1
|
Ji L, Chen J, He L, Zhang F, Deng Z, Lin J, Qi Z, Luo X, Giuliano AE, Cui X, Lin SL, Cui Y. Reversal of endocrine resistance via N6AMT1-NEDD4L pathway-mediated p110α degradation. Oncogene 2025; 44:530-544. [PMID: 39623076 PMCID: PMC11832415 DOI: 10.1038/s41388-024-03238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 02/19/2025]
Abstract
Approximately 70% of breast cancer (BC) cases are luminal-type (estrogen receptor-positive, ER+), suitable for endocrine therapy with tamoxifen as the most commonly used drug. However, about 30% of these patients develop tamoxifen resistance due to various mechanisms, primarily involving PI3K pathway activation through mutations or unknown pathways. Here, we discover, via bioinformatics analysis and clinical samples, that N6 adenine-specific DNA methyltransferase 1 (N6AMT1) is highly expressed in luminal breast cancer but downregulated in tamoxifen-resistant (TamR) BC cells. ChIP-qPCR and luciferase reporter assays showed that FOXA1 binds to the N6AMT1 promoter and enhances its transcription. In TamR models, FOXA1 and N6AMT1 are downregulated, increasing p110α protein levels (but not mRNA), phospho-AKT levels, and tamoxifen resistance. In vivo, N6AMT1 overexpression enhanced tamoxifen sensitivity, while knockdown reduced it; this sensitivity could be restored with the p110α inhibitor A66. Clinically, decreased N6AMT1 expression correlates with poor prognosis in luminal BC patients. In TamR BC organoids, combining tamoxifen with A66 further reduced growth compared to either treatment alone. Mechanistically, increased p110α levels result from inhibited degradation by E3 ubiquitin ligase NEDD4L. These findings suggest N6AMT1 as a potential luminal breast cancer biomarker and highlight the N6AMT1-p110α pathway as a therapeutic target to sensitize cells to tamoxifen.
Collapse
Affiliation(s)
- Likeng Ji
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiongyu Chen
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lifang He
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Fan Zhang
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zihao Deng
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiediao Lin
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhaochang Qi
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xi Luo
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yukun Cui
- Shantou Key Laboratory of Precision Diagnosis and Treatment in Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
2
|
Zhao Y, Long C, Shang W, Si Z, Liu Z, Feng Z, Zuo Y. A composite scaling network of EfficientNet for improving spatial domain identification performance. Commun Biol 2024; 7:1567. [PMID: 39587274 PMCID: PMC11589849 DOI: 10.1038/s42003-024-07286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Spatial Transcriptomics leverages gene expression profiling while preserving spatial location and histological images. However, processing the vast and noisy image data in spatial transcriptomics (ST) for precise recognition of spatial domains remains a challenge. In this study, we propose a method of EfNST for recognizing spatial domains, which employs an efficient composite scaling network of EfficientNet to learn multi-scale image features. Compared with other relevant algorithms on six data sets from three sequencing platforms, EfNST exhibits higher accuracy in discerning fine tissue structures, highlighting its strong scalability to data and operational efficiency. Under limited computing resources, the testing results on multiple data sets show that the EfNST algorithm runs faster while maintaining accuracy. The ablation studies of EfNST model demonstrate the significant effectiveness of the EfficientNet. Within the annotated data sets, EfNST showcases the ability to finely identify subregions within tissue structure and discover corresponding marker genes. In the unannotated data sets, EfNST successfully identifies minute regions within complex tissues and elucidated their spatial expression patterns in biological processes. In summary, EfNST presents a novel approach to inferring cellular spatial organization from discrete data spots with significant implications for the exploration of tissue structure and function.
Collapse
Affiliation(s)
- Yanan Zhao
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chunshen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wenjing Shang
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Zhihao Si
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China
| | - Zhigang Liu
- Department of pediatrics, Foshan Women and Children Hospital, Foshan, China.
| | - Zhenxing Feng
- College of Sciences, Inner Mongolia University of Technology, Hohhot, China.
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
3
|
Tam KJ, Liu L, Hsing M, Dalal K, Thaper D, McConeghy B, Yenki P, Bhasin S, Peacock JW, Wang Y, Cherkasov A, Rennie PS, Gleave ME, Ong CJ. Clinically-observed FOXA1 mutations upregulate SEMA3C through transcriptional derepression in prostate cancer. Sci Rep 2024; 14:7082. [PMID: 38528115 PMCID: PMC10963789 DOI: 10.1038/s41598-024-57854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
FOXA1 is a pioneer transcription factor that is frequently mutated in prostate, breast, bladder, and salivary gland malignancies. Indeed, metastatic castration-resistant prostate cancer (mCRPC) commonly harbour FOXA1 mutations with a prevalence of 35%. However, despite the frequent recurrence of FOXA1 mutations in prostate cancer, the mechanisms by which FOXA1 variants drive its oncogenic effects are still unclear. Semaphorin 3C (SEMA3C) is a secreted autocrine growth factor that drives growth and treatment resistance of prostate and other cancers and is known to be regulated by both AR and FOXA1. In the present study, we characterize FOXA1 alterations with respect to its regulation of SEMA3C. Our findings reveal that FOXA1 alterations lead to elevated levels of SEMA3C both in prostate cancer specimens and in vitro. We further show that FOXA1 negatively regulates SEMA3C via intronic cis elements, and that mutations in FOXA1 forkhead domain attenuate its inhibitory function in reporter assays, presumably by disrupting DNA binding of FOXA1. Our findings underscore the key role of FOXA1 in prostate cancer progression and treatment resistance by regulating SEMA3C expression and suggest that SEMA3C may be a driver of growth and tumor vulnerability of mCRPC harboring FOXA1 alterations.
Collapse
Affiliation(s)
- Kevin J Tam
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Liangliang Liu
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael Hsing
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Kush Dalal
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Daksh Thaper
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Brian McConeghy
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Parvin Yenki
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Satyam Bhasin
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - James W Peacock
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Zhang W, Wang Y, Liu Y, Liu C, Wang Y, He L, Cheng X, Peng Y, Xia L, Wu X, Wu J, Zhang Y, Sun L, Chen P, Li G, Tu Q, Liang J, Shang Y. NFIB facilitates replication licensing by acting as a genome organizer. Nat Commun 2023; 14:5076. [PMID: 37604829 PMCID: PMC10442334 DOI: 10.1038/s41467-023-40846-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
The chromatin-based rule governing the selection and activation of replication origins in metazoans remains to be investigated. Here we report that NFIB, a member of Nuclear Factor I (NFI) family that was initially purified in host cells to promote adenoviral DNA replication but has since mainly been investigated in transcription regulation, is physically associated with the pre-replication complex (pre-RC) in mammalian cells. Genomic analyses reveal that NFIB facilitates the assembly of the pre-RC by increasing chromatin accessibility. Nucleosome binding and single-molecule magnetic tweezers shows that NFIB binds to and opens up nucleosomes. Transmission electron microscopy indicates that NFIB promotes nucleosome eviction on parental chromatin. NFIB deficiency leads to alterations of chromosome contacts/compartments in both G1 and S phase and affects the firing of a subset of origins at early-replication domains. Significantly, cancer-associated NFIB overexpression provokes gene duplication and genomic alterations recapitulating the genetic aberrance in clinical breast cancer and empowering cancer cells to dynamically evolve growth advantage and drug resistance. Together, these results point a role for NFIB in facilitating replication licensing by acting as a genome organizer, shedding new lights on the biological function of NFIB and on the replication origin selection in eukaryotes.
Collapse
Affiliation(s)
- Wenting Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yongjie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yizhou Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiao Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yani Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Tu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
5
|
Gokhale M, Mohanty SK, Ojha A. A stacked autoencoder based gene selection and cancer classification framework. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Hwang JH, Arafeh R, Seo JH, Baca SC, Ludwig M, Arnoff TE, Sawyer L, Richter C, Tape S, Bergom HE, McSweeney S, Rennhack JP, Klingenberg SA, Cheung ATM, Kwon J, So J, Kregel S, Van Allen EM, Drake JM, Freedman ML, Hahn WC. CREB5 reprograms FOXA1 nuclear interactions to promote resistance to androgen receptor targeting therapies. eLife 2022; 11:73223. [PMID: 35550030 PMCID: PMC9135408 DOI: 10.7554/elife.73223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Metastatic castration resistant prostate cancers (mCRPC) are treated with therapies that antagonize the androgen receptor (AR). Nearly all patients develop resistance to AR-targeted therapies (ART). Our previous work identified CREB5 as an upregulated target gene in human mCRPC that promoted resistance to all clinically-approved ART. The mechanisms by which CREB5 promotes progression of mCRPC or other cancers remains elusive. Integrating ChIP-seq and rapid immunoprecipitation and mass spectroscopy of endogenous proteins (RIME), we report that cells overexpressing CREB5 demonstrate extensive reprogramming of nuclear protein-protein interactions in response to the ART agent enzalutamide. Specifically, CREB5 physically interacts with AR, the pioneering actor FOXA1, and other known co-factors of AR and FOXA1 at transcription regulatory elements recently found to be active in mCRPC patients. We identified a subset of CREB5/FOXA1 co-interacting nuclear factors that have critical functions for AR transcription (GRHL2, HOXB13) while others (TBX3, NFIC) regulated cell viability and ART resistance and were amplified or overexpressed in mCRPC. Upon examining the nuclear protein interactions and the impact of CREB5 expression on the mCRPC patient transcriptome, we found CREB5 was associated with Wnt signaling and epithelial to mesenchymal transitions, implicating these pathways in CREB5/FOXA1-mediated ART resistance. Overall, these observations define the molecular interactions among CREB5, FOXA1, and pathways that promote ART resistance.
Collapse
Affiliation(s)
- Justin H Hwang
- Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Rand Arafeh
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, United States
| | | | - Lydia Sawyer
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Camden Richter
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Sydney Tape
- Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Hannah E Bergom
- Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Sean McSweeney
- Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Jonathan P Rennhack
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | | | | | - Jason Kwon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Jonathan So
- 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Steven Kregel
- Department of Cancer Biology, Loyola University Chicago, Maywood, United States
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Justin M Drake
- Department of Pharmacology and Urology, University of Minnesota, Minneapolis, United States
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| |
Collapse
|
7
|
Lin Y, Li C, Xiong W, Fan L, Pan H, Li Y. ARSD, a novel ERα downstream target gene, inhibits proliferation and migration of breast cancer cells via activating Hippo/YAP pathway. Cell Death Dis 2021; 12:1042. [PMID: 34725332 PMCID: PMC8560752 DOI: 10.1038/s41419-021-04338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023]
Abstract
Advanced breast cancer (BC), especially basal like triple-negative BC (TNBC), is a highly malignant tumor without viable treatment option, highlighting the urgent need to seek novel therapeutic targets. Arylsulfatase D (ARSD), localized at Xp22.3, is a female-biased gene due to its escaping from X chromosome inactivation (XCI). Unfortunately, no systematic investigation of ARSD on BC has been reported. In this study, we observed that ARSD expression was positively related to ERα status either in BC cells or tissue specimens, which were associated with good prognosis. Furthermore, we found a set of hormone-responsive lineage-specific transcription factors, FOXA1, GATA3, ERα, directly drove high expression of ARSD through chromatin looping in luminal subtype BC cells. Opposingly, ARSD still subjected to XCI in TNBC cells mediated by Xist, CpG islands methylation, and inhibitory histone modification. Unexpectedly, we also found that ectopic ARSD overexpression could inhibit proliferation and migration of TNBC cells by activating Hippo/YAP pathway, indicating that ARSD may be a molecule brake on ERα signaling pathway, which restricted ERα to be an uncontrolled active status. Combined with other peoples' researches that Hippo signaling maintained ER expression and ER + BC growth, we believed that there should exist a regulative feedback loop formation among ERα, ARSD, and Hippo/YAP pathway. Collectively, our findings will help filling the knowledge gap about the influence of ARSD on BC and providing evidence that ARSD may serve as a potential marker to predict prognosis and as a therapeutic target.
Collapse
Affiliation(s)
- Yun Lin
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Chun Li
- Faculty of Health science, Hull York Medical School, University of Hull, Hull, UK, HU6 7RX
| | - Wei Xiong
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Liping Fan
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China
| | - Hongchao Pan
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
| | - Yaochen Li
- Central laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou, 515041, China.
| |
Collapse
|
8
|
Nguyen AP, Nicoletti P, Arnol D, Califano A, Rodríguez Martínez M. Identifying the Potential Mechanism of Action of SNPs Associated With Breast Cancer Susceptibility With GVITamIN. Front Bioeng Biotechnol 2020; 8:798. [PMID: 32850701 PMCID: PMC7417307 DOI: 10.3389/fbioe.2020.00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022] Open
Abstract
In the last decade, a large number of genome-wide association studies have uncovered many single-nucleotide polymorphisms (SNPs) that are associated with complex traits and confer susceptibility to diseases, such as cancer. However, so far only a few heritable traits with medium-to-high penetrance have been identified. The vast majority of the discovered variants only leads to disease in combination with other still unknown factors. Furthermore, while many studies aimed to link the effect of SNPs to changes in molecular phenotypes, the analysis has been often focused on testing associations between a single SNP and a transcript, hence disregarding the dysregulation of gene regulatory networks that has been shown to play an essential role in disease onset, notably in cancer. Here we take a systems biology approach and develop GVITamIN (Genetic VarIaTIoN functional analysis tool), a new statistical and computational approach to characterize the effect of a SNP on both genes and transcriptional regulatory programs. GVITamIN exploits a novel statistical approach to combine the usually small effect of disease-susceptibility SNPs, and reveals important potential oncogenic mechanisms, hence taking one step further in the direction of understanding the SNP mechanism of action. We apply GVITamIN on a breast cancer cohort and identify well-known cancer-related transcription factors, such as CTCF, LEF1, and FOXA1, as TFs dysregulated by breast cancer-associated SNPs. Furthermore, our results reveal that SNPs located on the RAD51B gene are significantly associated with an abnormal regulatory activity, suggesting a pivotal role for homologous recombination repair mechanisms in breast cancer.
Collapse
Affiliation(s)
- An-Phi Nguyen
- IBM Research-Zurich, Zurich, Switzerland.,ETH-Zürich, Zurich, Switzerland
| | - Paola Nicoletti
- Herbert Irving Cancer Research Center, Columbia University Medical Center, New York, NY, United States
| | | | - Andrea Califano
- Herbert Irving Cancer Research Center, Columbia University Medical Center, New York, NY, United States.,Department of Systems Biology, Columbia University, New York, NY, United States.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States.,Department of Biomedical Informatics, Columbia University, New York, NY, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States.,Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States.,J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY, United States
| | - María Rodríguez Martínez
- Herbert Irving Cancer Research Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
9
|
Silva TC, Coetzee SG, Gull N, Yao L, Hazelett DJ, Noushmehr H, Lin DC, Berman BP. ELMER v.2: an R/Bioconductor package to reconstruct gene regulatory networks from DNA methylation and transcriptome profiles. Bioinformatics 2020; 35:1974-1977. [PMID: 30364927 PMCID: PMC6546131 DOI: 10.1093/bioinformatics/bty902] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/01/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022] Open
Abstract
Motivation DNA methylation has been used to identify functional changes at transcriptional enhancers and other cis-regulatory modules (CRMs) in tumors and other disease tissues. Our R/Bioconductor package ELMER (Enhancer Linking by Methylation/Expression Relationships) provides a systematic approach that reconstructs altered gene regulatory networks (GRNs) by combining enhancer methylation and gene expression data derived from the same sample set. Results We present a completely revised version 2 of ELMER that provides numerous new features including an optional web-based interface and a new Supervised Analysis mode to use pre-defined sample groupings. We show that Supervised mode significantly increases statistical power and identifies additional GRNs and associated Master Regulators, such as SOX11 and KLF5 in Basal-like breast cancer. Availability and implementation ELMER v.2 is available as an R/Bioconductor package at http://bioconductor.org/packages/ELMER/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tiago C Silva
- Department of Biomedical Sciences, Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Simon G Coetzee
- Department of Biomedical Sciences, Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nicole Gull
- Department of Biomedical Sciences, Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lijing Yao
- Bioinformatics Research & Early Development, Roche Sequencing Solutions, Belmont, CA, USA
| | - Dennis J Hazelett
- Department of Biomedical Sciences, Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Houtan Noushmehr
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Benjamin P Berman
- Department of Biomedical Sciences, Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Byun JS, Singhal SK, Park S, Yi DI, Yan T, Caban A, Jones A, Mukhopadhyay P, Gil SM, Hewitt SM, Newman L, Davis MB, Jenkins BD, Sepulveda JL, De Siervi A, Nápoles AM, Vohra NA, Gardner K. Racial Differences in the Association Between Luminal Master Regulator Gene Expression Levels and Breast Cancer Survival. Clin Cancer Res 2020; 26:1905-1914. [PMID: 31911546 PMCID: PMC8051554 DOI: 10.1158/1078-0432.ccr-19-0875] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/10/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Compared with their European American (EA) counterparts, African American (AA) women are more likely to die from breast cancer in the United States. This disparity is greatest in hormone receptor-positive subtypes. Here we uncover biological factors underlying this disparity by comparing functional expression and prognostic significance of master transcriptional regulators of luminal differentiation. EXPERIMENTAL DESIGN Data and biospecimens from 262 AA and 293 EA patients diagnosed with breast cancer from 2001 to 2010 at a major medical center were analyzed by IHC for functional biomarkers of luminal differentiation, including estrogen receptor (ESR1) and its pioneer factors, FOXA1 and GATA3. Integrated comparison of protein levels with network-level gene expression analysis uncovered predictive correlations with race and survival. RESULTS Univariate or multivariate HRs for overall survival, estimated from digital IHC scoring of nuclear antigen, show distinct differences in the magnitude and significance of these biomarkers to predict survival based on race: ESR1 [EA HR = 0.47; 95% confidence interval (CI), 0.31-0.72 and AA HR = 0.77; 95% CI, 0.48-1.18]; FOXA1 (EA HR = 0.38; 95% CI, 0.23-0.63 and AA HR = 0.53; 95% CI, 0.31-0.88), and GATA3 (EA HR = 0.36; 95% CI, 0.23-0.56; AA HR = 0.57; CI, 0.56-1.4). In addition, we identify genes in the downstream regulons of these biomarkers highly correlated with race and survival. CONCLUSIONS Even within clinically homogeneous tumor groups, regulatory networks that drive mammary luminal differentiation reveal race-specific differences in their association with clinical outcome. Understanding these biomarkers and their downstream regulons will elucidate the intrinsic mechanisms that drive racial disparities in breast cancer survival.
Collapse
Affiliation(s)
- Jung S Byun
- National Institutes of Minority Health and Health Disparities, NIH, Bethesda, Maryland
| | - Sandeep K Singhal
- Columbia University Medical Center, Columbia University, New York, New York
| | - Samson Park
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dae Ik Yi
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tingfen Yan
- National Institutes of Minority Health and Health Disparities, NIH, Bethesda, Maryland
| | - Ambar Caban
- Columbia University Medical Center, Columbia University, New York, New York
| | - Alana Jones
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Sara M Gil
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen M Hewitt
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | - Jorge L Sepulveda
- Columbia University Medical Center, Columbia University, New York, New York
| | - Adriana De Siervi
- Laboratorio de Oncologıa Molecular y Nuevos Blancos Terapeuticos, Instituto de Biologıa y Medicina Experimental (IBYME), CONICET, Argentina
| | - Anna María Nápoles
- National Institutes of Minority Health and Health Disparities, NIH, Bethesda, Maryland
| | - Nasreen A Vohra
- Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Kevin Gardner
- Columbia University Medical Center, Columbia University, New York, New York.
| |
Collapse
|
11
|
Bacolod MD, Huang J, Giardina SF, Feinberg PB, Mirza AH, Swistel A, Soper SA, Barany F. Prediction of blood-based biomarkers and subsequent design of bisulfite PCR-LDR-qPCR assay for breast cancer detection. BMC Cancer 2020; 20:85. [PMID: 32005108 PMCID: PMC6995062 DOI: 10.1186/s12885-020-6574-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background Interrogation of site-specific CpG methylation in circulating tumor DNAs (ctDNAs) has been employed in a number of studies for early detection of breast cancer (BrCa). In many of these studies, the markers were identified based on known biology of BrCa progression, and interrogated using methyl-specific PCR (MSP), a technique involving bisulfite conversion, PCR, and qPCR. Methods In this report, we are demonstrating the development of a novel assay (Multiplex Bisulfite PCR-LDR-qPCR) which can potentially offer improvements to MSP, by integrating additional steps such as ligase detection reaction (LDR), methylated CpG target enrichment, carryover protection (use of uracil DNA glycosylase), and minimization of primer-dimer formation (use of ribose primers and RNAseH2). The assay is designed to for breast cancer-specific CpG markers identified through integrated analyses of publicly available genome-wide methylation datasets for 31 types of primary tumors (including BrCa), as well as matching normal tissues, and peripheral blood. Results Our results indicate that the PCR-LDR-qPCR assay is capable of detecting ~ 30 methylated copies of each of 3 BrCa-specific CpG markers, when mixed with excess amount unmethylated CpG markers (~ 3000 copies each), which is a reasonable approximation of BrCa ctDNA overwhelmed with peripheral blood cell-free DNA (cfDNA) when isolated from patient plasma. The bioinformatically-identified CpG markers are located in promoter regions of NR5A2 and PRKCB, and a non-coding region of chromosome 1 (upstream of EFNA3). Additional bioinformatic analyses would reveal that these methylation markers are independent of patient race and age, and positively associated with signaling pathways associated with BrCa progression (such as those related to retinoid nuclear receptor, PTEN, p53, pRB, and p27). Conclusion This report demonstrates the potential utilization of bisulfite PCR-LDR-qPCR assay, along with bioinformatically-driven biomarker discovery, in blood-based BrCa detection.
Collapse
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Jianmin Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah F Giardina
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Philip B Feinberg
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Aashiq H Mirza
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alexander Swistel
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Steven A Soper
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS, 66047, USA
| | - Francis Barany
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Glont SE, Chernukhin I, Carroll JS. Comprehensive Genomic Analysis Reveals that the Pioneering Function of FOXA1 Is Independent of Hormonal Signaling. Cell Rep 2019; 26:2558-2565.e3. [PMID: 30840881 PMCID: PMC6408623 DOI: 10.1016/j.celrep.2019.02.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Considerable work has linked hormone receptors, such as estrogen receptor-alpha (ER), with the pioneer factor FOXA1. Altered FOXA1 levels contribute to endocrine-resistant breast cancer, where it maintains ER-chromatin interactions, even in contexts in which cells are refractory to ER-targeted drugs. A recent study controversially suggests that FOXA1 binding can be induced by hormonal pathways, including the estrogen-ER complex. We now show that the vast majority (>99%) of FOXA1 binding events are unaffected by steroid activation. A small number (<1%) of FOXA1 binding sites appear to be induced by estrogen, but these are created from chromatin interactions between ER binding sites and adjacent FOXA1 binding sites and do not represent genuine new FOXA1-pioneering elements. FOXA1 is therefore not regulated by estrogen and remains a bone fide pioneer factor that is entirely upstream of the ER complex.
Collapse
Affiliation(s)
- Silvia-E Glont
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK.
| |
Collapse
|
13
|
De Lara S, Nyqvist J, Werner Rönnerman E, Helou K, Kenne Sarenmalm E, Einbeigi Z, Karlsson P, Parris TZ, Kovács A. The prognostic relevance of FOXA1 and Nestin expression in breast cancer metastases: a retrospective study of 164 cases during a 10-year period (2004-2014). BMC Cancer 2019; 19:187. [PMID: 30819139 PMCID: PMC6394077 DOI: 10.1186/s12885-019-5373-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/17/2019] [Indexed: 12/30/2022] Open
Abstract
Background Current prognostic markers cannot adequately predict the clinical outcome of breast cancer patients. Therefore, additional biomarkers need to be included in routine immune panels. FOXA1 was a significant predictor of favorable outcome in primary breast cancer, while Nestin expression is preferentially found in triple-negative tumors with increased rate of nodal metastases, and reduced survival. No studies have investigated the prognostic value of FOXA1 and Nestin expression in breast cancer metastases. Methods Breast cancer metastases (n = 164) from various anatomical sites were retrospectively analyzed by immunohistochemistry for FOXA1, Nestin and GATA3 expression. Cox regression analysis assessed the prognostic value of FOXA1 and Nestin expression. Results In breast cancer metastases, FOXA1 expression was associated with Nestin-negativity, GATA3-positivity, ER-positivity, HER2-positivity and non-triple-negative status (P < 0.05). In contrast, Nestin expression was associated with FOXA1-negative, GATA3-negative, ER-negative, and triple-negative metastases (P < 0.05). Univariate Cox regression analysis showed FOXA1 expression was predictive of overall survival (OS, P = 0.00048) and metastasis-free survival (DMFS, P = 0.0011), as well as, distant metastasis-free survival in ER-positive patients (P = 0.036) and overall survival in ER-negative patients (P = 0.024). Multivariate analysis confirmed the significance of FOXA1 for both survival endpoints in metastatic breast cancer patients (OS, P = 0.0033; DMFS, P = 0.015). Conclusions In our study, FOXA1 was expressed mostly in ER-positive breast cancer metastases. Expression of Nestin was related to triple-negative metastases, where brain was the most frequent metastatic site. These findings highlight the clinical utility of FOXA1 and Nestin expression and warrant their inclusion in routine immunohistochemical panels for breast carcinoma.
Collapse
Affiliation(s)
- Shahin De Lara
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gula stråket 8, SE-41345, Gothenburg, Sweden
| | - Jenny Nyqvist
- Department of Surgery, Skaraborgs Hospital, Lidköping and Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gula stråket 8, SE-41345, Gothenburg, Sweden.,Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | - Zakaria Einbeigi
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gula stråket 8, SE-41345, Gothenburg, Sweden.
| |
Collapse
|
14
|
Wang D, Wang S, Ji B, Zheng M. Spatiotemporal expression of FOXA1 correlates with reactive gliosis after spinal cord injury. Neuropeptides 2017; 66:36-44. [PMID: 28844448 DOI: 10.1016/j.npep.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/02/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023]
Abstract
Forkhead box A1 (FOXA1) is a member of the FOX family of transcription factors and involved in various mammalian processes. However, the expression and function of FOXA1 in central nervous system (CNS) are still with limited acquaintance. In present study, we performed an acute spinal cord injury (SCI) model in adult rats and investigated the dynamic changes of FOXA1 expression in spinal cord. We found that FOXA1 protein levels were significantly increased after SCI and we observed that the expression of FOXA1 is enhanced in the white matter. Meanwhile, double immunofluorescence staining showed that increased levels of FOXA1 were striking in astrocytes and microglia. We also examined the expression of proliferating cell nuclear antigen (PCNA), whose changes were correlated with the expression profiles of FOXA1. In vitro, FOXA1 depletion by siRNA inhibited astrocyte proliferation and migration. Meanwhile, FOXA1 knockdown also reduce cell cycle related proteins. Which indicated that FOXA1 might modulate cell cycle progression and play a crucial role in cell proliferation. Furthermore, FOXA1 knockdown also inhibited LPS-induced synthesis/secretion of IL-1β and TNF-α in primary microglia. These results indicated that FOXA1 might play an important role in pathophysiology after SCI.
Collapse
Affiliation(s)
- Dongliang Wang
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, China
| | - Siqing Wang
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, China
| | - Biao Ji
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, China
| | - Minqian Zheng
- Department of Orthopaedics, Yancheng City No.1 People's Hospital, China.
| |
Collapse
|
15
|
Park S, Koh E, Koo JS, Kim SI, Park BW, Kim KS. Lack of both androgen receptor and forkhead box A1 (FOXA1) expression is a poor prognostic factor in estrogen receptor-positive breast cancers. Oncotarget 2017; 8:82940-82955. [PMID: 29137314 PMCID: PMC5669940 DOI: 10.18632/oncotarget.20937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/18/2017] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to examine the associations between androgen receptor (AR) and forkhead box A1 (FOXA1) and to investigate clinicopathological features and survival according to both biomarker status in estrogen receptor (ER)-positive breast cancers using in vitro study, patient cohort data, and the cBioPortal for Cancer Genomics and Kaplan-Meier Plotter websites. Experiments using T47D and ZR75-1 demonstrated AR-overexpressing cell lines decreased in cell proliferation through downregulation of ER, but FOXA1 did not change. Knockdown of FOXA1 resulted in a significantly reduced cell viability. Patients with immunohistochemically AR(-)/FOXA1(-) tumor frequently showed node metastasis, high grade, and high Ki-67 proliferation, therefore, significantly worse survival in ER-positive disease. AR and FOXA1 mRNA levels were significantly higher in ER-positive than in ER-negative tumors and AR-low/FOXA1-low tumors showed high grade, frequent basal-like subtype and worse disease-free survival in ER-positive cancers of public gene dataset, similarly to patient cohort results. The Kaplan-Meier Plotter analysis independently validated patients with both low AR/FOXA1 tumor were significantly associated with worse relapse-free survival in ER-positive cancers. This study suggests that distinctive clinicopathological features according to AR and FOXA1 are determined and a lack of both biomarkers is an independent poor prognostic factor in ER-positive tumors.
Collapse
Affiliation(s)
- Seho Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Frontier Research Institute of Convergence Sports Science, Yonsei University, Seoul, South Korea
| | - Eunjin Koh
- Department of Biochemistry and Molecular Biology, Institute for Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Byeong-Woo Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung-Sup Kim
- Department of Biochemistry and Molecular Biology, Institute for Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Panaccione A, Guo Y, Yarbrough WG, Ivanov SV. Expression Profiling of Clinical Specimens Supports the Existence of Neural Progenitor-Like Stem Cells in Basal Breast Cancers. Clin Breast Cancer 2017; 17:298-306.e7. [PMID: 28216417 DOI: 10.1016/j.clbc.2017.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/09/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND We previously characterized in salivary adenoid cystic carcinoma (ACC) a novel population of cancer stem cells (CSCs) marked by coexpression of 2 stemness genes, sex-determining region Y (SRY)-related HMG box-containing factor 10 (SOX10) and CD133. We also reported that in ACC and basal-like breast carcinoma (BBC), a triple-negative breast cancer subtype, expression of SOX10 similarly demarcates a highly conserved gene signature enriched with neural stem cell genes. On the basis of these findings, we hypothesized that BBC might be likewise driven by SOX10-positive (SOX10+)/CD133+ cells with neural stem cell properties. MATERIALS AND METHODS To validate our hypothesis on clinical data, we used a novel approach to meta-analysis that merges gene expression data from independent breast cancer studies and ranks genes according to statistical significance of their coexpression with the gene of interest. Genes that showed strong association with CD133/PROM1 as well as SOX10 were validated across different platforms and data sets and analyzed for enrichment with genes involved in neurogenesis. RESULTS We identified in clinical breast cancer data sets a highly conserved SOX10/PROM1 gene signature that contains neural stem cell markers common for Schwann cells, ACC, BBC, and melanoma. Identification of tripartite motif-containing 2 (TRIM2), TRIM29, MPZL2, potassium calcium-activated channel subfamily N member 4 (KCNN4), and V-set domain containing T cell activation inhibitor 1 (VTCN1)/B7 homolog 4 (B7H4) within this signature provides insight into molecular mechanisms of CSC maintenance. CONCLUSION Our results suggest that BBC is driven by SOX10+/CD133+ cells that express neural stem cell-specific markers and share molecular similarities with CSCs of neural crest origin. Our study provides clinically relevant information on possible drivers of these cells that might facilitate development of CSC-targeting therapies against this cancer distinguished with poor prognosis and resistance to conventional therapies.
Collapse
Affiliation(s)
- Alex Panaccione
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, New Haven, CT
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Wendell G Yarbrough
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, New Haven, CT; Head and Neck Disease Center, Smilow Cancer Hospital, New Haven, CT; Molecular Virology Program, Yale Cancer Center, New Haven, CT
| | - Sergey V Ivanov
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
17
|
Yamaguchi N, Shibazaki M, Yamada C, Anzai E, Morii M, Nakayama Y, Kuga T, Hashimoto Y, Tomonaga T, Yamaguchi N. Tyrosine Phosphorylation of the Pioneer Transcription Factor FoxA1 Promotes Activation of Estrogen Signaling. J Cell Biochem 2016; 118:1453-1461. [DOI: 10.1002/jcb.25804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/21/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Noritaka Yamaguchi
- Laboratory of Molecular Cell BiologyGraduate School of Pharmaceutical SciencesChiba UniversityChiba260‐8675Japan
| | - Misato Shibazaki
- Laboratory of Molecular Cell BiologyGraduate School of Pharmaceutical SciencesChiba UniversityChiba260‐8675Japan
| | - Chiaki Yamada
- Laboratory of Molecular Cell BiologyGraduate School of Pharmaceutical SciencesChiba UniversityChiba260‐8675Japan
| | - Erina Anzai
- Laboratory of Molecular Cell BiologyGraduate School of Pharmaceutical SciencesChiba UniversityChiba260‐8675Japan
| | - Mariko Morii
- Laboratory of Molecular Cell BiologyGraduate School of Pharmaceutical SciencesChiba UniversityChiba260‐8675Japan
| | - Yuji Nakayama
- Department of Biochemistry and Molecular BiologyKyoto Pharmaceutical UniversityKyoto607‐8414Japan
| | - Takahisa Kuga
- Department of Biochemistry and Molecular BiologyKyoto Pharmaceutical UniversityKyoto607‐8414Japan
| | - Yuuki Hashimoto
- Laboratory of Proteome ResearchNational Institutes of Biomedical InnovationHealth and NutritionIbarakiOsaka567‐0085Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome ResearchNational Institutes of Biomedical InnovationHealth and NutritionIbarakiOsaka567‐0085Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell BiologyGraduate School of Pharmaceutical SciencesChiba UniversityChiba260‐8675Japan
| |
Collapse
|
18
|
He K, Zeng H, Xu X, Li A, Cai Q, Long X. Clinicopathological significance of forkhead box protein A1 in breast cancer: A meta-analysis. Exp Ther Med 2016; 11:2525-2530. [PMID: 27284343 DOI: 10.3892/etm.2016.3229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 02/10/2015] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to investigate the associations between the expression of forkhead box protein A1 (FOXA1) and differential clinicopathological characteristics in breast cancer using a meta-analysis method. Eligible studies that investigated the correlation between FOXA1 expression and the clinical characteristics of breast cancer were collected through searching numerous databases, including PubMed, EMBASE, the Chinese National Knowledge Infrastructure and the VIP database. In total, eight studies were included in the meta-analysis. Following a systematic analysis, the expression of FOXA1 was found to be significantly associated with the estrogen receptor α status, the progesterone receptor status, lymph node metastasis and the histological grade in breast cancer. However, no statistically significant association was observed between FOXA1 expression and the human epidermal growth factor receptor-2 status in breast cancer patients.
Collapse
Affiliation(s)
- Keli He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hui Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xianqun Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Anling Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qing Cai
- TCM Clinical Skills Training Center, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
19
|
Zhao Y, Li Z. Interplay of estrogen receptors and FOXA factors in the liver cancer. Mol Cell Endocrinol 2015; 418 Pt 3:334-9. [PMID: 25661537 PMCID: PMC4524798 DOI: 10.1016/j.mce.2015.01.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 12/15/2022]
Abstract
Liver cancer is the fifth most common cancer in human with male dominance. Sexual dimorphism of liver cancer is conserved from rodents to humans, which was firstly found in mice in late 1930s and female mice were resistant to liver cancer. Sex hormones were found to affect the incidence of liver cancer in rodents. Estrogen receptor alpha (ERα)-mediated estrogen signaling or androgen receptor-mediated androgen signaling prevents or promotes the growth of rodent liver tumors, respectively. Forkhead box protein A (Foxa) factors, Foxa1 and Foxa2, also known as pioneer transcription factors in liver specification, are essential for both estrogen and androgen signaling by acting as central regulators of sexual dimorphism in liver cancer. This review mainly focuses on the interplay between ERα and FOXA factors in liver cancer, and summarizes recent breakthrough studies in elucidating the mechanisms of sexual dimorphism in liver cancer.
Collapse
Affiliation(s)
- Yongbing Zhao
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Zhaoyu Li
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
20
|
Jayavelu ND, Aasgaard LS, Bar N. Iterative sub-network component analysis enables reconstruction of large scale genetic networks. BMC Bioinformatics 2015; 16:366. [PMID: 26537518 PMCID: PMC4634733 DOI: 10.1186/s12859-015-0768-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022] Open
Abstract
Background Network component analysis (NCA) became a popular tool to understand complex regulatory networks. The method uses high-throughput gene expression data and a priori topology to reconstruct transcription factor activity profiles. Current NCA algorithms are constrained by several conditions posed on the network topology, to guarantee unique reconstruction (termed compliancy). However, the restrictions these conditions pose are not necessarily true from biological perspective and they force network size reduction, pruning potentially important components. Results To address this, we developed a novel, Iterative Sub-Network Component Analysis (ISNCA) for reconstructing networks at any size. By dividing the initial network into smaller, compliant subnetworks, the algorithm first predicts the reconstruction of each subntework using standard NCA algorithms. It then subtracts from the reconstruction the contribution of the shared components from the other subnetwork. We tested the ISNCA on real, large datasets using various NCA algorithms. The size of the networks we tested and the accuracy of the reconstruction increased significantly. Importantly, FOXA1, ATF2, ATF3 and many other known key regulators in breast cancer could not be incorporated by any NCA algorithm because of the necessary conditions. However, their temporal activities could be reconstructed by our algorithm, and therefore their involvement in breast cancer could be analyzed. Conclusions Our framework enables reconstruction of large gene expression data networks, without reducing their size or pruning potentially important components, and at the same time rendering the results more biological plausible. Our ISNCA method is not only suitable for prediction of key regulators in cancer studies, but it can be applied to any high-throughput gene expression data. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0768-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naresh Doni Jayavelu
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Sem Salandsvei 4, Trondheim, Norway.
| | - Lasse S Aasgaard
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Sem Salandsvei 4, Trondheim, Norway.
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Sem Salandsvei 4, Trondheim, Norway.
| |
Collapse
|
21
|
Gong C, Fujino K, Monteiro LJ, Gomes AR, Drost R, Davidson-Smith H, Takeda S, Khoo US, Jonkers J, Sproul D, Lam EWF. FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer. Oncogene 2015; 34:5012-24. [PMID: 25531315 PMCID: PMC4430311 DOI: 10.1038/onc.2014.421] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 10/01/2014] [Accepted: 11/15/2014] [Indexed: 12/11/2022]
Abstract
FOXA1 expression correlates with the breast cancer luminal subtype and patient survival. RNA and protein analysis of a panel of breast cancer cell lines revealed that BRCA1 deficiency is associated with the downregulation of FOXA1 expression. Knockdown of BRCA1 resulted in the downregulation of FOXA1 expression and enhancement of FOXA1 promoter methylation in MCF-7 breast cancer cells, whereas the reconstitution of BRCA1 in Brca1-deficent mouse mammary epithelial cells (MMECs) promoted Foxa1 expression and methylation. These data suggest that BRCA1 suppresses FOXA1 hypermethylation and silencing. Consistently, the treatment of MMECs with the DNA methylation inhibitor 5-aza-2'-deoxycitydine induced Foxa1 mRNA expression. Furthermore, treatment with GSK126, an inhibitor of EZH2 methyltransferase activity, induced FOXA1 expression in BRCA1-deficient but not in BRCA1-reconstituted MMECs. Likewise, the depletion of EZH2 by small interfering RNA enhanced FOXA1 mRNA expression. Chromatin immunoprecipitation (ChIP) analysis demonstrated that BRCA1, EZH2, DNA methyltransferases (DNMT)1/3a/3b and H3K27me3 are recruited to the endogenous FOXA1 promoter, further supporting the hypothesis that these proteins interact to modulate FOXA1 methylation and repression. Further co-immunoprecipitation and ChIP analysis showed that both BRCA1 and DNMT3b form complexes with EZH2 but not with each other, consistent with the notion that BRCA1 binds to EZH2 and negatively regulates its methyltransferase activity. We also found that EZH2 promotes and BRCA1 impairs the deposit of the gene silencing histone mark H3K27me3 on the FOXA1 promoter. These associations were validated in a familial breast cancer patient cohort. Integrated analysis of the global gene methylation and expression profiles of a set of 33 familial breast tumours revealed that FOXA1 promoter methylation is inversely correlated with the transcriptional expression of FOXA1 and that BRCA1 mutation breast cancer is significantly associated with FOXA1 methylation and downregulation of FOXA1 expression, providing physiological evidence to our findings that FOXA1 expression is regulated by methylation and chromatin silencing and that BRCA1 maintains FOXA1 expression through suppressing FOXA1 gene methylation in breast cancer.
Collapse
Affiliation(s)
- C Gong
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - K Fujino
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Bunkyoku, Tokyo, Japan
| | - L J Monteiro
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - A R Gomes
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - R Drost
- Division of Molecular Pathology and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H Davidson-Smith
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - S Takeda
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Bunkyoku, Tokyo, Japan
| | - U S Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - J Jonkers
- Division of Molecular Pathology and Cancer Genomics Centre Netherlands, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D Sproul
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - E W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
22
|
Mehmeti M, Allaoui R, Bergenfelz C, Saal LH, Ethier SP, Johansson ME, Jirström K, Leandersson K. Expression of functional toll like receptor 4 in estrogen receptor/progesterone receptor-negative breast cancer. Breast Cancer Res 2015; 17:130. [PMID: 26392082 PMCID: PMC4578669 DOI: 10.1186/s13058-015-0640-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction Toll-like receptors (TLRs) are a family of pattern recognition receptors that are expressed on cells of the innate immune system. The ligands can be pathogen derived (pathogen associated molecular patterns; PAMPs) or endogenous (damage associated molecular patters; DAMPs) that when bound induces activation of nuclear factor kappa B (NF-κB) and transcription of pro-inflammatory genes. TLRs have also been discovered in various malignant cell types, but with unknown function. Methods In this study we performed a detailed analysis of TLR and co-receptor expression pattern and function in breast cancer. Expression patterns were examined using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) on three estrogen receptor-positive (ER+) and four estrogen receptor/progesterone receptor-negative (ER−/PR−; ER/PR-negative) breast cancer cell lines, and a breast cancer cohort consisting of 144 primary breast cancer samples. The function was investigated using in vitro assays comprising PAMP/DAMP-stimulation, downstream signaling and TLR-silencing experiments. Results We found that TLR4 was expressed in a biologically active form and responded to both PAMPs and DAMPs primarily in ER/PR-negative breast cancers. Stimulation of TLR2/4 in vitro induced expression of pro-inflammatory genes and a gene expression analysis of primary breast cancers showed a strong correlation between TLR4 expression and expression of pro-inflammatory mediators. In line with this, TLR4 protein expression correlated with a decreased survival. Conclusions These findings suggest that TLR4 is expressed in a functional form in ER/PR-negative breast cancers. Studies regarding TLR4-antagonist therapies should be focusing on ER/PR-negative breast cancer particularly. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0640-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meliha Mehmeti
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, SUS Jan Waldenströmsgata 59, 20502, Malmö, Sweden.
| | - Roni Allaoui
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, SUS Jan Waldenströmsgata 59, 20502, Malmö, Sweden.
| | - Caroline Bergenfelz
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, SUS Jan Waldenströmsgata 59, 20502, Malmö, Sweden.
| | - Lao H Saal
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| | - Martin E Johansson
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, SUS Jan Waldenströmsgata 59, 20502, Malmö, Sweden.
| | - Karin Jirström
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Karin Leandersson
- Center for Molecular Pathology, Department of Translational Medicine, Lund University, SUS Jan Waldenströmsgata 59, 20502, Malmö, Sweden.
| |
Collapse
|
23
|
TFAP2C expression in breast cancer: correlation with overall survival beyond 10 years of initial diagnosis. Breast Cancer Res Treat 2015; 152:519-31. [PMID: 26160249 DOI: 10.1007/s10549-015-3492-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/02/2015] [Indexed: 01/15/2023]
Abstract
Recurrence and death in a significant number of patients with ERα-positive breast cancer occurs 10-20 years after diagnosis. Prognostic markers for late events have been more elusive. TFAP2C (AP2γ) regulates the expression of ERα, the ERα pioneer factors FOXA1 and GATA3, and controls ERα-dependent transcription. The purpose of this investigation is to determine the long-term prognostic value of TFAP2C. A tissue microarray (TMA) consisting of breast tumors from 451 patients with median follow-up time of 10.3 years was created and tested for the expression of TFAP2C by immunohistochemistry. Wilcoxon Rank-Sum and Kruskal-Wallis tests were used to determine if TFAP2C H-scores correlate with other tumor markers. Cox proportional hazards regression models were used to determine whether TFAP2C H-scores and other tumor markers were related to overall and disease-free survival in univariate and multivariable models. TFPAC2 overexpression did not impact overall survival during the first 10 years after diagnosis, but was associated with a shorter survival after 10 years (HR 3.40, 95 % CI 1.58, 7.30; p value = 0.002). This late divergence persisted in ER-positive (HR 2.86, 95 % CI 1.29, 6.36; p value = 0.01) and endocrine therapy-positive subgroups (HR 4.19, 95 % CI 1.72, 10.23; p value = 0.002). For the ER+ and endocrine therapy subgroup, the HR was 3.82 (95 % CI 1.53, 9.50; p value = 0.004). TFAP2C H-scores were not correlated with other tumor markers or related to disease-free survival. In this hypothesis-generating study, we show that higher TFAP2C scores correlate with poor overall survival after 10 years of diagnosis in ERα-positive and endocrine therapy-treated subgroups.
Collapse
|
24
|
Xu C, Wei Q, Guo J, Zhou JC, Mei J, Jiang ZN, Shen JG, Wang LB. FOXA1 Expression Significantly Predict Response to Chemotherapy in Estrogen Receptor-Positive Breast Cancer Patients. Ann Surg Oncol 2015; 22:2034-9. [PMID: 25707489 DOI: 10.1245/s10434-014-4313-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE Most estrogen receptor (ER)-positive breast cancer responds poorly to chemotherapy and no single cost-effective biomarker capable of selecting chemosensitive ones has been found yet. We investigated FOXA1 for its role in predicting chemosensitivity of this subgroup in neoadjuvant chemotherapy settings. METHODS We reviewed pathologic slides of 123 patients who were diagnosed with ER-positive breast cancer on core needle biopsy and underwent neoadjuvant chemotherapy at our institution between 2002 and 2012. FOXA1 expression and pathologic response were evaluated. We then statistically analyzed FOXA1 expression and its relationship with chemosensitivity. RESULTS FOXA1 expression before NAC was correlated with poor chemoresponse in ER-positive as well as luminal A and luminal B breast cancer patients (p = 0.002, 0.001, and 0.049 respectively). Significant association between change of FOXA1 staining position after NAC and chemosensitivity also was observed (p = 0.024). Multivariate analysis identified FOXA1 expression before NAC as an independent predictor of chemosensitivity in ER-positive and luminal A breast cancer patients [p = 0.002; relative risk (RR) 0.163; 95 % confidence interval (CI) 0.053-0.500, and p = 0.002; RR 0.055; 95 % CI 0.008-0.353, respectively]. Additionally, change of FOXA1 staining position after NAC was shown to be an independent predictor of chemoresponse in luminal B subtype breast cancer patients (p = 0.012; RR 0.153; 95 % CI 0.035-0.665). CONCLUSIONS FOXA1 expression can independently predict chemosensitivity of ER-positive breast cancer patients.
Collapse
Affiliation(s)
- Chenpu Xu
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Karagoz K, Sinha R, Arga KY. Triple negative breast cancer: a multi-omics network discovery strategy for candidate targets and driving pathways. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:115-30. [PMID: 25611337 DOI: 10.1089/omi.2014.0135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Triple negative breast cancer (TNBC) represents approximately 15% of breast cancers and is characterized by lack of expression of both estrogen receptor (ER) and progesterone receptor (PR), together with absence of human epidermal growth factor 2 (HER2). TNBC has attracted considerable attention due to its aggressiveness such as large tumor size, high proliferation rate, and metastasis. The absence of clinically efficient molecular targets is of great concern in treatment of patients with TNBC. In light of the complexity of TNBC, we applied a systematic and integrative transcriptomics and interactomics approach utilizing transcriptional regulatory and protein-protein interaction networks to discover putative transcriptional control mechanisms of TNBC. To this end, we identified TNBC-driven molecular pathways such as the Janus kinase-signal transducers, and activators of transcription (JAK-STAT) and tumor necrosis factor (TNF) signaling pathways. The multi-omics molecular target and biomarker discovery approach presented here can offer ways forward on novel diagnostics and potentially help to design personalized therapeutics for TNBC in the future.
Collapse
Affiliation(s)
- Kubra Karagoz
- 1 Department of Bioengineering, Marmara University , Istanbul, Turkey
| | | | | |
Collapse
|
26
|
Khushi M, Clarke CL, Graham JD. Bioinformatic analysis of cis-regulatory interactions between progesterone and estrogen receptors in breast cancer. PeerJ 2014; 2:e654. [PMID: 25426335 PMCID: PMC4243336 DOI: 10.7717/peerj.654] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/15/2014] [Indexed: 12/27/2022] Open
Abstract
Chromatin factors interact with each other in a cell and sequence-specific manner in order to regulate transcription and a wealth of publically available datasets exists describing the genomic locations of these interactions. Our recently published BiSA (Binding Sites Analyser) database contains transcription factor binding locations and epigenetic modifications collected from published studies and provides tools to analyse stored and imported data. Using BiSA we investigated the overlapping cis-regulatory role of estrogen receptor alpha (ERα) and progesterone receptor (PR) in the T-47D breast cancer cell line. We found that ERα binding sites overlap with a subset of PR binding sites. To investigate further, we re-analysed raw data to remove any biases introduced by the use of distinct tools in the original publications. We identified 22,152 PR and 18,560 ERα binding sites (<5% false discovery rate) with 4,358 overlapping regions among the two datasets. BiSA statistical analysis revealed a non-significant overall overlap correlation between the two factors, suggesting that ERα and PR are not partner factors and do not require each other for binding to occur. However, Monte Carlo simulation by Binary Interval Search (BITS), Relevant Distance, Absolute Distance, Jaccard and Projection tests by Genometricorr revealed a statistically significant spatial correlation of binding regions on chromosome between the two factors. Motif analysis revealed that the shared binding regions were enriched with binding motifs for ERα, PR and a number of other transcription and pioneer factors. Some of these factors are known to co-locate with ERα and PR binding. Therefore spatially close proximity of ERα binding sites with PR binding sites suggests that ERα and PR, in general function independently at the molecular level, but that their activities converge on a specific subset of transcriptional targets.
Collapse
Affiliation(s)
- Matloob Khushi
- Centre for Cancer Research, Westmead Millennium Institute, Sydney Medical School-Westmead, University of Sydney , Australia
| | - Christine L Clarke
- Centre for Cancer Research, Westmead Millennium Institute, Sydney Medical School-Westmead, University of Sydney , Australia
| | - J Dinny Graham
- Centre for Cancer Research, Westmead Millennium Institute, Sydney Medical School-Westmead, University of Sydney , Australia
| |
Collapse
|
27
|
FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat Med 2014; 20:272-82. [DOI: 10.1038/nm.3485] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/22/2014] [Indexed: 12/15/2022]
|
28
|
Meyer KB, O'Reilly M, Michailidou K, Carlebur S, Edwards SL, French JD, Prathalingham R, Dennis J, Bolla MK, Wang Q, de Santiago I, Hopper JL, Tsimiklis H, Apicella C, Southey MC, Schmidt MK, Broeks A, Van 't Veer LJ, Hogervorst FB, Muir K, Lophatananon A, Stewart-Brown S, Siriwanarangsan P, Fasching PA, Lux MP, Ekici AB, Beckmann MW, Peto J, Dos Santos Silva I, Fletcher O, Johnson N, Sawyer EJ, Tomlinson I, Kerin MJ, Miller N, Marme F, Schneeweiss A, Sohn C, Burwinkel B, Guénel P, Truong T, Laurent-Puig P, Menegaux F, Bojesen SE, Nordestgaard BG, Nielsen SF, Flyger H, Milne RL, Zamora MP, Arias JI, Benitez J, Neuhausen S, Anton-Culver H, Ziogas A, Dur CC, Brenner H, Müller H, Arndt V, Stegmaier C, Meindl A, Schmutzler RK, Engel C, Ditsch N, Brauch H, Brüning T, Ko YD, Nevanlinna H, Muranen TA, Aittomäki K, Blomqvist C, Matsuo K, Ito H, Iwata H, Yatabe Y, Dörk T, Helbig S, Bogdanova NV, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Chenevix-Trench G, Wu AH, Tseng CC, Van Den Berg D, Stram DO, Lambrechts D, Thienpont B, Christiaens MR, Smeets A, Chang-Claude J, Rudolph A, Seibold P, Flesch-Janys D, Radice P, Peterlongo P, Bonanni B, Bernard L, et alMeyer KB, O'Reilly M, Michailidou K, Carlebur S, Edwards SL, French JD, Prathalingham R, Dennis J, Bolla MK, Wang Q, de Santiago I, Hopper JL, Tsimiklis H, Apicella C, Southey MC, Schmidt MK, Broeks A, Van 't Veer LJ, Hogervorst FB, Muir K, Lophatananon A, Stewart-Brown S, Siriwanarangsan P, Fasching PA, Lux MP, Ekici AB, Beckmann MW, Peto J, Dos Santos Silva I, Fletcher O, Johnson N, Sawyer EJ, Tomlinson I, Kerin MJ, Miller N, Marme F, Schneeweiss A, Sohn C, Burwinkel B, Guénel P, Truong T, Laurent-Puig P, Menegaux F, Bojesen SE, Nordestgaard BG, Nielsen SF, Flyger H, Milne RL, Zamora MP, Arias JI, Benitez J, Neuhausen S, Anton-Culver H, Ziogas A, Dur CC, Brenner H, Müller H, Arndt V, Stegmaier C, Meindl A, Schmutzler RK, Engel C, Ditsch N, Brauch H, Brüning T, Ko YD, Nevanlinna H, Muranen TA, Aittomäki K, Blomqvist C, Matsuo K, Ito H, Iwata H, Yatabe Y, Dörk T, Helbig S, Bogdanova NV, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, Chenevix-Trench G, Wu AH, Tseng CC, Van Den Berg D, Stram DO, Lambrechts D, Thienpont B, Christiaens MR, Smeets A, Chang-Claude J, Rudolph A, Seibold P, Flesch-Janys D, Radice P, Peterlongo P, Bonanni B, Bernard L, Couch FJ, Olson JE, Wang X, Purrington K, Giles GG, Severi G, Baglietto L, McLean C, Haiman CA, Henderson BE, Schumacher F, Le Marchand L, Simard J, Goldberg MS, Labrèche F, Dumont M, Teo SH, Yip CH, Phuah SY, Kristensen V, Grenaker Alnæs G, Børresen-Dale AL, Zheng W, Deming-Halverson S, Shrubsole M, Long J, Winqvist R, Pylkäs K, Jukkola-Vuorinen A, Kauppila S, Andrulis IL, Knight JA, Glendon G, Tchatchou S, Devilee P, Tollenaar RAEM, Seynaeve CM, García-Closas M, Figueroa J, Chanock SJ, Lissowska J, Czene K, Darabi H, Eriksson K, Hooning MJ, Martens JWM, van den Ouweland AMW, van Deurzen CHM, Hall P, Li J, Liu J, Humphreys K, Shu XO, Lu W, Gao YT, Cai H, Cox A, Reed MWR, Blot W, Signorello LB, Cai Q, Pharoah PDP, Ghoussaini M, Harrington P, Tyrer J, Kang D, Choi JY, Park SK, Noh DY, Hartman M, Hui M, Lim WY, Buhari SA, Hamann U, Försti A, Rüdiger T, Ulmer HU, Jakubowska A, Lubinski J, Jaworska K, Durda K, Sangrajrang S, Gaborieau V, Brennan P, McKay J, Vachon C, Slager S, Fostira F, Pilarski R, Shen CY, Hsiung CN, Wu PE, Hou MF, Swerdlow A, Ashworth A, Orr N, Schoemaker MJ, Ponder BAJ, Dunning AM, Easton DF. Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1. Am J Hum Genet 2013; 93:1046-60. [PMID: 24290378 PMCID: PMC3852923 DOI: 10.1016/j.ajhg.2013.10.026] [Show More Authors] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/15/2013] [Accepted: 10/28/2013] [Indexed: 12/19/2022] Open
Abstract
The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of European ancestry, 9 Asian ancestry studies (n = 13,983), and 2 African ancestry studies (n = 2,028) from the Breast Cancer Association Consortium. We identified three statistically independent risk signals within the locus. Within risk signals 1 and 3, genetic analysis identified five and two variants, respectively, highly correlated with the most strongly associated SNPs. By using a combination of genetic fine mapping, data on DNase hypersensitivity, and electrophoretic mobility shift assays to study protein-DNA binding, we identified rs35054928, rs2981578, and rs45631563 as putative functional SNPs. Chromatin immunoprecipitation showed that FOXA1 preferentially bound to the risk-associated allele (C) of rs2981578 and was able to recruit ERα to this site in an allele-specific manner, whereas E2F1 preferentially bound the risk variant of rs35054928. The risk alleles were preferentially found in open chromatin and bound by Ser5 phosphorylated RNA polymerase II, suggesting that the risk alleles are associated with changes in transcription. Chromatin conformation capture demonstrated that the risk region was able to interact with the promoter of FGFR2, the likely target gene of this risk region. A role for FOXA1 in mediating breast cancer susceptibility at this locus is consistent with the finding that the FGFR2 risk locus primarily predisposes to estrogen-receptor-positive disease.
Collapse
Affiliation(s)
- Kerstin B Meyer
- CRUK Cambridge Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Aung KMM, New SY, Hong S, Sutarlie L, Lim MGL, Tan SK, Cheung E, Su X. Studying forkhead box protein A1-DNA interaction and ligand inhibition using gold nanoparticles, electrophoretic mobility shift assay, and fluorescence anisotropy. Anal Biochem 2013; 448:95-104. [PMID: 24291642 DOI: 10.1016/j.ab.2013.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/11/2013] [Accepted: 11/17/2013] [Indexed: 10/26/2022]
Abstract
Forkhead box protein 1 (FoxA1) is a member of the forkhead family of winged helix transcription factors that plays pivotal roles in the development and differentiation of multiple organs and in the regulation of estrogen-stimulated genes. Conventional analytical methods-electrophoretic mobility shift assay (EMSA) and fluorescence anisotropy (FA)-as well as a gold nanoparticles (AuNPs)-based assay were used to study DNA binding properties of FoxA1 and ligand interruption of FoxA1-DNA binding. In the AuNPs assay, the distinct ability of protein-DNA complex to protect AuNPs against salt-induced aggregation was exploited to screen sequence selectivity and determine the binding affinity constant based on AuNPs color change and absorbance spectrum shift. Both conventional EMSA and FA and the AuNPs assay suggested that FoxA1 binds to DNA in a core sequence-dependent manner and the flanking sequence also played a role to influence the affinity. The EMSA and AuNPs were found to be more sensitive than FA in differentiation of sequence-dependent affinity. With the addition of a spin filtration step, AuNPs assay has been extended for studying small molecular ligand inhibition of FoxA1-DNA interactions enabling drug screening. The results correlate very well with those obtained using FA.
Collapse
Affiliation(s)
- Khin Moh Moh Aung
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A(*)STAR), Singapore
| | - Siu Yee New
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A(*)STAR), Singapore
| | - Shuzhen Hong
- Cancer Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(*)STAR), Singapore
| | - Laura Sutarlie
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A(*)STAR), Singapore
| | - Michelle Gek Liang Lim
- Cancer Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(*)STAR), Singapore
| | - Si Kee Tan
- Cancer Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(*)STAR), Singapore
| | - Edwin Cheung
- Cancer Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(*)STAR), Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A(*)STAR), Singapore.
| |
Collapse
|
30
|
Lindner R, Sullivan C, Offor O, Lezon-Geyda K, Halligan K, Fischbach N, Shah M, Bossuyt V, Schulz V, Tuck DP, Harris LN. Molecular phenotypes in triple negative breast cancer from African American patients suggest targets for therapy. PLoS One 2013; 8:e71915. [PMID: 24260093 PMCID: PMC3832509 DOI: 10.1371/journal.pone.0071915] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/04/2013] [Indexed: 12/20/2022] Open
Abstract
Triple negative breast cancer (TNBC) is characterized by high proliferation, poor differentiation and a poor prognosis due to high rates of recurrence. Despite lower overall incidence African American (AA) patients suffer from higher breast cancer mortality in part due to the higher proportion of TNBC cases among AA patients compared to European Americans (EA). It was recently shown that the clinical heterogeneity of TNBC is reflected by distinct transcriptional programs with distinct drug response profiles in preclinical models. In this study, gene expression profiling and immunohistochemistry were used to elucidate potential differences between TNBC tumors of EA and AA patients on a molecular level. In a retrospective cohort of 136 TNBC patients, a major transcriptional signature of proliferation was found to be significantly upregulated in samples of AA ethnicity. Furthermore, transcriptional profiles of AA tumors showed differential activation of insulin-like growth factor 1 (IGF1) and a signature of BRCA1 deficiency in this cohort. Using signatures derived from the meta-analysis of TNBC gene expression carried out by Lehmann et al., tumors from AA patients were more likely of basal-like subtypes whereas transcriptional features of many EA samples corresponded to mesenchymal-like or luminal androgen receptor driven subtypes. These results were validated in The Cancer Genome Atlas mRNA and protein expression data, again showing enrichment of a basal-like phenotype in AA tumors and mesenchymal subtypes in EA tumors. In addition, increased expression of VEGF-activated genes together with elevated microvessel area determined by the AQUA method suggest that AA patients exhibit higher tumor vascularization. This study confirms the existence of distinct transcriptional programs in triple negative breast cancer in two separate cohorts and that these programs differ by racial group. Differences in TNBC subtypes and levels of tumor angiogenesis in AA versus EA patients suggest that targeted therapy choices should be considered in the context of race.
Collapse
MESH Headings
- Adult
- Black or African American
- Aged
- Breast Neoplasms/ethnology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Databases, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neovascularization, Pathologic/ethnology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Retrospective Studies
Collapse
Affiliation(s)
- Robert Lindner
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Catherine Sullivan
- Medical Oncology, Yale Cancer Center, New Haven, Connecticut, United States of America
| | - Onyinye Offor
- Medical Oncology, Yale Cancer Center, New Haven, Connecticut, United States of America
| | - Kimberly Lezon-Geyda
- Medical Oncology, Yale Cancer Center, New Haven, Connecticut, United States of America
| | - Kyle Halligan
- Medical Oncology, Yale Cancer Center, New Haven, Connecticut, United States of America
| | - Neal Fischbach
- Department of Oncology, Bridgeport Hospital, Bridgeport, Connecticut, United States of America
| | - Mansi Shah
- Department of Oncology, Bridgeport Hospital, Bridgeport, Connecticut, United States of America
| | - Veerle Bossuyt
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Vincent Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - David P. Tuck
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Lyndsay N. Harris
- Medical Oncology, Yale Cancer Center, New Haven, Connecticut, United States of America
- University Hospitals, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Identification of putative ortholog gene blocks involved in gestant and lactating mammary gland development: a rodent cross-species microarray transcriptomics approach. Int J Genomics 2013; 2013:624681. [PMID: 24288657 PMCID: PMC3830774 DOI: 10.1155/2013/624681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 01/23/2023] Open
Abstract
The mammary gland (MG) undergoes functional and metabolic changes during the transition from pregnancy to lactation, possibly by regulation of conserved genes. The objective was to elucidate orthologous genes, chromosome clusters and putative conserved transcriptional modules during MG development. We analyzed expression of 22,000 transcripts using murine microarrays and RNA samples of MG from virgin, pregnant, and lactating rats by cross-species hybridization. We identified 521 transcripts differentially expressed; upregulated in early (78%) and midpregnancy (89%) and early lactation (64%), but downregulated in mid-lactation (61%). Putative orthologous genes were identified. We mapped the altered genes to orthologous chromosomal locations in human and mouse. Eighteen sets of conserved genes associated with key cellular functions were revealed and conserved transcription factor binding site search entailed possible coregulation among all eight block sets of genes. This study demonstrates that the use of heterologous array hybridization for screening of orthologous gene expression from rat revealed sets of conserved genes arranged in chromosomal order implicated in signaling pathways and functional ontology. Results demonstrate the utilization power of comparative genomics and prove the feasibility of using rodent microarrays to identification of putative coexpressed orthologous genes involved in the control of human mammary gland development.
Collapse
|
32
|
Doig TN, Hume DA, Theocharidis T, Goodlad JR, Gregory CD, Freeman TC. Coexpression analysis of large cancer datasets provides insight into the cellular phenotypes of the tumour microenvironment. BMC Genomics 2013; 14:469. [PMID: 23845084 PMCID: PMC3721986 DOI: 10.1186/1471-2164-14-469] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 06/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biopsies taken from individual tumours exhibit extensive differences in their cellular composition due to the inherent heterogeneity of cancers and vagaries of sample collection. As a result genes expressed in specific cell types, or associated with certain biological processes are detected at widely variable levels across samples in transcriptomic analyses. This heterogeneity also means that the level of expression of genes expressed specifically in a given cell type or process, will vary in line with the number of those cells within samples or activity of the pathway, and will therefore be correlated in their expression. RESULTS Using a novel 3D network-based approach we have analysed six large human cancer microarray datasets derived from more than 1,000 individuals. Based upon this analysis, and without needing to isolate the individual cells, we have defined a broad spectrum of cell-type and pathway-specific gene signatures present in cancer expression data which were also found to be largely conserved in a number of independent datasets. CONCLUSIONS The conserved signature of the tumour-associated macrophage is shown to be largely-independent of tumour cell type. All stromal cell signatures have some degree of correlation with each other, since they must all be inversely correlated with the tumour component. However, viewed in the context of established tumours, the interactions between stromal components appear to be multifactorial given the level of one component e.g. vasculature, does not correlate tightly with another, such as the macrophage.
Collapse
Affiliation(s)
- Tamasin N Doig
- Centre for Inflammation Research, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
33
|
Ivanov SV, Panaccione A, Nonaka D, Prasad ML, Boyd KL, Brown B, Guo Y, Sewell A, Yarbrough WG. Diagnostic SOX10 gene signatures in salivary adenoid cystic and breast basal-like carcinomas. Br J Cancer 2013; 109:444-51. [PMID: 23799842 PMCID: PMC3721393 DOI: 10.1038/bjc.2013.326] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Salivary adenoid cystic carcinoma (ACC) is an insidious slow-growing cancer with the propensity to recur and metastasise to distant sites. Basal-like breast carcinoma (BBC) is a molecular subtype that constitutes 15-20% of breast cancers, shares histological similarities and basal cell markers with ACC, lacks expression of ER (oestrogen receptor), PR (progesterone receptor), and HER2 (human epidermal growth factor receptor 2), and, similar to ACC, metastasises predominantly to the lung and brain. Both cancers lack targeted therapies owing to poor understanding of their molecular drivers. METHODS Gene expression profiling, immunohistochemical staining, western blot, RT-PCR, and in silico analysis of massive cancer data sets were used to identify novel markers and potential therapeutic targets for ACC and BBC. For the detection and comparison of gene signatures, we performed co-expression analysis using a recently developed web-based multi-experiment matrix tool for visualisation and rank aggregation. RESULTS In ACC and BBC we identified characteristic and overlapping SOX10 gene signatures that contained a large set of novel potential molecular markers. SOX10 was validated as a sensitive diagnostic marker for both cancers and its expression was linked to normal and malignant myoepithelial/basal cells. In ACC, BBC, and melanoma (MEL), SOX10 expression strongly co-segregated with the expression of ROPN1B, GPM6B, COL9A3, and MIA. In ACC and breast cancers, SOX10 expression negatively correlated with FOXA1, a cell identity marker and major regulator of the luminal breast subtype. Diagnostic significance of several conserved elements of the SOX10 signature (MIA, TRIM2, ROPN1, and ROPN1B) was validated on BBC cell lines. CONCLUSION SOX10 expression in ACC and BBC appears to be a part of a highly coordinated transcriptional programme characteristic for cancers with basal/myoepithelial features. Comparison between ACC/BBC and other cancers, such as neuroblastomaand MEL, reveals potential molecular markers specific for these cancers that are likely linked to their cell identity. SOX10 as a novel diagnostic marker for ACC and BBC provides important molecular insight into their molecular aetiology and cell origin. Given that SOX10 was recently described as a principal driver of MEL, identification of conserved elements of the SOX10 signatures may help in better understanding of SOX10-related signalling and development of novel diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- S V Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, 800 Howard Avenue, New Haven, CT 06519-1369, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Montani M, Hermanns T, Müntener M, Wild P, Sulser T, Kristiansen G. Multidrug resistance protein 4 (MRP4) expression in prostate cancer is associated with androgen signaling and decreases with tumor progression. Virchows Arch 2013; 462:437-43. [PMID: 23503867 DOI: 10.1007/s00428-013-1390-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/12/2013] [Accepted: 02/25/2013] [Indexed: 12/24/2022]
Abstract
Multidrug resistance protein 4 (MRP4) is a transmembrane transport protein found in many cell types and is involved in substrate-specific transport of endogenous and exogenous substrates. Recently, it has shown to be expressed in prostate cancer cell lines and to be among the most commonly upregulated transcripts in prostate cancer, although a comprehensive expression analysis is lacking so far. We aimed to investigate its expression by immunohistochemistry in a larger cohort of neoplastic and nonneoplastic prostate tissues (n = 441) and to correlate its expression with clinicopathological parameters including PSA-free survival times and molecular correlates of androgen signaling (androgen receptor (AR), prostate-specific antigen (PSA), and forkhead box A (FoxA)). MRP4 is widely expressed in benign and neoplastic prostate epithelia, but its expression gradually decreases during tumor progression towards castrate-resistant disease. Concordantly, it correlated with conventional prognosticators of disease progression and-within the group of androgen-dependent tumors-with AR and FoxA expression. Moreover, lower levels of MRP4 expression were associated with shorter PSA relapse-free survival times in the androgen-dependent group. In benign tissues, we found zone-dependent differences of MRP4 expression, with the highest levels in the peripheral and central zones. Although MRP4 is known to be regulated in prostate cancer, this study is the first to demonstrate a gradual downregulation of MRP4 protein during malignant tumor progression and a prognostic value of this loss of expression.
Collapse
Affiliation(s)
- Matteo Montani
- Division of Clinical Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Wang L, Qin H, Li L, Feng F, Ji P, Zhang J, Li G, Zhao Z, Gao G. Forkhead-box A1 transcription factor is a novel adverse prognosis marker in human glioma. J Clin Neurosci 2013; 20:654-8. [PMID: 23510544 DOI: 10.1016/j.jocn.2012.03.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 10/27/2022]
Abstract
Forkhead-box A1 (FOXA1), a member of the FOX family of transcription factors, has been implicated in certain tumor types including breast, prostate, lung, thyroid and esophageal squamous cell carcinomas. The aim of this study was to investigate the clinicopathological significance of FOXA1 expression in human malignant glioma. FOXA1 expression in human glioma and non-neoplastic brain tissue was measured by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), Western blot and immunohistochemistry. The association of FOXA1 immunostaining with clinicopathological factors and prognosis in patients with glioma was also investigated. The expression levels of FOXA1 messenger RNA (mRNA) and protein in glioma tissues were significantly higher than those in corresponding non-neoplastic brain tissue (both p<0.001). In addition, the expression of FOXA1 was upregulated in high-grade glioma tissue compared with that in low-grade tissues, and increased with ascending World Health Organization (WHO) tumor grade (p=0.001). The increased expression of FOXA1 protein was also significantly correlated with low Karnofsky performance scale score (p=0.02). Moreover, the overall survival rate for patients with high FOXA1 protein expression was clearly lower than that for patients with low FOXA1 protein expression (p=0.01). Multivariate analysis showed that high FOXA1 protein expression was an independent prognostic factor for overall survival (p=0.02) in patients with glioma. In conclusion, our results suggest, for the first time, that FOXA1 might be a potential regulator of progression of human glioma and its upregulation might be closely associated with a poor clinical outcome for patients with this serious disease.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurosurgery, Tangdu Hospital, 569 Xinsi Road, Baqiao District, Xi'an City 710038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
van Roon EH, Boot A, Dihal AA, Ernst RF, van Wezel T, Morreau H, Boer JM. BRAF mutation-specific promoter methylation of FOX genes in colorectal cancer. Clin Epigenetics 2013; 5:2. [PMID: 23324568 PMCID: PMC3599401 DOI: 10.1186/1868-7083-5-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/05/2012] [Indexed: 01/19/2023] Open
Abstract
Background Cancer-specific hypermethylation of (promoter) CpG islands is common during the tumorigenesis of colon cancer. Although associations between certain genetic aberrations, such as BRAF mutation and microsatellite instability, and the CpG island methylator phenotype (CIMP), have been found, the mechanisms by which these associations are established are still unclear. We studied genome-wide DNA methylation differences between colorectal tumors carrying a BRAF mutation and BRAF wildtype tumors. Results Using differential methylation hybridization on oligonucleotide microarrays representing 32,171 CpG-rich regions, we identified 1,770 regions with differential methylation between colorectal tumor and paired normal colon. Next, we compared the tumor/normal methylation ratios between different groups of patients. Related to CIMP, we identified 749 differentially methylated regions, of which 86% had a higher tumor/normal methylation ratio in the CIMP-positive group. We identified 758 regions with a BRAF mutation-specific methylation change, of which 96% had a higher tumor/normal methylation ratio in the BRAF mutant group. Among the genes affected by BRAF mutation-specific methylation changes, we found enrichment of several cancer-related pathways, including the PI3 kinase and Wnt signaling pathways. To focus on genes that are silenced in a tumor-specific rather than a lineage-specific manner, we used information on the epigenetic silencing mark H3K27me3 in embryonic stem (ES) cells. Among the genes showing BRAF mutation-specific promoter methylation but no H3K27me3 mark in ES cells were forkhead box (FOX) transcription factors associated with the PI3 kinase pathway, as well as MLH1 and SMO. Repression of FOXD3 gene expression in tumors could be related to its promoter hypermethylation. Conclusions We identified new BRAF mutation-specific methylation changes in colorectal cancer. Epigenetic downregulation of these targets may contribute to mutationally active BRAF-driven tumorigenesis, explaining its association with aberrant DNA methylation.
Collapse
Affiliation(s)
- Eddy H van Roon
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
37
|
Tominaga N, Naoi Y, Shimazu K, Nakayama T, Maruyama N, Shimomura A, Kim SJ, Tamaki Y, Noguchi S. Clinicopathological analysis of GATA3-positive breast cancers with special reference to response to neoadjuvant chemotherapy. Ann Oncol 2012; 23:3051-3057. [PMID: 22767585 DOI: 10.1093/annonc/mds120] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the clinicopathological characteristics of GATA binding protein 3 (GATA3)-positive breast cancers as well as the association of GATA3 expression with response to chemotherapy. PATIENTS AND METHODS Tumor specimens obtained before neoadjuvant chemotherapy [paclitaxel followed by 5-fluorouracil/epirubicin/cyclophosphamide)] from breast cancer patients (n = 130) were subjected to immunohistochemical and mutational analysis of GATA3 and DNA microarray gene expression analysis for intrinsic subtyping. RESULTS Seventy-four tumors (57%) were immunohistochemically positive for GATA3. GATA3-positive tumors were significantly more likely to be lobular cancer, estrogen receptor (ER)-positive, progesterone receptor (PgR)-positive, Ki67-negative, and luminal A tumors. Somatic mutations were found in only three tumors. Pathological complete response (pCR) was observed in 8 (11%) GATA3-positive tumors and in 22 (39%) GATA3-negative tumors. multivariate analysis showed that tumor size, human epidermal growth factor receptor 2 (her2), and gata3 were independent predictors of pcr. CONCLUSIONS GATA3-positive breast cancers showed luminal differentiation characterized by high ER expression and were mostly classified as luminal-type tumors following intrinsic subtyping. Interestingly, GATA3 was an independent predictor of response to chemotherapy, suggesting that GATA3 might be clinically useful as a predictor of a poor response to chemotherapy.
Collapse
Affiliation(s)
- N Tominaga
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Y Naoi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - K Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - T Nakayama
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - N Maruyama
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - A Shimomura
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - S J Kim
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Y Tamaki
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - S Noguchi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
38
|
Abstract
Estrogen receptor (ER) is a hormone-regulated transcription factor that controls cell division and differentiation in the ovary, breast, and uterus. The expression of ER is a common feature of the majority of breast cancers, which is used as a therapeutic target. Recent genetic studies have shown that ER binding occurs in regions distant to the promoters of estrogen target genes. These studies have also demonstrated that ER binding is accompanied with the binding of other transcription factors, which regulate the function of ER and response to anti-estrogen therapies. In this review, we explain how these factors influence the interaction of ER to chromatin and their cooperation for ER transcriptional activity. Moreover, we describe how the expression of these factors dictates the response to anti-estrogen therapies. Finally, we discuss how cytoplasmatic signaling pathways may modulate the function of ER and its cooperating transcription factors.
Collapse
|
39
|
Rubel CA, Lanz RB, Kommagani R, Franco HL, Lydon JP, DeMayo FJ. Research resource: Genome-wide profiling of progesterone receptor binding in the mouse uterus. Mol Endocrinol 2012; 26:1428-42. [PMID: 22638070 DOI: 10.1210/me.2011-1355] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Progesterone (P4) signaling through its nuclear transcription factor, the progesterone receptor (PR), is essential for normal uterine function. Although deregulation of PR-mediated signaling is known to underscore uterine dysfunction and a number of endometrial pathologies, the early molecular mechanisms of this deregulation are unclear. To address this issue, we have defined the genome-wide PR cistrome in the murine uterus using chromatin immunoprecipitation (ChIP) followed by massively parallel sequencing (ChIP-seq). In uteri of ovariectomized mice, we identified 6367 PR-binding sites in the absence of P4 ligand; however, this number increased at nearly 3-fold (18,432) after acute P4 exposure. Sequence analysis revealed that approximately 73% of these binding sites contain a progesterone response element or a half-site motif recognized by the PR. Many previously identified P4 target genes known to regulate uterine function were found to contain PR-binding sites, confirming the validity of our methodology. Interestingly, when the ChIP-seq data were coupled with our microarray expression data, we identified a novel regulatory role for uterine P4 in circadian rhythm gene expression, thereby uncovering a hitherto unexpected new circadian biology for P4 in this tissue. Further mining of the ChIP-seq data revealed Sox17 as a direct transcriptional PR target gene in the uterus. As a member of the Sox transcription factor family, Sox17 represents a potentially novel mediator of PR action in the murine uterus. Collectively, our first line of analysis of the uterine PR cistrome provides the first insights into the early molecular mechanisms that underpin normal uterine responsiveness to acute P4 exposure. Future analysis promises to reveal the PR interactome and, in turn, potential therapeutic targets for the diagnosis and/or treatment of endometrial dysfunction.
Collapse
Affiliation(s)
- Cory A Rubel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030.
| | | | | | | | | | | |
Collapse
|
40
|
Naderi A, Meyer M, Dowhan DH. Cross-regulation between FOXA1 and ErbB2 signaling in estrogen receptor-negative breast cancer. Neoplasia 2012; 14:283-96. [PMID: 22577344 PMCID: PMC3349255 DOI: 10.1593/neo.12294] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/11/2012] [Accepted: 03/13/2012] [Indexed: 12/26/2022]
Abstract
Molecular apocrine is a subtype of estrogen receptor-negative (ER.) breast cancer, which is characterized by a steroid-response gene signature that includes androgen receptor, FOXA1, and a high frequency of ErbB2 overexpression. In this study, we demonstrate that there is a strong association between the overexpression of FOXA1 and ErbB2 in ER- breast tumors. This has led us to identify a cross-regulation network between FOXA1 and ErbB2 signaling in ER- breast cancer. We present two mechanisms to explain the association between FOXA1 and ErbB2 overexpression in molecular apocrine cells. In one process, ErbB2 signaling genes CREB1 and c-Fos regulate FOXA1 transcription, and in another process, AP2α regulates the expression of both FOXA1 and ErbB2. Moreover, we demonstrate that FOXA1, in turn, regulates the transcription of ErbB2 signaling genes. This includes a core gene signature that is shared across two molecular apocrine cell lines. Importantly, the most upregulated (RELB) and downregulated (PAK1) genes in this signature are direct FOXA1 targets. Our data suggest that FOXA1 acts as a dual-function transcription factor and the repressive function of FOXA1 on RELB can be explained by the recruitment of its binding partner corepressor TLE3. It is notable that a group of FOXA1-regulated genes vary across molecular apocrine cell lines leading to the differences in the functional effects of FOXA1 on extracellular signal-regulated kinase phosphorylation and cell viability between these lines. This study demonstrates that there is a cross-regulation network between FOXA1 and ErbB2 signaling that connects FOXA1 to some of the key signaling pathways in ER-breast cancer.
Collapse
Affiliation(s)
- Ali Naderi
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
41
|
Guttilla IK, Adams BD, White BA. ERα, microRNAs, and the epithelial-mesenchymal transition in breast cancer. Trends Endocrinol Metab 2012; 23:73-82. [PMID: 22257677 DOI: 10.1016/j.tem.2011.12.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 12/21/2022]
Abstract
The most common form of breast cancer, luminal A, is estrogen receptor α (ERα)-positive and epithelial, but nevertheless can metastasize. The process of epithelial-mesenchymal transition (EMT) is probably the first step in the metastasis of epithelial cancers. We discuss the characteristics of EMT, including factors that induce EMT, and the relationship of EMT to cancer stem cells (CSCs). Estrogen/ERα signaling maintains an epithelial phenotype and suppresses EMT. An overview of microRNAs in breast cancer is presented, including how microRNA biogenesis is altered in cancer and regulated by ERα. We also discuss the role of the miR-200 family in opposing EMT. Finally, we discuss specific microRNAs that target ERα and regulate EMT in breast cancer, and the role of these microRNAs in breast cancer progression.
Collapse
Affiliation(s)
- Irene K Guttilla
- Saint Joseph College, Department of Biology, 1678 Asylum Avenue, West Hartford, CT 06117, USA
| | | | | |
Collapse
|
42
|
Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev 2011; 25:2227-41. [PMID: 22056668 DOI: 10.1101/gad.176826.111] [Citation(s) in RCA: 1169] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcription factors are adaptor molecules that detect regulatory sequences in the DNA and target the assembly of protein complexes that control gene expression. Yet much of the DNA in the eukaryotic cell is in nucleosomes and thereby occluded by histones, and can be further occluded by higher-order chromatin structures and repressor complexes. Indeed, genome-wide location analyses have revealed that, for all transcription factors tested, the vast majority of potential DNA-binding sites are unoccupied, demonstrating the inaccessibility of most of the nuclear DNA. This raises the question of how target sites at silent genes become bound de novo by transcription factors, thereby initiating regulatory events in chromatin. Binding cooperativity can be sufficient for many kinds of factors to simultaneously engage a target site in chromatin and activate gene expression. However, in cases in which the binding of a series of factors is sequential in time and thus not initially cooperative, special "pioneer transcription factors" can be the first to engage target sites in chromatin. Such initial binding can passively enhance transcription by reducing the number of additional factors that are needed to bind the DNA, culminating in activation. In addition, pioneer factor binding can actively open up the local chromatin and directly make it competent for other factors to bind. Passive and active roles for the pioneer factor FoxA occur in embryonic development, steroid hormone induction, and human cancers. Herein we review the field and describe how pioneer factors may enable cellular reprogramming.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Epigenetics Program, Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, USA.
| | | |
Collapse
|
43
|
Maintenance of hormone responsiveness in luminal breast cancers by suppression of Notch. Proc Natl Acad Sci U S A 2011; 109:2742-7. [PMID: 21969591 DOI: 10.1073/pnas.1106509108] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Luminal breast cancers express estrogen (ER) and/or progesterone (PR) receptors and respond to hormone therapies. Basal-like "triple negative" cancers lack steroid receptors but are cytokeratin (CK) 5-positive and require chemotherapy. Here we show that more than half of primary ER(+)PR(+) breast cancers contain an ER(-)PR(-)CK5(+) "luminobasal" subpopulation exceeding 1% of cells. Starting from ER(+)PR(+) luminal cell lines, we generated lines with varying luminal to luminobasal cell ratios and studied their molecular and biological properties. In luminal disease, luminobasal cells expand in response to antiestrogen or estrogen withdrawal therapies. The phenotype and gene signature of the hormone-resistant cells matches that of clinical triple negative basal-like and claudin-low disease. Luminobasal cell expansion in response to hormone therapies is regulated by Notch1 signaling and can be blocked by γ-secretase inhibitors. Our data establish a previously unrecognized plasticity of ER(+)PR(+) luminal breast cancers that, without genetic manipulation, mobilizes outgrowth of hormone-resistant basal-like disease in response to treatment. This undesirable outcome can be prevented by combining endocrine therapies with Notch inhibition.
Collapse
|
44
|
Cellular reprogramming by the conjoint action of ERα, FOXA1, and GATA3 to a ligand-inducible growth state. Mol Syst Biol 2011; 7:526. [PMID: 21878914 PMCID: PMC3202798 DOI: 10.1038/msb.2011.59] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor α (ERα), FOXA1, and GATA3 form a functional enhanceosome in MCF-7 breast carcinoma cell that is significantly associated with active transcriptional features such as enhanced p300 co-activator and RNA Pol II recruitment as well as chromatin opening. The enhanceosome exerts significant impact and optimal transcriptional control in the regulation of E2-responsive genes. The presence of FOXA1 and GATA3 is indispensable in restoring the ERα growth-response machinery in the ERα-negative cells and recapitulating the appropriate expression cassette.
Estrogen receptor α (ERα) is a ligand-inducible hormone nuclear receptor that has important physiology and pathology roles in reproduction, cancer, and cardiovascular biology. The regulation of ERα involves its binding to the DNA recognition sequence also known as estrogen-response elements (EREs) and recruits a variety of co-activators, corepressors, and chromatin remodeling enzymes to initiate transcription machinery. In our previous (Lin et al, 2007) and recent (Joseph et al, 2010) studies, we have identified high confidence ERα binding sites in MCF-7 human mammary carcinoma cells. With known motif scanning and de novo motif detection, we identified that FOXA1 and GATA3 motifs were commonly enriched around ERα binding sites. Moreover, numerous microarray studies have documented the co-expression of ERα, FOXA1, and GATA3 in primary breast tumors (Badve et al, 2007; Wilson and Giguere, 2008). This evidence suggests that these three transcription factors (TFs) may cluster on DNA binding sites and contribute to the breast cancer phenotype. However, there is little understanding as to the nature of their coordinated interaction at the genome level or the biological consequences of their detailed interaction. We mapped the genome-wide binding profiles of ERα, FOXA1, and GATA3 using the massive parallel chromatin immunoprecipitation-sequencing (ChIP-seq) approach. We observed that ERα, FOXA1, and GATA3 colocalized in a coordinated manner where ∼30% of all ERα binding sites were overlapped with FOXA1 and GATA3 bindings upon estrogen (E2) stimulation. Moreover, we found that the ERα+FOXA1+GATA3 conjoint sites were associated with highest p300 co-activator recruitment, RNA Pol II occupancy, and chromatin opening. Such results indicate that these three TFs form a functional enhanceosome and cooperatively modulate the transcriptional networks previously ascribed to ERα alone. And such enhanceosome binding sites appear to regulate the genes driving core ERα function. To further validate that ERα+FOXA1+GATA3 co-binding represents an optimal configuration for E2-mediated transcriptional activation, we have performed luciferase reporter assays on GREB1 locus that actively engages ERα enhanceosome sites in gene regulation (Figure 5C). The presence of ERα induced the GREB1 luciferase activity to ∼246% (as compared with the control construct). The individual presence of FOXA1 and GATA3 or combination of both only produced subtle changes to the GREB1 luciferase activity. The combination of ERα+FOXA1 and ERα+GATA3 has increased the luciferase activity to ∼330%. Interestingly, the assemblage of ERα+FOXA1+GATA3 provided the optimal ER responsiveness to 370%. This suggests that ERα provides the fundamental gene regulatory module but that FOXA1 and GATA3 incrementally improve ERα-regulated transcriptional induction. It is known that ERα is a ligand-activated TF that mediates the proliferative effects of E2 in breast cancer cells. Garcia et al (1992) showed inhibited growth in MDA-MB-231 cells with forced expression of ERα upon E2 treatment. The rationale for these different outcomes has remained elusive. We posited that these higher order regulatory mechanisms of ERα function such as the formation and composition of enhanceosomes may explain the establishment of transcriptional regulatory cassettes favoring either growth enhancement or growth repression. To test this hypothesis, we stably transfected the MDA-MB-231 cells with individual ERα, FOXA1, GATA3, or in combinations (Figure 6A). We observed inhibited growth in cells with enforced expression of ERα or FOXA1. There was unaltered growth in cells with expression of GATA3. Co-expression of ERα+FOXA1 or ERα+GATA3 exhibited inhibition of cell proliferation as compared with control cells. However, the co-expression of ERα together with FOXA1 and GATA3 resulted in marked induction of cell proliferation under E2 stimulation. We have recapitulated this cellular reprogramming in another ERα-negative breast cancer cell line, BT-549 and observed similar E2-responsive growth induction in the ERα+FOXA1+GATA3-expressing BT-549 cells. This suggests that only with the full activation of conjoint binding sites by the three TFs will the proliferative phenotype associated with ligand induced ERα be manifest. To assess the nature of this transcriptional reprogramming, we asked the question if the reprogrammed MDA-MB-231 cells display any similarity in the expression profile of the ERα-positive breast cancer cell line, MCF-7 (Figure 6C). We combined the E2-regulated genes from these differently transfected MDA-MB-231 cells, and compared their expressions in these MDA-MB-231-transfected cells and MCF-7 cells. Strikingly, we found that the expression profiles of ERα+FOXA1+GATA3-expressing MDA-MB-231 cells display a good correlation (R=0.42) with the E2-induced expression profile of MCF-7. We did not observe such correlation between the expression profiles of MDA-MB-231 transfected with ERα only (R=−0.21). Furthermore, we observed that there is marginal induced expression of luminal marker genes and reduced expression of basal genes in the ERα+FOXA1+GATA3-expressing MDA-MB-231 as compared with the vector control cells. This suggests that the enhanceosome component is competent to partially reprogramme the basal cells to resemble the luminal cells. Taken together, we have uncovered the genomics impact as well as the functional importance of an enhanceosome comprising ERα, FOXA1, and GATA3 in the estrogen responsiveness of ERα-positive breast cancer cells. This enhanceosome exerts significant combinatorial control of the transcriptional network regulating growth and proliferation of ERα-positive breast cancer cells. Most importantly, we show that the transfection of the enhanceosome component was necessary to reprogramme the ERα-negative cells to restore the estrogen-responsive growth and to transcriptionally induce a basal to luminal transition. Despite the role of the estrogen receptor α (ERα) pathway as a key growth driver for breast cells, the phenotypic consequence of exogenous introduction of ERα into ERα-negative cells paradoxically has been growth inhibition. We mapped the binding profiles of ERα and its interacting transcription factors (TFs), FOXA1 and GATA3 in MCF-7 breast carcinoma cells, and observed that these three TFs form a functional enhanceosome that regulates the genes driving core ERα function and cooperatively modulate the transcriptional networks previously ascribed to ERα alone. We demonstrate that these enhanceosome occupied sites are associated with optimal enhancer characteristics with highest p300 co-activator recruitment, RNA Pol II occupancy, and chromatin opening. Most importantly, we show that the transfection of all three TFs was necessary to reprogramme the ERα-negative MDA-MB-231 and BT-549 cells to restore the estrogen-responsive growth resembling estrogen-treated ERα-positive MCF-7 cells. Cumulatively, these results suggest that all the enhanceosome components comprising ERα, FOXA1, and GATA3 are necessary for the full repertoire of cancer-associated effects of the ERα.
Collapse
|
45
|
Tran LM, Zhang B, Zhang Z, Zhang C, Xie T, Lamb JR, Dai H, Schadt EE, Zhu J. Inferring causal genomic alterations in breast cancer using gene expression data. BMC SYSTEMS BIOLOGY 2011; 5:121. [PMID: 21806811 PMCID: PMC3162519 DOI: 10.1186/1752-0509-5-121] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/01/2011] [Indexed: 12/29/2022]
Abstract
BACKGROUND One of the primary objectives in cancer research is to identify causal genomic alterations, such as somatic copy number variation (CNV) and somatic mutations, during tumor development. Many valuable studies lack genomic data to detect CNV; therefore, methods that are able to infer CNVs from gene expression data would help maximize the value of these studies. RESULTS We developed a framework for identifying recurrent regions of CNV and distinguishing the cancer driver genes from the passenger genes in the regions. By inferring CNV regions across many datasets we were able to identify 109 recurrent amplified/deleted CNV regions. Many of these regions are enriched for genes involved in many important processes associated with tumorigenesis and cancer progression. Genes in these recurrent CNV regions were then examined in the context of gene regulatory networks to prioritize putative cancer driver genes. The cancer driver genes uncovered by the framework include not only well-known oncogenes but also a number of novel cancer susceptibility genes validated via siRNA experiments. CONCLUSIONS To our knowledge, this is the first effort to systematically identify and validate drivers for expression based CNV regions in breast cancer. The framework where the wavelet analysis of copy number alteration based on expression coupled with the gene regulatory network analysis, provides a blueprint for leveraging genomic data to identify key regulatory components and gene targets. This integrative approach can be applied to many other large-scale gene expression studies and other novel types of cancer data such as next-generation sequencing based expression (RNA-Seq) as well as CNV data.
Collapse
|
46
|
Loss of ERα and FOXA1 expression in a progression model of luminal type breast cancer: insights from PyMT transgenic mouse model. Oncol Rep 2011; 24:1233-9. [PMID: 20878115 DOI: 10.3892/or_00000977] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The classification of breast cancer into multiple molecular subtypes has necessitated the need for biomarkers that can assess tumor progression and the effects of chemopreventive agents on specific breast cancer subtypes. The goal of this study was to identify biomarkers whose expression are altered along with estrogen receptor α (ERα) in the polyoma middle-T antigen (PyMT) transgenic model of breast cancer and to investigate the chemopreventive activity of phenethyl isothiocyanate (PEITC). The diet of PyMT female mice was fortified with PEITC (8 mmol/kg) and the mammary streak and/or gross tumors and metastases in lungs were subjected to immunohistochemical analyses for ERα, FOXA1, and GATA-3. FOXA1 is associated with luminal type A cancers, while GATA-3 is a marker of luminal progenitor cell differentiation. In both control and PEITC-treated groups, there was a progressive loss of ERα and FOXA1 but persistence of GATA-3 expression indicating that the tumors retain luminal phenotype. Overall, the PyMT induced tumors exhibited the entire gamut of phenotypes from ERα+/FOXA1+/GATA-3+ tumors in the early stage to ERα±/FOXA1-/GATA-3+ in the late stage. Thus, PyMT model serves as an excellent model for studying progression of luminal subtype tumors. PEITC treated animals had multiple small tumors, indicating delay in tumor progression. Although these tumors were histologically similar to those in controls, there was a lower expression of these biomarkers in normal luminal cells indicating delay in tumor initiation. In in vitro studies, PEITC depleted AldeFluor-positive putative stem/progenitor cells, which may partly be responsible for the delay in tumor initiation.
Collapse
|
47
|
Sérandour AA, Avner S, Percevault F, Demay F, Bizot M, Lucchetti-Miganeh C, Barloy-Hubler F, Brown M, Lupien M, Métivier R, Salbert G, Eeckhoute J. Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res 2011; 21:555-65. [PMID: 21233399 DOI: 10.1101/gr.111534.110] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transcription factors (TFs) bind specifically to discrete regions of mammalian genomes called cis-regulatory elements. Among those are enhancers, which play key roles in regulation of gene expression during development and differentiation. Despite the recognized central regulatory role exerted by chromatin in control of TF functions, much remains to be learned regarding the chromatin structure of enhancers and how it is established. Here, we have analyzed on a genomic-scale enhancers that recruit FOXA1, a pioneer transcription factor that triggers transcriptional competency of these cis-regulatory sites. Importantly, we found that FOXA1 binds to genomic regions showing local DNA hypomethylation and that its cell-type-specific recruitment to chromatin is linked to differential DNA methylation levels of its binding sites. Using neural differentiation as a model, we showed that induction of FOXA1 expression and its subsequent recruitment to enhancers is associated with DNA demethylation. Concomitantly, histone H3 lysine 4 methylation is induced at these enhancers. These epigenetic changes may both stabilize FOXA1 binding and allow for subsequent recruitment of transcriptional regulatory effectors. Interestingly, when cloned into reporter constructs, FOXA1-dependent enhancers were able to recapitulate their cell type specificity. However, their activities were inhibited by DNA methylation. Hence, these enhancers are intrinsic cell-type-specific regulatory regions of which activities have to be potentiated by FOXA1 through induction of an epigenetic switch that includes notably DNA demethylation.
Collapse
|
48
|
Sircoulomb F, Bekhouche I, Finetti P, Adélaïde J, Ben Hamida A, Bonansea J, Raynaud S, Innocenti C, Charafe-Jauffret E, Tarpin C, Ben Ayed F, Viens P, Jacquemier J, Bertucci F, Birnbaum D, Chaffanet M. Genome profiling of ERBB2-amplified breast cancers. BMC Cancer 2010; 10:539. [PMID: 20932292 PMCID: PMC2958950 DOI: 10.1186/1471-2407-10-539] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 10/08/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Around 20% of breast cancers (BC) show ERBB2 gene amplification and overexpression of the ERBB2 tyrosine kinase receptor. They are associated with a poor prognosis but can benefit from targeted therapy. A better knowledge of these BCs, genomically and biologically heterogeneous, may help understand their behavior and design new therapeutic strategies. METHODS We defined the high resolution genome and gene expression profiles of 54 ERBB2-amplified BCs using 244K oligonucleotide array-comparative genomic hybridization and whole-genome DNA microarrays. Expression of ERBB2, phosphorylated ERBB2, EGFR, IGF1R and FOXA1 proteins was assessed by immunohistochemistry to evaluate the functional ERBB2 status and identify co-expressions. RESULTS First, we identified the ERBB2-C17orf37-GRB7 genomic segment as the minimal common 17q12-q21 amplicon, and CRKRS and IKZF3 as the most frequent centromeric and telomeric amplicon borders, respectively. Second, GISTIC analysis identified 17 other genome regions affected by copy number aberration (CNA) (amplifications, gains, losses). The expression of 37 genes of these regions was deregulated. Third, two types of heterogeneity were observed in ERBB2-amplified BCs. The genomic profiles of estrogen receptor-positive (ER+) and negative (ER-) ERBB2-amplified BCs were different. The WNT/β-catenin signaling pathway was involved in ER- ERBB2-amplified BCs, and PVT1 and TRPS1 were candidate oncogenes associated with ER+ ERBB2-amplified BCs. The size of the ERBB2 amplicon was different in inflammatory (IBC) and non-inflammatory BCs. ERBB2-amplified IBCs were characterized by the downregulated and upregulated mRNA expression of ten and two genes in proportion to CNA, respectively. IHC results showed (i) a linear relationship between ERBB2 gene amplification and its gene and protein expressions with a good correlation between ERBB2 expression and phosphorylation status; (ii) a potential signaling cross-talk between EGFR or IGF1R and ERBB2, which could influence response of ERBB2-positive BCs to inhibitors. FOXA1 was frequently coexpressed with ERBB2 but its expression did not impact on the outcome of patients with ERBB2-amplified tumors. CONCLUSION We have shown that ER+ and ER- ERBB2-amplified BCs are different, distinguished ERBB2 amplicons in IBC and non-IBC, and identified genomic features that may be useful in the design of alternative therapeutical strategies.
Collapse
Affiliation(s)
- Fabrice Sircoulomb
- Marseille Cancer Research Center, UMR891 Inserm, Institut Paoli-Calmettes, Department of Molecular Oncology, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chowbina SR, Wu X, Zhang F, Li PM, Pandey R, Kasamsetty HN, Chen JY. HPD: an online integrated human pathway database enabling systems biology studies. BMC Bioinformatics 2009; 10 Suppl 11:S5. [PMID: 19811689 PMCID: PMC3226194 DOI: 10.1186/1471-2105-10-s11-s5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Pathway-oriented experimental and computational studies have led to a significant accumulation of biological knowledge concerning three major types of biological pathway events: molecular signaling events, gene regulation events, and metabolic reaction events. A pathway consists of a series of molecular pathway events that link molecular entities such as proteins, genes, and metabolites. There are approximately 300 biological pathway resources as of April 2009 according to the Pathguide database; however, these pathway databases generally have poor coverage or poor quality, and are difficult to integrate, due to syntactic-level and semantic-level data incompatibilities. Results We developed the Human Pathway Database (HPD) by integrating heterogeneous human pathway data that are either curated at the NCI Pathway Interaction Database (PID), Reactome, BioCarta, KEGG or indexed from the Protein Lounge Web sites. Integration of pathway data at syntactic, semantic, and schematic levels was based on a unified pathway data model and data warehousing-based integration techniques. HPD provides a comprehensive online view that connects human proteins, genes, RNA transcripts, enzymes, signaling events, metabolic reaction events, and gene regulatory events. At the time of this writing HPD includes 999 human pathways and more than 59,341 human molecular entities. The HPD software provides both a user-friendly Web interface for online use and a robust relational database backend for advanced pathway querying. This pathway tool enables users to 1) search for human pathways from different resources by simply entering genes/proteins involved in pathways or words appearing in pathway names, 2) analyze pathway-protein association, 3) study pathway-pathway similarity, and 4) build integrated pathway networks. We demonstrated the usage and characteristics of the new HPD through three breast cancer case studies. Conclusion HPD http://bio.informatics.iupui.edu/HPD is a new resource for searching, managing, and studying human biological pathways. Users of HPD can search against large collections of human biological pathways, compare related pathways and their molecular entity compositions, and build high-quality, expanded-scope disease pathway models. The current HPD software can help users address a wide range of pathway-related questions in human disease biology studies.
Collapse
Affiliation(s)
- Sudhir R Chowbina
- Indiana University School of Informatics, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|