1
|
Rogers A, Castro EM, Lotfipour S, Leslie FM. Dynorphinergic lateral hypothalamus to posterior ventral tegmental area pathway matures after adolescence in male rats. Neuropharmacology 2025; 270:110350. [PMID: 39938860 DOI: 10.1016/j.neuropharm.2025.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
The highly plastic nature of the adolescent brain is well-known, and is thought to contribute to the unique susceptibility of adolescents to drugs of abuse. However, much investigation of adolescent plasticity has been focused on synaptic plasticity, as synapses are strengthened and pruned. Here, we show that dynorphin+ neurons in the lateral hypothalamus of adolescent male rats do not respond to low doses of intravenous combined nicotine + ethanol, while male adult lateral hypothalamus dynorphin+ neurons do. We also provide evidence that the dynorphinergic projection from the lateral hypothalamus to the posterior ventral tegmental area is not present in adolescent males, suggesting that axons are still extending during this time. Together, these results suggest a mechanism for the increased susceptibility of adolescent male rats to drug reward.
Collapse
Affiliation(s)
- Alexandra Rogers
- Department of Pharmaceutical Sciences, University of California, Irvine, 856 Health Sciences Road, Suite 5400, 92697-3958, Irvine, CA, USA.
| | - Emily M Castro
- Department of Pharmaceutical Sciences, University of California, Irvine, 856 Health Sciences Road, Suite 5400, 92697-3958, Irvine, CA, USA
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, University of California, Irvine, 856 Health Sciences Road, Suite 5400, 92697-3958, Irvine, CA, USA
| | - Frances M Leslie
- Department of Pharmaceutical Sciences, University of California, Irvine, 856 Health Sciences Road, Suite 5400, 92697-3958, Irvine, CA, USA
| |
Collapse
|
2
|
McCarthy DM, Vied C, Trupiano MX, Canekeratne AJ, Wang Y, Schatschneider C, Bhide PG. Behavioral, neurotransmitter and transcriptomic analyses in male and female Fmr1 KO mice. Front Behav Neurosci 2024; 18:1458502. [PMID: 39308631 PMCID: PMC11412825 DOI: 10.3389/fnbeh.2024.1458502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Fragile X syndrome is an inherited X-linked disorder associated with intellectual disabilities that begin in childhood and last a lifetime. The symptoms overlap with autism spectrum disorder, and the syndrome predominantly affects males. Consequently, FXS research tends to favor analysis of social behaviors in males, leaving a gap in our understanding of other behavioral traits, especially in females. Methods We used a mouse model of FXS to analyze developmental, behavioral, neurochemical, and transcriptomic profiles in males and females. Results Our behavioral assays demonstrated locomotor hyperactivity, motor impulsivity, increased "approach" behavior in an approach-avoidance assay, and deficits in nest building behavior. Analysis of brain neurotransmitter content revealed deficits in striatal GABA, glutamate, and serotonin content. RNA sequencing of the ventral striatum unveiled expression changes associated with neurotransmission as well as motivation and substance use pathways. Sex differences were identified in nest building behavior, striatal neurotransmitter content, and ventral striatal gene expression. Discussion In summary, our study identified sex differences in specific behavioral, neurotransmitter, and gene expression phenotypes and gene set enrichment analysis identified significant enrichment of pathways associated with motivation and drug reward.
Collapse
Affiliation(s)
- Deirdre M. McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Cynthia Vied
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Translational Science Laboratory, Florida State University College of Medicine Tallahassee, FL, United States
| | - Mia X. Trupiano
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Angeli J. Canekeratne
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Department of Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, United States
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
3
|
Custodio L, Malone S, Bardo MT, Turner JR. Nicotine and opioid co-dependence: Findings from bench research to clinical trials. Neurosci Biobehav Rev 2022; 134:104507. [PMID: 34968525 PMCID: PMC10986295 DOI: 10.1016/j.neubiorev.2021.12.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
Concomitant use of tobacco and opioids represents a growing public health concern. In fact, the mortality rate due to smoking-related illness approaches 50% among SUD patients. Cumulative evidence demonstrates that the vulnerability to drugs of abuse is influenced by behavioral, environmental, and genetic factors. This review explores the contribution of genetics and neural mechanisms influencing nicotine and opioid reward, respiration, and antinociception, emphasizing the interaction of cholinergic and opioid receptor systems. Despite the substantial evidence demonstrating nicotine-opioid interactions within the brain and on behavior, the currently available pharmacotherapies targeting these systems have shown limited efficacy for smoking cessation on opioid-maintained smokers. Thus, further studies designed to identify novel targets modulating both nicotinic and opioid receptor systems may lead to more efficacious approaches for co-morbid nicotine dependence and opioid use disorder.
Collapse
Affiliation(s)
- Lilian Custodio
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Samantha Malone
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Fundamentals of the Dynorphins/Kappa Opioid Receptor System: From Distribution to Signaling and Function. Handb Exp Pharmacol 2022; 271:3-21. [PMID: 33754230 PMCID: PMC9013522 DOI: 10.1007/164_2021_433] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This chapter provides a general introduction to the dynorphins (DYNs)/kappa opioid receptor (KOR) system, including DYN peptides, neuroanatomy of the DYNs/KOR system, cellular signaling, and in vivo behavioral effects of KOR activation and inhibition. It is intended to serve as a primer for the book and to provide a basic background for the chapters in the book.
Collapse
|
5
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
6
|
Association Study of Opioid Receptor Delta-Type 1 (OPRD1) Gene Variants with Nicotine Dependence in an Iranian Population. J Mol Neurosci 2021; 71:1301-1305. [PMID: 33506435 DOI: 10.1007/s12031-020-01757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Twins studies indicate that many individual factors are associated with genetic polymorphisms in tobacco use, dependence vulnerability, and the ability to quit smoking. Opioid receptor delta-type 1 (OPRD1) is one of the most important genes in the opioid pathway. Therefore, the current study aimed to investigate the association of variants located in the intron 1 of the OPRD1 gene, including rs2236857, rs2236855, and rs760589, with susceptibility to nicotine dependence among northern Iranians. DNA of 426 individuals, including 224 smokers and 202 healthy people, were extracted with the salting-out standard technique, qualified with Agarose gel, then quantified with Nanodrop, and finally genotyped by Amplification Refractory Mutation System (ARMS) PCR. All statistical analyses were performed by SNPAlyze version 8.1 and SPSS version 20. Results revealed no significant association of all three studied variants with the susceptibility to nicotine dependence in any models of inheritance. However, there were five haplotypes with an overall frequency higher than 0.05; no significant impact of any of them on nicotine dependence was observed. Altogether, rs2236857, rs2236855, and rs760589 were not associated with nicotine dependence among northern Iranians.
Collapse
|
7
|
Gibula-Tarlowska E, Kotlinska JH. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance. Biomolecules 2020; 10:E1376. [PMID: 32998249 PMCID: PMC7599993 DOI: 10.3390/biom10101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-059 Lublin, Poland;
| | | |
Collapse
|
8
|
In major depression, increased kappa and mu opioid receptor levels are associated with immune activation. Acta Neuropsychiatr 2020; 32:99-108. [PMID: 31753054 DOI: 10.1017/neu.2019.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study was carried out to delineate differences between major depressive disorder (MDD) and healthy controls in dynorphin and kappa opioid receptor (KOR) levels in association with changes in the β-endorphin - mu opioid receptor (MOR) and immune-inflammatory system. METHODS The present study examines dynorphin, KOR, β-endorphin, MOR, interleukin (IL)-6 and IL-10 in 60 drug-free male participants with MDD and 30 age-matched healthy males. RESULTS Serum dynorphin, KOR, β-endorphin and MOR are significantly higher in MDD as compared to controls. The increases in the dynorphin/KOR system and β-endorphin/MOR system are significantly intercorrelated and are both strongly associated with increased IL-6 and IL-10 levels. Dynorphin, β-endorphin, KOR and both cytokines showed a good diagnostic performance for MDD versus controls with a bootstrapped (n = 2000) area under the receiver operating curve of 0.972. The dynorphin/KOR system is significantly decreased in depression with comorbid nicotine dependence. CONCLUSION Our findings suggest that, in MDD, immune activation is associated with a simultaneous activation of dynorphin/KOR and β-endorphin/MOR signaling and that these opioid systems may participate in the pathophysiology of depression by (a) exerting immune-regulatory activities attenuating the primary immune response and (b) modulating reward responses and mood as well as emotional and behavioural responses to stress.
Collapse
|
9
|
Namba MD, Tomek SE, Olive MF, Beckmann JS, Gipson CD. The Winding Road to Relapse: Forging a New Understanding of Cue-Induced Reinstatement Models and Their Associated Neural Mechanisms. Front Behav Neurosci 2018; 12:17. [PMID: 29479311 PMCID: PMC5811475 DOI: 10.3389/fnbeh.2018.00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
In drug addiction, cues previously associated with drug use can produce craving and frequently trigger the resumption of drug taking in individuals vulnerable to relapse. Environmental stimuli associated with drugs or natural reinforcers can become reliably conditioned to increase behavior that was previously reinforced. In preclinical models of addiction, these cues enhance both drug self-administration and reinstatement of drug seeking. In this review, we will dissociate the roles of conditioned stimuli as reinforcers from their modulatory or discriminative functions in producing drug-seeking behavior. As well, we will examine possible differences in neurobiological encoding underlying these functional differences. Specifically, we will discuss how models of drug addiction and relapse should more systematically evaluate these different types of stimuli to better understand the neurobiology underlying craving and relapse. In this way, behavioral and pharmacotherapeutic interventions may be better tailored to promote drug use cessation outcomes and long-term abstinence.
Collapse
Affiliation(s)
- Mark D. Namba
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Seven E. Tomek
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Joshua S. Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Cassandra D. Gipson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
10
|
Effects of pharmacological manipulation of the kappa opioid receptors on the aversive effects of nicotine. Behav Brain Res 2017; 338:56-65. [PMID: 29037662 DOI: 10.1016/j.bbr.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/20/2017] [Accepted: 10/12/2017] [Indexed: 12/29/2022]
Abstract
Nicotine, an addictive component of tobacco smoke, produces both rewarding and aversive effects. Increasing the aversive effects of nicotine may help in promoting smoking cessation. However, neural targets mediating the aversive effects of nicotine have not been fully identified. In this study, we evaluated the role of kappa opioid receptors (KORs) in the aversive effects of nicotine (0.4 mg/kg, base; s.c.) using the nicotine-induced conditioned taste aversion (CTA) model in Wistar rats. The KORs were activated using the selective KOR agonist (±)U-50,488H (0, 0.03, 0.15 & 0.3mg/kg; s.c.) and inhibited using the KOR antagonist nor-binaltorphimine (nor-BNI; 0, 15 & 30mg/kg; s.c.) in separate groups of rats using a between-subjects design. Pretreatment with the KOR agonist (±)U-50,488H (0.3mg/kg) significantly increased aversion for the nicotine-associated solution. Additionally, (±)U-50,488H (0.3mg/kg) on its own induced aversion to the flavored solution associated with it even in the absence of nicotine, suggesting that the KOR agonist induced increase in nicotine-induced aversion was an additive effect. Interestingly, administration of the KOR antagonist nor-BNI (30mg/kg) prior to conditioning with nicotine/saline, but not after conditioning with nicotine/saline, attenuated nicotine-induced aversive effects compared to saline controls. Taken together, these data suggest a role for KORs in the aversive effects of nicotine.
Collapse
|
11
|
Ugur M, Kaya E, Gozen O, Koylu EO, Kanit L, Keser A, Balkan B. Chronic nicotine-induced changes in gene expression of delta and kappa-opioid receptors and their endogenous ligands in the mesocorticolimbic system of the rat. Synapse 2017; 71. [PMID: 28509375 DOI: 10.1002/syn.21985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
Delta and kappa opioid receptors (DOR and KOR, respectively) and their endogenous ligands, proenkephalin (PENK) and prodynorphin (PDYN)-derived opioid peptides are proposed as important mediators of nicotine reward. This study investigated the regulatory effect of chronic nicotine treatment on the gene expression of DOR, KOR, PENK and PDYN in the mesocorticolimbic system. Three groups of rats were injected subcutaneously with nicotine at doses of 0.2, 0.4, or 0.6 mg/kg/day for 6 days. Rats were decapitated 1 hr after the last dose on day six, as this timing coincides with increased dopamine release in the mesocorticolimbic system. mRNA levels in the ventral tegmental area (VTA), lateral hypothalamic area (LHA), amygdala (AMG), dorsal striatum (DST), nucleus accumbens, and medial prefrontal cortex were measured by quantitative real-time PCR. Our results showed that nicotine upregulated DOR mRNA in the VTA at all of the doses employed, in the AMG at the 0.4 and 0.6 mg/kg doses, and in the DST at the 0.4 mg/kg dose. Conversely, PDYN mRNA was reduced in the LHA with 0.6 mg/kg nicotine and in the AMG with 0.4 mg/kg nicotine. KOR mRNA was also decreased in the DST with 0.6 mg/kg nicotine. Nicotine did not regulate PENK mRNA in any brain region studied.
Collapse
Affiliation(s)
- Muzeyyen Ugur
- Department of Physiology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Egemen Kaya
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Oguz Gozen
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Ersin O Koylu
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Lutfiye Kanit
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Aysegul Keser
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| | - Burcu Balkan
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey.,Center for Brain Research, Ege University, Izmir, Turkey
| |
Collapse
|
12
|
Norman H, D'Souza MS. Endogenous opioid system: a promising target for future smoking cessation medications. Psychopharmacology (Berl) 2017; 234:1371-1394. [PMID: 28285326 DOI: 10.1007/s00213-017-4582-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/24/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Nicotine addiction continues to be a health challenge across the world. Despite several approved medications, smokers continue to relapse. Several human and animal studies have evaluated the role of the endogenous opioid system as a potential target for smoking cessation medications. METHODS In this review, studies that have elucidated the role of the mu (MORs), delta (DORs), and kappa (KORs) opioid receptors in nicotine reward, nicotine withdrawal, and reinstatement of nicotine seeking will be discussed. Additionally, the review will discuss discrepancies in the literature and therapeutic potential of the endogenous opioid system, and suggest studies to address gaps in knowledge with respect to the role of the opioid receptors in nicotine dependence. RESULTS Data available till date suggest that blockade of the MORs and DORs decreased the rewarding effects of nicotine, while activation of the MORs and DORs decreased nicotine withdrawal-induced aversive effects. In contrast, activation of the KORs decreased the rewarding effects of nicotine, while blockade of the KORs decreased nicotine withdrawal-induced aversive effects. Interestingly, blockade of the MORs and KORs attenuated reinstatement of nicotine seeking. In humans, MOR antagonists have shown benefits in select subpopulations of smokers and further investigation is required to realize their full therapeutic potential. CONCLUSION Future work must assess the influence of polymorphisms in opioid receptor-linked genes in nicotine dependence, which will help in both identifying individuals vulnerable to nicotine addiction and the development of opioid-based smoking cessation medications. Overall, the endogenous opioid system continues to be a promising target for future smoking cessation medications.
Collapse
Affiliation(s)
- Haval Norman
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH, 45810, USA
| | - Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH, 45810, USA.
| |
Collapse
|
13
|
Carboni L, Romoli B, Romualdi P, Zoli M. Repeated nicotine exposure modulates prodynorphin and pronociceptin levels in the reward pathway. Drug Alcohol Depend 2016; 166:150-8. [PMID: 27430399 DOI: 10.1016/j.drugalcdep.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nicotine dependence is maintained by neurobiological adaptations in the dopaminergic brain reward pathway with the contribution of opioidergic circuits. This study assessed the role of opioid peptides and receptors on the molecular changes associated with nicotine dependence. To this aim we analysed nicotine effects on opioid gene and receptor expression in the reward pathway in a nicotine sensitization model. METHODS Sprague-Dawley rats received nicotine administrations for five days and locomotor activity assessment showed the development of sensitization. The mRNA expression of prodynorphin (pdyn), pronociceptin (pnoc) and the respective receptors was measured by quantitative PCR in the ventral midbrain (VM), the nucleus accumbens (NAc), the caudate-putamen (CPu), the pre-frontal cortex (PFCx), and the hippocampus. RESULTS A significant positive effect of sensitization on pdyn mRNA levels was detected in the CPu. This effect was supported by a significant and selective correlation between the two parameters in this region. Moreover, chronic but not acute nicotine treatment significantly decreased pdyn mRNA levels in the NAc and increased expression in the PFCx. Pnoc mRNA was significantly increased in the VM and the PFCx after sub-chronic administration of nicotine, whereas no alterations were observed after acute treatment. No treatment associated changes were detected in κ-opioid receptor or nociceptin receptor mRNAs. CONCLUSIONS This experiment revealed an effect of nicotine administration that was distinguishable from the effect of nicotine sensitization. While several pnoc and pdyn changes were associated to nicotine administration, the only significant effect of sensitization was a significant increase in pdyn in the CPu.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Benedetto Romoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
Noble F, Lenoir M, Marie N. The opioid receptors as targets for drug abuse medication. Br J Pharmacol 2015; 172:3964-79. [PMID: 25988826 DOI: 10.1111/bph.13190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/24/2015] [Accepted: 05/10/2015] [Indexed: 12/24/2022] Open
Abstract
The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse.
Collapse
Affiliation(s)
- Florence Noble
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Magalie Lenoir
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| | - Nicolas Marie
- Centre National de la Recherche Scientifique, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
15
|
Hall FS, Der-Avakian A, Gould TJ, Markou A, Shoaib M, Young JW. Negative affective states and cognitive impairments in nicotine dependence. Neurosci Biobehav Rev 2015; 58:168-85. [PMID: 26054790 DOI: 10.1016/j.neubiorev.2015.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/13/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Smokers have substantial individual differences in quit success in response to current treatments for nicotine dependence. This observation may suggest that different underlying motivations for continued tobacco use across individuals and nicotine cessation may require different treatments in different individuals. Although most animal models of nicotine dependence emphasize the positive reinforcing effects of nicotine as the major motivational force behind nicotine use, smokers generally report that other consequences of nicotine use, including the ability of nicotine to alleviate negative affective states or cognitive impairments, as reasons for continued smoking. These states could result from nicotine withdrawal, but also may be associated with premorbid differences in affective and/or cognitive function. Effects of nicotine on cognition and affect may alleviate these impairments regardless of their premorbid or postmorbid origin (e.g., before or after the development of nicotine dependence). The ability of nicotine to alleviate these symptoms would thus negatively reinforce behavior, and thus maintain subsequent nicotine use, contributing to the initiation of smoking, the progression to dependence and relapse during quit attempts. The human and animal studies reviewed here support the idea that self-medication for pre-morbid and withdrawal-induced impairments may be more important factors in nicotine addiction and relapse than has been previously appreciated in preclinical research into nicotine dependence. Given the diverse beneficial effects of nicotine under these conditions, individuals might smoke for quite different reasons. This review suggests that inter-individual differences in the diverse effects of nicotine associated with self-medication and negative reinforcement are an important consideration in studies attempting to understand the causes of nicotine addiction, as well as in the development of effective, individualized nicotine cessation treatments.
Collapse
Affiliation(s)
- F Scott Hall
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Athina Markou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mohammed Shoaib
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
16
|
Effects of genetic deletion of endogenous opioid system components on the reinstatement of cocaine-seeking behavior in mice. Neuropsychopharmacology 2014; 39:2974-88. [PMID: 24943644 PMCID: PMC4229567 DOI: 10.1038/npp.2014.149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 12/11/2022]
Abstract
The repeated cycles of cessation of consumption and relapse remain the major clinical concern in treating drug addiction. The endogenous opioid system is a crucial component of the reward circuit that participates in the adaptive changes leading to relapse in the addictive processes. We have used genetically modified mice to evaluate the involvement of μ-opioid receptor (MOR) and δ-opioid receptor (DOR) and their main endogenous ligands, the enkephalins derived from proenkephalin (PENK) and prodynorphin (PDYN), in the reinstatement of cocaine-seeking behavior. Constitutive knockout mice of MOR, DOR, PENK, and PDYN, and their wild-type littermates were trained to self-administer cocaine or to seek for palatable food, followed by a period of extinction and finally tested on a cue-induced reinstatement of seeking behavior. The four lines of knockout mice acquired operant cocaine self-administration behavior, although DOR and PENK knockout mice showed less motivation for cocaine than wild-type littermates. Moreover, cue-induced relapse was significantly decreased in MOR and DOR knockout mice. In contrast, PDYN knockout mice showed a slower extinction and increased relapse than wild-type littermates. C-Fos expression analysis revealed differential activation in brain areas related with memory and reward in these knockout mice. No differences were found in any of the four genotypes in operant responding to obtain palatable food, indicating that the changes revealed in knockout mice were not due to unspecific deficit in operant performance. Our results indicate that MOR, DOR, and PDYN have a differential role in cue-induced reinstatement of cocaine-seeking behavior.
Collapse
|
17
|
Jackson KJ, Muldoon PP, De Biasi M, Damaj MI. New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology 2014; 96:223-34. [PMID: 25433149 DOI: 10.1016/j.neuropharm.2014.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/21/2014] [Accepted: 11/17/2014] [Indexed: 02/08/2023]
Abstract
Diseases associated with tobacco use constitute a major health problem worldwide. Upon cessation of tobacco use, an unpleasant withdrawal syndrome occurs in dependent individuals. Avoidance of the negative state produced by nicotine withdrawal represents a motivational component that promotes continued tobacco use and relapse after smoking cessation. With the modest success rate of currently available smoking cessation therapies, understanding mechanisms involved in the nicotine withdrawal syndrome are crucial for developing successful treatments. Animal models provide a useful tool for examining neuroadaptative mechanisms and factors influencing nicotine withdrawal, including sex, age, and genetic factors. Such research has also identified an important role for nicotinic receptor subtypes in different aspects of the nicotine withdrawal syndrome (e.g., physical vs. affective signs). In addition to nicotinic receptors, the opioid and endocannabinoid systems, various signal transduction pathways, neurotransmitters, and neuropeptides have been implicated in the nicotine withdrawal syndrome. Animal studies have informed human studies of genetic variants and potential targets for smoking cessation therapies. Overall, the available literature indicates that the nicotine withdrawal syndrome is complex, and involves a range of neurobiological mechanisms. As research in nicotine withdrawal progresses, new pharmacological options for smokers attempting to quit can be identified, and treatments with fewer side effects that are better tailored to the unique characteristics of patients may become available. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- K J Jackson
- Department of Psychiatry, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23219, USA
| | - P P Muldoon
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Marshall St., Richmond, VA 23219, USA
| | - M De Biasi
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Marshall St., Richmond, VA 23219, USA.
| |
Collapse
|
18
|
Grella SL, Funk D, Coen K, Li Z, Lê AD. Role of the kappa-opioid receptor system in stress-induced reinstatement of nicotine seeking in rats. Behav Brain Res 2014; 265:188-97. [PMID: 24583188 PMCID: PMC4082245 DOI: 10.1016/j.bbr.2014.02.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 02/19/2014] [Indexed: 12/14/2022]
Abstract
RATIONALE The correlation between stress and smoking is well established. The mechanisms that underlie this relationship are, however, unclear. Recent data suggest that the kappa-opioid system is involved in the mediation of negative affective states associated with stress thereby promoting drug addiction and relapse. Pharmacological treatments targeting the kappa-opioid system and this mechanism may prove to be useful therapeutics for nicotine addiction in the future. OBJECTIVES We sought to determine whether there was a stress-specific role of the kappa-opioid system in nicotine seeking behavior. METHOD Groups of male Long Evans rats were trained to self-administer nicotine intravenously; their operant responding for nicotine was extinguished prior to tests of reinstatement. Pretreatment with systemic injections of the kappa-opioid receptor (KOR) antagonist nor-binaltorphimine (nor-BNI) was given prior to tests of stress (systemic injections of yohimbine (YOH)) or cue-induced reinstatement of nicotine seeking. Systemic injections of the KOR agonist U50,488 were also given in a test for reinstatement of nicotine seeking. RESULTS Nor-BNI pretreatment at 1h and 24h prior to testing was able to block YOH-induced, but not cue-induced reinstatement of nicotine seeking. U50,488 reinstated nicotine seeking behavior in a dose-dependent manner. CONCLUSIONS These findings support the hypothesis that the kappa-opioid system is involved in relapse to nicotine seeking induced by stress, but not by conditioned cues. KOR antagonists such as nor-BNI may therefore be useful novel therapeutic agents for decreasing the risk of stress-induced drug relapse.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Adrenergic alpha-2 Receptor Antagonists
- Analgesics, Non-Narcotic/pharmacology
- Animals
- Conditioning, Operant/drug effects
- Drug Administration Schedule
- Drug Interactions
- Extinction, Psychological/drug effects
- Male
- Naltrexone/administration & dosage
- Naltrexone/analogs & derivatives
- Nicotine/administration & dosage
- Nicotinic Agonists/administration & dosage
- Rats
- Rats, Long-Evans
- Receptors, Opioid, kappa/metabolism
- Self Administration
- Stress, Psychological/etiology
- Stress, Psychological/prevention & control
- Tobacco Use Disorder/complications
- Yohimbine/toxicity
Collapse
Affiliation(s)
- Stephanie L Grella
- Neurobiology of Alcohol Laboratory, Centre for Addiction and Mental Health, 33 Russell St., Toronto, Ontario M5S 2S1, Canada; Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Rm 4207, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Douglas Funk
- Neurobiology of Alcohol Laboratory, Centre for Addiction and Mental Health, 33 Russell St., Toronto, Ontario M5S 2S1, Canada.
| | - Kathy Coen
- Neurobiology of Alcohol Laboratory, Centre for Addiction and Mental Health, 33 Russell St., Toronto, Ontario M5S 2S1, Canada
| | - Zhaoxia Li
- Neurobiology of Alcohol Laboratory, Centre for Addiction and Mental Health, 33 Russell St., Toronto, Ontario M5S 2S1, Canada
| | - A D Lê
- Neurobiology of Alcohol Laboratory, Centre for Addiction and Mental Health, 33 Russell St., Toronto, Ontario M5S 2S1, Canada; Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Rm 4207, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, Ontario M5T 1R8, Canada
| |
Collapse
|
19
|
Lalanne L, Ayranci G, Kieffer BL, Lutz PE. The kappa opioid receptor: from addiction to depression, and back. Front Psychiatry 2014; 5:170. [PMID: 25538632 PMCID: PMC4258993 DOI: 10.3389/fpsyt.2014.00170] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/13/2014] [Indexed: 12/16/2022] Open
Abstract
Comorbidity is a major issue in psychiatry that notably associates with more severe symptoms, longer illness duration, and higher service utilization. Therefore, identifying key clusters of comorbidity and exploring the underlying pathophysiological mechanisms represent important steps toward improving mental health care. In the present review, we focus on the frequent association between addiction and depression. In particular, we summarize the large body of evidence from preclinical models indicating that the kappa opioid receptor (KOR), a member of the opioid neuromodulatory system, represents a central player in the regulation of both reward and mood processes. Current data suggest that the KOR modulates overlapping neuronal networks linking brainstem monoaminergic nuclei with forebrain limbic structures. Rewarding properties of both drugs of abuse and natural stimuli, as well as the neurobiological effects of stressful experiences, strongly interact at the level of KOR signaling. In addiction models, activity of the KOR is potentiated by stressors and critically controls drug-seeking and relapse. In depression paradigms, KOR signaling is responsive to a variety of stressors, and mediates despair-like responses. Altogether, the KOR represents a prototypical substrate of comorbidity, whereby life experiences converge upon common brain mechanisms to trigger behavioral dysregulation and increased risk for distinct but interacting psychopathologies.
Collapse
Affiliation(s)
- Laurence Lalanne
- CNRS UMR-7104, Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, Université de Strasbourg , Illkirch , France ; Department of Psychiatry, University Hospital of Strasbourg and Medical School of Strasbourg , Strasbourg , France
| | - Gulebru Ayranci
- CNRS UMR-7104, Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, Université de Strasbourg , Illkirch , France ; Douglas Mental Health Institute, McGill University , Montréal, QC , Canada
| | - Brigitte L Kieffer
- Douglas Mental Health Institute, McGill University , Montréal, QC , Canada
| | - Pierre-Eric Lutz
- Douglas Mental Health Institute, McGill University , Montréal, QC , Canada
| |
Collapse
|
20
|
Raffa RB, Baron S, Bhandal JS, Brown T, Song K, Tallarida CS, Rawls SM. Opioid receptor types involved in the development of nicotine physical dependence in an invertebrate (Planaria) model. Pharmacol Biochem Behav 2013; 112:9-14. [PMID: 24084318 DOI: 10.1016/j.pbb.2013.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 11/18/2022]
Abstract
Recent data suggest that opioid receptors are involved in the development of nicotine physical dependence in mammals. Evidence in support of a similar involvement in an invertebrate (Planaria) is presented using the selective opioid receptor antagonist naloxone, and the more receptor subtype-selective antagonists CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) (μ, MOR), naltrindole (δ, DOR), and nor-BNI (norbinaltorphimine) (κ, KOR). Induction of physical dependence was achieved by 60-min pre-exposure of planarians to nicotine and was quantified by abstinence-induced withdrawal (reduction in spontaneous locomotor activity). Known MOR and DOR subtype-selective opioid receptor antagonists attenuated the withdrawal, as did the non-selective antagonist naloxone, but a KOR subtype-selective antagonist did not. An involvement of MOR and DOR, but not KOR, in the development of nicotine physical dependence or in abstinence-induced withdrawal was thus demonstrated in a sensitive and facile invertebrate model.
Collapse
Affiliation(s)
- Robert B Raffa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Charbogne P, Kieffer BL, Befort K. 15 years of genetic approaches in vivo for addiction research: Opioid receptor and peptide gene knockout in mouse models of drug abuse. Neuropharmacology 2013; 76 Pt B:204-17. [PMID: 24035914 DOI: 10.1016/j.neuropharm.2013.08.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022]
Abstract
The endogenous opioid system is expressed throughout the brain reinforcement circuitry, and plays a major role in reward processing, mood control and the development of addiction. This neuromodulator system is composed of three receptors, mu, delta and kappa, interacting with a family of opioid peptides derived from POMC (β-endorphin), preproenkephalin (pEnk) and preprodynorphin (pDyn) precursors. Knockout mice targeting each gene of the opioid system have been created almost two decades ago. Extending classical pharmacology, these mutant mice represent unique tools to tease apart the specific role of each opioid receptor and peptide in vivo, and a powerful approach to understand how the opioid system modulates behavioral effects of drugs of abuse. The present review summarizes these studies, with a focus on major drugs of abuse including morphine/heroin, cannabinoids, psychostimulants, nicotine or alcohol. Genetic data, altogether, set the mu receptor as the primary target for morphine and heroin. In addition, this receptor is essential to mediate rewarding properties of non-opioid drugs of abuse, with a demonstrated implication of β-endorphin for cocaine and nicotine. Delta receptor activity reduces levels of anxiety and depressive-like behaviors, and facilitates morphine-context association. pEnk is involved in these processes and delta/pEnk signaling likely regulates alcohol intake. The kappa receptor mainly interacts with pDyn peptides to limit drug reward, and mediate dysphoric effects of cannabinoids and nicotine. Kappa/dynorphin activity also increases sensitivity to cocaine reward under stressful conditions. The opioid system remains a prime candidate to develop successful therapies in addicted individuals, and understanding opioid-mediated processes at systems level, through emerging genetic and imaging technologies, represents the next challenging goal and a promising avenue in addiction research. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Pauline Charbogne
- IGBMC Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U964, Illkirch F-67404, France; CNRS, UMR7104, Illkirch F-67404, France; UdS Université de Strasbourg, CNRS UMR 7104 - Inserm U964, Illkirch F-67404, France; Inserm U964, Illkirch F-67404, France
| | | | | |
Collapse
|
22
|
Cohen A, George O. Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use, and compulsive smoking. Front Psychiatry 2013; 4:41. [PMID: 23761766 PMCID: PMC3671664 DOI: 10.3389/fpsyt.2013.00041] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/13/2013] [Indexed: 12/23/2022] Open
Abstract
Much evidence indicates that individuals use tobacco primarily to experience the psychopharmacological properties of nicotine and that a large proportion of smokers eventually become dependent on nicotine. In humans, nicotine acutely produces positive reinforcing effects, including mild euphoria, whereas a nicotine abstinence syndrome with both somatic and affective components is observed after chronic nicotine exposure. Animal models of nicotine self-administration and chronic exposure to nicotine have been critical in unveiling the neurobiological substrates that mediate the acute reinforcing effects of nicotine and emergence of a withdrawal syndrome during abstinence. However, important aspects of the transition from nicotine abuse to nicotine dependence, such as the emergence of increased motivation and compulsive nicotine intake following repeated exposure to the drug, have only recently begun to be modeled in animals. Thus, the neurobiological mechanisms that are involved in these important aspects of nicotine addiction remain largely unknown. In this review, we describe the different animal models available to date and discuss recent advances in animal models of nicotine exposure and nicotine dependence. This review demonstrates that novel animal models of nicotine vapor exposure and escalation of nicotine intake provide a unique opportunity to investigate the neurobiological effects of second-hand nicotine exposure, electronic cigarette use, and the mechanisms that underlie the transition from nicotine use to compulsive nicotine intake.
Collapse
Affiliation(s)
- Ami Cohen
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
23
|
Abstract
Multiple studies in animal models and humans suggest that the endogenous opioid system is an important neurobiological substrate for nicotine addictive properties. In this study, we evaluated the participation of δ-opioid receptors in different behavioral responses of nicotine by using δ-opioid receptor knockout mice. Acute nicotine administration induced hypolocomotion and antinociception in wild-type mice, which were similar in knockout animals. The development of tolerance to nicotine-induced antinociception was also similar in both genotypes. In agreement, the expression and functional activity of δ-opioid receptors were not modified in the different layers of the spinal cord and brain areas evaluated after chronic nicotine treatment. The somatic manifestation of the nicotine withdrawal syndrome precipitated by mecamylamine was also similar in wild-type and δ-opioid receptor knockout mice. In contrast, nicotine induced a conditioned place preference in wild-type animals that was abolished in knockout mice. Moreover, a lower percentage of acquisition of intravenous nicotine self-administration was observed in mice lacking δ-opioid receptors as well as in wild-type mice treated with the selective δ-opioid receptor antagonist naltrindole. Accordingly, in-vivo microdialysis studies revealed that the enhancement in dopamine extracellular levels induced by nicotine in the nucleus accumbens was reduced in mutant mice. In summary, the present results show that δ-opioid receptors are involved in the modulation of nicotine rewarding effects. However, this opioid receptor does not participate either in several acute effects of nicotine or in the development of tolerance and physical dependence induced by chronic nicotine administration.
Collapse
|
24
|
Gudehithlu KP, Duchemin AM, Tejwani GA, Neff NH, Hadjiconstantinou M. Nicotine-induced changes of brain β-endorphin. Neuropeptides 2012; 46:125-31. [PMID: 22483037 DOI: 10.1016/j.npep.2012.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/31/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
A consensus has emerged that endogenous opioid peptides and their receptors play an important role in the psychoactive properties of nicotine. Although behavioral studies have shown that β-endorphin contributes to the rewarding and emotional effects of nicotine, whether the drug alters the function of brain endorphinergic neurons is not fully explored. These studies investigated the effect of acute, 1mg/kg, sc, and chronic, daily injection of 1mg/kg, sc, for 14 days, administration of free base nicotine on brain β-endorphin and its precursor proopiomelanocortin (POMC). Acute and chronic treatment with nicotine decreased β-endorphin content in hypothalamus, the principal site of β-endorphin producing neurons in the brain, and in the endorphinergic terminal fields in striatum and hippocampus. The acute effect of nicotine on β-endorphin was reversed by the nicotinic antagonist mecamylamine and the dopamine antagonist haloperidol, indicating pharmacological specificity and involvement of dopamine D2-like receptors. Similar observations were made in prefrontal cortex. POMC mRNA in hypothalamus and prefrontal cortex was unchanged following acute nicotine, but it decreased moderately with chronic treatment. The nicotine treatments had no effect on pituitary and plasma β-endorphin. Taken together, these results could be interpreted to indicate that nicotine alters the synthesis and release of β-endorphin in the limbic brain in vivo. Altered endorphinergic function may contribute to the behavioral effects of acute and chronic nicotine treatment and play a role in nicotine addiction.
Collapse
Affiliation(s)
- K P Gudehithlu
- Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
25
|
Orejarena MJ, Herrera-Solís A, Pons S, Maskos U, Maldonado R, Robledo P. Selective re-expression of β2 nicotinic acetylcholine receptor subunits in the ventral tegmental area of the mouse restores intravenous nicotine self-administration. Neuropharmacology 2012; 63:235-41. [PMID: 22480616 DOI: 10.1016/j.neuropharm.2012.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 11/24/2022]
Abstract
Beta-2 (β2) nicotinic acetylcholine receptor subunits have been particularly related with nicotine reinforcement. However, the importance of these subunits in the chronic aspects of nicotine addiction has not been established. In this study we evaluated the role of ventral tegmental area (VTA) β2 receptor subunits in the acquisition and maintenance of nicotine self-administration. We used an operant mouse model of intravenous self-administration of different doses of nicotine (15, 30, and 60 μg/kg/infusion) during 10 days in constitutive knockout mice lacking β2 receptor subunits (β2KO), wild-type (WT) controls, mice with β2 receptor subunits re-expressed in the VTA using a lentiviral vector (β2-VEC), and control knockout mice with a sham injection (KO-GFP). The results showed that β2KO mice did not reliably acquire nicotine self-administration at any of the doses tested, while WT controls showed dose-dependent acquisition of this behaviour. β2-VEC mice readily acquired and maintained nicotine self-administration at the effective dose of 15 μg/kg/infusion, while sham KO-GFP mice did not. The recovery of the WT phenotype by the re-expression of β2 receptor subunits within the VTA supports the role of this specific population in nicotine reinforcement, and reveals that they are sufficient for the acquisition and maintenance of systemic nicotine self-administration.
Collapse
|
26
|
Hall FS, Markou A, Levin ED, Uhl GR. Mouse models for studying genetic influences on factors determining smoking cessation success in humans. Ann N Y Acad Sci 2012; 1248:39-70. [PMID: 22304675 DOI: 10.1111/j.1749-6632.2011.06415.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Humans differ in their ability to quit using addictive substances, including nicotine, the major psychoactive ingredient in tobacco. For tobacco smoking, a substantial body of evidence, largely derived from twin studies, indicates that approximately half of these individual differences in ability to quit are heritable genetic influences that likely overlap with those for other addictive substances. Both twin and molecular genetic studies support overlapping influences on nicotine addiction vulnerability and smoking cessation success, although there is little formal analysis of the twin data that support this important point. None of the current datasets provides clarity concerning which heritable factors might provide robust dimensions around which individuals differ in ability to quit smoking. One approach to this problem is to test mice with genetic variations in genes that contain human variants that alter quit success. This review considers which features of quit success should be included in a comprehensive approach to elucidate the genetics of quit success, and how those features may be modeled in mice.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, NIH-IRP, NIDA, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
27
|
Alpha7-nicotinic receptors modulate nicotine-induced reinforcement and extracellular dopamine outflow in the mesolimbic system in mice. Psychopharmacology (Berl) 2012; 220:1-14. [PMID: 21901321 DOI: 10.1007/s00213-011-2422-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 07/16/2011] [Indexed: 10/17/2022]
Abstract
RATIONALE Nicotine is the main addictive component of tobacco and modifies brain function via its action on neuronal acetylcholine nicotinic receptors (nAChRs). The mesolimbic dopamine (DA) system, where neurons of the ventral tegmental area (VTA) project to the nucleus accumbens (ACb), is considered a core site for the processing of nicotine's reinforcing properties. However, the precise subtypes of nAChRs that mediate the rewarding properties of nicotine and that contribute to the development of addiction remain to be identified. OBJECTIVES We investigated the role of the nAChRs containing the α7 nicotinic subunit (α7 nAChRs) in the reinforcing properties of nicotine within the VTA and in the nicotine-induced changes in ACb DA outflow in vivo. METHODS We performed intra-VTA self-administration and microdialysis experiments in genetically modified mice lacking the α7 nicotinic subunit or after pharmacological blockade of α7 nAChRs in wild-type mice. RESULTS We show that the reinforcing properties of nicotine within the VTA are lower in the absence or after pharmacological blockade of α7 nAChRs. We also report that nicotine-induced increases in ACb DA extracellular levels last longer in the absence of these receptors, suggesting that α7 nAChRs regulate the action of nicotine on DA levels over time. CONCLUSIONS The present results reveal new insights for the role of α7 nAChRs in modulating the action of nicotine within the mesolimbic circuit. These receptors appear to potentiate the reinforcing action of nicotine administered into the VTA while regulating its action over time on DA outflow in the ACb.
Collapse
|
28
|
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012; 69:857-96. [PMID: 22002579 PMCID: PMC11114766 DOI: 10.1007/s00018-011-0844-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.
Collapse
Affiliation(s)
- H. A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201 USA
| | - T. S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
| | - R. Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Clinical Neuroscience, Karolinska Institutet, CMM, L8:04, 17176 Stockholm, Sweden
| |
Collapse
|
29
|
Yan Y, Pushparaj A, Gamaleddin I, Steiner RC, Picciotto MR, Roder J, Le Foll B. Nicotine-taking and nicotine-seeking in C57Bl/6J mice without prior operant training or food restriction. Behav Brain Res 2012; 230:34-9. [PMID: 22326373 DOI: 10.1016/j.bbr.2012.01.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 11/25/2022]
Abstract
The ability to examine genetically engineered mice in a chronic intravenous (IV) nicotine self-administration paradigm will be a powerful tool for investigating the contribution of specific genes to nicotine reinforcement and more importantly, to relapse behavior. Here we describe a reliable model of nicotine-taking and -seeking behavior in male C57BL/6J mice without prior operant training or food restriction. Mice were allowed to self-administer either nicotine (0.03mg/kg/infusion) or saline in 2-h daily sessions under fixed ratio 1 (FR1) followed by FR2 schedules of reinforcement. In the nicotine group, a dose-response curve was measured after the nose-poke behavior stabilized. Subsequently, nose-poke behavior was extinguished and ability of cue presentations, priming injections of nicotine, or intermittent footshock to reinstate responding was assessed in both groups. C57BL/6J mice given access to nicotine exhibited high levels of nose-poke behavior and self-administered a high number of infusions as compared to mice given access to saline. After this acquisition phase, changing the unit-dose of nicotine resulted in a flat dose-response curve for nicotine-taking and subsequently reinstatement of nicotine-seeking behavior was achieved by both nicotine-associated light cue presentation and intermittent footshock. Nicotine priming injections only triggered significant reinstatement on the second consecutive day of priming. In contrast, mice previously trained to self-administer saline did not increase their responding under those conditions. These results demonstrate the ability to produce nicotine-taking and nicotine-seeking behavior in naive C57BL/6J mice without both prior operant training and food restriction. Future work will utilize these models to evaluate nicotine-taking and relapsing behavior in genetically-altered mice.
Collapse
Affiliation(s)
- Yijin Yan
- Translational Addiction Research Laboratory, Neuroscience Department, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Smith JS, Schindler AG, Martinelli E, Gustin RM, Bruchas MR, Chavkin C. Stress-induced activation of the dynorphin/κ-opioid receptor system in the amygdala potentiates nicotine conditioned place preference. J Neurosci 2012; 32:1488-95. [PMID: 22279233 PMCID: PMC3677733 DOI: 10.1523/jneurosci.2980-11.2012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/29/2011] [Accepted: 12/06/2011] [Indexed: 02/05/2023] Open
Abstract
Many smokers describe the anxiolytic and stress-reducing effects of nicotine, the primary addictive component of tobacco, as a principal motivation for continued drug use. Recent evidence suggests that activation of the stress circuits, including the dynorphin/κ-opioid receptor system, modulates the rewarding effects of addictive drugs. In the present study, we find that nicotine produced dose-dependent conditioned place preference (CPP) in mice. κ-receptor activation, either by repeated forced swim stress or U50,488 (5 or 10 mg/kg, i.p.) administration, significantly potentiated the magnitude of nicotine CPP. The increase in nicotine CPP was blocked by the κ-receptor antagonist norbinaltorphimine (norBNI) either systemically (10 mg/kg, i.p.) or by local injection in the amygdala (2.5 μg) without affecting nicotine reward in the absence of stress. U50,488 (5 mg/kg, i.p.) produced anxiety-like behaviors in the elevated-plus maze and novel object exploration assays, and the anxiety-like behaviors were attenuated both by systemic nicotine (0.5 mg/kg, s.c.) and local injection of norBNI into the amygdala. Local norBNI injection in the ventral posterior thalamic nucleus (an adjacent brain region) did not block the potentiation of nicotine CPP or the anxiogenic-like effects of κ-receptor activation. These results suggest that the rewarding effects of nicotine may include a reduction in the stress-induced anxiety responses caused by activation of the dynorphin/κ-opioid system. Together, these data implicate the amygdala as a key region modulating the appetitive properties of nicotine, and suggest that κ-opioid antagonists may be useful therapeutic tools to reduce stress-induced nicotine craving.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Amygdala/drug effects
- Amygdala/metabolism
- Animals
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Dynorphins/antagonists & inhibitors
- Dynorphins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Nicotine/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
- Swimming/psychology
Collapse
Affiliation(s)
- Jeffrey S. Smith
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - Abigail G. Schindler
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - Emma Martinelli
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - Richard M. Gustin
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - Michael R. Bruchas
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| | - Charles Chavkin
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280
| |
Collapse
|
31
|
Tuesta LM, Fowler CD, Kenny PJ. Recent advances in understanding nicotinic receptor signaling mechanisms that regulate drug self-administration behavior. Biochem Pharmacol 2011; 82:984-95. [PMID: 21740894 PMCID: PMC3163076 DOI: 10.1016/j.bcp.2011.06.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 12/17/2022]
Abstract
Tobacco smoking is one of the leading causes of disease and premature death in the United States. Nicotine is considered the major reinforcing component in tobacco smoke responsible for tobacco addiction. Nicotine acts in the brain through the neuronal nicotinic acetylcholine receptors (nAChRs). The predominant nAChR subtypes in mammalian brain are those containing α4 and β2 subunits. The α4β2 nAChRs, particularly those located in the mesoaccumbens dopamine pathway, play a key role in regulating the reinforcing properties of nicotine. Considering that twelve mammalian nAChR subunits have been cloned, it is likely that nAChRs containing subunits in addition to, or other than, α4 and β2 also play a role in the tobacco smoking habit. Consistent with this possibility, human genome-wide association studies have shown that genetic variation in the CHRNA5-CHRNA3-CHRNB4 gene cluster located in chromosome region 15q25, which encode the α5, α3 and β4 nAChR subunits, respectively, increases vulnerability to tobacco addiction and smoking-related diseases. Most recently, α5-containing nAChRs located in the habenulo-interpeduncular tract were shown to limit intravenous nicotine self-administration behavior in rats and mice, suggesting that deficits in α5-containing nAChR signaling in the habenulo-interpeduncular tract increases vulnerability to the motivational properties of nicotine. Finally, evidence suggests that nAChRs may also play a prominent role in controlling consumption of addictive drugs other than nicotine, including cocaine, alcohol, opiates and cannabinoids. The aim of the present review is to discuss recent preclinical findings concerning the identity of the nAChR subtypes that regulate self-administration of nicotine and other drugs of abuse.
Collapse
Affiliation(s)
- Luis M Tuesta
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute - Scripps Florida, Jupiter, FL 33458, USA
| | | | | |
Collapse
|
32
|
Hadjiconstantinou M, Neff NH. Nicotine and endogenous opioids: Neurochemical and pharmacological evidence. Neuropharmacology 2011; 60:1209-20. [DOI: 10.1016/j.neuropharm.2010.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/03/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
|
33
|
Fowler CD, Kenny PJ. Intravenous nicotine self-administration and cue-induced reinstatement in mice: effects of nicotine dose, rate of drug infusion and prior instrumental training. Neuropharmacology 2011; 61:687-98. [PMID: 21640128 DOI: 10.1016/j.neuropharm.2011.05.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 05/11/2011] [Accepted: 05/15/2011] [Indexed: 01/08/2023]
Abstract
Intravenous nicotine self-administration is the most direct measure of nicotine reinforcement in laboratory animals, but this procedure has proven difficult to establish in mice. We found that stable responding for nicotine in C57BL6/J mice was facilitated by prior instrumental training for food reward, initial exposure of mice to a lower unit dose of nicotine (0.03 mg kg(-1) per infusion) before access to higher doses, a slower rate of drug delivery (3-s versus 1-s infusion), consistency in schedule of daily testing, and low extraneous noise during testing. Under these conditions, we found that mice lever-pressed for nicotine (0.03-0.4 mg kg(-1) per infusion; 60-min test sessions) under a fixed-ratio 5 time-out 20-s (FR5TO20) reinforcement schedule and consumed the drug according to an inverted 'U'-shaped dose-response curve. Mice switched their responding onto a previously non-reinforced lever to continue earning nicotine infusions when the active/inactive lever assignment was reversed. The nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine decreased responding for nicotine, but not food rewards, verifying that nAChRs regulate nicotine self-administration in mice. The cue-light paired with nicotine delivery did not support responding when delivered independently of nicotine infusions, further verifying that mice responded selectivity for the drug. Nicotine-seeking responses extinguished when nicotine infusions and the cue-light were withheld, and exposure to the cue-light reinstated responding. Finally, mice without prior instrumental food training acquired stable responding for nicotine under the FR5TO20 schedule, but required a greater number of sessions. These data demonstrate that nicotine is an effective reinforcer in mice and establish conditions under which the drug is reliably self-administered by mice.
Collapse
Affiliation(s)
- Christie D Fowler
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, Jupiter, FL 33458, USA
| | | |
Collapse
|
34
|
Wei SG, Zhu YS, Lai JH, Xue HX, Chai ZQ, Li SB. Association between heroin dependence and prodynorphin gene polymorphisms. Brain Res Bull 2011; 85:238-42. [PMID: 21382455 DOI: 10.1016/j.brainresbull.2011.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/11/2011] [Accepted: 02/27/2011] [Indexed: 01/27/2023]
Abstract
Dynorphin peptides and k-opioid receptor are important in the rewarding effects of drugs of abuse such as heroin. This study examined potential association between heroin dependence and four single nucleotide polymorphisms (SNPs) of prodynorphin (PDYN) gene (rs35286281 in promoter region and rs1022563, rs2235749, rs910080 in 3'UTR). Participants included 304 heroin-dependent subjects and 300 healthy controls. Genotype, allele frequencies and difference between groups were analyzed by HaploView 4.0 and SPSS 11.5 software. The analysis indicated a significant higher frequency of the PDYN 68bp VNTR (rs35286281) H allele in heroin-dependent subjects than in controls (p=0.002 after Bonferroni correction). Strong linkage disequilibrium was observed between rs1022563, rs2235749 and rs910080 polymorphism (D'>0.9). Significantly more TCT haplotypes were found in heroin-dependent patients than in the controls (p=0.006 after Bonferroni correction). We found significant pointwise correlation of these three variants (rs1022563, rs2235749 and rs910080) with heroin dependence. These findings support the important role of PDYN polymorphism in heroin dependence, and may guide future studies to identify genetic risk factors for heroin dependence.
Collapse
Affiliation(s)
- S G Wei
- Department of Forensic Science, School of Medicine, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an, Shannxi, PR China
| | | | | | | | | | | |
Collapse
|
35
|
McCarthy MJ, Zhang H, Neff NH, Hadjiconstantinou M. Desensitization of δ-opioid receptors in nucleus accumbens during nicotine withdrawal. Psychopharmacology (Berl) 2011; 213:735-44. [PMID: 20941594 DOI: 10.1007/s00213-010-2028-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 09/18/2010] [Indexed: 11/26/2022]
Abstract
RATIONALE The synthesis and release of met-enkephalin and β-endorphin, endogenous ligands for δ-opioid peptide receptors (DOPrs), are altered following nicotine administration and may play a role in nicotine addiction. OBJECTIVES To investigate the consequences of altered opioidergic activity on DOPr expression, coupling, and function in striatum during early nicotine withdrawal. METHODS Mice received nicotine-free base, 2 mg/kg, or saline, subcutaneously (s.c.), four times daily for 14 days and experiments performed at 24, 48, and 72 h after drug discontinuation. DOPr binding and mRNA were evaluated by [³H]naltrindole autoradiography and in situ hybridization. DOPr coupling and function were investigated by agonist pCl-DPDPE-stimulated [³⁵S]GTPγS binding autoradiography and inhibition of adenylyl cyclase activity. RESULTS During nicotine withdrawal DOPr binding was unaltered in caudate/putamen (CPu) and nucleus accumbens (NAc) shell and core. Receptor mRNA was slightly increased in the shell at 72 h, but significant elevations were observed in prefrontal cortex and hippocampus. pCl-DPDPE-stimulated [³⁵S]GTPγS binding was attenuated in NAc, but not CPu. In the shell, binding was decreased by 48 h and remained decreased over 72 h; while in the core, significant reduction was seen at 72 h. Basal adenylyl cyclase activity was suppressed in striatum at 24 h, but recovered by 48 h. DOPr stimulation with pCl-DPDPE failed to inhibit adenylyl cyclase activity at 24 h and produced attenuated responses at 48 and 72 h. CONCLUSIONS These observations suggest that DOPr coupling and function are impaired in the NAc during nicotine withdrawal. DOPr desensitization might be involved in the affective component of nicotine withdrawal.
Collapse
Affiliation(s)
- Michael J McCarthy
- Department of Psychiatry, Division of Molecular Neuropsychopharmacology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
36
|
Liu X, Jernigan C. Activation of the opioid μ1, but not δ or κ, receptors is required for nicotine reinforcement in a rat model of drug self-administration. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:146-53. [PMID: 20965223 PMCID: PMC3019243 DOI: 10.1016/j.pnpbp.2010.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 12/17/2022]
Abstract
There has long been an interest in examining the involvement of opioid neurotransmission in nicotine rewarding process and addiction to nicotine. Over the past 3 decades, however, clinical effort to test the effectiveness of nonselective opioid antagonists (mainly naloxone and naltrexone) for smoking cessation has yielded equivocal results. In light of the fact that there are three distinctive types of receptors mediating actions of the endogenous opioid peptides, this study, using a rat model of nicotine self-administration, examined involvement of different opioid receptors in the reinforcement of nicotine by selective blockade of the μ1, the δ, and the κ opioid receptors. Male Sprague-Dawley rats were trained in daily 1h sessions to intravenously self-administer nicotine (0.03 mg/kg/infusion) on a fixed-ratio 5 schedule. After establishment of stable nicotine self-administration behavior, the effects of the opioid antagonists were tested. Separate groups of rats were used to test the effects of naloxanazine (selective for μ1 receptors, 0, 5 and 15 mg/kg), naltrindole (selective for δ receptors, 0, 0.5 and 5mg/kg), and 5'-guanidinonaltrindole (GNTI, selective for κ receptors, 0, 0.25 and 1mg/kg). In each individual drug group, the 3 drug doses were tested by using a within-subject and Latin-Square design. The effects of these antagonists on food self-administering behavior were also examined in the same rats in each respective drug group after retrained for food self-administration. Pretreatment with naloxonazine, but not naltrindole or GNTI, significantly reduced responses on the active lever and correspondingly the number of nicotine infusions. None of these antagonists changed lever-pressing behavior for food reinforcement. These results indicate that activation of the opioid μ1, but not the δ or the κ, receptors is required for the reinforcement of nicotine and suggest that opioid neurotransmission via the μ1 receptors would be a promising target for the development of opioid ligands for smoking cessation.
Collapse
Affiliation(s)
- Xiu Liu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | |
Collapse
|
37
|
Berrendero F, Robledo P, Trigo JM, Martín-García E, Maldonado R. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system. Neurosci Biobehav Rev 2010; 35:220-31. [PMID: 20170672 PMCID: PMC2908214 DOI: 10.1016/j.neubiorev.2010.02.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 01/07/2023]
Abstract
Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine-rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An up-regulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the down-regulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain sub-populations of smokers.
Collapse
Affiliation(s)
- Fernando Berrendero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, University Pompeu Fabra, PRBB, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Patricia Robledo
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, University Pompeu Fabra, PRBB, C/Doctor Aiguader 88, 08003 Barcelona, Spain
- Municipal Institute of Medical Research (IMIM), Barcelona, Spain
| | - José Manuel Trigo
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, University Pompeu Fabra, PRBB, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, University Pompeu Fabra, PRBB, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, University Pompeu Fabra, PRBB, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
38
|
Jackson KJ, Carroll FI, Negus SS, Damaj MI. Effect of the selective kappa-opioid receptor antagonist JDTic on nicotine antinociception, reward, and withdrawal in the mouse. Psychopharmacology (Berl) 2010; 210:285-94. [PMID: 20232057 PMCID: PMC2866121 DOI: 10.1007/s00213-010-1803-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/11/2010] [Indexed: 11/24/2022]
Abstract
RATIONALE Several lines of evidence support a role for the endogenous opioid system in mediating behaviors associated with drug dependence. Specifically, recent findings suggest that the kappa-opioid receptor (KOR) may play a role in aspects of nicotine dependence, which contribute to relapse and continued tobacco smoking. OBJECTIVE The objective of this study is to determine the involvement of the KOR in the initial behavioral responses of nicotine, nicotine reward, and nicotine withdrawal using the highly selective KOR antagonist JDTic. JDTic doses of 1, 4, 8, or 16 mg/kg were administered subcutaneously (s.c.) 18 h prior to nicotine treatment. RESULTS JDTic dose-dependently blocked acute nicotine-induced antinociception in the tail-flick but not the hot-plate test and did not significantly attenuate morphine's antinociceptive effect in either the tail-flick or hot-plate test. Furthermore, JDTic (8 and 16 mg/kg, s.c.) failed to block the expression of nicotine reward as measured by the conditioned place preference model. In contrast, JDTic and the KOR antagonist norBNI attenuated the expression of both the physical (somatic signs and hyperalgesia) and affective (anxiety-related behavior and conditioned place aversion) nicotine withdrawal signs. CONCLUSIONS Our findings clearly show that the KOR is involved in mediating the withdrawal aspects of nicotine dependence. The results from this study suggest that blockade of the KOR by selective KOR antagonists may be useful smoking cessation pharmacotherapies.
Collapse
Affiliation(s)
- K. J. Jackson
- Department of Pharmacology and Toxicology, Medical Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Frank Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - S. S. Negus
- Department of Pharmacology and Toxicology, Medical Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - M. I. Damaj
- Department of Pharmacology and Toxicology, Medical Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
39
|
The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 2010; 210:121-35. [PMID: 20352414 PMCID: PMC2879894 DOI: 10.1007/s00213-010-1825-8] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Initial hypotheses regarding the role of the kappa opioid system in drug addiction suggested that kappa receptor stimulation had anti-addictive effects. However, recent research suggests that kappa receptor antagonists may reverse motivational aspects of dependence. In the present review, we revisit the studies that measured the effects of kappa receptor ligands on the reinforcing and rewarding effects of drugs and postulate underlying neurobiological mechanisms for these effects to elaborate a more complex view of the role of kappa receptor ligands in drug addiction. RESULTS The review of studies indicates that kappa receptor stimulation generally antagonizes the acute reinforcing/rewarding effects of drugs whereas kappa receptor blockade has no consistent effect. However, in a drug dependent-like state, kappa receptor blockade was effective in reducing increased drug intake. In animal models of reinstatement, kappa receptor stimulation can induce reinstatement via a stress-like mechanism. Results in conditioned place preference/aversion and intracranial self-stimulation indicate that kappa receptor agonists produce, respectively, aversive-like and dysphoric-like effects. Additionally, preclinical and postmortem studies show that administration or self-administration of cocaine, ethanol, and heroin activate the kappa opioid system. CONCLUSION kappa receptor agonists antagonize the reinforcing/rewarding effects of drugs possibly through punishing/aversive-like effects and reinstate drug seeking through stress-like effects. Evidence suggests that abused drugs activate the kappa opioid system, which may play a key role in motivational aspects of dependence. Kappa opioid systems may have an important role in driving compulsive drug intake.
Collapse
|
40
|
Nicotine withdrawal and kappa-opioid receptors. Psychopharmacology (Berl) 2010; 210:221-9. [PMID: 19806344 DOI: 10.1007/s00213-009-1674-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 09/08/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE The synthesis and release of dynorphin are increased in the caudate/putamen (CPU) and nucleus accumbens (NAc) of nicotine-withdrawn mice, suggesting a role in the nicotine abstinence syndrome. OBJECTIVES This study aims to investigate the consequences of enhanced dynorphinergic activity on kappa-opioid receptor (KOPr) expression, coupling, and function in CPU and NAc following chronic nicotine administration and withdrawal. METHODS Mice were injected with nicotine-free base 2 mg/kg, or saline, sc, four times daily for 14 days and experiments performed at 24, 48, and 72 h after drug discontinuation. KOPr binding and mRNA were evaluated by [(3)H]-U69,593 autoradiography and in situ hybridization. KOPr coupling and function were investigated by agonist (U69-593)-stimulated [(35)S]GTPgammaS binding autoradiography and inhibition of adenylyl cyclase activity. RESULTS KOPr binding density and mRNA in CPU and NAc were unaltered during nicotine withdrawal; however, KPOr mRNA was increased in midbrain. U69,593-stimulated [(35)S]GTPgammaS binding was attenuated in both striatal regions, especially in NAc. In NAc shell and core, stimulated [(35)S]GTPgammaS binding was significantly decreased by 24 h and further declined over the 72 h observation period. In CPU, significant changes were observed only at 72 h. Basal adenylyl cyclase activity decreased early during nicotine withdrawal and recovered by 48 h. Stimulation with U69,593 failed to inhibit adenylyl cyclase activity at all times studied. CONCLUSIONS These observations suggest that KOPr coupling and function are impaired in NAc and CPU during nicotine withdrawal, and imply receptor desensitization. KOPr desensitization might be a mechanism to ameliorate aversive behavioral symptoms, as nicotine withdrawal evolves.
Collapse
|
41
|
Trigo JM, Martin-García E, Berrendero F, Robledo P, Maldonado R. The endogenous opioid system: a common substrate in drug addiction. Drug Alcohol Depend 2010; 108:183-94. [PMID: 19945803 DOI: 10.1016/j.drugalcdep.2009.10.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/30/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.
Collapse
Affiliation(s)
- José Manuel Trigo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
42
|
Contet C, Whisler KN, Jarrell H, Kenny PJ, Markou A. Patterns of responding differentiate intravenous nicotine self-administration from responding for a visual stimulus in C57BL/6J mice. Psychopharmacology (Berl) 2010; 212:283-99. [PMID: 20668842 PMCID: PMC2952765 DOI: 10.1007/s00213-010-1950-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/03/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE Testing genetically engineered mice in a reliable nicotine self-administration procedure could provide important insights into the molecular mechanisms underlying nicotine reinforcement. OBJECTIVES We assessed operant responding for intravenous nicotine infusions in C57BL/6J male mice under a fixed-ratio 3 schedule of reinforcement in which a visual cue was contingently associated with drug delivery. METHODS/RESULTS Acquisition, dose-response function, extinction, and cue-induced reinstatement of operant behavior were characterized. Low nicotine doses (0.001-0.06 mg/kg/infusion) elicited response rates similar to those supported by saline, whereas a higher dose (0.1 mg/kg/infusion) decreased responding. Using an identical procedure to assess cocaine self-administration in an independent group of mice yielded an inverted U-shaped dose-response curve. Other mice trained to respond exclusively for the visual stimulus earned a similar number of reinforcers as mice self-administering saline or low nicotine doses, although with a lower selectivity for the active lever and their response rates were sensitive to the discontinuation and resumption of cue light presentation. Finally, patterns of responding for nicotine, cocaine, or the visual stimulus alone were analyzed using frequency distributions of inter-response intervals and extended return maps. These analyses revealed unique properties of nicotine, which dose-dependently delayed the first response post-timeout and increased the regularity of lever pressing activity. CONCLUSIONS Nicotine did not enhance the reinforcing properties of the visual cue paired with drug delivery. Interestingly, however, patterns of responding could differentiate nicotine self-administration from responding for a visual stimulus or saline and indicated that nicotine functioned as a salient stimulus driving highly regular operant behavior.
Collapse
Affiliation(s)
- Candice Contet
- Department of Psychiatry, Mail Code 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603 USA ,Present Address: Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Kimberly N. Whisler
- Department of Psychiatry, Mail Code 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603 USA
| | - Holly Jarrell
- Department of Psychiatry, Mail Code 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603 USA ,Present Address: Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 USA
| | - Paul J. Kenny
- Department of Molecular Therapeutics, The Scripps Research Institute—Scripps Florida, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Athina Markou
- Department of Psychiatry, Mail Code 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603 USA
| |
Collapse
|
43
|
Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev 2009; 89:1379-412. [PMID: 19789384 DOI: 10.1152/physrev.00005.2009] [Citation(s) in RCA: 702] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides processed from three protein precursors, proopiomelanocortin, proenkephalin, and prodynorphin. Opioid receptors are recruited in response to natural rewarding stimuli and drugs of abuse, and both endogenous opioids and their receptors are modified as addiction develops. Mechanisms whereby aberrant activation and modifications of the opioid system contribute to drug craving and relapse remain to be clarified. This review summarizes our present knowledge on brain sites where the endogenous opioid system controls hedonic responses and is modified in response to drugs of abuse in the rodent brain. We review 1) the latest data on the anatomy of the opioid system, 2) the consequences of local intracerebral pharmacological manipulation of the opioid system on reinforced behaviors, 3) the consequences of gene knockout on reinforced behaviors and drug dependence, and 4) the consequences of chronic exposure to drugs of abuse on expression levels of opioid system genes. Future studies will establish key molecular actors of the system and neural sites where opioid peptides and receptors contribute to the onset of addictive disorders. Combined with data from human and nonhuman primate (not reviewed here), research in this extremely active field has implications both for our understanding of the biology of addiction and for therapeutic interventions to treat the disorder.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département Neurobiologie et Génétique, Illkirch, France
| | | | | | | |
Collapse
|
44
|
Bruchas MR, Land BB, Chavkin C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 2009; 1314:44-55. [PMID: 19716811 DOI: 10.1016/j.brainres.2009.08.062] [Citation(s) in RCA: 391] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/08/2009] [Accepted: 08/14/2009] [Indexed: 12/31/2022]
Abstract
Stress is a complex experience that carries both aversive and motivating properties. Chronic stress causes an increase in the risk of depression, is well known to increase relapse of drug seeking behavior, and can adversely impact health. Several brain systems have been demonstrated to be critical in mediating the negative affect associated with stress, and recent evidence directly links the actions of the endogenous opioid neuropeptide dynorphin in modulating mood and increasing the rewarding effects of abused drugs. These results suggest that activation of the dynorphin/kappa opioid receptor (KOR) system is likely to play a major role in the pro-addictive effects of stress. This review explores the relationship between dynorphin and corticotropin-releasing factor (CRF) in the induction of dysphoria, the potentiation of drug seeking, and stress-induced reinstatement. We also provide an overview of the signal transduction events responsible for CRF and dynorphin/KOR-dependent behaviors. Understanding the recent work linking activation of CRF and dynorphin/KOR systems and their specific roles in brain stress systems and behavioral models of addiction provides novel insight to neuropeptide systems that regulate affective state.
Collapse
Affiliation(s)
- M R Bruchas
- University of Washington, Department of Pharmacology, Seattle, WA 98195, USA.
| | | | | |
Collapse
|