribution of receptors and catecholaminergic fibers as well as data about developmental aspects. From these data it has become clear that there is a good match between catecholaminergic fibers and receptors, but, at many places, volume transmission seems to play an important role. Finally, although the available data are still limited, striking differences are observed in the spatiotemporal sequence of appearance of catecholaminergic cell groups, in particular those in the retina and olfactory bulb.
Collapse
Affiliation(s)
- W J Smeets
- Graduate School of Neurosciences of Amsterdam, Research Institute of Neurosciences, Amsterdam, The Netherlands.
| | | |
Collapse
|
46
|
Abstract
To understand information processing in the retina, it is important to identify and characterize the types of synaptic receptors and intrinsic ion channels in retinal neurons. In order to achieve a high degree of adaptability, retinal synapses have evolved multiple neuromodulatory mechanisms. Light or modulatory agents can alter the efficacies of both electrical and chemical synaptic transmission in the retina. Recent studies indicate that interaction of voltage-gated channels with those activated by neurotransmitters plays a significant role in shaping the light-evoked postsynaptic responses of retinal neurons. The fact that both types of channels are subject to modulation by multiple second messenger-mediated intracellular processes is a clear indicator of the importance of neuromodulation in retinal function. The whole-cell patch clamp technique provides a means to study mechanisms of regulation of ion channels by controlling intracellular as well as the extracellular environment. This review describes the experimental evidence, mostly obtained in our laboratory, which indicates the important role of Ca-dependent neuromodulatory processes in the regulation of signal transmission in the vertical pathway of the amphibian retina.
Collapse
Affiliation(s)
- A Akopian
- Department of Ophthalmology, New York University School of Medicine, New York, New York 10016,
| |
Collapse
|
47
|
Abstract
Dopamine is an important retinal neurotransmitter and neuromodulator that regulates key diurnal cellular and physiological functions. In the present study we carried out a comprehensive analysis of dopamine metabolism during the light phase of the diurnal cycle and evaluated the presence of diurnal and circadian rhythms of dopaminergic activity in the mouse retina. Steady-state levels of dopamine did not change significantly between the dark phase (night) and the light phase (day) of the diurnal cycle, nor did they change between early and late points in the day. Dopamine synthesis and utilization, however, revealed significant alterations between the night and day and between early and late time points in the day. A spike in synthesis and utilization was measured immediately after light onset at the end of the night. Subsequently, dopamine synthesis and utilization partially declined and remained stable throughout the remainder of the day at a level that was significantly higher than that at night. The burst of dopamine synthesis and utilization at the beginning of the day is entirely light evoked and not driven by a circadian clock. Similarly, there was no circadian rhythm in dopamine synthesis and utilization in mice kept in constant darkness. This daily pattern of dopaminergic activity may impact upon a variety of temporally regulated retinal events. Moreover, these data will provide a basis for evaluating the role of dopamine in retinal pathology in mouse models of retinal degeneration where mutations affect light perception.
Collapse
Affiliation(s)
- I Nir
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | |
Collapse
|
48
|
Abstract
We analyze the existence and stability of phase-locked states of neurons coupled electrically with gap junctions. We show that spike shape and size, along with driving current (which affects network frequency), play a large role in which phase-locked modes exist and are stable. Our theory makes predictions about biophysical models using spikes of different shapes, and we present simulations to confirm the predictions. We also analyze a large system of all-to-all coupled neurons and show that the splay-phase state can exist only for a certain range of frequencies.
Collapse
Affiliation(s)
- C C Chow
- Department of Mathematics, University of Pittsburgh, PA 15206, USA
| | | |
Collapse
|
49
|
Abstract
The visual sensitivity of zebrafish in which the retinal dopaminergic interplexiform cells (DA-IPCs) were destroyed by 6-hydroxydopamine was measured behaviorally. During the first 6-8 min of dark adaptation, visual thresholds of DA-IPC-depleted animals were similar to those of control animals. Thereafter, their visual thresholds were elevated so that by 14-18 min of dark adaptation, they were 2-3 log units above those of control animals. In DA-IPC-depleted animals, the electroretinogram was normal in terms of light sensitivity and waveform, but the light threshold for eliciting a ganglion cell discharge was raised by 1.8 log units as compared with control animals. No obvious rod system function was detected in DA-IPC-depleted animals as measured behaviorally. Partial rescue of the behavioral visual sensitivity loss in DA-IPC-depleted animals occurred when dopamine or a long-acting dopamine agonist (2-amino-6, 7-dihydroxy-1, 2, 3, 4-tetrahydronaphthalene hydrobromide) were injected intraocularly. Our data suggest that the principal visual defect shown by DA-IPC-depleted animals is attributable to effects occurring in the inner retina, mainly on rod signals. We also show that dopamine is involved in mediating the effect of the circadian clock on visual sensitivity.
Collapse
|
50
|
Abstract
We studied the role of GABA in adaptive changes in a lateral inhibitory system in the tiger salamander retina. In dark-adapted retinal slice preparations picrotoxin caused a slow enhancement of glycine-mediated IPSCs in ganglion cells. The enhancement of glycinergic IPSCs developed slowly over the course of 5-20 min, even though picrotoxin blocked both GABA(A) and GABA(C) receptors within a few seconds. The slow enhancement of glycinergic IPSCs by picrotoxin was much weaker in light-adapted preparations. The slow enhancement of glycinergic inhibitory inputs was not produced by bicuculline, indicating that it involved GABA(C) receptors. The responses of ganglion cells to direct application of glycine were not enhanced by picrotoxin, indicating that the enhancement was not caused by an action on glycine receptors. In dark-adapted eyecup preparations picrotoxin caused a slow enhancement of glycinergic IPSPs and transient lateral inhibition produced by a rotating windmill pattern, similar to the effect of light adaptation. The results suggest that the glycinergic inhibitory inputs are modulated by an unknown substance whose synthesis and/or release is inhibited in dark-adapted retinas by GABA acting at GABA(C) receptors.
Collapse
|