1
|
Mazi AR, Karakoc Y, Demirtas C, Aykin U, Yildirim M. Extracellular Matrix Alterations Due to Early-Life Adversity: Implications for Auditory Learning in Male Sprague-Dawley Rats. Mol Neurobiol 2025; 62:6490-6502. [PMID: 39812993 PMCID: PMC11953085 DOI: 10.1007/s12035-025-04690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
This study aimed to investigate the impact of early childhood chronic stress on the development of the brain extracellular matrix (ECM) and how alterations in the ECM following early-life adversity (ELA) affect auditory learning and cognitive flexibility. ELA was induced through a combination of maternal separation and neonatal isolation in male Sprague-Dawley rats, and the success of the ELA model was assessed behaviorally and biochemically. A cortex-dependent go/no-go task with two phases was used to determine the impact of ELA on auditory learning and cognitive flexibility. The effects of the ECM on cognition were tested via the enzymatic removal of the ECM. The molecular structure of the adult ECM was examined via immunohistochemistry. ELA impaired initial auditory learning but did not significantly affect cognitive flexibility. Hyase injection into the auditory cortex (ACx) restored initial learning. ELA rats display a reduced perineural net (PNN) and parvalbumin + cell density. Our findings reveal that ELA induces significant alterations in the ECM within the ACx, accompanied by impaired initial auditory learning. Although PNN density is already lower in ELA rats, degrading the ECM facilitates the repair of auditory learning. A reduced PNN number in ELA rats fails to enhance learning unless supplemented with Hyase injection.
Collapse
Affiliation(s)
- Aise Rumeysa Mazi
- Department of Biophysics, Hamidiye Faculty of Medicine, University of Health Sciences, Selimiye Mah. Tibbiye Cad. No:38, 34668, Uskudar, Istanbul, Turkey.
| | - Yunus Karakoc
- Department of Biophysics, Hamidiye Faculty of Medicine, University of Health Sciences, Selimiye Mah. Tibbiye Cad. No:38, 34668, Uskudar, Istanbul, Turkey
| | - Cumaali Demirtas
- Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Ugur Aykin
- Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Mehmet Yildirim
- Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
2
|
Pauligk S, Seidel M, Ritschel F, Geisler D, Doose A, Boehm I, Hellerhoff I, Ludwicki F, Roessner V, King JA, Ehrlich S. Overcontrol in anorexia nervosa: Elevated prefrontal activity and amygdala connectivity in a working memory task with food distractors. Int J Clin Health Psychol 2025; 25:100544. [PMID: 39896205 PMCID: PMC11787555 DOI: 10.1016/j.ijchp.2025.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Individuals with anorexia nervosa (AN) are thought to engage in excessive amounts of self-control, which may contribute to disorder development and maintenance. This "overcontrol" may explain previous findings of increased activity and connectivity in frontal brain regions involved in top-down control functions in response to diverse stimuli including emotionally salient visual food stimuli. However, these observations were made largely in tasks demanding explicit stimulus processing. Given the omnipresence of food cues and their particular relevance for AN, it deems important to test if these alterations are also present when food stimuli are task-irrelevant. To this end, we acquired functional magnetic resonance imaging data during a working memory 2-back task with images of high-caloric food as distractors in 32 acutely ill young women with AN and 32 age-matched female healthy control participants. Neural activity and connectivity was analyzed in a priori specified regions of interest involved in top-down control (dorsolateral prefrontal cortex; dlPFC) and affective processing (amygdala). Despite no group differences in task performance, activity of the left dlPFC was higher in AN compared with healthy controls across both food and non-food conditions. AN also showed increased negative connectivity between the left dlPFC and bilateral amygdalae. Generally increased dlPFC activation and altered dlPFC-amygdala connectivity in the context of our task is suggestive of excessive top-down control in AN. This activation pattern may reflect a neural substrate of overcontrol which occurs independent of external stimuli. This mechanism may be a potential treatment target, as it mirrors the clinical presentation of the disorder.
Collapse
Affiliation(s)
- Sophie Pauligk
- Division of Psychological and Social Medicine and Developmental Neuroscience, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Maria Seidel
- Division of Psychological and Social Medicine and Developmental Neuroscience, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Franziska Ritschel
- Division of Psychological and Social Medicine and Developmental Neuroscience, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Daniel Geisler
- Division of Psychological and Social Medicine and Developmental Neuroscience, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Arne Doose
- Division of Psychological and Social Medicine and Developmental Neuroscience, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Ilka Boehm
- Division of Psychological and Social Medicine and Developmental Neuroscience, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Chair of Clinical Child and Adolescent Psychology, Faculty of Psychology, Technische Universität Dresden, Chemnitzer Straße 46a, 01187, Dresden, Germany
| | - Inger Hellerhoff
- Division of Psychological and Social Medicine and Developmental Neuroscience, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Franziska Ludwicki
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Veit Roessner
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Joseph A. King
- Division of Psychological and Social Medicine and Developmental Neuroscience, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neuroscience, Translational Developmental Neuroscience Section, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
3
|
Bendre M, Checknita D, Todkar A, Åslund C, Hodgins S, Nilsson KW. Good parent-child relationship protects against alcohol use in maltreated adolescent females carrying the MAOA-uVNTR susceptibility allele. Front Psychiatry 2024; 15:1375363. [PMID: 39104880 PMCID: PMC11298380 DOI: 10.3389/fpsyt.2024.1375363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Risk-allele carriers of a Monoamine oxidase A (MAOA) gene, short-allele (MAOA-S) in males and long-allele (MAOA-L) in females, in the presence of a negative environment, are associated with alcohol misuse. Whether MAOA-S/L alleles also present susceptibility to a positive environment to mitigate the risk of alcohol misuse is unknown. Thus, we assessed the association of the three-way interaction of MAOA, maltreatment, and positive parent-child relationship with alcohol consumption among adolescents. Methods This prospective study included 1416 adolescents (females: 59.88%) aged 16 - 19 years from Sweden, enrolled in the "Survey of Adolescent Life in Västmanland" in 2012. Adolescents self-reported alcohol consumption, maltreatment by a family (FM) or non-family member (NFM), parent-child relationship, and left saliva for MAOA genotyping. Results and discussion We observed sex-dependent results. Females carrying MAOA-L with FM or NFM and a good parent-child relationship reported lower alcohol consumption than those with an average or poor parent-child relationship. In males, the interactions were not significant. Results suggest MAOA-L in females, conventionally regarded as a "risk", is a "plasticity" allele as it is differentially susceptible to negative and positive environments. Results highlight the importance of a good parent-child relationship in mitigating the risk of alcohol misuse in maltreated individuals carrying genetic risk. However, the interactions were not significant after adjusting to several environmental and behavioural covariates, especially parent's alcohol use, negative parent-child relationship, and nicotine use (smoking and/or snus), suggesting predictor and outcome intersection. Future studies and frameworks for preventive strategies should consider these covariates together with alcohol consumption. More studies with larger sample sizes are needed to replicate the findings.
Collapse
Affiliation(s)
- Megha Bendre
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
| | - David Checknita
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Aniruddha Todkar
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
| | - Cecilia Åslund
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Sheilagh Hodgins
- Centre de Recherche Institut national de psychiatrie légale Philippe-Pinel and Département de Psychiatrie, Université de Montréal, Montréal, QC, Canada
| | - Kent W. Nilsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Centre for Clinical Research, Uppsala University, Västerås, Sweden
- School of Health, Care and Social Welfare, Division of Public Health Sciences, Mälardalen University, Västerås, Sweden
| |
Collapse
|
4
|
Wulms N, Kugel H, Cnyrim C, Tenberge A, Schwindt W, Dannlowski U, Berger K, Sundermann B, Minnerup H. Cerebral MRI in a prospective cohort study on depression and atherosclerosis: the BiDirect sample, processing pipelines, and analysis tools. Eur Radiol Exp 2024; 8:16. [PMID: 38332362 PMCID: PMC10853141 DOI: 10.1186/s41747-023-00415-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/23/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND The use of cerebral magnetic resonance imaging (MRI) in observational studies has increased exponentially in recent years, making it critical to provide details about the study sample, image processing, and extracted imaging markers to validate and replicate study results. This article reviews the cerebral MRI dataset from the now-completed BiDirect cohort study, as an update and extension of the feasibility report published after the first two examination time points. METHODS We report the sample and flow of participants spanning four study sessions and twelve years. In addition, we provide details on the acquisition protocol; the processing pipelines, including standardization and quality control methods; and the analytical tools used and markers available. RESULTS All data were collected from 2010 to 2021 at a single site in Münster, Germany, starting with a population of 2,257 participants at baseline in 3 different cohorts: a population-based cohort (n = 911 at baseline, 672 with MRI data), patients diagnosed with depression (n = 999, 736 with MRI data), and patients with manifest cardiovascular disease (n = 347, 52 with MRI data). During the study period, a total of 4,315 MRI sessions were performed, and over 535 participants underwent MRI at all 4 time points. CONCLUSIONS Images were converted to Brain Imaging Data Structure (a standard for organizing and describing neuroimaging data) and analyzed using common tools, such as CAT12, FSL, Freesurfer, and BIANCA to extract imaging biomarkers. The BiDirect study comprises a thoroughly phenotyped study population with structural and functional MRI data. RELEVANCE STATEMENT The BiDirect Study includes a population-based sample and two patient-based samples whose MRI data can help answer numerous neuropsychiatric and cardiovascular research questions. KEY POINTS • The BiDirect study included characterized patient- and population-based cohorts with MRI data. • Data were standardized to Brain Imaging Data Structure and processed with commonly available software. • MRI data and markers are available upon request.
Collapse
Affiliation(s)
- Niklas Wulms
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany.
| | - Harald Kugel
- Clinic of Radiology Radiology, University Hospital Muenster, Münster, Germany
| | - Christian Cnyrim
- Department of Clinical Radiology, Klinikum Ibbenbueren, Ibbenbueren, Germany
| | - Anja Tenberge
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Wolfram Schwindt
- Clinic of Radiology Radiology, University Hospital Muenster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Benedikt Sundermann
- Clinic of Radiology Radiology, University Hospital Muenster, Münster, Germany
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, Medical Campus, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Heike Minnerup
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
5
|
Jamieson AJ, Leonards CA, Davey CG, Harrison BJ. Major depressive disorder associated alterations in the effective connectivity of the face processing network: a systematic review. Transl Psychiatry 2024; 14:62. [PMID: 38272868 PMCID: PMC10810788 DOI: 10.1038/s41398-024-02734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
Major depressive disorder (MDD) is marked by altered processing of emotional stimuli, including facial expressions. Recent neuroimaging research has attempted to investigate how these stimuli alter the directional interactions between brain regions in those with MDD; however, methodological heterogeneity has made identifying consistent effects difficult. To address this, we systematically examined studies investigating MDD-associated differences present in effective connectivity during the processing of emotional facial expressions. We searched five databases: PsycINFO, EMBASE, PubMed, Scopus, and Web of Science, using a preregistered protocol (registration number: CRD42021271586). Of the 510 unique studies screened, 17 met our inclusion criteria. These studies identified that compared with healthy controls, participants with MDD demonstrated (1) reduced connectivity from the dorsolateral prefrontal cortex to the amygdala during the processing of negatively valenced expressions, and (2) increased inhibitory connectivity from the ventromedial prefrontal cortex to amygdala during the processing of happy facial expressions. Most studies investigating the amygdala and anterior cingulate cortex noted differences in their connectivity; however, the precise nature of these differences was inconsistent between studies. As such, commonalities observed across neuroimaging modalities warrant careful investigation to determine the specificity of these effects to particular subregions and emotional expressions. Future research examining longitudinal connectivity changes associated with treatment response may provide important insights into mechanisms underpinning therapeutic interventions, thus enabling more targeted treatment strategies.
Collapse
Affiliation(s)
- Alec J Jamieson
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.
| | - Christine A Leonards
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher G Davey
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Ben J Harrison
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Wen Y, Li H, Huang Y, Qiao D, Ren T, Lei L, Li G, Yang C, Xu Y, Han M, Liu Z. Dynamic network characteristics of adolescents with major depressive disorder: Attention network mediates the association between anhedonia and attentional deficit. Hum Brain Mapp 2023; 44:5749-5769. [PMID: 37683097 PMCID: PMC10619388 DOI: 10.1002/hbm.26474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Attention deficit is a critical symptom that impairs social functioning in adolescents with major depressive disorder (MDD). In this study, we aimed to explore the dynamic neural network activity associated with attention deficits and its relationship with clinical outcomes in adolescents with MDD. We included 188 adolescents with MDD and 94 healthy controls. By combining psychophysics, resting-state electroencephalography (EEG), and functional magnetic resonance imaging (fMRI) techniques, we aimed to identify dynamic network features through the investigation of EEG microstate characteristics and related temporal network features in adolescents with MDD. At baseline, microstate analysis revealed that the occurrence of Microstate C in the patient group was lower than that in healthy controls, whereas the duration and coverage of Microstate D increased in the MDD group. Mediation analysis revealed that the probability of transition from Microstate C to D mediated anhedonia and attention deficits in the MDD group. fMRI results showed that the temporal variability of the dorsal attention network (DAN) was significantly weaker in patients with MDD than in healthy controls. Importantly, the temporal variability of DAN mediated the relationship between anhedonia and attention deficits in the patient group. After acute-stage treatment, the response prediction group (RP) showed improvement in Microstates C and D compared to the nonresponse prediction group (NRP). For resting-state fMRI data, the temporal variability of DAN was significantly higher in the RP group than in the NRP group. Overall, this study enriches our understanding of the neural mechanisms underlying attention deficits in patients with MDD and provides novel clinical biomarkers.
Collapse
Affiliation(s)
- Yujiao Wen
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Hong Li
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Yangxi Huang
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Dan Qiao
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Tian Ren
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Lei Lei
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Gaizhi Li
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Chunxia Yang
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Yifan Xu
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Min Han
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Zhifen Liu
- Department of PsychiatryThe First Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
7
|
Sun S, Yu H, Yu R, Wang S. Functional connectivity between the amygdala and prefrontal cortex underlies processing of emotion ambiguity. Transl Psychiatry 2023; 13:334. [PMID: 37898626 PMCID: PMC10613296 DOI: 10.1038/s41398-023-02625-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/30/2023] Open
Abstract
Processing facial expressions of emotion draws on a distributed brain network. In particular, judging ambiguous facial emotions involves coordination between multiple brain areas. Here, we applied multimodal functional connectivity analysis to achieve network-level understanding of the neural mechanisms underlying perceptual ambiguity in facial expressions. We found directional effective connectivity between the amygdala, dorsomedial prefrontal cortex (dmPFC), and ventromedial PFC, supporting both bottom-up affective processes for ambiguity representation/perception and top-down cognitive processes for ambiguity resolution/decision. Direct recordings from the human neurosurgical patients showed that the responses of amygdala and dmPFC neurons were modulated by the level of emotion ambiguity, and amygdala neurons responded earlier than dmPFC neurons, reflecting the bottom-up process for ambiguity processing. We further found parietal-frontal coherence and delta-alpha cross-frequency coupling involved in encoding emotion ambiguity. We replicated the EEG coherence result using independent experiments and further showed modulation of the coherence. EEG source connectivity revealed that the dmPFC top-down regulated the activities in other brain regions. Lastly, we showed altered behavioral responses in neuropsychiatric patients who may have dysfunctions in amygdala-PFC functional connectivity. Together, using multimodal experimental and analytical approaches, we have delineated a neural network that underlies processing of emotion ambiguity.
Collapse
Affiliation(s)
- Sai Sun
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
- Research Institute of Electrical Communication, Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Hongbo Yu
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Rongjun Yu
- Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Hong Kong, China
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Tao Z, Sun N, Yuan Z, Chen Z, Liu J, Wang C, Li S, Ma X, Ji B, Li K. Research on a New Intelligent and Rapid Screening Method for Depression Risk in Young People Based on Eye Tracking Technology. Brain Sci 2023; 13:1415. [PMID: 37891784 PMCID: PMC10605395 DOI: 10.3390/brainsci13101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Depression is a prevalent mental disorder, with young people being particularly vulnerable to it. Therefore, we propose a new intelligent and rapid screening method for depression risk in young people based on eye tracking technology. We hypothesized that the "emotional perception of eye movement" could characterize defects in emotional perception, recognition, processing, and regulation in young people at high risk for depression. Based on this hypothesis, we designed the "eye movement emotional perception evaluation paradigm" and extracted digital biomarkers that could objectively and accurately evaluate "facial feature perception" and "facial emotional perception" characteristics of young people at high risk of depression. Using stepwise regression analysis, we identified seven digital biomarkers that could characterize emotional perception, recognition, processing, and regulation deficiencies in young people at high risk for depression. The combined effectiveness of an early warning can reach 0.974. Our proposed technique for rapid screening has significant advantages, including high speed, high early warning efficiency, low cost, and high intelligence. This new method provides a new approach to help effectively screen high-risk individuals for depression.
Collapse
Affiliation(s)
- Zhanbo Tao
- Police Sports Department, Zhejiang Police College, Hangzhou 310053, China
- Joint Laboratory of Police Health Smart Surveillance, Zhejiang Police College, Hangzhou 310053, China
| | - Ningxia Sun
- Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zeyuan Chen
- Joint Laboratory of Police Health Smart Surveillance, Zhejiang Police College, Hangzhou 310053, China
| | - Jiakang Liu
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chen Wang
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuwu Li
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowen Ma
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Kai Li
- Joint Laboratory of Police Health Smart Surveillance, Zhejiang Police College, Hangzhou 310053, China
- Zhejiang-Japan Digital Diagnosis and Treatment and Equipment of Integrated Traditional Chinese Medicine and Western Medicine for Major Brain Diseases Joint Laboratory, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
9
|
Domke AK, Hempel M, Hartling C, Stippl A, Carstens L, Gruzman R, Herrera Melendez AL, Bajbouj M, Gärtner M, Grimm S. Functional connectivity changes between amygdala and prefrontal cortex after ECT are associated with improvement in distinct depressive symptoms. Eur Arch Psychiatry Clin Neurosci 2023; 273:1489-1499. [PMID: 36715751 PMCID: PMC10465635 DOI: 10.1007/s00406-023-01552-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression. However, the underlying mechanisms of action are not yet fully understood. The investigation of depression-specific networks using resting-state fMRI and the relation to differential symptom improvement might be an innovative approach providing new insights into the underlying processes. In this naturalistic study, we investigated the relationship between changes in resting-state functional connectivity (rsFC) and symptom improvement after ECT in 21 patients with treatment-resistant depression. We investigated rsFC before and after ECT and focused our analyses on FC changes directly related to symptom reduction and on FC at baseline to identify neural targets that might predict individual clinical responses to ECT. Additional analyses were performed to identify the direct relationship between rsFC change and symptom dimensions such as sadness, negative thoughts, detachment, and neurovegetative symptoms. An increase in rsFC between the left amygdala and left dorsolateral prefrontal cortex (DLPFC) after ECT was related to overall symptom reduction (Bonferroni-corrected p = 0.033) as well as to a reduction in specific symptoms such as sadness (r = 0.524, uncorrected p = 0.014), negative thoughts (r = 0.700, Bonferroni-corrected p = 0.002) and detachment (r = 0.663, p = 0.004), but not in neurovegetative symptoms. Furthermore, high baseline rsFC between the left amygdala and the right frontal pole (FP) predicted treatment outcome (uncorrected p = 0.039). We conclude that changes in FC in regions of the limbic-prefrontal network are associated with symptom improvement, particularly in affective and cognitive dimensions. Frontal-limbic connectivity has the potential to predict symptom improvement after ECT. Further research combining functional imaging biomarkers and a symptom-based approach might be promising.
Collapse
Affiliation(s)
- Ann-Kathrin Domke
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Moritz Hempel
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Corinna Hartling
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Anna Stippl
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Luisa Carstens
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Rebecca Gruzman
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Ana Lucia Herrera Melendez
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Matti Gärtner
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Simone Grimm
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| |
Collapse
|
10
|
Fan X, Mocchi M, Pascuzzi B, Xiao J, Metzger BA, Mathura RK, Hacker C, Adkinson JA, Bartoli E, Elhassa S, Watrous AJ, Zhang Y, Goodman W, Pouratian N, Bijanki KR. Brain mechanisms underlying the emotion processing bias in treatment-resistant depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554837. [PMID: 37693557 PMCID: PMC10491112 DOI: 10.1101/2023.08.26.554837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Depression is associated with a cognitive bias towards negative information and away from positive information. This biased emotion processing may underlie core depression symptoms, including persistent feelings of sadness or low mood and a reduced capacity to experience pleasure. The neural mechanisms responsible for this biased emotion processing remain unknown. Here, we had a unique opportunity to record stereotactic electroencephalography (sEEG) signals in the amygdala and prefrontal cortex (PFC) from 5 treatment-resistant depression (TRD) patients and 12 epilepsy patients (as control) while they participated in an affective bias task in which happy and sad faces were rated. First, compared with the control group, patients with TRD showed increased amygdala responses to sad faces in the early stage (around 300 ms) and decreased amygdala responses to happy faces in the late stage (around 600 ms) following the onset of faces. Further, during the late stage of happy face processing, alpha-band activity in PFC as well as alpha-phase locking between the amygdala and PFC were significantly greater in TRD patients compared to the controls. Second, after deep brain stimulation (DBS) delivered to bilateral subcallosal cingulate (SCC) and ventral capsule/ventral striatum (VC/VS), atypical amygdala and PFC processing of happy faces in TRD patients remitted toward the normative pattern. The increased amygdala activation during the early stage of sad face processing suggests an overactive bottom-up processing system in TRD. Meanwhile, the reduced amygdala response during the late stage of happy face processing could be attributed to inhibition by PFC through alpha-band oscillation, which can be released by DBS in SCC and VC/VS.
Collapse
|
11
|
Sacu S, Wackerhagen C, Erk S, Romanczuk-Seiferth N, Schwarz K, Schweiger JI, Tost H, Meyer-Lindenberg A, Heinz A, Razi A, Walter H. Effective connectivity during face processing in major depression - distinguishing markers of pathology, risk, and resilience. Psychol Med 2023; 53:4139-4151. [PMID: 35393001 PMCID: PMC10317809 DOI: 10.1017/s0033291722000824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 02/20/2022] [Accepted: 03/09/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Aberrant brain connectivity during emotional processing, especially within the fronto-limbic pathway, is one of the hallmarks of major depressive disorder (MDD). However, the methodological heterogeneity of previous studies made it difficult to determine the functional and etiological implications of specific alterations in brain connectivity. We previously reported alterations in psychophysiological interaction measures during emotional face processing, distinguishing depressive pathology from at-risk/resilient and healthy states. Here, we extended these findings by effective connectivity analyses in the same sample to establish a refined neural model of emotion processing in depression. METHODS Thirty-seven patients with MDD, 45 first-degree relatives of patients with MDD and 97 healthy controls performed a face-matching task during functional magnetic resonance imaging. We used dynamic causal modeling to estimate task-dependent effective connectivity at the subject level. Parametric empirical Bayes was performed to quantify group differences in effective connectivity. RESULTS MDD patients showed decreased effective connectivity from the left amygdala and left lateral prefrontal cortex to the fusiform gyrus compared to relatives and controls, whereas patients and relatives showed decreased connectivity from the right orbitofrontal cortex to the left insula and from the left orbitofrontal cortex to the right fusiform gyrus compared to controls. Relatives showed increased connectivity from the anterior cingulate cortex to the left dorsolateral prefrontal cortex compared to patients and controls. CONCLUSIONS Our results suggest that the depressive state alters top-down control of higher visual regions during face processing. Alterations in connectivity within the cognitive control network present potential risk or resilience mechanisms.
Collapse
Affiliation(s)
- Seda Sacu
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Wackerhagen
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Erk
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nina Romanczuk-Seiferth
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kristina Schwarz
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Janina I. Schweiger
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Heike Tost
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Heinz
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Adeel Razi
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
- Turner Institute for Brain and Mental Health & Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Henrik Walter
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
12
|
Han S, Li XX, Wei S, Zhao D, Ding J, Xu Y, Yu C, Chen Z, Zhou DS, Yuan TF. Orbitofrontal cortex-hippocampus potentiation mediates relief for depression: A randomized double-blind trial and TMS-EEG study. Cell Rep Med 2023:101060. [PMID: 37263267 DOI: 10.1016/j.xcrm.2023.101060] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/01/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Abstract
It has been 15 years since repetitive transcranial magnetic stimulation (rTMS) targeting the dorsolateral prefrontal cortex (DLPFC) was approved by the FDA for clinical depression treatment. Yet, the underlying mechanisms for rTMS-induced depression relief are not fully elucidated. This study analyzes TMS-electroencephalogram (EEG) data from 64 healthy control (HC) subjects and 53 patients with major depressive disorder (MDD) before and after rTMS treatment. Prior to treatment, patients with MDD have lower activity in the DLPFC, the hippocampus (HPC), the orbitofrontal cortex (OFC), and DLPFC-OFC connectivity compared with HCs. Following active rTMS treatment, patients with MDD show a significant increase in the DLPFC, HPC, and OFC. Notably, the increase in HPC activity is specifically associated with amelioration of depressive symptoms but not anxiety or sleep quality. The orbitofrontal-hippocampal pathway plays a crucial role in mediating depression relief following rTMS treatment. These findings suggest potential alternative targets for brain stimulation therapy against depression (chictr.org.cn: ChiCTR2100052007).
Collapse
Affiliation(s)
- Sizhu Han
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China; Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Xing-Xing Li
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| | - Shuochi Wei
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| | - Di Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Jinjun Ding
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Yongming Xu
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| | - Chang Yu
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| | - Zan Chen
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China
| | - Dong-Sheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo 315201, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
13
|
Liu H, Wang C, Lan X, Li W, Zhang F, Fu L, Ye Y, Ning Y, Zhou Y. Functional connectivity of the amygdala and the antidepressant and antisuicidal effects of repeated ketamine infusions in major depressive disorder. Front Neurosci 2023; 17:1123797. [PMID: 36816116 PMCID: PMC9932998 DOI: 10.3389/fnins.2023.1123797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Background Dysfunction of the amygdala is the core pathogenesis of major depressive disorder (MDD). However, it remains unclear whether ketamine treatment could modulate characteristics of amygdala-related networks. We aimed to explore the relationship between changes in the resting-state functional connectivity (RSFC) of the amygdala and the treatment of ketamine in MDD patients and to identify important neuroimaging predictors of treatment outcome. Methods Thirty-nine MDD patients received six subanesthetic dose infusions of ketamine. Depressive and suicidal symptoms were assessed and magnetic resonance imaging (MRI) scans were performed before and after six ketamine infusions. Forty-five healthy controls also underwent once MRI scans. Seed-based RSFC analyses were performed, focusing on the bilateral amygdala. Results After ketamine treatment, the RSFC between the left amygdala (LA) and the left medial superior frontal gyrus (mSFG) of MDD patients enhanced significantly, and this change was positively correlated with the reduction in depressive symptoms (r = 0.40, p = 0.012). The combination baseline RSFC of LA - right putamen and right amygdala (RA) - right putamen was related to the antidepressant and antisuicidal effects of ketamine. The combination baseline RSFC of LA - right putamen and RA - right putamen could predict the ineffective antidepressant (AUC = 0.739, p = 0.011) and antisuicidal effects of ketamine (AUC = 0.827, p = 0.001). Conclusion Ketamine can regulate the relevant circuits of amygdala and mSFG, and the baseline RSFC between bilateral amygdala and right putamen may be a predictor of the response of ketamine's antidepressant and antisuicidal treatment. Clinical trial registration https://www.chictr.org.cn/showproj.aspx?proj=20875, identifier ChiCTR-OOC-17012239.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chengyu Wang
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weicheng Li
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,Department of Psychology, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Fan Zhang
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,Department of Psychology, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ling Fu
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,Department of Psychology, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanxiang Ye
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuping Ning
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,Department of Psychology, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Yuping Ning,
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China,Yanling Zhou,
| |
Collapse
|
14
|
Sun S, Yu H, Yu R, Wang S. Functional connectivity between the amygdala and prefrontal cortex underlies processing of emotion ambiguity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525116. [PMID: 36747862 PMCID: PMC9900805 DOI: 10.1101/2023.01.24.525116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Processing facial expressions of emotion draws on a distributed brain network. In particular, judging ambiguous facial emotions involves coordination between multiple brain areas. Here, we applied multimodal functional connectivity analysis to achieve network-level understanding of the neural mechanisms underlying perceptual ambiguity in facial expressions. We found directional effective connectivity between the amygdala, dorsomedial prefrontal cortex (dmPFC), and ventromedial PFC, supporting both bottom-up affective processes for ambiguity representation/perception and top-down cognitive processes for ambiguity resolution/decision. Direct recordings from the human neurosurgical patients showed that the responses of amygdala and dmPFC neurons were modulated by the level of emotion ambiguity, and amygdala neurons responded earlier than dmPFC neurons, reflecting the bottom-up process for ambiguity processing. We further found parietal-frontal coherence and delta-alpha cross-frequency coupling involved in encoding emotion ambiguity. We replicated the EEG coherence result using independent experiments and further showed modulation of the coherence. EEG source connectivity revealed that the dmPFC top-down regulated the activities in other brain regions. Lastly, we showed altered behavioral responses in neuropsychiatric patients who may have dysfunctions in amygdala-PFC functional connectivity. Together, using multimodal experimental and analytical approaches, we have delineated a neural network that underlies processing of emotion ambiguity. Significance Statement A large number of different brain regions participate in emotion processing. However, it remains elusive how these brain regions interact and coordinate with each other and collectively encode emotions, especially when the task requires orchestration between different brain areas. In this study, we employed multimodal approaches that well complemented each other to comprehensively study the neural mechanisms of emotion ambiguity. Our results provided a systematic understanding of the amygdala-PFC network underlying emotion ambiguity with fMRI-based connectivity, EEG coordination of cortical regions, synchronization of brain rhythms, directed information flow of the source signals, and latency of single-neuron responses. Our results further shed light on neuropsychiatric patients who have abnormal amygdala-PFC connectivity.
Collapse
|
15
|
Sindermann L, Leehr EJ, Redlich R, Meinert S, Böhnlein J, Grotegerd D, Pollack D, Reepen M, Thiel K, Winter A, Waltemate L, Lemke H, Enneking V, Borgers T, Opel N, Repple J, Goltermann J, Brosch K, Meller T, Pfarr JK, Ringwald KG, Schmitt S, Stein F, Jansen A, Krug A, Nenadić I, Kircher T, Dannlowski U. Emotion processing in depression with and without comorbid anxiety disorder. J Affect Disord 2022; 314:133-142. [PMID: 35803393 DOI: 10.1016/j.jad.2022.06.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Among mental disorders, major depressive disorder (MDD) is highly prevalent and associated with emotional dysfunctions linked to activity alterations in the brain, mainly in prefrontal regions, the insula, the anterior cingulate cortex and the amygdala. However, this evidence is heterogeneous, perhaps because magnetic resonance imaging (MRI) studies on MDD tend to neglect comorbid anxiety (COM-A). METHODS To address this, here a sample of age- and sex-matched patients, nMDD = 90 and nCOM-A = 85, underwent functional MRI to assess neurofunctional group differences during a negative emotional face-matching task using a hypothesis-driven region of interest approach (dorsolateral prefrontal cortex, insula, anterior cingulate cortex, amygdala) and an explorative whole-brain approach. We also assessed these relationships with state-trait anxiety measures, a state depression measure, general functioning and medication load. RESULTS During face processing, COM-A (compared to MDD) had significantly increased bilateral insula activity. No activity differences were found in the anterior cingulate cortex or the amygdala. Whole-brain analyses revealed increased inferior temporal activation and frontal activation (comprising the inferior and middle frontal gyrus) in COM-A that was positively linked to state anxiety as well as general functioning across groups. LIMITATIONS Still, the lack of a healthy control and small effects mean this study should be replicated to further interpret the results. CONCLUSIONS The findings highlight a discriminative activation pattern between MDD and COM-A regarding emotion processing and may present a correlate of potentially anxiety-related psychopathology. In future, further investigations in potential discriminative activity patterns could help to elucidate the origin, development and treatment of depression.
Collapse
Affiliation(s)
- Lisa Sindermann
- Institute of Human Genetics, University of Bonn, Germany; Institute for Translational Psychiatry, University of Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Germany; Institute of Psychology, Martin-Luther University of Halle, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Germany; Institute for Translational Neuroscience, University of Münster, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Daniel Pollack
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Marieke Reepen
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | | | | | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Department of Psychiatry and Psychotherapy, University of Bonn, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany.
| |
Collapse
|
16
|
Schumann A, Helbing N, Rieger K, Suttkus S, Bär KJ. Depressive rumination and heart rate variability: A pilot study on the effect of biofeedback on rumination and its physiological concomitants. Front Psychiatry 2022; 13:961294. [PMID: 36090366 PMCID: PMC9452722 DOI: 10.3389/fpsyt.2022.961294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Recent studies suggest that lower resting heart rate variability (HRV) is associated with elevated vulnerability to depressive rumination. In this study, we tested whether increases in HRV after HRV-biofeedback training are accompanied by reductions in rumination levels. Materials and methods Sixteen patients suffering from depression completed a 6-week HRV-biofeedback training and fourteen patients completed a control condition in which there was no intervention (waitlist). The training included five sessions per week at home using a smartphone application and an ECG belt. Depressive symptoms and autonomic function at rest and during induced rumination were assessed before and after each of the two conditions. We used a well-established rumination induction task to provoke a state of pervasive rumination while recording various physiological signals simultaneously. Changes in HRV, respiration rate, skin conductance, and pupil diameter were compared between conditions and time points. Results A significant correlation was found between resting HRV and rumination levels, both assessed at the first laboratory session (r = -0.43, p < 0.05). Induction of rumination led to an acceleration of heart rate and skin conductance increases. After biofeedback training, resting vagal HRV was increased (p < 0.01) and self-ratings of state anxiety (p < 0.05), rumination (p < 0.05), perceived stress (p < 0.05), and depressive symptoms (QIDS, BDI; both p < 0.05) were decreased. In the control condition, there were no changes in autonomic indices or depressive symptomatology. A significant interaction effect group x time on HRV was observed. Conclusion Our results indicate that a smartphone-based HRV-biofeedback intervention can be applied to improve cardiovagal function and to reduce depressive symptoms including self-rated rumination tendencies.
Collapse
Affiliation(s)
- Andy Schumann
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nadin Helbing
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Katrin Rieger
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Stefanie Suttkus
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Karl-Jürgen Bär
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
17
|
An X, Guo W, Wu H, Fu X, Li M, Zhang Y, Li Y, Cui R, Yang W, Zhang Z, Zhao G. Sex Differences in Depression Caused by Early Life Stress and Related Mechanisms. Front Neurosci 2022; 16:797755. [PMID: 35663561 PMCID: PMC9157793 DOI: 10.3389/fnins.2022.797755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Depression is a common psychiatric disease caused by various factors, manifesting with continuous low spirits, with its precise mechanism being unclear. Early life stress (ELS) is receiving more attention as a possible cause of depression. Many studies focused on the mechanisms underlying how ELS leads to changes in sex hormones, neurotransmitters, hypothalamic pituitary adrenocortical (HPA) axis function, and epigenetics. The adverse effects of ELS on adulthood are mainly dependent on the time window when stress occurs, sex and the developmental stage when evaluating the impacts. Therefore, with regard to the exact sex differences of adult depression, we found that ELS could lead to sex-differentiated depression through multiple mechanisms, including 5-HT, sex hormone, HPA axis, and epigenetics.
Collapse
Affiliation(s)
- Xianquan An
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Anesthesiology, Second Hospital of Jilin University, Changchun, China
| | - Wanxu Guo
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Huiying Wu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ming Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yizhi Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yanlin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Zhuo Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Zhuo Zhang,
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Guoqing Zhao,
| |
Collapse
|
18
|
Lemke H, Romankiewicz L, Förster K, Meinert S, Waltemate L, Fingas SM, Grotegerd D, Redlich R, Dohm K, Leehr EJ, Thiel K, Enneking V, Brosch K, Meller T, Ringwald K, Schmitt S, Stein F, Steinsträter O, Bauer J, Heindel W, Jansen A, Krug A, Nenadic I, Kircher T, Dannlowski U. Association of disease course and brain structural alterations in major depressive disorder. Depress Anxiety 2022; 39:441-451. [PMID: 35485921 DOI: 10.1002/da.23260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 04/16/2022] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The investigation of disease course-associated brain structural alterations in Major Depressive Disorder (MDD) have resulted in heterogeneous findings, possibly due to low reliability of single clinical variables used for defining disease course. The present study employed a principal component analysis (PCA) on multiple clinical variables to investigate effects of cumulative lifetime illness burden on brain structure in a large and heterogeneous sample of MDD patients. METHODS Gray matter volumes (GMV) was estimated in n = 681 MDD patients (mean age: 35.87 years; SD = 12.89; 66.6% female) using voxel-based-morphometry. Five clinical variables were included in a PCA to obtain components reflecting disease course to associate resulting components with GMVs. RESULTS The PCA yielded two main components: Hospitalization reflected by patients' frequency and duration of inpatient treatment and Duration of Illness reflected by the frequency and duration of depressive episodes. Hospitalization revealed negative associations with bilateral dorsolateral prefrontal cortex (DLPFC) and left insula volumes. Duration of Illness showed significant negative associations with left hippocampus and right DLPFC volumes. Results in the DLPFC and hippocampus remained significant after additional control for depressive symptom severity, psychopharmacotherapy, psychiatric comorbidities, and remission status. CONCLUSION This study shows that a more severe and chronic lifetime disease course in MDD is associated with reduced volume in brain regions relevant for executive and cognitive functions and emotion regulation in a large sample of patients representing the broad heterogeneity of MDD disease course. These findings were only partly influenced by other clinical characteristics (e.g., remission status, psychopharmacological treatment).
Collapse
Affiliation(s)
- Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lina Romankiewicz
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Förster
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.,Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Stella M Fingas
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.,Department of Psychology, University of Halle, Halle, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Kai Ringwald
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | | | | | - Walter Heindel
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Marburg, Germany.,Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Igor Nenadic
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
19
|
Bendezú JJ, Thai M, Wiglesworth A, Cullen KR, Klimes-Dougan B. Adolescent stress experience-expression-physiology correspondence: Links to depression, self-injurious thoughts and behaviors, and frontolimbic neural circuity. J Affect Disord 2022; 300:269-279. [PMID: 34954334 PMCID: PMC9062769 DOI: 10.1016/j.jad.2021.12.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dysregulated stress responsivity is implicated in adolescent risk for depression and self-injurious thoughts and behaviors (STBs). However, studies often examine levels of the stress response in isolation, precluding understanding of how coordinated disturbance across systems confers risk. The current study utilized a novel person-centered approach to identify stress correspondence profiles and linked them to depressive symptoms, STBs, and neural indices of self-regulatory capacity. METHOD Adolescents with and without a major depressive disorder diagnosis (N = 162, Mage = 16.54, SD = 1.96, 72.8% White, 66.5% female) completed the Trier Social Stress Test (TSST), questionnaires, and clinical interviews. Stress experience (self-report), expression (observed), and physiology (salivary cortisol) were assessed during the experimental protocol. Adolescents also underwent a magnetic resonance imaging scan. RESULTS Multitrajectory modeling revealed four profiles. High Experience-High Expression-Low Physiology (i.e., lower stress correspondence) adolescents were more likely to report depressive symptoms, lifetime nonsuicidal self-injury, and suicidal ideation relative to all other subgroups reflecting higher stress correspondence: Low Experience-Low Expression-Low Physiology, Moderate Experience-Moderate Expression-Moderate Physiology, High Experience-High Expression-High Physiology. High Experience-High Expression-Low Physiology adolescents also exhibited less positive amygdala-ventromedial prefrontal cortex resting state functional connectivity relative to Moderate Experience-Moderate Expression-Moderate Physiology. LIMITATIONS Data were cross-sectional, precluding inference about our profiles as etiological risk factors or mechanisms of risk. CONCLUSIONS Findings illustrate meaningful heterogeneity in adolescent stress correspondence with implications for multimodal, multilevel assessment and outcome monitoring in depression prevention and intervention efforts.
Collapse
Affiliation(s)
- Jason José Bendezú
- The Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, United States; Department of Psychology, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Michelle Thai
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Andrea Wiglesworth
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kathryn R Cullen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, United States
| | - Bonnie Klimes-Dougan
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
20
|
Borgers T, Kürten M, Kappelhoff A, Enneking V, Möllmann A, Schulte J, Klug M, Leehr EJ, Dohm K, Grotegerd D, Krause P, Zwiky E, Dannlowski U, Buhlmann U, Redlich R. Brain functional correlates of emotional face processing in body dysmorphic disorder. J Psychiatr Res 2022; 147:103-110. [PMID: 35030511 DOI: 10.1016/j.jpsychires.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
Previous neuroimaging studies in body dysmorphic disorder (BDD) have focused on discordances in visual processing systems. However, little is known about brain functional aberrations in individuals with BDD during emotional face processing. An fMRI paradigm with negative emotional faces was employed in 20 individuals with BDD and 43 mentally healthy controls (HC). We compared functional activity and whole-brain connectivity patterns of the amygdala and the fusiform gyrus (FFG) between both groups. Regression analyses were performed for associations of body dysmorphic symptoms with brain activity and connectivity. Individuals with BDD exhibited higher activity in the left amygdala compared to HC (pFWE = .04) as well as increased functional connectivity of the left amygdala with a network including frontostriatal and temporal regions (pFWE < .05). The FFG revealed increased functional connectivity in individuals with BDD, mapping to brain areas such as the cingulate cortex and temporo-limbic regions (pFWE < .05). In HC, higher levels of body dysmorphic symptoms were associated with higher functional amygdala and FFG activity (pFWE < .05). Individuals with BDD show aberrant functional activity and connectivity patterns within the amygdala and the FFG for negative emotional face processing. Body dysmorphic symptoms in HC are associated with a mild pattern of brain functional alterations, which could emphasize the relevance of a dimensional approach in addition to diagnosis. Treatments for BDD could benefit from targeting visual misperception and evaluation processes upon confrontation with emotional information.
Collapse
Affiliation(s)
- Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany.
| | - Marla Kürten
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany; Institute of Psychology, University of Münster, Fliednerstrasse 21, 48149, Münster, Germany.
| | - Anna Kappelhoff
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany.
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany.
| | - Anne Möllmann
- Institute of Psychology, University of Bremen, Grazer Strasse 2, 28359, Bremen, Germany.
| | - Johanna Schulte
- Institute of Psychology, University of Münster, Fliednerstrasse 21, 48149, Münster, Germany.
| | - Melissa Klug
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany.
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany.
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany.
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany.
| | - Philine Krause
- Institute of Psychology, University of Halle, Emil Abderhaldenstraße 26, 06108, Halle, Germany.
| | - Esther Zwiky
- Institute of Psychology, University of Halle, Emil Abderhaldenstraße 26, 06108, Halle, Germany.
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany.
| | - Ulrike Buhlmann
- Institute of Psychology, University of Münster, Fliednerstrasse 21, 48149, Münster, Germany.
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149, Münster, Germany; Institute of Psychology, University of Halle, Emil Abderhaldenstraße 26, 06108, Halle, Germany.
| |
Collapse
|
21
|
Pizzagalli DA, Roberts AC. Prefrontal cortex and depression. Neuropsychopharmacology 2022; 47:225-246. [PMID: 34341498 PMCID: PMC8617037 DOI: 10.1038/s41386-021-01101-7] [Citation(s) in RCA: 289] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
The prefrontal cortex (PFC) has emerged as one of the regions most consistently impaired in major depressive disorder (MDD). Although functional and structural PFC abnormalities have been reported in both individuals with current MDD as well as those at increased vulnerability to MDD, this information has not translated into better treatment and prevention strategies. Here, we argue that dissecting depressive phenotypes into biologically more tractable dimensions - negative processing biases, anhedonia, despair-like behavior (learned helplessness) - affords unique opportunities for integrating clinical findings with mechanistic evidence emerging from preclinical models relevant to depression, and thereby promises to improve our understanding of MDD. To this end, we review and integrate clinical and preclinical literature pertinent to these core phenotypes, while emphasizing a systems-level approach, treatment effects, and whether specific PFC abnormalities are causes or consequences of MDD. In addition, we discuss several key issues linked to cross-species translation, including functional brain homology across species, the importance of dissecting neural pathways underlying specific functional domains that can be fruitfully probed across species, and the experimental approaches that best ensure translatability. Future directions and clinical implications of this burgeoning literature are discussed.
Collapse
Affiliation(s)
- Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School & McLean Hospital, Belmont, MA, USA.
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Jamieson AJ, Harrison BJ, Davey CG. Altered effective connectivity of the extended face processing system in depression and its association with treatment response: findings from the YoDA-C randomized controlled trial. Psychol Med 2021; 51:2933-2944. [PMID: 37676047 DOI: 10.1017/s0033291721002567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Depression is commonly associated with fronto-amygdala dysfunction during the processing of emotional face expressions. Interactions between these regions are hypothesized to contribute to negative emotional processing biases and as such have been highlighted as potential biomarkers of treatment response. This study aimed to investigate depression associated alterations to directional connectivity and assess the utility of these parameters as predictors of treatment response. METHODS Ninety-two unmedicated adolescents and young adults (mean age 20.1; 56.5% female) with moderate-to-severe major depressive disorder and 88 healthy controls (mean age 19.8; 61.4% female) completed an implicit emotional face processing fMRI task. Patients were randomized to receive cognitive behavioral therapy for 12 weeks, plus either fluoxetine or placebo. Using dynamic causal modelling, we examined functional relationships between six brain regions implicated in emotional face processing, comparing both patients and controls and treatment responders and non-responders. RESULTS Depressed patients demonstrated reduced inhibition from the dlPFC to vmPFC and reduced excitation from the dlPFC to amygdala during sad expression processing. During fearful expression processing patients showed reduced inhibition from the vmPFC to amygdala and reduced excitation from the amygdala to dlPFC. Response was associated with connectivity from the amygdala to dlPFC during sad expression processing and amygdala to vmPFC connectivity during fearful expression processing. CONCLUSIONS Our study clarifies the nature of face processing network alterations in adolescents and young adults with depression, highlighting key interactions between the amygdala and prefrontal cortex. Moreover, these findings highlight the potential utility of these interactions in predicting treatment response.
Collapse
Affiliation(s)
- Alec J Jamieson
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
- Department of Psychiatry, The University of Melbourne, Australia
| |
Collapse
|
23
|
Mahmood N, Nawaz R, Kadir HA, Al Mughairbi F. Genetic Biomarkers in Association with Depressive Disorder in UAE Residents: A Pilot Case Study. Oman Med J 2021; 36:e293. [PMID: 34548933 PMCID: PMC8435088 DOI: 10.5001/omj.2021.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/14/2020] [Indexed: 11/03/2022] Open
Abstract
Objectives We sought to explore the expression of genes associated with depressive disorder in patients with depression compared to control patients. A large body of research in the area of genetics has shown familial aggregation for depressive disorders. The purpose of this study was to identify genetic risk factors in developing depression, particularly among the population residing in the UAE. Methods We investigated five associated genes (PPARGC1A, CAMKMT, HSD11B1, SLC6A4, and MAOA) previously linked to depression and anxiety in other populations. The study was carried out in Al Ain, although participants were from different nationalities. Blood samples were collected over a period of seven months, and lab work was carried out over a period of two months from September 1, 2018 to May 30, 2019. We screened the prevalence of the PPARGC1A, CAMKMT, HSD11B1, SLC6A4, and MAOA in 29 patients with depressive disorder and 30 controls using the quantitative real-time polymerase chain reaction method. Results The expression of the PPARGC1A gene, studied for the first time in the UAE population. The independent t-test was used to check the significance of difference between the expression levels of target genes where the control was set at a reference level of 1.0. PPARGC1A gene is lower among the depressed group which showed mean difference: 0.4 and p-value: 0.02, indicating a strong association with depression. No significant difference was found in the genes' expression of CAMKMT with p-value 0.150, MAOA p-value 0.070, SLC6A4 p-value 0.750, and HSD11B1 p-value 0.100 in two groups in comparison with (p < 0.050). Conclusions These results open several possibilities for further research to study the role of this gene as a protective factor against developing depression.
Collapse
Affiliation(s)
- Nailah Mahmood
- Department of Cognitive Sciences, College of Humanities and Social Science, United Arab Emirates University, Al Ain, UAE
| | - Rukhsana Nawaz
- Department of Cognitive Sciences, College of Humanities and Social Science, United Arab Emirates University, Al Ain, UAE
| | - Hidaya Abdul Kadir
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Fadwa Al Mughairbi
- Department of Cognitive Sciences, College of Humanities and Social Science, United Arab Emirates University, Al Ain, UAE
| |
Collapse
|
24
|
Guha A, Yee CM, Heller W, Miller GA. Alterations in the default mode-salience network circuit provide a potential mechanism supporting negativity bias in depression. Psychophysiology 2021; 58:e13918. [PMID: 34403515 DOI: 10.1111/psyp.13918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
Aberrant effective connectivity between default mode (DMN) and salience (SAL) networks may support the tendency of depressed individuals to find it difficult to disengage from self-focused, negatively-biased thinking and may contribute to the onset and maintenance of depression. Assessment of effective connectivity, which can statistically characterize the direction of influence between regions within neural circuits, may provide new insights into the nature of DMN-SAL connectivity disruptions in depression. Functional magnetic resonance imaging (fMRI) was collected from 38 individuals with a history of major depression and 50 healthy comparison participants during completion of an emotion-word Stroop task. Activation within DMN and SAL networks and effective connectivity between DMN and SAL, assessed via Granger causality, were examined. Individuals with a history of depression exhibited greater overall network activation, greater directed connectivity from DMN to SAL, and less directed connectivity from SAL to DMN than healthy comparison participants during negative-word trials. Among individuals with a history of depression, greater DMN-to-SAL connectivity was associated with lower overall network activation and worse task performance during positive-word trials; this pattern was not observed among healthy participants. Present findings indicate that greater network activation and, specifically, influence of DMN on SAL, support negativity bias among previously depressed individuals.
Collapse
Affiliation(s)
- Anika Guha
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Cindy M Yee
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Wendy Heller
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | - Gregory A Miller
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA.,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA.,Department of Psychology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, USA
| |
Collapse
|
25
|
Koeppel CJ, Herrmann T, Weidner K, Linn J, Croy I. Same salience, different consequences: Disturbed inter-network connectivity during a social oddball paradigm in major depressive disorder. NEUROIMAGE-CLINICAL 2021; 31:102731. [PMID: 34174690 PMCID: PMC8234357 DOI: 10.1016/j.nicl.2021.102731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
No significant difference in BOLD responses in the SN between controls and patients. Anhedonic symptomatology relates to diminished BOLD signals in the left amygdala. Enhanced functional connectivity from the SN to the DMN in depression. Reduced functional connectivity from the SN to the VAN in depression. Altered processing in depression is coded in disturbed inter-network connectivity.
Background So far findings on emotional face processing among depressed individuals reveal an inconsistent image, with only some studies supporting a mood-congruent bias in salience processing. Thereby, many results are based on the processing of sad emotions and mostly focused on resting-state connectivity analysis. The present study aimed to target this misbalance by implementing a social oddball paradigm, with a special focus on the amygdala, the ACC, the insula and subdivisions of insula and ACC. Methods Twenty-seven depressed patients and twenty-seven non-depressed controls took part in a fMRI event-related social oddball paradigm based on smiling facial expressions as target stimuli embedded in a stream of neutral facial expressions. FMRI activation and functional connectivity analysis were calculated for the pre-defined ROIs of the salience network (SN), with a special focus on twelve insular subdivisions and six ACC subdivisions. Results For both groups the social oddball paradigm triggered similar BOLD responses within the pre-defined ROIs, while the quality of functional connectivity showed pronounced alterations from the salience network to the ventral attention- and default mode network (DMN). Conclusion On a first level of target detection, smiling faces are equally processed and trigger similar bold responses in structures of the salience network. On a second level of inter-network communication the brain of depressed participants tends to be pre-formed for self-referential processing and rumination instead of fast goal directed behavior and socio-emotional cognitive processing.
Collapse
Affiliation(s)
- Carina J Koeppel
- Department of Psychotherapy and Psychosomatics Medicine, TU Dresden, Dresden, Germany.
| | | | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatics Medicine, TU Dresden, Dresden, Germany
| | - Jennifer Linn
- Department of Neuroradiology, TU Dresden, Dresden, Germany
| | - Ilona Croy
- Department of Psychotherapy and Psychosomatics Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
26
|
Lemke H, Probst S, Warneke A, Waltemate L, Winter A, Thiel K, Meinert S, Enneking V, Breuer F, Klug M, Goltermann J, Hülsmann C, Grotegerd D, Redlich R, Dohm K, Leehr EJ, Repple J, Opel N, Brosch K, Meller T, Pfarr JK, Ringwald K, Schmitt S, Stein F, Krug A, Jansen A, Nenadic I, Kircher T, Hahn T, Dannlowski U. The Course of Disease in Major Depressive Disorder Is Associated With Altered Activity of the Limbic System During Negative Emotion Processing. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:323-332. [PMID: 34102346 DOI: 10.1016/j.bpsc.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Brain functional alterations during emotion processing in patients with major depressive disorder (MDD) compared with healthy control subjects (HCs) are frequently reported. However, evidence for functional correlates of emotion processing with regard to MDD trajectories is scarce. This study investigates the role of lifetime disease course for limbic brain activation during negative emotional face processing in patients with MDD. METHODS In a large sample of patients with MDD (n = 333; 58.55% female) and HCs (n = 333; 60.06% female), brain activation was investigated during a negative emotional face-processing task within a cross-sectional design. Differences between HC and MDD groups were analyzed. Previous disease course, characterized by 2 components, namely hospitalization and duration of illness, was regressed on brain activation of the amygdala, (para-)hippocampus, and insula in patients with MDD. RESULTS Patients with MDD showed increased activation in the amygdala, insula, and hippocampus compared with HCs (all p values corrected for familywise error [pFWE] < .045). The hospitalization component showed negative associations with brain activation in the bilateral insula (right: pFWE = .026, left: pFWE = .019) and (para-)hippocampus (right: pFWE = .038, left: pFWE = .031). No significant association was found for the duration of illness component (all pFWE > .057). CONCLUSIONS This study investigated negative emotion processing in a large sample of patients with MDD and HCs. Our results confirm limbic hyperactivation in patients with MDD during negative emotion processing; however, this hyperactivation may resolve with a more severe lifetime disease course in the insula and (para-)hippocampus-brain regions involved in emotion processing and regulation. These findings need further replication in longitudinal studies.
Collapse
Affiliation(s)
- Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Probst
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Antonia Warneke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Melissa Klug
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Carina Hülsmann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychology, University of Halle, Halle, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | | | - Kai Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
27
|
Lai CH. Fronto-limbic neuroimaging biomarkers for diagnosis and prediction of treatment responses in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110234. [PMID: 33370569 DOI: 10.1016/j.pnpbp.2020.110234] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022]
Abstract
The neuroimaging is an important tool for understanding the biomarkers and predicting treatment responses in major depressive disorder (MDD). The potential biomarkers and prediction of treatment response in MDD will be addressed in the review article. The brain regions of cognitive control and emotion regulation, such as the frontal and limbic regions, might represent the potential targets for MDD biomarkers. The potential targets of frontal lobes might include anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). For the limbic system, hippocampus and amygdala might be the potentially promising targets for MDD. The potential targets of fronto-limbic regions have been found in the studies of several major neuroimaging modalities, such as the magnetic resonance imaging, near-infrared spectroscopy, electroencephalography, positron emission tomography, and single-photon emission computed tomography. Additional regions, such as brainstem and midbrain, might also play a part in the MDD biomarkers. For the prediction of treatment response, the gray matter volumes, white matter tracts, functional representations and receptor bindings of ACC, DLPFC, OFC, amygdala, and hippocampus might play a role in the prediction of antidepressant responses in MDD. For the response prediction of psychotherapies, the fronto-limbic, reward regions, and insula will be the potential targets. For the repetitive transcranial magnetic stimulation, the DLPFC, ACC, limbic, and visuospatial regions might represent the predictive targets for treatment. The neuroimaging targets of MDD might be focused in the fronto-limbic regions. However, the neuroimaging targets for the prediction of treatment responses might be inconclusive and beyond the fronto-limbic regions.
Collapse
Affiliation(s)
- Chien-Han Lai
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan; PhD Psychiatry & Neuroscience Clinic, Taoyuan, Taiwan.
| |
Collapse
|
28
|
Differential Modulation of Effective Connectivity in the Brain's Extended Face Processing System by Fearful and Sad Facial Expressions. eNeuro 2021; 8:ENEURO.0380-20.2021. [PMID: 33658311 PMCID: PMC8174049 DOI: 10.1523/eneuro.0380-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
The processing of emotional facial expressions is underpinned by the integration of information from a distributed network of brain regions. Despite investigations into how different emotional expressions alter the functional relationships within this network, there remains limited research examining which regions drive these interactions. This study investigated effective connectivity during the processing of sad and fearful facial expressions to better understand how these stimuli differentially modulate emotional face processing circuitry. Ninety-eight healthy human adolescents and young adults, aged between 15 and 25 years, underwent an implicit emotional face processing fMRI task. Using dynamic causal modeling (DCM), we examined five brain regions implicated in face processing. These were restricted to the right hemisphere and included the occipital and fusiform face areas, amygdala, and dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC). Processing sad and fearful facial expressions were associated with greater positive connectivity from the amygdala to dlPFC. Only the processing of fearful facial expressions was associated with greater negative connectivity from the vmPFC to amygdala. Compared with processing sad faces, processing fearful faces was associated with significantly greater connectivity from the amygdala to dlPFC. No difference was found between the processing of these expressions and the connectivity from the vmPFC to amygdala. Overall, our findings indicate that connectivity from the amygdala and dlPFC appears to be responding to dimensional features which differ between these expressions, likely those relating to arousal. Further research is necessary to examine whether this relationship is also observable for positively valenced emotions.
Collapse
|
29
|
Jones DN, Raghanti MA. The role of monoamine oxidase enzymes in the pathophysiology of neurological disorders. J Chem Neuroanat 2021; 114:101957. [PMID: 33836221 DOI: 10.1016/j.jchemneu.2021.101957] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Monoamine oxidase enzymes are responsible for the degredation of serotonin, dopamine, and norepinephrine in the central neurvous system. Although it has been nearly 100 years since they were first described, we are still learning about their role in the healthy brain and how they are altered in various disease states. The present review provides a survey of our current understanding of monoamine oxidases, with a focus on their contributions to neuropsychiatric, neurodevelopmental, and neurodegenerative disease. Important species differences in monoamine oxidase function and development in the brain are highlighted. Sex-specific monoamine oxidase regulatory mechanisms and their implications for various neurological disorders are also discussed. While our understanding of these critical enzymes has expanded over the last century, gaps exist in our understanding of sex and species differences and the roles monoamine oxidases may play in conditions often comorbid with neurological disorders.
Collapse
Affiliation(s)
- Danielle N Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA
| |
Collapse
|
30
|
Gao Y, Xiong Y, Liu X, Wang H. The Effects of Childhood Maltreatment on Non-Suicidal Self-Injury in Male Adolescents: The Moderating Roles of the Monoamine Oxidase A (MAOA) Gene and the Catechol-O-Methyltransferase (COMT) Gene. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052598. [PMID: 33807669 PMCID: PMC7967505 DOI: 10.3390/ijerph18052598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/12/2023]
Abstract
(1) Background: Numerous studies suggest strong associations between childhood maltreatment and nonsuicidal self-injury (NSSI); this is also true for the roles of dopaminergic genes in the etiology of some psychopathologies related to NSSI. Investigating the interactions of environments and genes is important in order to better understand the etiology of NSSI. (2) Methods: Within a sample of 269 Chinese male adolescents (Mage = 14.72, SD = 0.92), childhood maltreatment and NSSI were evaluated, and saliva samples were collected for MAOA T941G and COMT Val158Met polymorphism analyses. (3) Results: The results revealed no primary effects attributable to MAOA T941G and COMT Val158Met polymorphism on NSSI. However, there was a significant three-way interaction between MAOA, COMT, and child abuse (β = −0.34, p < 0.01) in adolescent NSSI. Except for carriers of the T allele of MAOA and the Met allele of COMT, all studied male adolescents displayed higher NSSI scores when exposed to a higher level of child abuse. A similar three-way interaction was not observed in the case of child neglect. (4) Conclusions: The results indicate that the MAOA gene and COMT gene play moderating roles in the association between child abuse and NSSI of male adolescents and suggest the polygenic underpinnings of NSSI.
Collapse
|
31
|
Thai M, Schreiner MW, Mueller BA, Cullen KR, Klimes-Dougan B. Coordination between frontolimbic resting state connectivity and hypothalamic-pituitary-adrenal axis functioning in adolescents with and without depression. Psychoneuroendocrinology 2021; 125:105123. [PMID: 33465581 PMCID: PMC8443322 DOI: 10.1016/j.psyneuen.2020.105123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Depression is associated with abnormalities in Hypothalamic-Pituitary-Adrenal (HPA) axis functioning and neural circuitry that underlie the stress response. Resting-state functional connectivity (RSFC) between frontolimbic brain regions captures intrinsic connections that may set the stage for the rallying and regulating of the HPA axis system. This study examined the association between cortisol stress response and frontolimbic (amygdala and ventral and dorsal medial prefrontal cortex [vmPFC and dmPFC respectively]) RSFC in 88 (Age: M = 15.95, SD = 2.04; 71.60% female) adolescents with (N = 55) and without (N = 33) major depressive disorder (MDD). We collected salivary cortisol in the context of a modified Trier Social Stress Test (TSST) paradigm. Key findings were that adolescents with depression and healthy controls showed different patterns of association between amygdala and vmPFC RSFC and HPA functioning: while healthy controls showed a positive relationship between frontolimbic connectivity and cortisol levels that may indicate coordination across neural and neuroendocrine systems, adolescents with depression showed a minimal or inverse relationship, suggesting poor coordination of these systems. Results were similar when examining non-suicidal self-injury subgroups within the MDD sample. These findings suggest that the intrinsic quality of this frontolimbic connection may be related to HPA axis functioning. In MDD, inverse associations may represent a compensatory response in one system in response to dysfunction in the other. Longitudinal multilevel research, however, is needed to disentangle how stress system coordination develops in normal and pathological contexts and how these systems recover with treatment.
Collapse
Affiliation(s)
- Michelle Thai
- Psychology Department, College of Liberal Arts, University of Minnesota, Twin Cities, United States.
| | | | - Bryon A. Mueller
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Minnesota, Twin Cities
| | - Kathryn R. Cullen
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Minnesota, Twin Cities
| | - Bonnie Klimes-Dougan
- Psychology Department, College of Liberal Arts, University of Minnesota, Twin Cities, United States.
| |
Collapse
|
32
|
Henigsberg N, Savić A, Radoš M, Radoš M, Šarac H, Šečić A, Bajs Janović M, Foro T, Ozretić D, Erdeljić Turk V, Hrabač P, Kalember P. Choline elevation in amygdala region at recovery indicates longer survival without depressive episode: a magnetic resonance spectroscopy study. Psychopharmacology (Berl) 2021; 238:1303-1314. [PMID: 31482202 PMCID: PMC8062352 DOI: 10.1007/s00213-019-05303-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 06/11/2019] [Indexed: 02/02/2023]
Abstract
RATIONALE Depression, with variable longitudinal patterns, recurs in one third of patients. We lack useful predictors of its course/outcome, and proton magnetic resonance spectroscopy (1H-MRS) of brain metabolites is an underused research modality in finding outcome correlates. OBJECTIVES To determine if brain metabolite levels/changes in the amygdala region observed early in the recovery phase indicate depression recurrence risk in patients receiving maintenance therapy. METHODS Forty-eight patients on stable-dose antidepressant (AD) maintenance therapy were analyzed from recovery onset until (i) recurrence of depression or (ii) start of AD discontinuation. Two 1H-MRS scans (6 months apart) were performed with a focus on amygdala at the beginning of recovery. N-acetylaspartate (NAA), choline-containing metabolites (Cho), and Glx (glutamine/glutamate and GABA) were evaluated with regard to time without recurrence, and risks were assessed by Cox proportional hazard modeling. RESULTS Twenty patients had depression recurrence, and 23 patients reached AD discontinuation. General linear model repeated measures analysis displayed three-way interaction of measurement time, metabolite level, and recurrence on maintenance therapy, in a multivariate test, Wilks' lambda = 0.857, F(2,40) = 3.348, p = 0.045. Cho levels at the beginning of recovery and subsequent changes convey the highest risk for earlier recurrence. Patients experiencing higher amygdala Cho after recovery are at a significantly lower risk for depression recurrence (hazard ratio = 0.32; 95% confidence interval 0.13-0.77). CONCLUSION Cho levels/changes in the amygdala early in the recovery phase correlate with clinical outcome. In the absence of major NAA fluctuations, changes in Cho and Glx may suggest a shift towards reduction in (previously increased) glutamatergic neurotransmission. Investigation of a larger sample with greater sampling frequency is needed to confirm the possible predictive role of metabolite changes in the amygdala region early in the recovery phase.
Collapse
Affiliation(s)
- Neven Henigsberg
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- University Psychiatric Hospital Vrapče, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Aleksandar Savić
- University Psychiatric Hospital Vrapče, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Radoš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Milan Radoš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Helena Šarac
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ana Šečić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- University Hospital Centre 'Sestre Milosrdnice', Zagreb, Croatia
| | - Maja Bajs Janović
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Tamara Foro
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - David Ozretić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Viktorija Erdeljić Turk
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Pero Hrabač
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- "Andrija Štampar" School of Public Health, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Petra Kalember
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia.
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia.
- Polyclinic Neuron, Zagreb, Croatia.
| |
Collapse
|
33
|
Novel polygenic risk score as a translational tool linking depression-related changes in the corticolimbic transcriptome with neural face processing and anhedonic symptoms. Transl Psychiatry 2020; 10:410. [PMID: 33235204 PMCID: PMC7686479 DOI: 10.1038/s41398-020-01093-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Convergent data from imaging and postmortem brain transcriptome studies implicate corticolimbic circuit (CLC) dysregulation in the pathophysiology of depression. To more directly bridge these lines of work, we generated a novel transcriptome-based polygenic risk score (T-PRS), capturing subtle shifts toward depression-like gene expression patterns in key CLC regions, and mapped this T-PRS onto brain function and related depressive symptoms in a nonclinical sample of 478 young adults (225 men; age 19.79 +/- 1.24) from the Duke Neurogenetics Study. First, T-PRS was generated based on common functional SNPs shifting CLC gene expression toward a depression-like state. Next, we used multivariate partial least squares regression to map T-PRS onto whole-brain activity patterns during perceptual processing of social stimuli (i.e., human faces). For validation, we conducted a comparative analysis with a PRS summarizing depression risk variants identified by the Psychiatric Genomics Consortium (PGC-PRS). Sex was modeled as moderating factor. We showed that T-PRS was associated with widespread reductions in neural response to neutral faces in women and to emotional faces and shapes in men (multivariate p < 0.01). This female-specific reductions in neural response to neutral faces was also associated with PGC-PRS (multivariate p < 0.03). Reduced reactivity to neutral faces was further associated with increased self-reported anhedonia. We conclude that women with functional alleles mimicking the postmortem transcriptomic CLC signature of depression have blunted neural activity to social stimuli, which may be expressed as higher anhedonia.
Collapse
|
34
|
Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation. Neuropsychopharmacology 2020; 45:1018-1025. [PMID: 32053828 PMCID: PMC7162876 DOI: 10.1038/s41386-020-0633-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a commonly- used treatment for major depressive disorder (MDD). However, our understanding of the mechanism by which TMS exerts its antidepressant effect is minimal. Furthermore, we lack brain signals that can be used to predict and track clinical outcome. Such signals would allow for treatment stratification and optimization. Here, we performed a randomized, sham-controlled clinical trial and measured electrophysiological, neuroimaging, and clinical changes before and after rTMS. Patients (N = 36) were randomized to receive either active or sham rTMS to the left dorsolateral prefrontal cortex (dlPFC) for 20 consecutive weekdays. To capture the rTMS-driven changes in connectivity and causal excitability, resting fMRI and TMS/EEG were performed before and after the treatment. Baseline causal connectivity differences between depressed patients and healthy controls were also evaluated with concurrent TMS/fMRI. We found that active, but not sham rTMS elicited (1) an increase in dlPFC global connectivity, (2) induction of negative dlPFC-amygdala connectivity, and (3) local and distributed changes in TMS/EEG potentials. Global connectivity changes predicted clinical outcome, while both global connectivity and TMS/EEG changes tracked clinical outcome. In patients but not healthy participants, we observed a perturbed inhibitory effect of the dlPFC on the amygdala. Taken together, rTMS induced lasting connectivity and excitability changes from the site of stimulation, such that after active treatment, the dlPFC appeared better able to engage in top-down control of the amygdala. These measures of network functioning both predicted and tracked clinical outcome, potentially opening the door to treatment optimization.
Collapse
|
35
|
Philippi CL, Reyna L, Nedderman L, Chan P, Samboju V, Chang K, Phanuphak N, Ratnaratorn N, Hellmuth J, Benjapornpong K, Dumrongpisutikul N, Pothisri M, Robb ML, Ananworanich J, Spudich S, Valcour V, Paul R. Resting-state neural signatures of depressive symptoms in acute HIV. J Neurovirol 2020; 26:226-240. [PMID: 31989446 PMCID: PMC7261250 DOI: 10.1007/s13365-020-00826-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
Depressive symptoms are often elevated in acute and chronic HIV. Previous neuroimaging research identifies abnormalities in emotion-related brain regions in depression without HIV, including the anterior cingulate cortex (ACC) and amygdala. However, no studies have examined the neural signatures of depressive symptoms in acute HIV infection (AHI). Seed-based voxelwise resting-state functional connectivity (rsFC) for affective seed regions of interest (pregenual ACC, subgenual ACC [sgACC], bilateral amygdala) was computed for 74 Thai males with AHI and 30 Thai HIV-uninfected controls. Group analyses compared rsFC of ACC and amygdala seed regions between AHI and uninfected control groups. Within the AHI group, voxelwise regression analyses investigated the relationship between depressive symptoms and rsFC for these affective seed regions. Group analyses revealed alterations in rsFC of the amygdala in AHI versus uninfected controls. Depressive symptoms associated with decreased rsFC between ACC regions and posterior cingulate/precuneus, medial temporal, and lateral parietal regions in AHI. Symptoms of depression also correlated to increased rsFC between ACC regions and lateral prefrontal cortex, sgACC, and cerebellum in AHI. Similar to the ACC, depressive symptoms associated with decreased rsFC between amygdala and precuneus. Of blood biomarkers, only HIV RNA inversely correlated with rsFC between posterior sgACC and left uncus. We found that depressive symptoms in AHI associate with altered rsFC of ACC and amygdala regions previously implicated in depression. Longitudinal research in this cohort will be necessary to determine whether these early alterations in rsFC of affective network regions are related to persistent depressive symptoms after combination antiretroviral therapy.
Collapse
Affiliation(s)
- Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA.
| | - Leah Reyna
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Laura Nedderman
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Phillip Chan
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Vishal Samboju
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kevin Chang
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | | | | | - Joanna Hellmuth
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | | | | | - Mantana Pothisri
- Department of Radiology, Chulalongkorn University Medical Center, Bangkok, Thailand
| | - Merlin L Robb
- U.S. Military HIV Research Program, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jintanat Ananworanich
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
- U.S. Military HIV Research Program, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Global Health, The University of Amsterdam, Amsterdam, The Netherlands
| | - Serena Spudich
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Victor Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Robert Paul
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA
| |
Collapse
|
36
|
Mertens LJ, Wall MB, Roseman L, Demetriou L, Nutt DJ, Carhart-Harris RL. Therapeutic mechanisms of psilocybin: Changes in amygdala and prefrontal functional connectivity during emotional processing after psilocybin for treatment-resistant depression. J Psychopharmacol 2020; 34:167-180. [PMID: 31941394 DOI: 10.1177/0269881119895520] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Psilocybin has shown promise as a treatment for depression but its therapeutic mechanisms are not properly understood. In contrast to the presumed actions of antidepressants, we recently found increased amygdala responsiveness to fearful faces one day after open-label treatment with psilocybin (25 mg) in 19 patients with treatment-resistant depression, which correlated with treatment efficacy. AIMS Aiming to further unravel the therapeutic mechanisms of psilocybin, the present study extends this basic activation analysis. We hypothesised changed amygdala functional connectivity, more precisely decreased amygdala-ventromedial prefrontal cortex functional connectivity, during face processing after treatment with psilocybin. METHODS Psychophysiological interaction analyses were conducted on functional magnetic resonance imaging data from a classic face/emotion perception task, with the bilateral amygdala and ventromedial prefrontal cortex time-series as physiological regressors. Average parameter estimates (beta weights) of significant clusters were correlated with clinical outcomes at one week. RESULTS Results showed decreased ventromedial prefrontal cortex-right amygdala functional connectivity during face processing post- (versus pre-) treatment; this decrease was associated with levels of rumination at one week. This effect was driven by connectivity changes in response to fearful and neutral (but not happy) faces. Independent whole-brain analyses also revealed a post-treatment increase in functional connectivity between the amygdala and ventromedial prefrontal cortex to occipital-parietal cortices during face processing. CONCLUSION These results are consistent with the idea that psilocybin therapy revives emotional responsiveness on a neural and psychological level, which may be a key treatment mechanism for psychedelic therapy. Future larger placebo-controlled studies are needed to examine the replicability of the current findings.
Collapse
Affiliation(s)
- Lea J Mertens
- Centre for Psychedelic Research, Imperial College London, London, UK
| | - Matthew B Wall
- Centre for Psychedelic Research, Imperial College London, London, UK
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Imperial College London, London, UK
- The Computational, Cognitive and Clinical Neuroimaging Laboratory (C3NL), Imperial College London, London, UK
| | - Lysia Demetriou
- Invicro, Hammersmith Hospital, London, UK
- Investigative Medicine, Imperial College London, London, UK
| | - David J Nutt
- Centre for Psychedelic Research, Imperial College London, London, UK
| | | |
Collapse
|
37
|
Fite PJ, Brown S, Hossain WA, Manzardo A, Butler MG, Bortolato M. Sex-Dimorphic Interactions of MAOA Genotype and Child Maltreatment Predispose College Students to Polysubstance Use. Front Genet 2020; 10:1314. [PMID: 32010186 PMCID: PMC6978277 DOI: 10.3389/fgene.2019.01314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
Polysubstance use (PSU) is highly prevalent among college students. Recent evidence indicates that PSU is based on gene x environment (G×E) interactions, yet the specific biosocial factors underlying this problem remain elusive. We recently reported that lifetime use of tobacco and cannabis in college students is influenced by the interaction of the X-linked MAOA (monoamine oxidase A) gene and child maltreatment. Building on these premises, here we evaluated whether the same G×E interaction may also predict PSU in this population. Students of a large Midwestern university (n = 470; 50.9% females) took part in a computer survey for substance use, as well as childhood trauma exposure, using the Child Trauma Questionnaire (CTQ). DNA was extracted from their saliva samples and genotyped for MAOA variable-number of tandem repeat (VNTR) variants. Findings indicated that the highest number of substances were used by male students harboring low-activity MAOA alleles with a history of childhood emotional abuse. In contrast, female homozygous high-activity MAOA carriers with a history of emotional and physical abuse reported consumption of the greatest number of substances. Our results indicate that PSU among college students is influenced by the interaction of MAOA and child maltreatment in a sex-specific fashion. Further studies are warranted to understand the mechanisms of sex differences in the biosocial interplays underlying PSU in this at-risk group.
Collapse
Affiliation(s)
- Paula J. Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| | - Shaquanna Brown
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| | - Waheeda A. Hossain
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, United States
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ann Manzardo
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, United States
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Merlin G. Butler
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, United States
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marco Bortolato
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
38
|
Nemati S, Abdallah CG. Increased Cortical Thickness in Patients With Major Depressive Disorder Following Antidepressant Treatment. CHRONIC STRESS 2020; 4. [PMID: 31938760 PMCID: PMC6959134 DOI: 10.1177/2470547019899962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Considering the slow-acting properties of traditional antidepressants, an
important challenge in the field is the identification of early treatment
response biomarkers. Reduced cortical thickness has been reported in
neuroimaging studies of depression. However, little is known whether
antidepressants reverse this abnormality. In this brief report, we
investigated early cortical thickness changes following treatment with
sertraline compared to placebo. Methods Participants (n = 215) with major depressive disorder were randomized to a
selective serotonin reuptake inhibitor, sertraline, or to placebo.
Structural magnetic resonance imaging scans were acquired at baseline and
one week following treatment. Response was defined as at least 50%
improvement in Hamilton rating scale for depression score at week 8. In a
vertex-wise approach, we examined the effects of treatment, response, and
treatment × response. Results Following correction for multiple comparisons, we found a significant effect
of treatment, with widespread increase in cortical thickness following
sertraline compared to placebo. Clusters with increased thickness were found
in the left medial prefrontal cortex, right medial and lateral prefrontal
cortex, and within the right parieto-temporal lobes. There were no
sertraline-induced cortical thinning, and no significant response effects or
treatment × response interactions. Conclusion Our findings suggest that cortical thickness abnormalities may be responsive
to antidepressant treatment. However, a relationship between these early
cortical changes and later treatment response was not demonstrated. Future
studies would be needed to investigate whether those early effects are
maintained at eight weeks and are associated with enhanced response.
Collapse
Affiliation(s)
- Samaneh Nemati
- VA National Center for PTSD-Clinical Neuroscience Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Chadi G Abdallah
- VA National Center for PTSD-Clinical Neuroscience Division, US Department of Veterans Affairs, West Haven, CT, USA.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
39
|
Plieger T, Melchers M, Felten A, Lieser T, Meermann R, Reuter M. Moderator Effects of Life Stress on the Association between MAOA-uVNTR, Depression, and Burnout. Neuropsychobiology 2019; 78:86-94. [PMID: 30943524 DOI: 10.1159/000499085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND The serotonergic and noradrenergic systems have a strong impact on several affective disorders and are key targets for psychopharmacological therapy. With respect to pathogenesis, there is a growing body of evidence showing an influence of a promoter repeat polymorphism (MAOA-uVNTR) altering the expression rate of monoamine oxidase A. However, only a few studies investigate its influence on depression with only 2 of them considering the moderating effects of life stress. For burnout, there are no studies so far investigating the genetic basis. OBJECTIVES The aim of the present study was to replicate an interaction effect of MAOA-uVNTR and life stress on depression, and extend these possible findings to the burnout syndrome. Especially, the latter one might help in understanding the underlying mechanisms of burnout and its association to depression. METHOD A total of n = 1,541 participants (n = 1,099 healthy controls, n = 442 inpatients with affective disorders) provided genetic samples and filled in self-report questionnaires measuring depression, burnout, and the extent of experienced stressful life events (SLEs). RESULTS A life stress x MAOA-uVNTR interaction on depression and burnout was observed in women suggesting that carriers of the high expressing allele (MAO-H) with many SLEs had the highest scores in both burnout and depression. In men, there was only a weak effect of MAOA-uVNTR on depression. CONCLUSIONS The results suggest a more pronounced reactivity to adverse environmental factors in carriers of the MAO-H allele. Especially the effect of life stress and MAOA-uVNTR on burnout should be independently replicated in the future as this is the first study showing this association.
Collapse
Affiliation(s)
- Thomas Plieger
- Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Bonn, Germany,
| | - Martin Melchers
- Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Bonn, Germany
| | - Andrea Felten
- Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Bonn, Germany
| | - Thomas Lieser
- "Gezeiten Haus", Psychosomatic Hospital, Bonn, Germany
| | - Rolf Meermann
- Medical Director MEDIAN Hospital Group, Berlin, Germany
| | - Martin Reuter
- Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Bonn, Germany
| |
Collapse
|
40
|
Aleksandrova LR, Wang YT, Phillips AG. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neurosci Biobehav Rev 2019; 105:1-23. [DOI: 10.1016/j.neubiorev.2019.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
|
41
|
Huang CM, Fan YT, Lee SH, Liu HL, Chen YL, Lin C, Lee TMC. Cognitive reserve-mediated neural modulation of emotional control and regulation in people with late-life depression. Soc Cogn Affect Neurosci 2019; 14:849-860. [PMID: 31603228 PMCID: PMC6847904 DOI: 10.1093/scan/nsz054] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Late-life depression (LLD) is an affective disorder that is highly prevalent among older people. Cognitive reserve (CR) refers to an active process that facilitates the flexibility and efficiency of the neural networks to compensate for impairments that emerge in consequence of brain pathology. The current functional magnetic resonance imaging study investigated whether and how CR affects emotional regulation, level of depression severity and neural activity associated with affective control during emotional Stroop (eStroop) task. Altogether, 90 older people participated in this study, 50 of whom suffered from LLD. We used years of education and verbal fluency capacity as proxies for CR. Clinical participants with relatively higher CR presented with milder degrees of depression, better eStroop performance and stronger neural activity in the middle frontal gyrus (MFG) involved with exercising affective control. Results of the mediation analysis indicated that both education and verbal fluency significantly mediated the association between the depression severity and MEG activity. These results suggest a negative association between CR and age-related clinical symptoms of emotional dysregulation. Our neurobehavioral findings provide supportive evidence that CR implies efficiency of top-down emotional regulation and operates as a protective factor against emotional and cognitive vulnerability in the aging brain.
Collapse
Affiliation(s)
- Chih-Mao Huang
- College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan
| | - Yang-Teng Fan
- College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan
| | - Shwu-Hua Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ho-Ling Liu
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao-Liang Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung, Taiwan, Taiwan
| | - Chemin Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Keelung, Taiwan
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, PR China
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
42
|
Maggioni E, Delvecchio G, Grottaroli M, Garzitto M, Piccin S, Bonivento C, Maieron M, D'Agostini S, Perna G, Balestrieri M, Brambilla P. Common and different neural markers in major depression and anxiety disorders: A pilot structural magnetic resonance imaging study. Psychiatry Res Neuroimaging 2019; 290:42-50. [PMID: 31279954 DOI: 10.1016/j.pscychresns.2019.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/04/2023]
Abstract
Although anxiety and depression often co-occur and share some clinical features, it is still unclear if they are neurobiologically distinct or similar processes. In this study, we explored common and specific cortical morphology alterations in depression and anxiety disorders. Magnetic Resonance Imaging data were acquired from 13 Major Depressive Disorder (MDD), 11 Generalized Anxiety Disorder (GAD), 11 Panic Disorder (PD) patients and 21 healthy controls (HC). Regional cortical thickness, surface area (SA), volume and gyrification were measured and compared among groups. We found left orbitofrontal thinning in all patient groups, as well as disease-specific alterations. MDD showed volume deficits in left precentral gyrus compared to all groups, volume and area deficits in right fusiform gyrus compared to GAD and HC. GAD showed lower SA than MDD and PD in right superior parietal cortex, higher gyrification than HC in right frontal gyrus. PD showed higher gyrification in left superior parietal cortex when compared to MDD and higher SA in left postcentral gyrus compared to all groups. Our results suggest that clinical phenotypic similarities between major depression and anxiety disorders might rely on common prefrontal alterations. Frontotemporal and parietal abnormalities may represent unique biological signatures of depression and anxiety.
Collapse
Affiliation(s)
- Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, Milan, Italy
| | - Marika Grottaroli
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Garzitto
- Scientific Institute, IRCCS E. Medea, via della Bontà 7, San Vito al Tagliamento, Pordenone, Italy
| | - Sara Piccin
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, via Colugna 50, Udine, Italy
| | - Carolina Bonivento
- Scientific Institute, IRCCS E. Medea, via della Bontà 7, San Vito al Tagliamento, Pordenone, Italy
| | - Marta Maieron
- Department of Physics, Azienda Ospedaliero Universitaria 'S.Maria della Misericordia', P.za S. Maria della Misericordia, Udine, Italy
| | - Serena D'Agostini
- Department of Neuroradiology, Azienda Ospedaliero Universitaria 'S.Maria della Misericordia', P.za S. Maria della Misericordia, Udine, Italy
| | - Giampaolo Perna
- Department of Clinical Neurosciences, Villa San Benedetto Menni, Hermanas Hospitalarias, via Roma 16, Albese con Cassano, Como, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, via Colugna 50, Udine, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, via F. Sforza 35, Milan, Italy.
| |
Collapse
|
43
|
Coifman KG, Summers CB. Understanding Emotion Inflexibility in Risk for Affective Disease: Integrating Current Research and Finding a Path Forward. Front Psychol 2019; 10:392. [PMID: 30873087 PMCID: PMC6402431 DOI: 10.3389/fpsyg.2019.00392] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023] Open
Abstract
Emotion-related disorders (e.g., depression, anxiety, stress, eating, substance and some personality disorders) include some of the most common, burdensome, and costly diseases worldwide. Central to many, if not all of these disorders, may be patterns of rigid or inflexible emotion responses. Indeed, theorists point to emotion in-flexibility as a potential cause or maintaining factor in emotion-related diseases. Despite the increasing prominence of emotion inflexibility in theories of affective disease, a comprehensive review of the developing empirical literature has not yet been conducted. Accordingly, this review will examine the three dominant lines of inquiry assessing emotion flexibility. These include: (1) the capacity to use and vary deliberate emotion regulation strategies, (2) the context sensitivity of spontaneous emotional responses, and (3) flexibility in the appraisal of emotional events and experiences. Moreover, current evidence suggests that each of these three lines of research may converge to suggest the interplay of two key biological dimensions in emotion inflexibility, threat sensitivity, and cognitive control, known to be impaired in patients with affective disorders. In short, this developing body of work suggests a path by which future research could explicate and even exploit the ties between emotion inflexibility and affective disease, contributing to the development of improved models of risk, assessment, and intervention, with broad implications for psychological health.
Collapse
|
44
|
Im S, Jeong J, Jin G, Yeom J, Jekal J, Lee SI, Cho JA, Lee S, Lee Y, Kim DH, Bae M, Heo J, Moon C, Lee CH. MAOA variants differ in oscillatory EEG & ECG activities in response to aggression-inducing stimuli. Sci Rep 2019; 9:2680. [PMID: 30804379 PMCID: PMC6390082 DOI: 10.1038/s41598-019-39103-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/17/2019] [Indexed: 01/11/2023] Open
Abstract
Among the genetic variations in the monoamine oxidase A (MAOA) gene, upstream variable number tandem repeats (uVNTRs) of the promoter have been associated with individual differences in human physiology and aggressive behaviour. However, the evidence for a molecular or neural link between MAOA uVNTRs and aggression remains ambiguous. Additionally, the use of inconsistent promoter constructs in previous studies has added to the confusion. Therefore, it is necessary to demonstrate the genetic function of MAOA uVNTR and its effects on multiple aspects of aggression. Here, we identified three MAOA alleles in Koreans: the predominant 3.5R and 4.5R alleles, as well as the rare 2.5R allele. There was a minor difference in transcriptional efficiency between the 3.5R and 4.5R alleles, with the greatest value for the 2.5R allele, in contrast to existing research. Psychological indices of aggression did not differ among MAOA genotypes. However, our electroencephalogram and electrocardiogram results obtained under aggression-related stimulation revealed oscillatory changes as novel phenotypes that vary with the MAOA genotype. In particular, we observed prominent changes in frontal γ power and heart rate in 4.5R carriers of men. Our findings provide genetic insights into MAOA function and offer a neurobiological basis for various socio-emotional mechanisms in healthy individuals.
Collapse
Affiliation(s)
- SeungYeong Im
- School of Undergraduate Studies, DGIST, Daegu, Korea
- Department of Brain and Cognitive Sciences, Graduate School, DGIST, Daegu, Korea
| | - Jinju Jeong
- Undergraduate School Administration Team, DGIST, Daegu, Korea
- Well Aging Research Center, DGIST, Daegu, Korea
| | - Gwonhyu Jin
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Jiwoo Yeom
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | | | - Sang-Im Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Jung Ah Cho
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Sukkyoo Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Youngmi Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Dae-Hwan Kim
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Mijeong Bae
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Jinhwa Heo
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Cheil Moon
- Department of Brain and Cognitive Sciences, Graduate School, DGIST, Daegu, Korea.
| | - Chang-Hun Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea.
| |
Collapse
|
45
|
Godar SC, Mosher LJ, Scheggi S, Devoto P, Moench KM, Strathman HJ, Jones CM, Frau R, Melis M, Gambarana C, Wilkinson B, DeMontis MG, Fowler SC, Coba MP, Wellman CL, Shih JC, Bortolato M. Gene-environment interactions in antisocial behavior are mediated by early-life 5-HT 2A receptor activation. Neuropharmacology 2019; 159:107513. [PMID: 30716416 DOI: 10.1016/j.neuropharm.2019.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
Abstract
The ontogeny of antisocial behavior (ASB) is rooted in complex gene-environment (G×E) interactions. The best-characterized of these interplays occurs between: a) low-activity alleles of the gene encoding monoamine oxidase A (MAOA), the main serotonin-degrading enzyme; and b) child maltreatment. The purpose of this study was to develop the first animal model of this G×E interaction, to help understand the neurobiological mechanisms of ASB and identify novel targets for its therapy. Maoa hypomorphic transgenic mice were exposed to an early-life stress regimen consisting of maternal separation and daily intraperitoneal saline injections and were then compared with their wild-type and non-stressed controls for ASB-related neurobehavioral phenotypes. Maoa hypomorphic mice subjected to stress from postnatal day (PND) 1 through 7 - but not during the second postnatal week - developed overt aggression, social deficits and abnormal stress responses from the fourth week onwards. On PND 8, these mice exhibited low resting heart rate - a well-established premorbid sign of ASB - and a significant and selective up-regulation of serotonin 5-HT2A receptors in the prefrontal cortex. Notably, both aggression and neonatal bradycardia were rescued by the 5-HT2 receptor antagonist ketanserin (1-3 mg kg-1, IP), as well as the selective 5-HT2A receptor blocker MDL-100,907 (volinanserin, 0.1-0.3 mg kg-1, IP) throughout the first postnatal week. These findings provide the first evidence of a molecular basis of G×E interactions in ASB and point to early-life 5-HT2A receptor activation as a key mechanism for the ontogeny of this condition. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
Affiliation(s)
- Sean C Godar
- Dept. of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
| | - Laura J Mosher
- Dept. of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Simona Scheggi
- Dept. of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Paola Devoto
- Dept. of Biomedical Sciences, Section of Neuroscience, UNICA, Monserrato, Italy
| | - Kelly M Moench
- Dept. of Psychological and Brain Sciences, Program in Neural Science and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Hunter J Strathman
- Dept. of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Cori M Jones
- Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Roberto Frau
- Dept. of Biomedical Sciences, Section of Neuroscience, UNICA, Monserrato, Italy
| | - Miriam Melis
- Dept. of Biomedical Sciences, Section of Neuroscience, UNICA, Monserrato, Italy
| | - Carla Gambarana
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Brent Wilkinson
- Zilkha Neurogenetic Institute and Dept. of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Stephen C Fowler
- Dept. of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute and Dept. of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Cara L Wellman
- Dept. of Psychological and Brain Sciences, Program in Neural Science and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Jean C Shih
- Depts. of Pharmacology and Pharmaceutical Sciences and Integrated Anatomic Sciences, University of Southern California, Los Angeles, CA, USA
| | - Marco Bortolato
- Dept. of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
46
|
Wu F, Tu Z, Sun J, Geng H, Zhou Y, Jiang X, Li H, Kong L. Abnormal Functional and Structural Connectivity of Amygdala-Prefrontal Circuit in First-Episode Adolescent Depression: A Combined fMRI and DTI Study. Front Psychiatry 2019; 10:983. [PMID: 32116814 PMCID: PMC7013238 DOI: 10.3389/fpsyt.2019.00983] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Abnormalities of functional and structural connectivity in the amygdala-prefrontal circuit which involved with emotion processing have been implicated in adults with major depressive disorder (MDD). Adolescent MDD may have severer dysfunction of emotion processing than adult MDD. In this study, we used resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) to examine the potential functional and structural connectivity abnormalities within amygdala-prefrontal circuit in first-episode medication-naïve adolescents with MDD. METHODS Rs-fMRI and DTI data were acquired from 36 first-episode medication-naïve MDD adolescents and 37 healthy controls (HC). Functional connectivity between amygdala and the prefrontal cortex (PFC) and fractional anisotropy (FA) values of the uncinate fasciculus (UF) which connecting amygdala and PFC were compared between the MDD and HC groups. The correlation between the FA value of UF and the strength of the functional connectivity in the PFC showing significant differences between the two groups was identified. RESULTS Compared with the HC group, decreased functional connectivity between left amygdala and left ventral PFC was detected in the adolescent MDD group. FA values were significant lower in the left UF within the adolescent MDD group compared to the HC group. There was no significant correlation between the UF and FA, and the strength of functional connectivity within the adolescent MDD group. CONCLUSIONS First-episode medication-naïve adolescent MDD showed decreased functional and structural connectivity in the amygdala-prefrontal circuit. These findings suggest that both functional and structural abnormalities of the amygdala-prefrontal circuit may present in the early onset of adolescent MDD and play an important role in the neuropathophysiology of adolescent MDD.
Collapse
Affiliation(s)
- Feng Wu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhaoyuan Tu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiaze Sun
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiyang Geng
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huizi Li
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
47
|
Bi K, Luo G, Tian S, Zhang S, Liu X, Wang Q, Lu Q, Yao Z. An enriched granger causal model allowing variable static anatomical constraints. Neuroimage Clin 2018; 21:101592. [PMID: 30448217 PMCID: PMC6411584 DOI: 10.1016/j.nicl.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/08/2018] [Accepted: 11/03/2018] [Indexed: 01/08/2023]
Abstract
The anatomical connectivity constrains but does not fully determine functional connectivity, especially when one explores into the dynamics over the course of a trial. Therefore, an enriched granger causal model (GCM) integrated with anatomical prior information is proposed in this study, to describe the dynamic effective connectivity to distinguish the depression and explore the pathogenesis of depression. In the proposed frame, the anatomical information was converted via an optimized transformation model, which was then integrated into the normal GCM by variational bayesian model. Magnetoencephalography (MEG) signals and diffusion tensor imaging (DTI) of 24 depressive patients and 24 matched controls were utilized for performance comparison. Together with the sliding windowed MEG signals under sad facial stimuli, the enriched GCM was applied to calculate the regional-pair dynamic effective connectivity, which were repeatedly sifted via feature selection and fed into different classifiers. From the aspects of model errors and recognition accuracy rates, results supported the superiority of the enriched GCM with anatomical priors over the normal GCM. For the effective connectivity with anatomical priors, the best subject discrimination accuracy of SVM was 85.42% (the sensitivity was 87.50% and the specificity was 83.33%). Furthermore, discriminative feature analysis suggested that the enriched GCM that detect the variable anatomical constraint on function could better detect more stringent and less dynamic brain function in depression. The proposed approach is valuable in dynamic functional dysfunction exploration in depression and could be useful for depression recognition.
Collapse
Affiliation(s)
- Kun Bi
- Key Laboratory of Child Development and Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guoping Luo
- Key Laboratory of Child Development and Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shui Tian
- Key Laboratory of Child Development and Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Siqi Zhang
- Key Laboratory of Child Development and Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoxue Liu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Qiang Wang
- Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Qing Lu
- Key Laboratory of Child Development and Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhijian Yao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China; Medical School of Nanjing University, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
48
|
Singh MK, Leslie SM, Packer MM, Weisman EF, Gotlib IH. Limbic Intrinsic Connectivity in Depressed and High-Risk Youth. J Am Acad Child Adolesc Psychiatry 2018; 57:775-785.e3. [PMID: 30274652 PMCID: PMC11890206 DOI: 10.1016/j.jaac.2018.06.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/31/2018] [Accepted: 06/21/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Depression runs in families and has been associated with dysfunctional limbic connectivity. Whether aberrant limbic connectivity is a risk factor for or a consequence of depression is unclear. To examine this question, we compared resting state functional connectivity (RSFC) in youth with depressive disorders (DEP), healthy offspring of parents with depression (DEP-risk), and healthy comparison (HC) youth. METHOD Magnetic resonance imaging at rest was acquired from 119 youth, aged 8 to 17 years (DEP, n = 41, DEP-risk, n = 39, and HC, n = 39) and analyzed using seed-based RSFC in bilateral amygdala and nucleus accumbens (NAcc), covarying for age, IQ, and sex. RESULTS We found distinct risk- and disorder-specific patterns of RSFC across groups. DEP-risk and DEP youth shared reduced negative amygdala-right frontal cortex RSFC and reduced positive amygdala-lingual gyrus RSFC compared to HC youth (p < .001). DEP-risk youth had weaker negative amygdala-precuneus RSFC compared to DEP and HC youth (p < .001), suggesting a resilience marker for depression. In contrast, DEP youth had increased positive NAcc-left frontal cortex RSFC and reduced positive NAcc-insula RSFC compared to DEP-risk and HC youth (p < .001), suggestive of disorder-specific features of depression. Greater depression severity was correlated with disorder-specific amygdala and NAcc RSFC (p < .05). CONCLUSION RSFC in the amygdala and NAcc may represent selective disorder- and risk-specific markers in youth with, and at familial risk for, depression. Longitudinal studies are needed to determine whether these patterns predict long-term clinical outcomes.
Collapse
|
49
|
Rajkumar R, Dawe GS. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. J Chem Neuroanat 2018; 91:63-100. [DOI: 10.1016/j.jchemneu.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
|
50
|
Herwig U, Opialla S, Cattapan K, Wetter TC, Jäncke L, Brühl AB. Emotion introspection and regulation in depression. Psychiatry Res Neuroimaging 2018; 277:7-13. [PMID: 29778804 DOI: 10.1016/j.pscychresns.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 01/13/2023]
Abstract
Depressed patients suffer from an impairment to voluntarily influence and regulate their unpleasant emotional state. Strengthening the mental ability to interfere with dysfunctional emotion processing may be beneficial in treating depression. According to models of emotion processing this may be done by successful down-regulation of enhanced amygdala activity. We investigated short periods of intentional emotion-introspection compared with cognitive self-reflection as two domains of self-awareness in terms of effects on emotion regulation. Thirty depressed patients performed twelve second periods of emotion-introspection, self-reflection and a neutral condition during functional magnetic resonance imaging. We analyzed brain activation in the patients with depression by means of whole brain, region of interest and connectivity analyses. Amygdala activity decreased during emotion-introspection relative to self-reflection and to the neutral condition, whereby left amygdala was inversely activated relative to the left insula. Insula activity itself was correlated with medial and dorsolateral prefrontal cortex (PFC) activation. In conclusion, depressed patients are able to down-regulate amygdala activity by emotion-introspection. This may be interpreted as well-working emotion regulation supposedly induced by PFC connections mediated via insula. The finding supports the application of emotion-introspection, a mindfulness-related process, in a clinical setting as an element of psychotherapy to train and improve emotion regulation.
Collapse
Affiliation(s)
- Uwe Herwig
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zürich, Switzerland; Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany; Clinic for Psychiatry and Psychotherapy AR, Herisau, Switzerland.
| | - Sarah Opialla
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zürich, Switzerland
| | - Katja Cattapan
- Sanatorium Kilchberg/Zürich, Private Hospital of Psychiatry, Kilchberg, Switzerland; University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Thomas C Wetter
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Lutz Jäncke
- Department of Neuropsychology, University of Zürich, Zürich, Switzerland
| | - Annette B Brühl
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zürich, Switzerland
| |
Collapse
|