1
|
Patrick R, Pando BD, Yang C, Aponte A, Wang F, Ewing T, Ma Y, Yuan SY, Wu MH. Focal adhesion kinase mediates microvascular leakage and endothelial barrier dysfunction in ischemia-reperfusion injury. Microvasc Res 2025; 159:104791. [PMID: 39884384 PMCID: PMC12057644 DOI: 10.1016/j.mvr.2025.104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Intestinal ischemia-reperfusion (I/R) injury occurs under various surgical or disease conditions, where tissue hypoxia followed by reoxygenation results in the production of oxygen radicals and inflammatory mediators. These substances can target the endothelial barrier, leading to microvascular leakage. In this study, we induced intestinal I/R injury in mice by occluding the superior mesenteric artery, followed by removing the clamp to resume blood circulation. We assessed microvascular permeability to plasma proteins in vivo using intravital microscopy, measuring the time-dependent tracer distribution in the intravascular versus extravascular space in the mouse mesentery. Additionally, we examined endothelial cell-cell adhesive barrier resistance and junction morphology in cultured endothelial cell monolayers. At the molecular level, FAK inhibition similarly inhibited endothelial junction opening and barrier dysfunction in response to hydrogen peroxide-induced oxidative stress. To further investigate FAK's role with tissue/cell specificity, we developed an endothelial-specific inducible FAK knockout mouse model by crossbreeding FAK-floxed (FAKfl/fl) mice with Tie-2-CreERT2 transgenic mice. Compared to their wild-type controls, endothelial-specific FAK-deficient mice showed a blunted microvascular hyperpermeability response following I/R injury in the gut. Overall, our study demonstrates that FAK plays a significant signaling role in mediating endothelial barrier dysfunction and microvascular leakage during ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Rebecca Patrick
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America
| | - Briana D Pando
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America.
| | - Clement Yang
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America
| | - Alexandra Aponte
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America.
| | - Fang Wang
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America
| | - Tom Ewing
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America.
| | - Yonggang Ma
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America
| | - Sarah Y Yuan
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America.
| | - Mack H Wu
- University of South Florida, Morsani College of Medicine, James A Haley Veterans' Hospital, United States of America.
| |
Collapse
|
2
|
Salian VS, Curan GL, Lowe VJ, Tang X, Kalari KR, Kandimalla KK. Elucidating Molecular Mechanisms Governing TNF-Alpha-Mediated Regulation of Amyloid Beta 42 Uptake in Blood-Brain Barrier Endothelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635286. [PMID: 39975134 PMCID: PMC11838320 DOI: 10.1101/2025.01.28.635286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cerebrovascular inflammation is prevalent in a majority of Alzheimer's patients. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), circulating in the plasma have been shown to cause the inflammation of blood-brain barrier (BBB) endothelium lining the cerebral microvasculature. The BBB inflammation has been implicated in the increase of toxic Aβ accumulation within Alzheimer's disease (AD) brain. TNF-alpha in the peripheral circulation can aggravate the accumulation of amyloid-beta (Aβ) peptides in Alzheimer's disease brain. In the current study, we have shown that the exposure to TNF-alpha leads to an increase in Aβ42 accumulation in mice and BBB endothelial cells in vitro. Moreover, dynamic SPECT/CT imaging in wild-type (WT) mice infused with TNF-alpha increased the permeability and influx of Aβ42 into the mice brain. In addition, our results show that TNF-alpha modifies the expression of cofilin, actin, and dynamin, which are critical components for Aβ endocytosis by BBB endothelial cells. These results offer a mechanistic understanding of how TNF-alpha may promote Aβ accumulation at the BBB and the underlying interactions between inflammation and Aβ exposure that drives BBB dysfunction. Hence, a therapeutic intervention aimed at addressing cerebrovascular inflammation in Alzheimer's disease may potentially reduce Aβ induced cerebrovascular toxicity in Alzheimer's disease brain. Significance statement Increased levels of TNF-alpha circulating in the plasma are considered significant factors in the consequences of Aβ pathology in Alzheimer's disease, where it can promote cerebrovascular inflammation and BBB dysfunction. However, the role of TNF-alpha, in exacerbating Aβ pathology by increasing Aβ accumulation at the BBB endothelial cells remains only partially understood. In this study, we demonstrated that TNF-alpha enhances Aβ42 accumulation in the BBB endothelium by altering the expression of the BBB endocytosis machinery, specifically cofilin, actin, and dynamin. These findings are anticipated to contribute to the development of therapeutic approaches aimed at addressing elevated cytokine levels in Alzheimer's disease.
Collapse
|
3
|
Filho CC, Melfior L, Ramos SL, Pizi MSO, Taruhn LF, Muller ME, Nunes TK, Schmitt LDO, Gaspar JM, de Oliveira MDA, Tassinari G, Cruz L, Latini A. Tetrahydrobiopterin and Autism Spectrum Disorder: A Systematic Review of a Promising Therapeutic Pathway. Brain Sci 2025; 15:151. [PMID: 40002484 PMCID: PMC11853471 DOI: 10.3390/brainsci15020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, along with restricted and repetitive patterns of behavior, interests, or activities. ASD encompasses a wide spectrum of clinical presentations and functional impairments, ranging from mild to severe. Despite its prevalence, the underlying physiopathological mechanisms of ASD remain largely unknown, resulting in a lack of effective targeted therapeutic interventions, contributing to significant financial and emotional burdens on affected families and the healthcare system. Emerging evidence suggests that dysfunction in the tetrahydrobiopterin (BH4) pathway may impair the activity of monoaminergic and nitric oxide (NO)-dependent neurons in individuals with ASD. To explore this potential mechanism, we conducted a systematic review to analyze such impairments to gather information on whether the off-label use of BH4 could represent a novel pharmacological approach for managing ASD. Following the PRISMA 2020 guidelines, we systematically reviewed the literature from four databases: PubMed, Virtual Health Library, Cochrane Library, and SciELO, from January 1967 to December 2021. The quality of the included studies was assessed using the Newcastle-Ottawa scale. The inclusion criteria for this systematic review focused on identifying articles published in English that contained the following keywords, used in various combinations: autism, ASD, autism spectrum disorder, BH4, tetrahydrobiopterin, neopterin, NO, nitric oxide. The analysis was performed between December 2020 and December 2021. The collected data demonstrated that BH4 metabolism was altered in individuals with ASD. Lower levels of BH4 were reported in biological samples from ASD-affected individuals compared to age- and sex-matched controls. Additionally, neopterin levels were elevated in plasma and urine, but decreased in cerebrospinal fluid, while nitric oxide levels were consistently reported to be higher across studies. Treatment with BH4 has shown potential in improving ASD-related symptoms. The reported increase in neopterin in biological fluids indicates inflammation, while the reduction in BH4 levels suggests a potential shift in its metabolic role. Specifically, BH4 may be diverted from its primary role in neurotransmitter synthesis to function as an antioxidant or to perpetuate inflammation through NO production. Given that BH4 is a critical cofactor in monoaminergic neurotransmission, its dysfunction highlights the molecule's therapeutic potential. BH4, already FDA-approved for other conditions, emerges as a promising off-label candidate to alleviate ASD symptomatology.
Collapse
Affiliation(s)
- Clóvis Colpani Filho
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Lucas Melfior
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Sthephanie Luiz Ramos
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | | | - Lilian Freitas Taruhn
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Margrit Ellis Muller
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Medicine School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Thiago Kucera Nunes
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Luísa de Oliveira Schmitt
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
- Pharmacy School, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Joana Margarida Gaspar
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Miguel de Abreu de Oliveira
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Giovanna Tassinari
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Luisa Cruz
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
4
|
Yang J, Qiao P, Wang G, Dang E. The Role of Aryl Hydrocarbon Receptor in Skin Homeostasis: Implications for Therapeutic Strategies in Skin Disorders. Cell Biochem Funct 2025; 43:e70047. [PMID: 39866071 DOI: 10.1002/cbf.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is extensively expressed in diverse human organs and plays a pivotal role in mediating the onset, progression, and severity of numerous diseases. Recent research has explored the substantial impact of AhR on skin homeostasis and related pathologies. As a multi-layered organ, the skin comprises multiple cell populations that express AhR. In this review, we introduce the role of AhR in various skin cells and its impact on skin barrier function. Furthermore, we explore the involvement of AhR in the development of various skin diseases, highlighting its potential as a therapeutic target for skin disorders. By targeting AhR, we may open new avenues for the development of novel and efficient skin disease treatments.
Collapse
Affiliation(s)
- Jundan Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Ding X, Jin S, Tian W, Zhang Y, Xu L, Zhang T, Chen Z, Niu F, Li Q. ROLE OF CASPASE-1/CASPASE-11-HMGB1-RAGE/TLR4 SIGNALING IN THE EXACERBATION OF EXTRAPULMONARY SEPSIS-INDUCED LUNG INJURY BY MECHANICAL VENTILATION. Shock 2025; 63:299-311. [PMID: 39228020 DOI: 10.1097/shk.0000000000002471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ABSTRACT Background: Mechanical ventilation (MV) is a clinically important measure for respiratory support in critically ill patients. Although moderate tidal volume MV does not cause lung injury, it can further exacerbate lung injury in a pathological state such as sepsis. This pathological process is known as the "two-hit" theory, whereby an initial lung injury (e.g., infection, trauma, or sepsis) triggers an inflammatory response that activates immune cells, presenting the lung tissue in a fragile state and rendering it more susceptible to subsequent injury. The second hit occurs when MV is applied to lung tissue in a fragile state, and it is noteworthy that this MV is harmless to healthy lung tissue, further aggravating preexisting lung injury through unknown mechanisms. This interaction between initial injury and subsequent MV develops a malignant cycle significantly exacerbating lung injury and severely hampering patient prognosis. The two-hit theory is critical to understanding the complicated mechanisms of ventilator-associated lung injury and facilitates the subsequent development of targeted therapeutic strategies. Methods and Results: The cecum ligation and perforation mice model was used to mimic clinical sepsis patients. After 12 h, the mice were mechanically ventilated for 2 to 6 h. MV by itself did not lead to HMGB1 release, but significantly strengthened HMGB1 in plasma and cytoplasm of lung tissue in septic mice. Plasma and lung tissue activation of cytokines and chemokines, mitogen-activated protein kinase signaling pathway, neutrophil recruitment, and acute lung injury were progressively decreased in LysM HMGB1 -/- (Hmgb1 deletion in myeloid cells) and iHMGB1 -/- mice (inducible HMGB1 -/- mouse strain where the Hmgb1 gene was globally deleted after tamoxifen treatment). Compared with C57BL/6 mice, although EC-HMGB1 -/- (Hmgb1 deletion in endothelial cells) mice did not have lower levels of inflammation, neutrophil recruitment and lung injury were reduced. Compared with LysM HMGB1 -/- mice, EC-HMGB1 -/- mice had higher levels of inflammation but significantly lower neutrophil recruitment and lung injury. Overall, iHMGB1 -/- mice had the lowest levels of all the above indicators. The level of inflammation, neutrophil recruitment, and the degree of lung injury were decreased in RAGE -/- mice, and even the above indices were further decreased in TLR4/RAGE -/- mice. Levels of inflammation and neutrophil recruitment were decreased in caspase-11 -/- and caspase-1/11 -/- mice, but there was no statistical difference between these two gene knockout mice. Conclusions: These data show for the first time that the caspase-1/caspase-11-HMGB1-TLR4/RAGE signaling pathway plays a key role in mice model of sepsis-induced lung injury exacerbated by MV. Different species of HMGB1 knockout mice have different lung-protective mechanisms in the two-hit model, and location is the key to function. Specifically, LysM HMGB1 -/- mice due to the deletion of HMGB1 in myeloid cells resulted in a pulmonary-protective mechanism that was associated with a downregulation of the inflammatory response. EC-HMGB1 -/- mice are deficient in HMGB1 owing to endothelial cells, resulting in a distinct pulmonary-protective mechanism independent of the inflammatory response and more relevant to the improvement of alveolar-capillary permeability. iHMGB1 -/- mice, which are systemically HMGB1-deficient, share both of these lung-protective mechanisms.
Collapse
Affiliation(s)
| | | | - Weitian Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yizhe Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Tong Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zhixia Chen
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Fangfang Niu
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Quan Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
6
|
Sekulic M, Giaglis S, Chatelain N, Bodmer D, Petkovic V. Neutrophil Extracellular Traps Affect Human Inner Ear Vascular Permeability. Int J Mol Sci 2024; 25:9766. [PMID: 39337254 PMCID: PMC11431685 DOI: 10.3390/ijms25189766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The integrity of the blood-labyrinth barrier (BLB) is essential for inner ear homeostasis, regulating the ionic composition of endolymph and perilymph and preventing harmful substance entry. Endothelial hyperpermeability, central in inflammatory and immune responses, is managed through complex intercellular communication and molecular signaling pathways. Recent studies link BLB permeability dysregulation to auditory pathologies like acoustic trauma, autoimmune inner ear diseases, and presbycusis. Polymorphonuclear granulocytes (PMNs), or neutrophils, significantly modulate vascular permeability, impacting endothelial barrier properties. Neutrophil extracellular traps (NETs) are involved in diseases with autoimmune and autoinflammatory bases. The present study evaluated the impact of NETs on a BLB cellular model using a Transwell® setup. Our findings revealed a concentration-dependent impact of NETs on human inner ear-derived endothelial cells. In particular, endothelial permeability markers increased, as indicated by reduced transepithelial electrical resistance, enhanced dextran permeability, and downregulated junctional gene expression (ZO1, OCL, and CDH5). Changes in cytoskeletal architecture were also observed. These preliminary results pave the way for further research into the potential involvement of NETs in BLB impairment and implications for auditory disorders.
Collapse
Affiliation(s)
- Marijana Sekulic
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Stavros Giaglis
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Nina Chatelain
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Clinic for Otorhinolaryngology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Vesna Petkovic
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
7
|
Ma J, Zhao Y, Cui Y, Lin H. Hypoxia Postconditioning Attenuates Hypoxia-Induced Inflammation and Endothelial Barrier Dysfunction. J Surg Res 2024; 301:413-422. [PMID: 39042975 DOI: 10.1016/j.jss.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION In recent years, a number of studies have demonstrated that hypoxia reoxygenation (HR) induced by ischemia postconditioning (IPC) reduces endothelial barrier dysfunction and inflammation in various models. When HR occurs, the P38 mitogen-activated protein kinase (P38 MAPK) breaks down the endothelial barrier. But no study has clearly clarified the effect of hypoxia postconditioning (HPC) on P38 MAPK in human dermal microvascular endothelial cells. Therefore, we investigated the function of HPC on P38 MAPK during HR in vitro. METHODS Human dermal microvascular endothelial cells were cultured in a hypoxic incubator for 8 h. Then cells were reperfused for 12 h (reoxygenation) or postconditioned by 5 min of reoxygenation and 5 min of re-hypoxia 3 times followed by 11.5 h reoxygenation. SB203580 was used as an inhibitor of P38 MAPK. Cell counting kit-8 assay kits were employed to detect cell activity. The corresponding levels of IL-6, IL-8 and IL-1β were examined via Enzyme-Linked ImmunoSorbent Assay. The endothelial barrier was evaluated using fluorescein isothiocyanate-dextran leakage assay. Western blot was used to detect claudin-5, phosphorylation of P38 MAPK (P-P38 MAPK) and P38 MAPK expression. Claudin-5 localization was studied by immunofluorescence. RESULTS HR induced endothelial barrier hyperpermeability, elevated inflammation levels, and increased the P-P38 MAPK. But HPC reduced cell injury and maintained the integrity of the endothelial barrier while inhibiting P-P38 MAPK and increasing expression of claudin-5. HPC redistributed claudin-5 in a continuous and linear pattern on the cell membrane. CONCLUSIONS HPC protects against HR induced downregulation and redistribution of claudin-5 by inhibiting P-P38 MAPK.
Collapse
Affiliation(s)
- Jiaxing Ma
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yinhua Zhao
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yue Cui
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huang Lin
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Ishii M, Tanaka H, Asai R, Kanai Y, Kato Y, Ito Y, Mochizuki F, Yoneyama M, Ishiyama G, Ishiyama A. New non-contrast MRI of endolymphatic hydrops in Ménière's disease considering inversion time. Laryngoscope Investig Otolaryngol 2024; 9:e1314. [PMID: 39130211 PMCID: PMC11316216 DOI: 10.1002/lio2.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024] Open
Abstract
Objectives Three-tesla MRI with gadolinium-based contrast agents is important in diagnosing Ménière's disease. However, contrast agents cannot be used in some patients. By using the compositional difference between the inner ear endolymph and perilymph, we performed basic and clinical research focused on potassium ions and protein to find the optimal parameters for visualizing endolymphatic hydrops on MRI without contrast. We then examined the relationship between severity stage and visualization rate of endolymphatic hydrops. Methods In phantom experiments simulating the endolymph and perilymph, we explored MRI parameters that could be used to separate endolymph from perilymph by gradually changing the inversion time. We then used these parameters to perform both new non-contrast MRI and contrast MRI on the same day in Ménière's disease patients, and we compared the visualization rates of endolymphatic hydrops under the two modalities. Fifty patients were selected from 478 patients with Ménière's disease of different severity stages; 12 patients had asthma and allergy to contrast agents. Results The higher the disease stage, the higher the endolymphatic hydrops visualization rate. The new non-contrast MRI gave significantly higher (p < .01) visualization rates of endolymphatic hydrops on the affected side in patients at Stage 3 or above than in Stages 1 and 2 combined. Conclusion New non-contrast MRI with parameters focusing on the endolymph-perilymph difference in the density of protons surrounding the potassium ions and protein can produce images consistent with endolymphatic hydrops. We believe that this groundbreaking method will be useful for diagnosing Ménière's disease in patients. Evidence Level Clinical studies are at evidence level 3 in non-randomized controlled trials.
Collapse
Affiliation(s)
- Masanori Ishii
- Department of OtorhinolaryngologyJapan Community Healthcare Organization (JCHO) Tokyo Shinjuku Medical CenterTokyoJapan
- Department of NeurotologyAdvanced Imaging Center (AIC) Yaesu ClinicTokyoJapan
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
| | - Hiroshi Tanaka
- Department of RadiologyOchanomizu Surugadai ClinicTokyoJapan
| | - Ryuichi Asai
- Department of RadiologyAdvanced Imaging Center (AIC) Yaesu ClinicTokyoJapan
| | - Yasuhisa Kanai
- Department of RadiologyOchanomizu Surugadai ClinicTokyoJapan
| | - Yujin Kato
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
| | - Yusuke Ito
- Department of OtorhinolaryngologyThe Jikei University School of MedicineTokyoJapan
| | - Fumihiro Mochizuki
- Department of OtolaryngologyUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | | | - Gail Ishiyama
- Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Akira Ishiyama
- Department of Head & Neck SurgeryDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Gustafson D, DiStefano PV, Wang XF, Wu R, Ghaffari S, Ching C, Rathnakumar K, Alibhai F, Syonov M, Fitzpatrick J, Boudreau E, Lau C, Galant N, Husain M, Li RK, Lee WL, Parekh RS, Monnier PP, Fish JE. Circulating small extracellular vesicles mediate vascular hyperpermeability in diabetes. Diabetologia 2024; 67:1138-1154. [PMID: 38489029 PMCID: PMC11058313 DOI: 10.1007/s00125-024-06120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
AIMS/HYPOTHESIS A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.
Collapse
Affiliation(s)
- Dakota Gustafson
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Peter V DiStefano
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Xue Fan Wang
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| | - Ruilin Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Siavash Ghaffari
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | - Faisal Alibhai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Michal Syonov
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Jessica Fitzpatrick
- Department of Medicine and Pediatrics, Women's College Hospital, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Emilie Boudreau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Cori Lau
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Natalie Galant
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Mansoor Husain
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Warren L Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Rulan S Parekh
- Department of Medicine and Pediatrics, Women's College Hospital, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Philippe P Monnier
- Division of Fundamental Neurobiology, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
10
|
Park JY, Kim MJ, Choi YA, Lee SW, Lee S, Jang YH, Kim SH. Ethanol Extract of Ampelopsis brevipedunculata Rhizomes Suppresses IgE-Mediated Mast Cell Activation and Anaphylaxis. Adv Pharmacol Pharm Sci 2024; 2024:5083956. [PMID: 38605816 PMCID: PMC11008974 DOI: 10.1155/2024/5083956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
More than 20% of the world's population suffers from allergic diseases, including allergic asthma, rhinitis, and atopic dermatitis that severely reduce the patient's quality of life. The treatment of allergy has been developed, but there are still unmet needs. Ampelopsis brevipedunculata (Maxim.) Trautv. is a traditional medicinal herb with beneficial bioactivities, such as antioxidant, anti-hypertension, anti-viral, anti-mutagenic, and skin and liver (anti-hepatotoxic) protective actions. However, its anti-allergic effect has not been addressed. This study designed to investigate the pharmacological effect of an ethanol extract of A. brevipedunculata rhizomes (ABE) on mast cell and anaphylaxis models. For in vivo studies, we used ovalbumin-induced active systemic anaphylaxis (ASA) and immunoglobulin (Ig) E-mediated passive cutaneous anaphylaxis (PCA) models. In ASA model, oral administration of ABE (1, 10, and 100 mg/kg) attenuated the anaphylactic responses, such as hypothermia, serum histamine, and IgE productions. In PCA model, ABE also suppressed the plasma extravasation and swelling. The underlying mechanisms of action were identified in various mast cell types. In vitro, ABE (10, 30, and 60 µg/mL) inhibited the release of essential allergic mediators, such as histamine and β-hexosaminidase, in a concentration-dependent manner. ABE prevented the rapid increase in intracellular calcium levels induced by the DNP-HSA challenge. In addition, ABE downregulated the tumor necrosis factor-α and interleukin-4 by suppressing the activation of nuclear factor-κB. Collectively, this study is the first to identify the anti-allergic effect of ABE, suggesting that ABE is a promising candidate for treating allergic diseases.
Collapse
Affiliation(s)
- Ji-Yeong Park
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Min-Jong Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Young-Ae Choi
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seung Woong Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Soyoung Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
11
|
Böttner J, Fischer-Schaepmann T, Werner S, Knauth S, Jahnke HG, Thiele H, Büttner P. Amphetamine increases vascular permeability by modulating endothelial actin cytoskeleton and NO synthase via PAR-1 and VEGF-R. Sci Rep 2024; 14:3596. [PMID: 38351286 PMCID: PMC10864289 DOI: 10.1038/s41598-024-53470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Abuse of amphetamine-type stimulants is linked to cardiovascular adverse effects like arrhythmias, accelerated atherosclerosis, acute coronary syndromes and sudden cardiac death. Excessive catecholamine release following amphetamine use causes vasoconstriction and vasospasms, over time leading to hypertension, endothelial dysfunction or even cardiotoxicity. However, immediate vascular pathomechanisms related to amphetamine exposure, especially endothelial function, remain incompletely understood and were analyzed in this study. Pharmaco-pathological effects of acute d-amphetamine-sulfate (DAM) were investigated ex vivo using contraction-force measurements of rat carotid artery rings and in vitro using label-free, real-time electrochemical impedance spectroscopy (EIS) on endothelial and smooth muscle cells. Specific receptor and target blocking was used to identify molecular targets and to characterize intracellular signaling. DAM induced vasodilation represented by 29.3±2.5% decrease in vascular tone (p<0.001) involving vascular endothelial growth factor receptor (VEGF-R) and protease activated receptor 1 (PAR-1). EIS revealed that DAM induces endothelial barrier disruption (-75.9±1.1% of initial cellular impedance, p<0.001) also involving VEGF-R and PAR-1. Further, in response to DAM, Rho-associated protein kinase (ROCK) mediated reversible contraction of actin cytoskeleton resulting in endothelial barrier disruption. Dephosphorylation of Serine1177 (-50.8±3.7%, p<0.001) and Threonine495 (-44.8±6.5%, p=0.0103) of the endothelial NO synthase (eNOS) were also observed. Blocking of VEGF-R and PAR-1 restored baseline eNOS Threonine495 phosphorylation. DAM induced vasodilation, enhanced vascular permeability and actin cytoskeleton contraction and induced eNOS hypophosphorylation involving VEGF-R, PAR-1 and ROCK. These results may contribute to a better understanding of severe adverse cardiovascular effects in amphetamine abuse.
Collapse
Affiliation(s)
- Julia Böttner
- Department of Cardiology, Heart Center Leipzig at Leipzig University, Strümpellstr. 39, 04289, Leipzig, Germany.
| | - Tina Fischer-Schaepmann
- Department of Cardiology, Heart Center Leipzig at Leipzig University, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Sarah Werner
- Department of Cardiology, Heart Center Leipzig at Leipzig University, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Sarah Knauth
- Institute for Orthodontics, Leipzig University, Liebigstr. 21, 04103, Leipzig, Germany
| | - Heinz-Georg Jahnke
- Center for Biotechnology and Biomedicine at Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at Leipzig University, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Petra Büttner
- Department of Cardiology, Heart Center Leipzig at Leipzig University, Strümpellstr. 39, 04289, Leipzig, Germany
| |
Collapse
|
12
|
Waithe OY, Shaji CA, Childs EW, Tharakan B. Determination of Blood-Brain Barrier Hyperpermeability Using Intravital Microscopy. Methods Mol Biol 2024; 2711:117-127. [PMID: 37776453 PMCID: PMC12045329 DOI: 10.1007/978-1-0716-3429-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The blood vessels that vascularize the central nervous system (CNS) exhibit unique properties, termed the blood-brain barrier (BBB). The BBB allows these blood vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. The BBB is held together by tight junctions of the neighboring endothelial cells of the barrier, more specifically by tight junction proteins (TJPs) which can take the form of either integral transmembrane proteins or accessory cytoplasmic membrane proteins. BBB permeability can furthermore be affected by various factors, including but not limited to TJP expression, size, shape, charge, and type of extravascular molecules, as well as the nature of the vascular beds. The BBB is essential for the proper maintenance of CNS function, and its structural integrity has been implicated in several disorders and conditions. For instance, it has been shown that in the cases of traumatic brain injury (TBI), TBI-associated edema, and increased intracranial pressure are primarily caused by cases of hyperpermeability seen because of BBB dysfunction. Intravital microscopy is one of the most reliable methods for measuring BBB hyperpermeability in rodent models of BBB dysfunction in vivo. Here, we describe the surgical and imaging methods to determine the changes in BBB permeability at the level of the pial microvasculature in a mouse model of TBI using intravital microscopy.
Collapse
Affiliation(s)
- O'lisa Yaa Waithe
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
13
|
Waithe OY, Peng X, Childs EW, Tharakan B. Measurement of Blood-Brain Barrier Hyperpermeability Using Evans Blue Extravasation Assay. Methods Mol Biol 2024; 2711:177-184. [PMID: 37776457 DOI: 10.1007/978-1-0716-3429-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Blood-brain barrier (BBB) dysfunction and hyperpermeability have been implicated in a myriad of brain pathologies. The Evans Blue assay is one of the most popular methods for studying BBB integrity and permeability in rodent models of brain disorders. Under normal physiological conditions, the BBB is impermeable to albumin, so Evans Blue when injected intravenously binds to serum albumin and remains restricted within blood vessels. In traumatic and ischemic injuries, and other brain pathologies that result in BBB hyperpermeability, neighboring endothelial cells partially lose their close contacts to each other, and the BBB becomes permeable to proteins such as albumin. This paracellular leak of Evans blue-bound albumin is considered a reliable indicator of BBB dysfunction and hyperpermeability. Here, we describe the procedures for the evaluation of BBB integrity and hyperpermeability using Evans Blue extravasation assay in a mouse model of traumatic brain injury. The method described here focuses on intravenous injection of Evans Blue followed by Evans Blue dye extraction. This is followed by the measurement of fluorescence intensity of Evans Blue to determine the dye extravasation as a direct indicator of BBB hyperpermeability.
Collapse
Affiliation(s)
- O'lisa Yaa Waithe
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Xu Peng
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
14
|
Jang SY, Kim SY, Song HA, Kim H, Chung KS, Lee JK, Lee KT. Protective effect of hydrangenol on lipopolysaccharide-induced endotoxemia by suppressing intestinal inflammation. Int Immunopharmacol 2023; 125:111083. [PMID: 37871380 DOI: 10.1016/j.intimp.2023.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Hydrangenol, a dihydroisocoumarin, isolated from the leaves of Hydrangea serrata, possesses anti-inflammatory, anti-obesity, and anti-photoaging activities. In this study, we investigated the protective effects of hydrangenol (HG) against lipopolysaccharide (LPS)-induced endotoxemia and elucidated the underlying molecular mechanisms of action in C57BL/6 mice. Oral administration of HG (20 or 40 mg/kg) significantly restored the survival rate and population of macrophages, T helper cells (CD3+/CD4+), and Th17 cells (CD3+/CD4+/CCR6+) in the spleens of mice with LPS-induced endotoxemia. HG suppressed the expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β, and Interferon (IFN)-γ and the mRNA and protein expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in the intestine and lung of LPS-treated mice. Molecular data showed that HG ameliorated the activation of nuclear factor kappa B (NF-κB) p65, signal transducers and activators of transcription 3 (STAT3), and c-Fos and c-Jun (AP-1 subunits) via the myeloid differentiation primary response 88 (MyD88) dependent toll-like receptor 4 (TLR4) signaling pathway in the LPS-treated mouse intestines. HG treatment caused the recovery of LPS-induced impaired tight junction (occludin and claudin-2) protein and mRNA expressions. Furthermore, HG improved LPS-induced gut dysbiosis in mice. Taken together, our results suggest that HG protects against LPS-induced endotoxemia by restoring immune cells and the capacity of the intestinal barrier, reducing intestinal inflammation, and improving the composition of the gut microbiota.
Collapse
Affiliation(s)
- Seo-Yun Jang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Hyeon-A Song
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hyeyun Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
15
|
Breslin JW. Edema and lymphatic clearance: molecular mechanisms and ongoing challenges. Clin Sci (Lond) 2023; 137:1451-1476. [PMID: 37732545 PMCID: PMC11025659 DOI: 10.1042/cs20220314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Resolution of edema remains a significant clinical challenge. Conditions such as traumatic shock, sepsis, or diabetes often involve microvascular hyperpermeability, which leads to tissue and organ dysfunction. Lymphatic insufficiency due to genetic causes, surgical removal of lymph nodes, or infections, leads to varying degrees of tissue swelling that impair mobility and immune defenses. Treatment options are limited to management of edema as there are no specific therapeutics that have demonstrated significant success for ameliorating microvascular leakage or impaired lymphatic function. This review examines current knowledge about the physiological, cellular, and molecular mechanisms that control microvascular permeability and lymphatic clearance, the respective processes for interstitial fluid formation and removal. Clinical conditions featuring edema, along with potential future directions are discussed.
Collapse
Affiliation(s)
- Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, FL, U.S.A
| |
Collapse
|
16
|
Wang Y, Yu S, Li M. Neurovascular crosstalk and cerebrovascular alterations: an underestimated therapeutic target in autism spectrum disorders. Front Cell Neurosci 2023; 17:1226580. [PMID: 37692552 PMCID: PMC10491023 DOI: 10.3389/fncel.2023.1226580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Normal brain development, function, and aging critically depend on unique characteristics of the cerebrovascular system. Growing evidence indicated that cerebrovascular defects can have irreversible effects on the brain, and these defects have been implicated in various neurological disorders, including autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder with heterogeneous clinical manifestations and anatomical changes. While extensive research has focused on the neural abnormalities underlying ASD, the role of brain vasculature in this disorder remains poorly understood. Indeed, the significance of cerebrovascular contributions to ASD has been consistently underestimated. In this work, we discuss the neurovascular crosstalk during embryonic development and highlight recent findings on cerebrovascular alterations in individuals with ASD. We also discuss the potential of vascular-based therapy for ASD. Collectively, these investigations demonstrate that ASD can be considered a neurovascular disease.
Collapse
Affiliation(s)
- Yiran Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shunyu Yu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mengqian Li
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Hermans D, Rodriguez-Mogeda C, Kemps H, Bronckaers A, de Vries HE, Broux B. Nectins and Nectin-like molecules drive vascular development and barrier function. Angiogenesis 2023; 26:349-362. [PMID: 36867287 DOI: 10.1007/s10456-023-09871-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Angiogenesis, barriergenesis, and immune cell migration are all key physiological events that are dependent on the functional characteristics of the vascular endothelium. The protein family of Nectins and Nectin-like molecules (Necls) is a group of cell adhesion molecules that are widely expressed by different endothelial cell types. The family includes four Nectins (Nectin-1 to -4) and five Necls (Necl-1 to -5) that either interact with each other by forming homo- and heterotypical interactions or bind to ligands expressed within the immune system. Nectin and Necl proteins are mainly described to play a role in cancer immunology and in the development of the nervous system. However, Nectins and Necls are underestimated players in the formation of blood vessels, their barrier properties, and in guiding transendothelial migration of leukocytes. This review summarizes their role in supporting the endothelial barrier through their function in angiogenesis, cell-cell junction formation, and immune cell migration. In addition, this review provides a detailed overview of the expression patterns of Nectins and Necls in the vascular endothelium.
Collapse
Affiliation(s)
- Doryssa Hermans
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Carla Rodriguez-Mogeda
- Molecular Cell Biology and Immunology, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Hannelore Kemps
- Department of Cardio & Organ Systems, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
- KU Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Helga E de Vries
- Molecular Cell Biology and Immunology, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Bieke Broux
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium.
| |
Collapse
|
18
|
Davis GE, Kemp SS. Extracellular Matrix Regulation of Vascular Morphogenesis, Maturation, and Stabilization. Cold Spring Harb Perspect Med 2023; 13:a041156. [PMID: 35817544 PMCID: PMC10578078 DOI: 10.1101/cshperspect.a041156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extracellular matrix represents a critical regulator of tissue vascularization during embryonic development and postnatal life. In this perspective, we present key information and concepts that focus on how the extracellular matrix controls capillary assembly, maturation, and stabilization, and, in addition, contributes to tissue stability and health. In particular, we present and discuss mechanistic details underlying (1) the role of the extracellular matrix in controlling different steps of vascular morphogenesis, (2) the ability of endothelial cells (ECs) and pericytes to coassemble into elongated and narrow capillary EC-lined tubes with associated pericytes and basement membrane matrices, and (3) the identification of specific growth factor combinations ("factors") and peptides as well as coordinated "factor" and extracellular matrix receptor signaling pathways that are required to form stabilized capillary networks.
Collapse
Affiliation(s)
- George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| |
Collapse
|
19
|
Chen J, Huan W, Mao L, Huang M, Wu Y, Zhuang S, Cui S. Impaired barrier integrity of endothelial cells induced by PEGylated black phosphorus nanosheets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160645. [PMID: 36464060 DOI: 10.1016/j.scitotenv.2022.160645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
PEGylated black phosphorus nanosheets (PEG-BPNSs) have shown promising applications in biomedicine and potentially interact with the vasculature following iatrogenic exposures. Whether the exposure to PEG-BPNSs could induce toxic effects on endothelial cells that line the blood vessels remains largely unknown. Herein, we investigate the cellular response and transcriptional profiling of human umbilical vein endothelial cells (HUVECs) after the exposure to BPNSs and PEG-BPNSs. BPNSs and PEG-BPNSs induce cellular elongation and cause significant cytotoxicity to HUVECs at 0.8 μg/mL, with viabilities of 87.8% and 87.7% respectively. The transcriptome analysis indicates that BPNSs and PEG-BPNSs at 0.4 μg/mL cause marked alterations in the expression of genes associated with detection of stimulus, ion transmembrane transport and components of plasma membrane. BPNSs and PEG-BPNSs at 0.4 μg/mL decrease the transendothelial electrical resistance (TEER) across monolayers of HUVECs by 22.8% and 20.3% compared to the control, respectively. The disturbance of tight junctions (TJs) after 24 h exposure to 0.4 μg/mL BPNSs and PEG-BPNSs is indicated with the downregulated mRNA expression of zona occluden-1 (ZO-1) by respective 16.5% and 29.9%, which may be involved in the impairment of endothelial barrier integrity. Overall, the response of HUVECs to PEG-BPNSs and BPNSs has no statistical difference, suggesting that PEGylation does not attenuate the BPNSs-induced endothelial injury. This study demonstrates the detrimental effects of BPNSs and PEG-BPNSs on barrier integrity of HUVECs, contributing to our understanding on the potential toxicological mechanisms.
Collapse
Affiliation(s)
- Jiayan Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Lijuan Mao
- Analysis Center of Agrobiology and Environmental Sciences, Faculty of Agriculture, Life and Environment Sciences (ACAES), Zhejiang University, Hangzhou 310058, China
| | - Meiling Huang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiqu Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
20
|
Banerjee P, Gaddam N, Pandita TK, Chakraborty S. Cellular Senescence as a Brake or Accelerator for Oncogenic Transformation and Role in Lymphatic Metastasis. Int J Mol Sci 2023; 24:ijms24032877. [PMID: 36769195 PMCID: PMC9917379 DOI: 10.3390/ijms24032877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cellular senescence-the irreversible cell cycle arrest driven by a variety of mechanisms and, more specifically, the senescence-associated secretory phenotype (SASP)-is an important area of research in the context of different age-related diseases, such as cardiovascular disease and cancer. SASP factors play both beneficial and detrimental roles in age-related disease progression depending on the source of the SASPs, the target cells, and the microenvironment. The impact of senescence and the SASP on different cell types, the immune system, and the vascular system has been widely discussed. However, the impact of replicative or stress-induced senescence on lymphatic biology and pathological lymphangiogenesis remains underexplored. The lymphatic system plays a crucial role in the maintenance of body fluid homeostasis and immune surveillance. The perturbation of lymphatic function can hamper normal physiological function. Natural aging or stress-induced premature aging influences the lymphatic vessel structure and function, which significantly affect the role of lymphatics in tumor dissemination and metastasis. In this review, we focus on the role of senescence on lymphatic pathobiology, its impact on cancer, and potential therapeutic interventions to manipulate the aged or senescent lymphatic system for disease management.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
- Correspondence: ; Tel.: +1-979-436-0697
| |
Collapse
|
21
|
Functions and cellular signaling by ribosomal extracellular RNA (rexRNA): Facts and hypotheses on a non-typical DAMP. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119408. [PMID: 36503009 DOI: 10.1016/j.bbamcr.2022.119408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Upon microbial infections with the subsequent host response of innate immunity, a variety of fragmented RNA- and DNA-based "Pathogen-associated molecular patterns" (PAMPs) are recognized mainly by endosomal or cytoplasmic host cell "Pattern recognition receptors" (PRRs), particularly "Toll-like receptors" (TLRs). Concomitantly, various self-extracellular RNA species (exRNAs) are present in extracellular body fluids where they contribute to diverse physiological and homeostatic processes. In principle, such exRNAs, including the most abundant one, ribosomal exRNA (rexRNA), are designated as "Danger-associated molecular patterns" (DAMPs) and are prevented by e.g. natural modifications from uncontrolled signaling via TLRs to avoid hyper-inflammatory responses or autoimmunity. Upon cellular stress or tissue damage/necrosis, the levels and composition of released self-exRNA species, either in free form, in complex with proteins or in association with extracellular vesicles (EVs), can change considerably. Among the self-exRNAs, rexRNA is considered as a non-typical DAMP, since it may induce inflammatory responses by cell membrane receptors, both in the absence or presence of PAMPs. Yet, its mode of receptor activation to mount inflammatory responses remains obscure. RexRNA also serves as a universal damaging factor in cardiovascular and other diseases independent of PRRs. In general, RNase1 provides a profound antagonist in these pathologies and in rexRNA-mediated inflammatory cell responses. Based on the extrapolation of the here described aspects of rexRNA-biology, further activities of this molecular entity are hypothesized that may stimulate additional research in this area.
Collapse
|
22
|
Li G, Jiang X, Liang X, Hou Y, Zang J, Zhu B, Jia C, Niu K, Liu X, Xu X, Jiang R, Wang B. BAP31 regulates the expression of ICAM-1/VCAM-1 via MyD88/NF-κB pathway in acute lung injury mice model. Life Sci 2023; 313:121310. [PMID: 36549351 DOI: 10.1016/j.lfs.2022.121310] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
AIMS The cell adhesion molecules (CAMs) that mediate neutrophil-endothelium cell adhesion are deeply involved in the pathogenesis of acute lung injury (ALI). B-cell receptor associated protein 31 (BAP31) has been reported to engage in the expression of some CAMs. This study was undertaken to explore whether BAP31 in endotheliocyte affects the pathological process of ALI by regulating CAMs, and its possible mechanism. MAIN METHODS Our study used the shBAP31 endothelium cell lines and endothelial-specific BAP31 conditional knockdown mice constructed via Cre/loxP system. Hematoxylin and eosin staining was used to observe the histopathological manifestations. The adhesion of neutrophils to vascular wall was examined by intravital microscopy. The nuclear translocation of NF-κB was observed by immunofluorescence staining assay. Flow cytometric, real-time polymerase chain reaction and Western blot assay were performed to determine the expression of CAMs and key proteins in MyD88/NF-κB-related signaling pathway. Luciferase reporter and chromatin immunoprecipitation assay were analyzed for transcriptional activity of ICAM-1 and VCAM-1. KEY FINDINGS Mechanistic investigations indicated that endothelium-specific BAP31 depletion dramatically reduced the capacity of neutrophils adherence to endothelial cells (ECs), which was mainly attributed to the significant downregulation of ICAM-1 (p < 0.05) and VCAM-1 (p < 0.05) expression. Interestingly, BAP31 knockdown apparently deactivated MyD88/TRAF6-mediated TAK1/NF-κB and PI3K/Akt signaling cascades, resulting in the inhibition of NF-κB activation and nuclear translocation. SIGNIFICANCE Our data furnished convincing evidence that BAP31 deficiency performs a mitigative effect on ALI by decreasing neutrophils-ECs adhesion. These findings identified BAP31 as a promising protein for regulating the pathogenesis process of ALI.
Collapse
Affiliation(s)
- Guoxun Li
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaohan Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaoyu Liang
- Southern Methodist University, Dallas, TX 75275, USA
| | - Yue Hou
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jingnan Zang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Benzhi Zhu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Congcong Jia
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Xia Liu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaoli Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Rui Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
23
|
Gong HH, Worley MJ, Carver KA, Goldstein DR, Deng JC. Neutrophils drive pulmonary vascular leakage in MHV-1 infection of susceptible A/J mice. Front Immunol 2023; 13:1089064. [PMID: 36685578 PMCID: PMC9853883 DOI: 10.3389/fimmu.2022.1089064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Background Lung inflammation, neutrophil infiltration, and pulmonary vascular leakage are pathological hallmarks of acute respiratory distress syndrome (ARDS) which can lethally complicate respiratory viral infections. Despite similar comorbidities, however, infections in some patients may be asymptomatic while others develop ARDS as seen with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections for example. Methods In this study, we infected resistant C57BL/6 and susceptible A/J strains of mice with pulmonary administration of murine hepatitis virus strain 1 (MHV-1) to determine mechanisms underlying susceptibility to pulmonary vascular leakage in a respiratory coronavirus infection model. Results A/J animals displayed increased lung injury parameters, pulmonary neutrophil influx, and deficient recruitment of other leukocytes early in the infection. Moreover, under basal conditions, A/J neutrophils overexpressed primary granule protein genes for myeloperoxidase and multiple serine proteases. During infection, myeloperoxidase and elastase protein were released in the bronchoalveolar spaces at higher concentrations compared to C57BL/6 mice. In contrast, genes from other granule types were not differentially expressed between these 2 strains. We found that depletion of neutrophils led to mitigation of lung injury in infected A/J mice while having no effect in the C57BL/6 mice, demonstrating that an altered neutrophil phenotype and recruitment profile is a major driver of lung immunopathology in susceptible mice. Conclusions These results suggest that host susceptibility to pulmonary coronaviral infections may be governed in part by underlying differences in neutrophil phenotypes, which can vary between mice strains, through mechanisms involving primary granule proteins as mediators of neutrophil-driven lung injury.
Collapse
Affiliation(s)
- Henry H. Gong
- University of Michigan, Ann Arbor, MI, United States
- Research Service, Veterans Affairs (VA) Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, United States
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Matthew J. Worley
- Research Service, Veterans Affairs (VA) Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, United States
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Kyle A. Carver
- Research Service, Veterans Affairs (VA) Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, United States
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Daniel R. Goldstein
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jane C. Deng
- University of Michigan, Ann Arbor, MI, United States
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Medicine Service, Veterans Affairs (VA) Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI, United States
| |
Collapse
|
24
|
Ta HQ, Teman NR, Kron IL, Roeser ME, Laubach VE. Steen solution protects pulmonary microvascular endothelial cells and preserves endothelial barrier after lipopolysaccharide-induced injury. J Thorac Cardiovasc Surg 2023; 165:e5-e20. [PMID: 35577593 PMCID: PMC9576825 DOI: 10.1016/j.jtcvs.2022.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Acute respiratory distress syndrome represents the devastating result of acute lung injury, with high mortality. Limited methods are available for rehabilitation of lungs affected by acute respiratory distress syndrome. Our laboratory has demonstrated rehabilitation of sepsis-injured lungs via normothermic ex vivo and in vivo perfusion with Steen solution (Steen). However, mechanisms responsible for the protective effects of Steen remain unclear. This study tests the hypothesis that Steen directly attenuates pulmonary endothelial barrier dysfunction and inflammation induced by lipopolysaccharide. METHODS Primary pulmonary microvascular endothelial cells were exposed to lipopolysaccharide for 4 hours and then recovered for 8 hours in complete media (Media), Steen, or Steen followed by complete media (Steen/Media). Oxidative stress, chemokines, permeability, interendothelial junction proteins, and toll-like receptor 4-mediated pathways were assessed in pulmonary microvascular endothelial cells using standard methods. RESULTS Lipopolysaccharide treatment of pulmonary microvascular endothelial cells and recovery in Media significantly induced reactive oxygen species, lipid peroxidation, expression of chemokines (eg, chemokine [C-X-C motif] ligand 1 and C-C motif chemokine ligand 2) and cell adhesion molecules (P-selectin, E-selectin, and vascular cell adhesion molecule 1), permeability, neutrophil transmigration, p38 mitogen-activated protein kinase and nuclear factor kappa B signaling, and decreased expression of tight and adherens junction proteins (zonula occludens-1, zonula occludens-2, and vascular endothelial-cadherin). All of these inflammatory pathways were significantly attenuated after recovery of pulmonary microvascular endothelial cells in Steen or Steen/Media. CONCLUSIONS Steen solution preserves pulmonary endothelial barrier function after lipopolysaccharide exposure by promoting an anti-inflammatory environment via attenuation of oxidative stress, toll-like receptor 4-mediated signaling, and conservation of interendothelial junctions. These protective mechanisms offer insight into the advancement of methods for in vivo lung perfusion with Steen for the treatment of severe acute respiratory distress syndrome.
Collapse
Affiliation(s)
| | | | | | | | - Victor E. Laubach
- Address for reprints: Victor E. Laubach, PhD, Department of Surgery, University of Virginia School of Medicine, PO Box 801359, Charlottesville, VA 22908
| |
Collapse
|
25
|
Isthmin-A Multifaceted Protein Family. Cells 2022; 12:cells12010017. [PMID: 36611811 PMCID: PMC9818725 DOI: 10.3390/cells12010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Isthmin (ISM) is a secreted protein family with two members, namely ISM1 and ISM2, both containing a TSR1 domain followed by an AMOP domain. Its broad expression pattern suggests diverse functions in developmental and physiological processes. Over the past few years, multiple studies have focused on the functional analysis of the ISM protein family in several events, including angiogenesis, metabolism, organ homeostasis, immunity, craniofacial development, and cancer. Even though ISM was identified two decades ago, we are still short of understanding the roles of the ISM protein family in embryonic development and other pathological processes. To address the role of ISM, functional studies have begun but unresolved issues remain. To elucidate the regulatory mechanism of ISM, it is crucial to determine its interactions with other ligands and receptors that lead to the activation of downstream signalling pathways. This review provides a perspective on the gene organization and evolution of the ISM family, their links with developmental and physiological functions, and key questions for the future.
Collapse
|
26
|
Wang X, Chan V, Corridon PR. Acellular Tissue-Engineered Vascular Grafts from Polymers: Methods, Achievements, Characterization, and Challenges. Polymers (Basel) 2022; 14:4825. [PMID: 36432950 PMCID: PMC9695055 DOI: 10.3390/polym14224825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive and permanent damage to the vasculature leading to different pathogenesis calls for developing innovative therapeutics, including drugs, medical devices, and cell therapies. Innovative strategies to engineer bioartificial/biomimetic vessels have been extensively exploited as an effective replacement for vessels that have seriously malfunctioned. However, further studies in polymer chemistry, additive manufacturing, and rapid prototyping are required to generate highly engineered vascular segments that can be effectively integrated into the existing vasculature of patients. One recently developed approach involves designing and fabricating acellular vessel equivalents from novel polymeric materials. This review aims to assess the design criteria, engineering factors, and innovative approaches for the fabrication and characterization of biomimetic macro- and micro-scale vessels. At the same time, the engineering correlation between the physical properties of the polymer and biological functionalities of multiscale acellular vascular segments are thoroughly elucidated. Moreover, several emerging characterization techniques for probing the mechanical properties of tissue-engineered vascular grafts are revealed. Finally, significant challenges to the clinical transformation of the highly promising engineered vessels derived from polymers are identified, and unique perspectives on future research directions are presented.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Vincent Chan
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Peter R. Corridon
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
27
|
Deering J, Lin DSY, D'Elia A, Zhang B, Grandfield K. Fabrication of succinate-alginate xerogel films for in vitro coupling of osteogenesis and neovascularization. BIOMATERIALS ADVANCES 2022; 141:213122. [PMID: 36162345 DOI: 10.1016/j.bioadv.2022.213122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The osseointegration of metallic implants is reliant on a cascade of molecular interactions and the delivery of macromolecules to the implant environment that occurs before substantial bone formation. Early blood vessel formation is a requisite first step in the healing timeline for osteoid formation, where vascular development can be accelerated as a result of controlled hypoxic conditioning. In this study, alginate-derived xerogel films containing varied concentrations of disodium succinate salt which has been shown to induce pseudohypoxia (short-term hypoxic effects while maintaining an oxygenated environment) were developed. Xerogels were characterized for their morphology, succinate release over time and cellular response with osteoblast-mimicking Saos-2 and human umbilical vein endothelial cells (HUVEC). Scanning electron microscopy revealed a multiscale topography that may favour osseointegration and alamarBlue assays indicated no cytotoxic effects during in vitro proliferation of Saos-2 cells. pH measurements of eluted succinate reach 95 % of peak value after 7 h of immersion for all gels containing 10 mM of succinate or less, and 60 % within the first 40 min. In vitro exposure of HUVECs to succinate-conditioned media increased the net concentration of total proteins measured by bicinchoninic acid (BCA) assay and maintains stable vascular endothelial growth factor (VEGF) and extracellular platelet-derived growth factor (PDGF) for vessel formation through comparison of enzyme-linked immunosorbent assays (ELISAs) of the culture media and cell lysate. Tube formation assays also showed a sustained increase in tube diameter across the first 48 h of HUVEC culture when succinate concentrations of 1 and 10 μM in the xerogel. Overall, the succinate-alginate films serve as a prospective organic coating for bone-interfacing implant materials which may induce temporary pseudohypoxic conditions favourable for early angiogenesis and bone regeneration in vivo at succinate concentrations of 1 or 10 μM.
Collapse
Affiliation(s)
- Joseph Deering
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - Dawn S Y Lin
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Andrew D'Elia
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
28
|
Moztarzadeh S, Radeva MY, Sepic S, Schuster K, Hamad I, Waschke J, García-Ponce A. Lack of adducin impairs the stability of endothelial adherens and tight junctions and may be required for cAMP-Rac1-mediated endothelial barrier stabilization. Sci Rep 2022; 12:14940. [PMID: 36056066 PMCID: PMC9440001 DOI: 10.1038/s41598-022-18964-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Adducin (Add) is an actin binding protein participating in the stabilization of actin/spectrin networks, epithelial junctional turnover and cardiovascular disorders such as hypertension. Recently, we demonstrated that Add is required for adherens junctions (AJ) integrity. Here we hypothesized that Add regulates tight junctions (TJ) as well and may play a role in cAMP-mediated barrier enhancement. We evaluated the role of Add in MyEnd cells isolated from WT and Add-Knock-Out (KO) mice. Our results indicate that the lack of Add drastically alters the junctional localization and protein levels of major AJ and TJ components, including VE-Cadherin and claudin-5. We also showed that cAMP signaling induced by treatment with forskolin and rolipram (F/R) enhances the barrier integrity of WT but not Add-KO cells. The latter showed no junctional reorganization upon cAMP increase. The absence of Add also led to higher protein levels of the small GTPases Rac1 and RhoA. In vehicle-treated cells the activation level of Rac1 did not differ significantly when WT and Add-KO cells were compared. However, the lack of Add led to increased activity of RhoA. Moreover, F/R treatment triggered Rac1 activation only in WT cells. The function of Rac1 and RhoA per se was unaffected by the total ablation of Add, since direct activation with CN04 was still possible in both cell lines and led to improved endothelial barrier function. In the current study, we demonstrate that Add is required for the maintenance of endothelial barrier by regulating both AJ and TJ. Our data show that Add may act upstream of Rac1 as it is necessary for its activation via cAMP.
Collapse
Affiliation(s)
- Sina Moztarzadeh
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sara Sepic
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Katharina Schuster
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Ibrahim Hamad
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Alexander García-Ponce
- Chair of Vegetative Anatomy, Faculty of Medicine, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
29
|
Huang H, Zhu J, Gu L, Hu J, Feng X, Huang W, Wang S, Yang Y, Cui P, Lin SH, Suen A, Shimada BK, Williams B, Kane MA, Ke Y, Zhang CO, Birukova AA, Birukov KG, Chao W, Zou L. TLR7 Mediates Acute Respiratory Distress Syndrome in Sepsis by Sensing Extracellular miR-146a. Am J Respir Cell Mol Biol 2022; 67:375-388. [PMID: 35679261 PMCID: PMC9447138 DOI: 10.1165/rcmb.2021-0551oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
TLR7 (Toll-like receptor 7), the sensor for single-stranded RNA, contributes to systemic inflammation and mortality in murine polymicrobial sepsis. Recent studies show that extracellular miR-146a-5p serves as a TLR7 ligand and plays an important role in regulating host innate immunity. However, the role of miR-146a-5p and TLR7 signaling in pulmonary inflammation, endothelial activation, and sepsis-associated acute respiratory distress syndrome remains unclear. Here, we show that intratracheal administration of exogenous miR-146a-5p in mice evokes lung inflammation, activates endothelium, and increases endothelial permeability via TLR7-dependent mechanisms. TLR7 deficiency attenuates pulmonary barrier dysfunction and reduces lung inflammatory response in a murine sepsis model. Moreover, the impact of miR-146a-5p-TLR7 signaling on endothelial activation appears to be a secondary effect because TLR7 is undetectable in the human pulmonary artery and microvascular endothelial cells (ECs), which show no response to direct miR-146a-5p treatment in vitro. Both conditioned media of miR-146a-5p-treated macrophages (Mϕ) and septic sera of wild-type mice induce a marked EC barrier disruption in vitro, whereas Mϕ conditioned media or septic sera of TLR7-/- mice do not exhibit such effect. Cytokine array and pathway enrichment analysis of the Mϕ conditioned media and septic sera identify TNFα (tumor necrosis factor α) as the main downstream effector of miR-146a-5p-TLR7 signaling responsible for the EC barrier dysfunction, which is further supported by neutralizing anti-TNFα antibody intervention. Together, these data demonstrate that TLR7 activation elicits pulmonary inflammation and endothelial barrier disruption by sensing extracellular miR-146a-5p and contributes to sepsis-associated acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Huang Huang
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Jing Zhu
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Lili Gu
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Jiang Hu
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Xiujing Feng
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Sheng Wang
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Yang Yang
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Ping Cui
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Shao-Hsuan Lin
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Andrew Suen
- Center for Shock, Trauma, and Anesthesiology Research and
| | | | | | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Yunbo Ke
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Chen-ou Zhang
- Division of Pulmonary and Critical Care Medicine, School of Medicine, and
| | - Anna A. Birukova
- Division of Pulmonary and Critical Care Medicine, School of Medicine, and
| | - Konstantin G. Birukov
- Center for Shock, Trauma, and Anesthesiology Research and
- Division of Pulmonary and Critical Care Medicine, School of Medicine, and
| | - Wei Chao
- Center for Shock, Trauma, and Anesthesiology Research and
| | - Lin Zou
- Center for Shock, Trauma, and Anesthesiology Research and
| |
Collapse
|
30
|
Jagadapillai R, Qiu X, Ojha K, Li Z, El-Baz A, Zou S, Gozal E, Barnes GN. Potential Cross Talk between Autism Risk Genes and Neurovascular Molecules: A Pilot Study on Impact of Blood Brain Barrier Integrity. Cells 2022; 11:2211. [PMID: 35883654 PMCID: PMC9315816 DOI: 10.3390/cells11142211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a common pediatric neurobiological disorder with up to 80% of genetic etiologies. Systems biology approaches may make it possible to test novel therapeutic strategies targeting molecular pathways to alleviate ASD symptoms. A clinical database of autism subjects was queried for individuals with a copy number variation (CNV) on microarray, Vineland, and Parent Concern Questionnaire scores. Pathway analyses of genes from pathogenic CNVs yielded 659 genes whose protein-protein interactions and mRNA expression mapped 121 genes with maximal antenatal expression in 12 brain regions. A Research Domain Criteria (RDoC)-derived neural circuits map revealed significant differences in anxiety, motor, and activities of daily living skills scores between altered CNV genes and normal microarrays subjects, involving Positive Valence (reward), Cognition (IQ), and Social Processes. Vascular signaling was identified as a biological process that may influence these neural circuits. Neuroinflammation, microglial activation, iNOS and 3-nitrotyrosine increase in the brain of Semaphorin 3F- Neuropilin 2 (Sema 3F-NRP2) KO, an ASD mouse model, agree with previous reports in the brain of ASD individuals. Signs of platelet deposition, activation, release of serotonin, and albumin leakage in ASD-relevant brain regions suggest possible blood brain barrier (BBB) deficits. Disruption of neurovascular signaling and BBB with neuroinflammation may mediate causative pathophysiology in some ASD subgroups. Although preliminary, these data demonstrate the potential for developing novel therapeutic strategies based on clinically derived data, genomics, cognitive neuroscience, and basic neuroscience methods.
Collapse
Affiliation(s)
- Rekha Jagadapillai
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Xiaolu Qiu
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Kshama Ojha
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Zhu Li
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville Speed School, Louisville, KY 40292, USA;
| | - Shipu Zou
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Gregory N. Barnes
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
31
|
Sena CM, Gonçalves L, Seiça R. Methods to evaluate vascular function: a crucial approach towards predictive, preventive, and personalised medicine. EPMA J 2022; 13:209-235. [PMID: 35611340 PMCID: PMC9120812 DOI: 10.1007/s13167-022-00280-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022]
Abstract
Endothelium, the gatekeeper of our blood vessels, is highly heterogeneous and a crucial physical barrier with the ability to produce vasoactive and protective mediators under physiological conditions. It regulates vascular tone, haemostasis, vascular inflammation, remodelling, and angiogenesis. Several cardio-, reno-, and cerebrovascular diseases begin with the dysfunction of endothelial cells, and more recently, COVID-19 was also associated with endothelial disease highlighting the need to monitor its function towards prevention and reduction of vascular dysfunction. Endothelial cells are an important therapeutic target in predictive, preventive, and personalised (3P) medicine with upmost importance in vascular diseases. The development of novel non-invasive techniques to access endothelial dysfunction for use in combination with existing clinical imaging modalities provides a feasible opportunity to reduce the burden of vascular disease. This review summarises recent advances in the principles of endothelial function measurements. This article presents an overview of invasive and non-invasive techniques to determine vascular function and their major advantages and disadvantages. In addition, the article describes mechanisms underlying the regulation of vascular function and dysfunction and potential new biomarkers of endothelial damage. Recognising these biomarkers is fundamental towards a shift from reactive to 3P medicine in the vascular field. Identifying vascular dysfunction earlier with non-invasive or minimally invasive techniques adds value to predictive diagnostics and targeted prevention (primary, secondary, tertiary care). In addition, vascular dysfunction is a potential target for treatments tailored to the person.
Collapse
Affiliation(s)
- Cristina M. Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Subunit 1, Polo 3, Azinhaga de Santa Comba, Celas, 3000-354 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lino Gonçalves
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Cardiology, Coimbra’s Hospital and University Centre (CHUC), Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Subunit 1, Polo 3, Azinhaga de Santa Comba, Celas, 3000-354 Coimbra, Portugal
| |
Collapse
|
32
|
Li YL, Zhang DD, Xiong YY, Wang RF, Gao XM, Gong H, Zheng SC, Wu D. Development and external validation of models to predict acute respiratory distress syndrome related to severe acute pancreatitis. World J Gastroenterol 2022; 28:2123-2136. [PMID: 35664037 PMCID: PMC9134137 DOI: 10.3748/wjg.v28.i19.2123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a major cause of death in patients with severe acute pancreatitis (SAP). Although a series of prediction models have been developed for early identification of such patients, the majority are complicated or lack validation. A simpler and more credible model is required for clinical practice.
AIM To develop and validate a predictive model for SAP related ARDS.
METHODS Patients diagnosed with AP from four hospitals located at different regions of China were retrospectively grouped into derivation and validation cohorts. Statistically significant variables were identified using the least absolute shrinkage and selection operator regression method. Predictive models with nomograms were further built using multiple logistic regression analysis with these picked predictors. The discriminatory power of new models was compared with some common models. The performance of calibration ability and clinical utility of the predictive models were evaluated.
RESULTS Out of 597 patients with AP, 139 were diagnosed with SAP (80 in derivation cohort and 59 in validation cohort) and 99 with ARDS (62 in derivation cohort and 37 in validation cohort). Four identical variables were identified as independent risk factors for both SAP and ARDS: heart rate [odds ratio (OR) = 1.05; 95%CI: 1.04-1.07; P < 0.001; OR = 1.05, 95%CI: 1.03-1.07, P < 0.001], respiratory rate (OR = 1.08, 95%CI: 1.0-1.17, P = 0.047; OR = 1.10, 95%CI: 1.02-1.19, P = 0.014), serum calcium concentration (OR = 0.26, 95%CI: 0.09-0.73, P = 0.011; OR = 0.17, 95%CI: 0.06-0.48, P = 0.001) and blood urea nitrogen (OR = 1.15, 95%CI: 1.09-1.23, P < 0.001; OR = 1.12, 95%CI: 1.05-1.19, P < 0.001). The area under receiver operating characteristic curve was 0.879 (95%CI: 0.830-0.928) and 0.898 (95%CI: 0.848-0.949) for SAP prediction in derivation and validation cohorts, respectively. This value was 0.892 (95%CI: 0.843-0.941) and 0.833 (95%CI: 0.754-0.912) for ARDS prediction, respectively. The discriminatory power of our models was improved compared with that of other widely used models and the calibration ability and clinical utility of the prediction models performed adequately.
CONCLUSION The present study constructed and validated a simple and accurate predictive model for SAP-related ARDS in patients with AP.
Collapse
Affiliation(s)
- Yun-Long Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Ding-Ding Zhang
- Medical Research Center, Peking Union Medical College Hospital, Beijing 100730, China
- Clinical Epidemiology Unit, International Clinical Epidemiology Network, Beijing 100730, China
| | - Yang-Yang Xiong
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing 100730, China
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Rui-Feng Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xiao-Mao Gao
- Department of Gastroenterology, The Sixth Hospital of Beijing, Beijing 100191, China
| | - Hui Gong
- Department of Gastroenterology, West China Longquan Hospital Sichuan University, Chengdu 610100, Sichuan Province, China
| | - Shi-Cheng Zheng
- Department of Gastroenterology, West China Longquan Hospital Sichuan University, Chengdu 610100, Sichuan Province, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing 100730, China
- Clinical Epidemiology Unit, International Clinical Epidemiology Network, Beijing 100730, China
| |
Collapse
|
33
|
Porcine Epidemic Diarrhea Virus Infection Disrupts the Nasal Endothelial Barrier To Favor Viral Dissemination. J Virol 2022; 96:e0038022. [PMID: 35435723 PMCID: PMC9093128 DOI: 10.1128/jvi.00380-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crossing the endothelium from the entry site and spreading in the bloodstream are crucial but obscure steps in the pathogenesis of many emerging viruses. Previous studies confirmed that porcine epidemic diarrhea virus (PEDV) caused intestinal infection by intranasal inoculation. However, the role of the nasal endothelial barrier in PEDV translocation remains unclear. Here, we demonstrated that PEDV infection causes nasal endothelial dysfunction to favor viral dissemination. Intranasal inoculation with PEDV compromised the integrity of endothelial cells (ECs) in nasal microvessels. The matrix metalloproteinase 7 (MMP-7) released from the PEDV-infected nasal epithelial cells (NECs) contributed to the destruction of endothelial integrity by degrading the tight junctions, rather than direct PEDV infection. Moreover, the proinflammatory cytokines released from PEDV-infected NECs activated ECs to upregulate ICAM-1 expression, which favored peripheral blood mononuclear cells (PBMCs) migration. PEDV could further exploit migrated cells to favor viral dissemination. Together, our results reveal the mechanism by which PEDV manipulates the endothelial dysfunction to favor viral dissemination and provide novel insights into how coronavirus interacts with the endothelium. IMPORTANCE The endothelial barrier is the last but vital defense against systemic viral transmission. Porcine epidemic diarrhea virus (PEDV) can cause severe atrophic enteritis and acute viremia. However, the mechanisms by which the virus crosses the endothelial barrier and causes viremia are poorly understood. In this study, we revealed the mechanisms of endothelial dysfunction in PEDV infection. The viral infection activates NECs and causes the upregulation of MMP-7 and proinflammatory cytokines. Using NECs, ECs, and PBMCs as in vitro models, we determined that the released MMP-7 contributed to the destruction of endothelial barrier, and the released proinflammatory cytokines activated ECs to facilitate PBMCs migration. Moreover, the virus further exploited the migrated cells to promote viral dissemination. Thus, our results provide new insights into the mechanisms underlying endothelial dysfunction induced by coronavirus infection.
Collapse
|
34
|
Low-grade proteinuria and atherosclerotic cardiovascular disease: A transition study of patients with diabetic kidney disease. PLoS One 2022; 17:e0264568. [PMID: 35213636 PMCID: PMC8880428 DOI: 10.1371/journal.pone.0264568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/11/2022] [Indexed: 11/21/2022] Open
Abstract
Diabetic kidney disease (DKD) is heterogeneous in terms of proteinuria. Patients with DKD who present with low-grade proteinuria are more likely to have nephrosclerosis rather than traditional diabetic nephropathy. The amount of proteinuria might reflect the underlying pathology of renal failure and influence the prognosis after dialysis initiation. Clinical implications of proteinuria at the start of dialysis have not been confirmed, while greater proteinuria is associated with higher risk of cardiovascular disease (CVD) in the predialysis stages of chronic kidney disease. We performed a retrospective multicenter cohort study enrolling incident hemodialysis patients with diabetes. Patients were stratified using proteinuria quartiles. We examined the association of proteinuria quartiles with types of subsequent CVD. Among the enrolled 361 patients, the estimated mean glomerular filtration rate and proteinuria was 5.4 mL/min/1.73 m2 and 6.3 g/gCr, respectively. Lower quartile of proteinuria (cut-offs: 3.0, 5.4, and 8.8 g/gCr) was significantly associated with male, older age, and history of atherosclerotic CVD including coronary artery disease, peripheral arterial disease, and cerebral infarction (Ptrend<0.05). Kidney size was smaller in patients with lower levels of proteinuria. Patients with higher levels of proteinuria were more likely to have proliferative diabetic retinopathy (Ptrend<0.05). Multivariate competing risk analysis revealed that the first quartile of proteinuria was associated with a greater risk of atherosclerotic CVD than the third quartile (subhazard ratio [95% confidence interval]: 2.04 [1.00–4.14]). This association was attenuated after additional adjustments for history of atherosclerotic CVD. Furthermore, patients with lower quartiles of proteinuria were more likely to die of atherosclerotic CVD than those with non-atherosclerotic CVD (Ptrend = 0.01). Diabetic patients with lower proteinuria at dialysis initiation were characterized by severer macroangiopathy, as shown by a more atrophic kidney and higher prevalence of past atherosclerotic CVD. Hence, they are at a high risk of developing atherosclerotic CVD.
Collapse
|
35
|
Tharakan B, Hunter FA, Muthusamy S, Randolph S, Byrd C, Rao VN, Reddy ESP, Childs EW. ETS-Related Gene Activation Preserves Adherens Junctions and Permeability in Microvascular Endothelial Cells. Shock 2022; 57:309-315. [PMID: 34907119 DOI: 10.1097/shk.0000000000001899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT ERG (ETS-related gene) is a member of the ETS (Erythroblast-transformation specific) family of transcription factors abundantly present in vascular endothelial cells. Recent studies demonstrate that ERG has important roles in blood vessel stability and angiogenesis. However, it is unclear how ERG is potentially involved in microvascular barrier functions and permeability. A wide variety of diseases and clinical conditions including trauma-hemorrhagic shock and burn injury are associated with microvascular dysfunctions, which causes excessive microvascular permeability, tissue edema and eventually, multiple organ dysfunction and death. The main purpose of this study was to determine the specific role of ERG in regulating microvascular permeability in human lung microvascular endothelial cells (HLMEC) and to evaluate if exogenous ERG will protect the barrier. The HLMECs were grown on Transwell inserts as monolayers and were transfected with ERG CRISPR/cas9 knockdown plasmid, ERG CRISPR activation plasmid, recombinant ERG protein or their respective controls. Recombinant vascular endothelial growth factor (VEGF) was used as an inducer of permeability for evaluating the effect of ERG activation on permeability. Changes in barrier integrity and permeability were studied using monolayer permeability assay and immunofluorescence of adherens junction proteins (VE-cadherin and β-catenin) respectively. CRISPR/cas9-based ERG knockdown as well as VEGF treatment induced monolayer hyperpermeability, VE-cadherin, and β-catenin junctional relocation and cytoskeletal F-actin stress fiber formation. CRISPR based ERG activation and recombinant ERG transfection attenuated VEGF-induced monolayer hyperpermeability. ERG activation preserved the adherens junctions and cytoskeleton. These results demonstrate that ERG is a potent regulator of barrier integrity and permeability in human lung microvascular endothelial cells and endogenously or exogenously enhancing ERG provides protection against barrier dysfunction and hyperpermeability.
Collapse
Affiliation(s)
- Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia
| | - Felicia A Hunter
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia
| | | | - Sonya Randolph
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia
| | - Crystal Byrd
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia
| | - Veena N Rao
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia
| | - E Shyam P Reddy
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, Georgia
| | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
36
|
Role of Skin Stretch on Local Vascular Permeability in Murine and Cell Culture Models. Plast Reconstr Surg Glob Open 2022; 10:e4084. [PMID: 35186636 PMCID: PMC8849308 DOI: 10.1097/gox.0000000000004084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/29/2021] [Indexed: 01/15/2023]
Abstract
Excessive mechanical forces, particularly skin stretch, have been implicated in pathological cutaneous scarring. We hypothesize that this reflects, in part, stretch-induced vessel leakage that provokes prolonged wound/scar inflammation. However, this has never been observed directly. Here, a mouse model was used to examine the effect of skin flap stretching on vascular permeability. An in vitro model with pseudocapillaries grown in a stretchable chamber was also used to determine the effect of stretching on endothelial cell morphology and ion channel activity.
Collapse
|
37
|
Berberine Protects against TNF- α-Induced Injury of Human Umbilical Vein Endothelial Cells via the AMPK/NF- κB/YY1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6518355. [PMID: 35003308 PMCID: PMC8741384 DOI: 10.1155/2021/6518355] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Endothelial injury, characterized by an inflammatory response and increased permeability, is an initial stage of atherosclerosis (AS). Adenosine 5′-monophosphate (AMP), activated protein kinase (AMPK), and Nuclear Factor kappa B (NF-κB)/Yin Yang 1(YY1) signaling pathways play important roles in the process of endothelial injury. Berberine (BBR), a bioactive alkaloid isolated from several herbal substances, possesses multiple pharmacological effects, including anti-inflammatory, antimicrobial, antidiabetic, anticancer, and antioxidant activities. Previous studies showed a protective effect of berberine against endothelial injury. However, the underlying mechanism remains unclear. We explored the potential effect of BBR on TNF- (tumor necrosis factor-) α-induced injury of human umbilical endothelial cells (HUVECs) and studied its possible molecular mechanism. In the present study, HUVECs were divided into three groups. HUVEC viability was measured with Cell Counting Kit-8 assay. Extracellular lactic dehydrogenase (LDH) concentration was measured with LDH leakage assay. Endothelial microparticle (EMP) numbers were evaluated by flow cytometry analysis assay. The expression of proinflammatory cytokines was evaluated by Enzyme-Linked Immunosorbent Assay (ELISA). The mRNA expression of NF-κB and YY1 was detected by Real-Time PCR (RT-PCR). The protein expression of NF-κB, YY1, and AMPK was detected by immunofluorescence microscopy assay or western blot analysis. The results showed that LDH concentration, EMPs numbers, and the expression of proinflammatory cytokines (IL-6, IL-8, and IL-1β) increased in TNF-α-induced injured HUVECs, but ameliorated by BBR pretreatment. BBR pretreatment upregulated the expression of phosphorylated AMPK and downregulated the expressions of NF-κB and YY1 in injured HUVECs induced by TNF-α, which were offset by the AMPK inhibitor Compound C (CC). The results indicated that BBR protected against TNF-α-induced endothelial injury via the AMPK/NF-κB/YY1 signaling pathway.
Collapse
|
38
|
Wu YH, Chen WC, Tseng CK, Chen YH, Lin CK, Lee JC. Heme oxygenase-1 inhibits DENV-induced endothelial hyperpermeability and serves as a potential target against dengue hemorrhagic fever. FASEB J 2021; 36:e22110. [PMID: 34918393 DOI: 10.1096/fj.202100688rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/02/2023]
Abstract
Dengue virus (DENV) is a cause of vascular endothelial dysfunction and vascular leakage, which are characterized as hallmarks of dengue hemorrhagic fever or dengue shock syndrome, which become a severe global health emergency with substantial morbidity and mortality. Currently, there are still no promising therapeutics to alleviate the dengue-associated vascular hemorrhage in a clinical setting. In the present study, we first observed that heme oxygenase-1 (HO-1) expression level was highly suppressed in severe DENV-infected patients. In contrast, the overexpression of HO-1 could attenuate DENV-induced pathogenesis, including plasma leakage and thrombocytopenia, in an AG129 mouse model. Our data indicate that overexpression of HO-1 or its metabolite biliverdin can maintain endothelial integrity upon DENV infection in vitro and in vivo. We further characterized the positive regulatory effect of HO-1 on the endothelial adhesion factor vascular endothelial-cadherin to decrease DENV-induced endothelial hyperpermeability. Subsequently, we confirmed that two medicinal plant-derived compounds, andrographolide, and celastrol, widely used as a nutritional or medicinal supplement are useful to attenuate DENV-induced plasma leakage through induction of the HO-1 expression in DENV-infected AG129 mice. In conclusion, our findings reveal that induction of the HO-1 signal pathway is a promising option for the treatment of DENV-induced vascular pathologies.
Collapse
Affiliation(s)
- Yu-Hsuan Wu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chun Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Kuang Lin
- Department of Marine Biotechnology and Resources, Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Graduate Institute of Medicine in College of Medicine and Graduate Institute of Natural Products in College of Pharmacy, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Bazban-Shotorbani S, Gavins F, Kant K, Dufva M, Kamaly N. A Biomicrofluidic Screening Platform for Dysfunctional Endothelium‐Targeted Nanoparticles and Therapeutics. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Salime Bazban-Shotorbani
- Department of Health Technology DTU Health Tech Technical University of Denmark Lyngby 2800 Kgs. Denmark
- Department of Chemistry Molecular Sciences Research Hub (MSRH) Imperial College London London W12 0BZ UK
| | - Felicity Gavins
- Department of Life Sciences Centre for Inflammation Research and Translational Medicine (CIRTM) Brunel University London London UB8 3PH UK
| | - Krishna Kant
- Department of Physical Chemistry Biomedical Research Center of Galicia (CINBIO) University of Vigo Vigo 36310 Spain
| | - Martin Dufva
- Department of Health Technology DTU Health Tech Technical University of Denmark Lyngby 2800 Kgs. Denmark
| | - Nazila Kamaly
- Department of Chemistry Molecular Sciences Research Hub (MSRH) Imperial College London London W12 0BZ UK
| |
Collapse
|
40
|
Pan Y, Wang X, Wang X, Shan F, Wang M, Zhang J, Zhang J, Jia S, Jiao Y, Qi Y, Gong H, Jiang D. Protective effect of conditioned media of human fetal dermal mesenchymal stem cells can inhibit burn-induced microvascular hyperpermeability. J Burn Care Res 2021; 43:735-741. [PMID: 34665252 DOI: 10.1093/jbcr/irab194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Burns often cause loss of skin barrier protection, fluid exudation, and local tissue edema, which hinder functional recovery. Effectively improving the quality of deep burn wound healing, shortening the wound healing time, and reducing tissue fluid leakage are urgent problems in the medical field. Human mesenchymal stem cells (MSCs) can effectively stabilize vascular endothelial injury. Fetal dermal MSCs (FDMSCs) are a newly discovered source of MSCs derived from the skin of accidentally aborted fetuses. However, the effect of FDMSCs on vascular permeability remains poorly understood. In this study, conditioned media from FDMSCs (F-CM) extracted from fetal skin tissue was prepared. The effect of F-CM on vascular permeability was evaluated using the internal circulation method FITC-dextran in vivo, and several in vitro assays, including cell viability assay, transwell permeability test, immunofluorescence, and western blotting. Altogether, our results demonstrate that F-CM could inhibit burn-induced microvascular hyperpermeability by increasing the protein expression levels of occludin and VE-cadherin, while restoring the expression of endothelial F-actin, and providing the foundation of a novel therapy for the treatment of burns with F-CM.
Collapse
Affiliation(s)
- Yi Pan
- Department of Burns and Plastic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.,Department of Rehabilitation Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Xiao Wang
- Department of Burns and Plastic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xinglei Wang
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Fei Shan
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Maoying Wang
- Department of Burns and Plastic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China.,Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jixun Zhang
- Department of Burns and Plastic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Jingjuan Zhang
- Department of Burns and Plastic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China.,Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shanshan Jia
- Department of Burns and Plastic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China.,Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ya Jiao
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Yongjun Qi
- Department of Burns and Plastic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Hongmin Gong
- Department of Burns, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250013, China
| | - Duyin Jiang
- Department of Burns and Plastic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China.,Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
41
|
Li J, Xia Y, Huang Z, Zhao Y, Xiong R, Li X, Huang Q, Shan F. Novel HIF-1-target gene isthmin1 contributes to hypoxia-induced hyperpermeability of pulmonary microvascular endothelial cells monolayers. Am J Physiol Cell Physiol 2021; 321:C671-C680. [PMID: 34469202 DOI: 10.1152/ajpcell.00124.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
Hypoxia-induced pulmonary microvascular endothelial cell (PMVEC) monolayers hyperpermeability is vital for vascular leakage, which participates in vascular diseases, such as acute lung injury (ALI) and high-altitude pulmonary edema (HAPE). We previously observed that PMVEC permeability was markedly elevated in hypoxia when cocultured with primary type II alveolar epithelial cells (AECII) in which isthmin1 (ISM1) was highly upregulated. However, whether the upregulation of ISM1 plays a role in hypoxia-induced PMVEC hyperpermeability is unclear. In this study, we assessed the role of AECII-derived ISM1 in hypoxia-induced PMVEC hyperpermeability with an AECII/PMVEC coculture system and uncovered the underlying mechanism whereby hypoxia stimulates ISM1 gene expression. We found that ISM1 gene expression was upregulated in cultured AECII cells exposed to hypoxia (3% O2) and that AECII-derived ISM1 participated in hypoxia-induced hyperpermeability of PMVEC monolayers, as small interference RNA (siRNA)-mediated knockdown of ISM1 in AECII markedly attenuated the increase in PMVEC permeability in coculture system under hypoxia. In addition, we confirmed that ISM1 was regulated by hypoxia-inducible factor-1α (HIF1α) according to the evidence that silencing of HIF1α inhibited the hypoxia-mediated upregulation of ISM1. Mechanismly, overexpression of HIF1α transcriptionally activated ISM1 gene expression by directly binding to the conserved regulatory elements upstream of the ism1 locus. We identified a novel HIF-1-target gene ISM1, which involves in hyperpermeability of pulmonary microvascular endothelial cell monolayers under hypoxia. Our in vitro cell experiments implied that the upregulated ISM1 derived from alveolar epithelium might be a vital modulator in hypoxia-induced endothelial hyperpermeability and thereby implicates with hypoxic pulmonary-related diseases.
Collapse
Affiliation(s)
- Junxia Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yiming Xia
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhizhong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yan Zhao
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Renping Xiong
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiaoxu Li
- College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Qingyuan Huang
- College of High Altitude Military Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
42
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Estepa‐Fernández A, Alfonso M, Morellá‐Aucejo Á, García‐Fernández A, Lérida‐Viso A, Lozano‐Torres B, Galiana I, Soriano‐Teruel PM, Sancenón F, Orzáez M, Martínez‐Máñez R. Senolysis Reduces Senescence in Veins and Cancer Cell Migration. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Alejandra Estepa‐Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María Alfonso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
| | - Ángela Morellá‐Aucejo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN) Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0 Madrid 28029 Spain
| | - Alba García‐Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN) Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0 Madrid 28029 Spain
| | - Araceli Lérida‐Viso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de València IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta Valencia 46026 Spain
| | - Beatriz Lozano‐Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN) Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0 Madrid 28029 Spain
| | - Irene Galiana
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | | | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN) Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0 Madrid 28029 Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de València IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta Valencia 46026 Spain
| | - Mar Orzáez
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València Camino de Vera, s/n Valencia 46022 Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina Universitat Politècnica de València Centro de Investigación Príncipe Felipe C/ Eduardo Primo Yúfera 3 Valencia 46012 Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER‐BBN) Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0 Madrid 28029 Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores Universitat Politècnica de València IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta Valencia 46026 Spain
| |
Collapse
|
44
|
Chen W, Wang Y, Zhou T, Xu Y, Zhan J, Wu J. CXCL13 Is Involved in the Lipopolysaccharide-Induced Hyperpermeability of Umbilical Vein Endothelial Cells. Inflammation 2021; 43:1789-1796. [PMID: 32500306 PMCID: PMC7476967 DOI: 10.1007/s10753-020-01253-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sepsis is a disease that is characterized by a severe systemic inflammatory response to microbial infection and lipopolysaccharide (LPS) and is a well-known inducer of sepsis, as well as endothelial cell hyperpermeability. In the present study, we confirm the elevation of CXC chemokine ligand 13 (CXCL13) in sepsis patients. We also show that LPS exposure increases the release of CXCL13, as well as the mRNA and protein expression of CXCL13 and its receptor, CXC chemokine receptor 5 (CXCR5) in human umbilical vein endothelial cells (HUVECs) in a dose- and time-dependent manner. We also examined the effects of CXCL13 knockdown on LPS-mediated endothelial hyperpermeability and tight junction (TJ) protein expression in HUVECs. Our results show that HUVECs exposed to LPS result in a significant decrease in transendothelial electrical resistance (TER) and TJ protein (Zonula occluden-1, occludin, and claudin-4) expression, and a notable increase in fluorescein isothiocyanate (FITC)-dextran flux and p38 phosphorylation, which was partially reversed by CXCL13 knockdown. Recombinant CXCL13 treatment had a similar effect as LPS exposure, which was attenuated by a p38 inhibitor, SB203580. Moreover, the CXCL13-neutralizing antibody significantly increased the survival rate of LPS-induced sepsis mice. Collectively, our results show that CXCL13 plays a key role in LPS-induced endothelium hyperpermeability via regulating p38 signaling and suggests that therapeutically targeting CXCL13 may be beneficial for the treatment of sepsis.
Collapse
Affiliation(s)
- Wen Chen
- Department of General Practice, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Wang
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Zhou
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuansheng Xu
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianwei Zhan
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinhong Wu
- Department of Emergency, Hangzhou First People's Hospital affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
45
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021. [PMID: 34169527 DOI: 10.1111/jnc.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes. Cover Image for this issue: https://doi.org/10.1111/jnc.15081.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
46
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021; 159:15-28. [PMID: 34169527 DOI: 10.1111/jnc.15460] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/19/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
47
|
Noh M, Zhang H, Kim H, Park S, Kim YM, Kwon YG. Primaquine Diphosphate, a Known Antimalarial Drug, Blocks Vascular Leakage Acting Through Junction Stabilization. Front Pharmacol 2021; 12:695009. [PMID: 34149436 PMCID: PMC8211987 DOI: 10.3389/fphar.2021.695009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelial barrier integrity is important for vascular homeostasis, and hyperpermeability participates in the progression of many pathological states, such as diabetic retinopathy, ischemic stroke, chronic bowel disease, and inflammatory disease. Here, using drug repositioning, we discovered that primaquine diphosphate (PD), previously known as an antimalarial drug, was a potential blocker of vascular leakage. PD inhibited the linear pattern of vascular endothelial growth factors (VEGF)-induced disruption at the cell boundaries, blocked the formation of VEGF-induced actin stress fibers, and stabilized the cortactin actin rings in endothelial cells. PD significantly reduced leakage in the Miles assay and mouse model of streptozotocin (STZ)-induced diabetic retinopathy. Targeted prediction programs and deubiquitinating enzyme activity assays identified a potential mechanism of action for PD and demonstrated that this operates via ubiquitin specific protease 1 (USP1). USP1 inhibition demonstrated a conserved barrier function by inhibiting VEGF-induced leakage in endothelial permeability assays. Taken together, these findings suggest that PD could be used as a novel drug for vascular leakage by maintaining endothelial integrity.
Collapse
Affiliation(s)
- Minyoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Haiying Zhang
- R&D Department, Curacle Co. Ltd., Seongnam-si, South Korea
| | - Hyejeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Songyi Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
48
|
Hritzo B, Legesse B, Ward JM, Kaur A, Holmes-Hampton GP, Moroni M. Investigating the Multi-Faceted Nature of Radiation-Induced Coagulopathies in a Göttingen Minipig Model of Hematopoietic Acute Radiation Syndrome. Radiat Res 2021; 196:156-174. [PMID: 34019667 DOI: 10.1667/rade-20-00073.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2021] [Indexed: 11/03/2022]
Abstract
Coagulopathies are well documented after acute radiation exposure at hematopoietic doses, and radiation-induced bleeding is notably one of the two main causes of mortality in the hematopoietic acute radiation syndrome. Despite this, understanding of the mechanisms by which radiation alters hemostasis and induces bleeding is still lacking. Here, male Göttingen minipigs received hematopoietic doses of 60Co gamma irradiation (total body) and coagulopathies were characterized by assessing bleeding, blood cytopenia, fibrin deposition, changes in hemostatic properties, coagulant/anticoagulant enzyme levels, and markers of inflammation, endothelial dysfunction, and barrier integrity to understand if a relationship exists between bleeding, hemostatic defects, bone marrow aplasia, inflammation, endothelial dysfunction and loss of barrier integrity. Acute radiation exposure induced coagulopathies in the Göttingen minipig model of hematopoietic acute radiation syndrome; instances of bleeding were not dependent upon thrombocytopenia. Neutropenia, alterations in hemostatic parameters and damage to the glycocalyx occurred in all animals irrespective of occurrence of bleeding. Radiation-induced bleeding was concurrent with simultaneous thrombocytopenia, anemia, neutropenia, inflammation, increased heart rate, decreased nitric oxide bioavailability and endothelial dysfunction; bleeding was not observed with the sole occurrence of a single aforementioned parameter in the absence of the others. Alteration of barrier function or clotting proteins was not observed in all cases of bleeding. Additionally, fibrin deposition was observed in the heart and lungs of decedent animals but no evidence of DIC was noted, suggesting a unique pathophysiology of radiation-induced coagulopathies. These findings suggest radiation-induced coagulopathies are the result of simultaneous damage to several key organs and biological functions, including the immune system, the inflammatory response, the bone marrow and the cardiovasculature.
Collapse
Affiliation(s)
- Bernadette Hritzo
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Betre Legesse
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | | | - Amandeep Kaur
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Gregory P Holmes-Hampton
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Maria Moroni
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| |
Collapse
|
49
|
Shlobin NA, Har-Even M, Itsekson-Hayosh Z, Harnof S, Pick CG. Role of Thrombin in Central Nervous System Injury and Disease. Biomolecules 2021; 11:562. [PMID: 33921354 PMCID: PMC8070021 DOI: 10.3390/biom11040562] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Thrombin is a Na+-activated allosteric serine protease of the chymotrypsin family involved in coagulation, inflammation, cell protection, and apoptosis. Increasingly, the role of thrombin in the brain has been explored. Low concentrations of thrombin are neuroprotective, while high concentrations exert pathological effects. However, greater attention regarding the involvement of thrombin in normal and pathological processes in the central nervous system is warranted. In this review, we explore the mechanisms of thrombin action, localization, and functions in the central nervous system and describe the involvement of thrombin in stroke and intracerebral hemorrhage, neurodegenerative diseases, epilepsy, traumatic brain injury, and primary central nervous system tumors. We aim to comprehensively characterize the role of thrombin in neurological disease and injury.
Collapse
Affiliation(s)
- Nathan A. Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Itsekson-Hayosh
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Department of Neurology and Joseph Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Sagi Harnof
- Department of Neurosurgery, Beilinson Hospital, Rabin Medical Center, Tel Aviv University, Petah Tikva 4941492, Israel;
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
50
|
Anti-Inflammatory Effect Fraction of Bletilla striata and Its Protective Effect on LPS-Induced Acute Lung Injury. Mediators Inflamm 2021; 2021:6684120. [PMID: 33776576 PMCID: PMC7981185 DOI: 10.1155/2021/6684120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022] Open
Abstract
Bletilla striata is a well-known traditional Chinese herb with anti-inflammatory properties that is widely used in the treatment of lung conditions such as silicosis, tuberculosis, and pneumogastric hemorrhage. However, little information on the anti-inflammatory ingredients and their activities is available. In this study, an effect fraction of Bletilla striata (EFBS) was enriched, and its anti-inflammatory activities and underlying mechanisms were investigated. EFBS was enriched by polyamide column chromatography and characterized by HPLC; an LPS-induced acute lung injury model was used to evaluate the anti-inflammatory activities of EFBS. Meanwhile, the main anti-inflammation-contributing ingredients and possible molecular mechanism of anti-inflammatory activity in EFBS were verified by component-knockout method combined with LPS-induced RAW264.7 cell model. The EFBS mainly consisted of coelonin (15.88%), batatasin III (32.49%), 3′-O-methylbatatasin III (6.96%), and 3-hydroxy-5-methoxy bibenzyl (2.51%). Pretreatment with the EFBS (20 mg/kg and 60 mg/kg) for five days prior to the administration of LPS resulted in decreases in wet-to-dry lung weight ratio, neutrophil number, MPO activity, total protein concentration, NO level, and MDA level, as well as IL-1β, IL-6, MCP-1, and TNF-α concentrations in the bronchoalveolar lavage fluid. Western blot analysis demonstrated the increased expressions of iNOS, COX-2, and NF-κB p65 in the LPS treatment group, all of which were ameliorated by EFBS pretreatment. Histological examination confirmed the protective effect of the EFBS. Additionally, component-knockout assay confirmed that these four quantitative components contributed significantly to the anti-inflammatory effect of EFBS. Coelonin, batatasin III, 3′-O-methylbatatasin III and 3-hydroxy-5-methoxy bibenzyl were the main anti-inflammatory components of EFBS and could regulate the expression of downstream inflammatory cytokines by inhibiting p65 nuclear translocation. These findings uncover, in part, the molecular basis underlying the anti-inflammatory activity of Bletilla striata.
Collapse
|