1
|
Schneider BM, Hamurcu HI, Salzbrunn A, von Kopylow K. Microfluidic systems in testicular in vitro culture: a powerful model tool for spermatogenesis and reprotoxicity studies. Asian J Androl 2025:00129336-990000000-00307. [PMID: 40260644 DOI: 10.4103/aja20254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/22/2025] [Indexed: 04/23/2025] Open
Abstract
ABSTRACT As prepubertal boys do not yet produce spermatozoa, they cannot rely on sperm cryopreservation for fertility preservation before gonadotoxic therapy, such as high-dose alkylating agents or radiotherapy in the case of childhood cancers. According to the current guidelines, cryopreservation of testicular biopsies containing spermatogonial stem cells (SSCs) may be proposed to high-risk patients for potential later therapeutic use to fulfill the patients' wish for a biological child. One promising technique for human in vitro spermatogenesis and in vitro propagation of human SSCs is microfluidic (MF) culture, in which cells or tissues are subjected to a continuous flow of medium. This provides exact control over such parameters as nutrient content and gradients, as well as the removal of waste metabolites. While MF has been shown to maintain tissues and cell populations of organs for longer than conventional in vitro culture techniques, it has not been widely used for testicular in vitro culture. MF could advance human testicular in vitro culture and is also applicable to reprotoxicity studies. This review summarizes the findings and achievements of testis-on-chip (ToC) setups to date and discusses the benefits and limitations of these for spermatogenesis in vitro and toxicity assessment.
Collapse
Affiliation(s)
- Botho Maximilian Schneider
- Clinic and Polyclinic for Dermatology and Venerology, Andrological Section, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | | | | | |
Collapse
|
2
|
Araújo
Oliveira Alves L, da Silva Felix JH, Menezes Ferreira A, Barroso dos Santos MT, Galvão da Silva C, Maria Santiago de Castro L, Sousa
dos Santos JC. Advances and Applications of Micro- and Mesofluidic Systems. ACS OMEGA 2025; 10:12817-12836. [PMID: 40224426 PMCID: PMC11983194 DOI: 10.1021/acsomega.4c10999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
Microfabrication technology has advanced scientific understanding and expanded our molecular control capabilities, enabling the development of 3D models in micrometer structures. The sizes of the fluidic channels are arranged in descending order, starting with the macro-, followed by the meso-, micro-, and nanoscale. These advances bring advantages and speed up biological and chemical experimental processes. Such miniaturized systems show significant advances, particularly in meso- and microreactors, through high-throughput screening. This work proposes a bibliometric analysis of the advances and applications of the Web of Science (WoS) database, analyzing the main highlights of the publications, indicators, and impact on knowledge production. In the past 20 years, approximately 3,934 documents published and cited, mainly by major world powers on micro- and mesofluidic systems, are increasingly expanding in the academic and industrial sectors.
Collapse
Affiliation(s)
- Larissa Araújo
Oliveira Alves
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - John Hebert da Silva Felix
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Antônio
Átila Menezes Ferreira
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Maria Tayane Barroso dos Santos
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Carlos Galvão da Silva
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Larysse Maria Santiago de Castro
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| | - José Cleiton Sousa
dos Santos
- Instituto de Engenharias
e Desenvolvimento Sustentável, Universidade
da Integração Internacional da Lusofonia Afro-Brasileira, Campus Auroras, Redenção CEP 62790-970, CE, Brazil
| |
Collapse
|
3
|
Shi Y, Cui C, Chen S, Chen S, Wang Y, Xu Q, Yang L, Ye J, Hong Z, Hu H. Worm-Based Diagnosis Combining Microfluidics toward Early Cancer Screening. MICROMACHINES 2024; 15:484. [PMID: 38675295 PMCID: PMC11052135 DOI: 10.3390/mi15040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Early cancer diagnosis increases therapy efficiency and saves huge medical costs. Traditional blood-based cancer markers and endoscopy procedures demonstrate limited capability in the diagnosis. Reliable, non-invasive, and cost-effective methods are in high demand across the world. Worm-based diagnosis, utilizing the chemosensory neuronal system of C. elegans, emerges as a non-invasive approach for early cancer diagnosis with high sensitivity. It facilitates effectiveness in large-scale cancer screening for the foreseeable future. Here, we review the progress of a unique route of early cancer diagnosis based on the chemosensory neuronal system of C. elegans. We first introduce the basic procedures of the chemotaxis assay of C. elegans: synchronization, behavior assay, immobilization, and counting. Then, we review the progress of each procedure and the various cancer types for which this method has achieved early diagnosis. For each procedure, we list examples of microfluidics technologies that have improved the automation, throughput, and efficiency of each step or module. Finally, we envision that microfluidics technologies combined with the chemotaxis assay of C. elegans can lead to an automated, cost-effective, non-invasive early cancer screening technology, with the development of more mature microfluidic modules as well as systematic integration of functional modules.
Collapse
Affiliation(s)
- Yutao Shi
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Chen Cui
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Shengzhi Chen
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Siyu Chen
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Yiheng Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Qingyang Xu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Lan Yang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Jiayi Ye
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Zhejiang University, Haining 314400, China
| | - Zhi Hong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining 314400, China (S.C.); (Q.X.)
| | - Huan Hu
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC Institute), International Campus, Zhejiang University, Haining 314400, China
| |
Collapse
|
4
|
Mukherjee J, Chaturvedi D, Mishra S, Jain R, Dandekar P. Microfluidic technology for cell biology-related applications: a review. J Biol Phys 2024; 50:1-27. [PMID: 38055086 PMCID: PMC10864244 DOI: 10.1007/s10867-023-09646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Fluid flow at the microscale level exhibits a unique phenomenon that can be explored to fabricate microfluidic devices integrated with components that can perform various biological functions. In this manuscript, the importance of physics for microscale fluid dynamics using microfluidic devices has been reviewed. Microfluidic devices provide new opportunities with regard to spatial and temporal control over cell growth. Furthermore, the manuscript presents an overview of cellular stimuli observed by combining surfaces that mimic the complex biochemistries and different geometries of the extracellular matrix, with microfluidic channels regulating the transport of fluids, soluble factors, etc. We have also explained the concept of mechanotransduction, which defines the relation between mechanical force and biological response. Furthermore, the manipulation of cellular microenvironments by the use of microfluidic systems has been highlighted as a useful device for basic cell biology research activities. Finally, the article focuses on highly integrated microfluidic platforms that exhibit immense potential for biomedical and pharmaceutical research as robust and portable point-of-care diagnostic devices for the assessment of clinical samples.
Collapse
Affiliation(s)
- Joydeb Mukherjee
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Deepa Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Shlok Mishra
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400019, India
| | - Ratnesh Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
5
|
Karasu T, Özgür E, Uzun L. MIP-on-a-chip: Artificial receptors on microfluidic platforms for biomedical applications. J Pharm Biomed Anal 2023; 226:115257. [PMID: 36669397 DOI: 10.1016/j.jpba.2023.115257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Lab-on-a-chip (LOC) as an alternative biosensing approach concerning cost efficiency, parallelization, ergonomics, diagnostic speed, and sensitivity integrates the techniques of various laboratory operations such as biochemical analysis, chemical synthesis, or DNA sequencing, etc. on miniaturized microfluidic single chips. Meanwhile, LOC tools based on molecularly imprinted biosensing approach permit their applications in various fields such as medical diagnostics, pharmaceuticals, etc., which are user-, and eco-friendly sensing platforms for not only alternative to the commercial competitor but also on-site detection like point-of-care measurements. In this review, we focused our attention on compiling recent pioneer studies that utilized those intriguing methodologies, the microfluidic Lab-on-a-chip and molecularly imprinting approach, and their biomedical applications.
Collapse
Affiliation(s)
- Tunca Karasu
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Erdoğan Özgür
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye.
| |
Collapse
|
6
|
Sateesh J, Guha K, Dutta A, Sengupta P, Yalamanchili D, Donepudi NS, Surya Manoj M, Sohail SS. A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip. BIOMICROFLUIDICS 2022; 16:041501. [PMID: 35992641 PMCID: PMC9385224 DOI: 10.1063/5.0087852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This review provides a detailed literature survey on microfluidics and its road map toward kidney-on-chip technology. The whole review has been tailored with a clear description of crucial milestones in regenerative medicine, such as bioengineering, tissue engineering, microfluidics, microfluidic applications in biomedical engineering, capabilities of microfluidics in biomimetics, organ-on-chip, kidney-on-chip for disease modeling, drug toxicity, and implantable devices. This paper also presents future scope for research in the bio-microfluidics domain and biomimetics domain.
Collapse
Affiliation(s)
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Arindam Dutta
- Urologist, RG Stone Urology and Laparoscopic Hospital, Kolkata, West Bengal, India
| | | | | | - Nanda Sai Donepudi
- Medical Interns, Government Siddhartha Medical College, Vijayawada, India
| | - M. Surya Manoj
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Sk. Shahrukh Sohail
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| |
Collapse
|
7
|
Yin J, Kuhn S. Numerical simulation of droplet formation in a microfluidic T-junction using a dynamic contact angle model. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Faraz M, Abbasi MA, Son D, Shin C, Lee KT, Won SM, Baac HW. Strain-Dependent Photoacoustic Characteristics of Free-Standing Carbon-Nanocomposite Transmitters. SENSORS 2022; 22:s22093432. [PMID: 35591121 PMCID: PMC9104446 DOI: 10.3390/s22093432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
In this paper we demonstrate strain-dependent photoacoustic (PA) characteristics of free-standing nanocomposite transmitters that are made of carbon nanotubes (CNT) and candle soot nanoparticles (CSNP) with an elastomeric polymer matrix. We analyzed and compared PA output performances of these transmitters which are prepared first on glass substrates and then in a delaminated free-standing form for strain-dependent characterization. This confirms that the nanocomposite transmitters with lower concentration of nanoparticles exhibit more flexible and stretchable property in terms of Young’s modulus in a range of 4.08–10.57 kPa. Then, a dynamic endurance test was performed revealing that both types of transmitters are reliable with pressure amplitude variation as low as 8–15% over 100–800 stretching cycles for a strain level of 5–28% with dynamic endurance in range of 0.28–2.8%. Then, after 2000 cycles, the transmitters showed pressure amplitude variation of 6–29% (dynamic endurance range of 0.21–1.03%) at a fixed strain level of 28%. This suggests that the free-standing nanocomposite transmitters can be used as a strain sensor under a variety of environments providing robustness under repeated stretching cycles.
Collapse
Affiliation(s)
- Muhammad Faraz
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Muhammad Awais Abbasi
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Changhwan Shin
- School of Electrical Engineering, Korea University, Seoul 02841, Korea
| | - Kyu-Tae Lee
- Department of Physics, Inha University, Incheon 22212, Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
9
|
Ling FWM, Abdulbari HA, Chin SY. Heterogeneous Microfluidic Reactors: A Review and an Insight of Enzymatic Reactions. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fiona W. M. Ling
- Universiti Malaysia Pahang Centre for Research in Advanced Fluid & Processes (FLUID CENTRE) Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| | - Hayder A. Abdulbari
- Universiti Malaysia Pahang Centre for Research in Advanced Fluid & Processes (FLUID CENTRE) Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| | - Sim Yee Chin
- Universiti Malaysia Pahang Department of Chemical Engineering, College of Engineering Lebuhraya Tun Razak 26300 Gambang, Kuantan Pahang Malaysia
| |
Collapse
|
10
|
Heinsohn NK, Niedl RR, Anielski A, Lisdat F, Beta C. Electrophoretic µPAD for Purification and Analysis of DNA Samples. BIOSENSORS 2022; 12:62. [PMID: 35200323 PMCID: PMC8869226 DOI: 10.3390/bios12020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
In this work, the fabrication and characterization of a simple, inexpensive, and effective microfluidic paper analytic device (µPAD) for monitoring DNA samples is reported. The glass microfiber-based chip has been fabricated by a new wax-based transfer-printing technique and an electrode printing process. It is capable of moving DNA effectively in a time-dependent fashion. The nucleic acid sample is not damaged by this process and is accumulated in front of the anode, but not directly on the electrode. Thus, further DNA processing is feasible. The system allows the DNA to be purified by separating it from other components in sample mixtures such as proteins. Furthermore, it is demonstrated that DNA can be moved through several layers of the glass fiber material. This proof of concept will provide the basis for the development of rapid test systems, e.g., for the detection of pathogens in water samples.
Collapse
Affiliation(s)
- Natascha Katharina Heinsohn
- InventicsDx GmbH, Magnusstrasse 11, 12489 Berlin, Germany; (R.R.N.); (A.A.)
- Biological Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| | | | - Alexander Anielski
- InventicsDx GmbH, Magnusstrasse 11, 12489 Berlin, Germany; (R.R.N.); (A.A.)
| | - Fred Lisdat
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences, Hochschulring 1, 15745 Wildau, Germany
| | - Carsten Beta
- Biological Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
| |
Collapse
|
11
|
Duarte LC, Pereira I, Maciel LIL, Vaz BG, Coltro WKT. 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry. Anal Chim Acta 2022; 1190:339252. [PMID: 34857139 DOI: 10.1016/j.aca.2021.339252] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/31/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022]
Abstract
3D printing is a technology that has revolutionized traditional rapid prototyping methods due to its ability to build microscale structures with customized geometries in a simple, fast, and low-cost way. In this sense, this article describes the development of a microfluidic mixing device to monitor chemical reactions by mass spectrometry (MS). Microfluidic mixers were designed containing 3D serpentine and Y-shaped microchannels, both with a pointed end for facilitating the spray formation. The devices were fabricated entirely by 3D printing with fusion deposition modeling (FDM) technology. As proof-of-concept, micromixers were evaluated through monitoring the Katritzky reaction by injecting simultaneously 2,4,6-triphenylpropyllium (TPP) and amino acid (glycine or alanine) solutions, each through a different reactor inlet. Reaction product was monitored online by MS at different flow rates. Mass spectra showed that the relative abundances of the products obtained with the device containing the 3D serpentine channel were three times greater than those obtained with the Y-channel device due to the turbulence generated by the barriers created inside microchannels. In addition, when compared to the conventional electrospray ionization mass spectrometry (ESI-MS) technique, the 3D serpentine mixer offered better performance measured in relation to the relative abundance values for the reaction products. These results as well as the instrumental simplicity indicate that 3D printed microfluidic mixer is a promising tool for monitoring organic reactions via MS.
Collapse
Affiliation(s)
- Lucas C Duarte
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Igor Pereira
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Lanaia I L Maciel
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, 13084-971, Campinas, SP, Brazil.
| |
Collapse
|
12
|
Bacchin P, Leng J, Salmon JB. Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chem Rev 2021; 122:6938-6985. [PMID: 34882390 DOI: 10.1021/acs.chemrev.1c00459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evaporation, pervaporation, and forward osmosis are processes leading to a mass transfer of solvent across an interface: gas/liquid for evaporation and solid/liquid (membrane) for pervaporation and osmosis. This Review provides comprehensive insight into the use of these processes at the microfluidic scales for applications ranging from passive pumping to the screening of phase diagrams and micromaterials engineering. Indeed, for a fixed interface relative to the microfluidic chip, these processes passively induce flows driven only by gradients of chemical potential. As a consequence, these passive-transport phenomena lead to an accumulation of solutes that cannot cross the interface and thus concentrate solutions in the microfluidic chip up to high concentration regimes, possibly up to solidification. The purpose of this Review is to provide a unified description of these processes and associated microfluidic applications to highlight the differences and similarities between these three passive-transport phenomena.
Collapse
Affiliation(s)
- Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Jacques Leng
- CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 33600 Pessac, France
| | | |
Collapse
|
13
|
Shi L, Esfandiari L. Emerging on-chip electrokinetic based technologies for purification of circulating cancer biomarkers towards liquid biopsy: A review. Electrophoresis 2021; 43:288-308. [PMID: 34791687 DOI: 10.1002/elps.202100234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022]
Abstract
Early detection of cancer can significantly reduce mortality and save lives. However, the current cancer diagnosis is highly dependent on costly, complex, and invasive procedures. Thus, a great deal of effort has been devoted to exploring new technologies based on liquid biopsy. Since liquid biopsy relies on detection of circulating biomarkers from biofluids, it is critical to isolate highly purified cancer-related biomarkers, including circulating tumor cells (CTCs), cell-free nucleic acids (cell-free DNA and cell-free RNA), small extracellular vesicles (exosomes), and proteins. The current clinical purification techniques are facing a number of drawbacks including low purity, long processing time, high cost, and difficulties in standardization. Here, we review a promising solution, on-chip electrokinetic-based methods, that have the advantage of small sample volume requirement, minimal damage to the biomarkers, rapid, and label-free criteria. We have also discussed the existing challenges of current on-chip electrokinetic technologies and suggested potential solutions that may be worthy of future studies.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
14
|
Shan H, Lin Q, Wang D, Sun X, Quan B, Chen X, Chen Z. 3D Printed Integrated Multi-Layer Microfluidic Chips for Ultra-High Volumetric Throughput Nanoliposome Preparation. Front Bioeng Biotechnol 2021; 9:773705. [PMID: 34708031 PMCID: PMC8542840 DOI: 10.3389/fbioe.2021.773705] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Although microfluidic approaches for liposomes preparation have been developed, fabricating microfluidic devices remains expensive and time-consuming. Also, owing to the traditional layout of microchannels, the volumetric throughput of microfluidics has been greatly limited. Herein an ultra-high volumetric throughput nanoliposome preparation method using 3D printed microfluidic chips is presented. A high-resolution projection micro stereolithography (PμSL) 3D printer is applied to produce microfluidic chips with critical dimensions of 400 µm. The microchannels of the microfluidic chip adopt a three-layer layout, achieving the total flow rate (TFR) up to 474 ml min−1, which is remarkably higher than those in the reported literature. The liposome size can be as small as 80 nm. The state of flows in microchannels and the effect of turbulence on liposome formation are explored. The experimental results demonstrate that the 3D printed integrated microfluidic chip enables ultra-high volumetric throughput nanoliposome preparation and can control size efficiently, which has great potential in targeting drug delivery systems.
Collapse
Affiliation(s)
- Han Shan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Qibo Lin
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Danfeng Wang
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Xin Sun
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Biao Quan
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Chen
- School of Mechanical and Electrical Engineering, Central South University, Changsha, China
| |
Collapse
|
15
|
Funano SI, Ota N, Tanaka Y. A simple and reversible glass-glass bonding method to construct a microfluidic device and its application for cell recovery. LAB ON A CHIP 2021; 21:2244-2254. [PMID: 33908537 DOI: 10.1039/d1lc00058f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Compared with polymer microfluidic devices, glass microfluidic devices have advantages for diverse lab-on-a-chip applications due to their rigidity, optical transparency, thermal stability, and chemical/biological inertness. However, the bonding process to construct glass microfluidic devices usually involves treatment(s) like high temperature over 400 °C, oxygen plasma or piranha solution. Such processes require special skill, apparatus or harsh chemicals, and destroy molecules or cells in microchannels. Here, we present a simple method for glass-glass bonding to easily form microchannels. This method consists of two steps: placing water droplets on a glass substrate cleaned by neutral detergent, followed by fixing a cover glass plate on the glass substrate by binding clips for a few hours at room temperature. Surface analyses showed that the glass surface cleaned by neutral detergent had a higher ratio of SiOH over SiO than glass surfaces prepared by other cleaning steps. Thus, the suggested method could achieve stronger glass-glass bonding via dehydration condensation due to the higher density of SiOH. The pressure endurance reached over 600 kPa within 6 h of bonding, which is sufficient for practical microfluidic applications. Moreover, by exploiting the reversibility of this bonding method, cell recoveries after cultivating cells in a microchannel were demonstrated. This new bonding method can significantly improve both the productivity and the usability of glass microfluidic devices and extend the possibility of glass microfluidic applications in future.
Collapse
Affiliation(s)
- Shun-Ichi Funano
- Laboratory for Integrated biodevice, Center for Biosystems Dynamics Research, RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Nobutoshi Ota
- Laboratory for Integrated biodevice, Center for Biosystems Dynamics Research, RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yo Tanaka
- Laboratory for Integrated biodevice, Center for Biosystems Dynamics Research, RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
16
|
Zhou X, Cao H, Zeng Y. Microfluidic circulating reactor system for sensitive and automated duplex-specific nuclease-mediated microRNA detection. Talanta 2021; 232:122396. [PMID: 34074392 DOI: 10.1016/j.talanta.2021.122396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022]
Abstract
Duplex-specific nuclease signal amplification (DSNSA) is a promising microRNA (miRNA) quantification strategy. However, existing DSNSA based miRNA detection methods suffer from costly chemical consumptions and require laborious multi-step sample pretreatment that are prone to sample loss and contamination, including total RNA extraction and enrichment. To address these problems, herein we devised a pneumatically automated microfluidic reactor device that integrates both analyte extraction/enrichment and DSNSA-mediated miRNA detection in one streamlined analysis workflow. Two flow circulation strategies were investigated to determine the effects of flow conditions on the kinetics of on-chip DSNSA reaction in a bead-packed microreactor. With the optimized workflow, we demonstrated rapid, robust on-chip detection of miR-21 with a limit-of-detection of 35 amol, while greatly reducing the consumption of DSN enzyme to 0.1 U per assay. Therefore, this microfluidic system provides a useful tool for many applications, including clinical diagnosis.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Hongmei Cao
- Department of Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA; University of Florida Health Cancer Center, Gainesville, FL, 32610, USA.
| |
Collapse
|
17
|
Dalvand K, Balavandy SK, Li F, Breadmore M, Ghiasvand A. Optimization of smartphone-based on-site-capable uranium analysis in water using a 3D printed microdevice. Anal Bioanal Chem 2021; 413:3243-3251. [PMID: 33751164 DOI: 10.1007/s00216-021-03260-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022]
Abstract
Recent development of portable three-dimensional printed (3DP) microfluidic-based devices has provided a new horizon for real-time field analysis of environmental pollutants. Smartphones with the possibility of launching different software, sensing, and grading color intensity, as well as capability of sending/receiving data through the internet have made this technology very promising. Here, a novel smartphone-based 3DP microfluidic device is reported that uses an image-based colorimetric detection method for the analysis of uranium in water samples, based on the complex formation of uranyl ions with Arsenazo III. The microfluidic device consists of two horizontal channels, separated by an integrated porous membrane, and was printed in a single run using a transparent photopolymer. It enables the operator to see the internal parts and the color change visually, as well as enables the operator to take images and record the color intensity using a smartphone. In each 3DP run, 220 devices are fabricated in 1.5 h (~ 25 s per device) at an estimated price of $2.5 per device. A Box-Behnken design (BBD) was utilized for the optimization of experimental conditions. The calibration curve was linear within 0.5-100 μg mL-1 (R2 > 0.9925) of uranium analysis. The total time of each experiment was approximately 8 min. The 3DP device was successfully employed for the recovery and determination of uranium in spiked natural water samples.
Collapse
Affiliation(s)
- Kolsoum Dalvand
- Department of Chemistry, Lorestan University, Khoramabad, 68178-17133, Iran
| | - Sepideh Keshan Balavandy
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Feng Li
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Michael Breadmore
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alireza Ghiasvand
- Department of Chemistry, Lorestan University, Khoramabad, 68178-17133, Iran. .,Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
18
|
Sharma S, Venzac B, Burgers T, Le Gac S, Schlatt S. Microfluidics in male reproduction: is ex vivo culture of primate testis tissue a future strategy for ART or toxicology research? Mol Hum Reprod 2021; 26:179-192. [PMID: 31977028 DOI: 10.1093/molehr/gaaa006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/03/2020] [Indexed: 01/09/2023] Open
Abstract
The significant rise in male infertility disorders over the years has led to extensive research efforts to recapitulate the process of male gametogenesis in vitro and to identify essential mechanisms involved in spermatogenesis, notably for clinical applications. A promising technology to bridge this research gap is organ-on-chip (OoC) technology, which has gradually transformed the research landscape in ART and offers new opportunities to develop advanced in vitro culture systems. With exquisite control on a cell or tissue microenvironment, customized organ-specific structures can be fabricated in in vitro OoC platforms, which can also simulate the effect of in vivo vascularization. Dynamic cultures using microfluidic devices enable us to create stimulatory effect and non-stimulatory culture conditions. Noteworthy is that recent studies demonstrated the potential of continuous perfusion in OoC systems using ex vivo mouse testis tissues. Here we review the existing literature and potential applications of such OoC systems for male reproduction in combination with novel bio-engineering and analytical tools. We first introduce OoC technology and highlight the opportunities offered in reproductive biology in general. In the subsequent section, we discuss the complex structural and functional organization of the testis and the role of the vasculature-associated testicular niche and fluid dynamics in modulating testis function. Next, we review significant technological breakthroughs in achieving in vitro spermatogenesis in various species and discuss the evidence from microfluidics-based testes culture studies in mouse. Lastly, we discuss a roadmap for the potential applications of the proposed testis-on-chip culture system in the field of primate male infertility, ART and reproductive toxicology.
Collapse
Affiliation(s)
- Swati Sharma
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Bastien Venzac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Thomas Burgers
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Stefan Schlatt
- Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| |
Collapse
|
19
|
Yamamoto K, Ota N, Tanaka Y. Nanofluidic Devices and Applications for Biological Analyses. Anal Chem 2021; 93:332-349. [PMID: 33125221 DOI: 10.1021/acs.analchem.0c03868] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Koki Yamamoto
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobutoshi Ota
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yo Tanaka
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Lashkaripour A, Rodriguez C, Mehdipour N, Mardian R, McIntyre D, Ortiz L, Campbell J, Densmore D. Machine learning enables design automation of microfluidic flow-focusing droplet generation. Nat Commun 2021; 12:25. [PMID: 33397940 PMCID: PMC7782806 DOI: 10.1038/s41467-020-20284-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
Droplet-based microfluidic devices hold immense potential in becoming inexpensive alternatives to existing screening platforms across life science applications, such as enzyme discovery and early cancer detection. However, the lack of a predictive understanding of droplet generation makes engineering a droplet-based platform an iterative and resource-intensive process. We present a web-based tool, DAFD, that predicts the performance and enables design automation of flow-focusing droplet generators. We capitalize on machine learning algorithms to predict the droplet diameter and rate with a mean absolute error of less than 10 μm and 20 Hz. This tool delivers a user-specified performance within 4.2% and 11.5% of the desired diameter and rate. We demonstrate that DAFD can be extended by the community to support additional fluid combinations, without requiring extensive machine learning knowledge or large-scale data-sets. This tool will reduce the need for microfluidic expertise and design iterations and facilitate adoption of microfluidics in life sciences.
Collapse
Affiliation(s)
- Ali Lashkaripour
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, 610 Commonwealth Avenue, Boston, MA, USA
| | - Christopher Rodriguez
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noushin Mehdipour
- Biological Design Center, 610 Commonwealth Avenue, Boston, MA, USA
- Division of Systems Engineering, Boston University, Boston, MA, USA
| | - Rizki Mardian
- Biological Design Center, 610 Commonwealth Avenue, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - David McIntyre
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, 610 Commonwealth Avenue, Boston, MA, USA
| | - Luis Ortiz
- Biological Design Center, 610 Commonwealth Avenue, Boston, MA, USA
- Department of Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston, MA, USA
| | | | - Douglas Densmore
- Biological Design Center, 610 Commonwealth Avenue, Boston, MA, USA.
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
21
|
Liu L, Yang C, Liu C, Piao J, Kaw HY, Cui J, Shang H, Ri HC, Kim JM, Jin M, Li D. Open-tubular radially cyclical electric field-flow fractionation (OTR-CyElFFF): an online concentric distribution strategy for simultaneous separation of microparticles. LAB ON A CHIP 2020; 20:3535-3543. [PMID: 32852497 DOI: 10.1039/d0lc00620c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An open-tubular radially cyclical electric field-flow fractionation technique which achieves the online separation of microparticles in a functional annular channel is proposed in this study. The system was set up by using a stainless steel tube and a platinum wire modified with ionic liquid/mesoporous silica materials as the external and internal electrodes. The feasibility for online separation of various particles was experimentally demonstrated. Particles in the channel were affected by a radial electric field and field-flow fractionation (FFF). On the cross section, different particles showed distinctive migration distances depending on their own properties and the different magnitudes of forces being exerted. The same kind of particles form an annular distribution within the same annulus while different particles form annular distributions at varied concentric annuli through electrophoresis. Under a laminar flow of FFF, different sizes of particles formed a conical arrangement within the annular separation channel. With the joint influence of electric field and flow field, different trajectories were obtained and the particles were eventually separated. Voltage, frequency and duty cycle value are the main parameters affecting the separation of particles. By adjusting these parameters, particles migrate in a zigzag trajectory on one side of the electrodes (mode I) and reach both sides of the electrodes (mode II). Six polystyrene particles were completely separated with high resolution within several minutes. Our system offers numerous advantages of label-free, high-resolution and online separation without tedious operations, and it is a promising tool for the effective separation of various micro-objects.
Collapse
Affiliation(s)
- Lu Liu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Cui Yang
- Department of Chemistry, Changchun Normal University, Changji North Road 677, Changchun City, Jilin Province 130032, China
| | - Cuicui Liu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Jishou Piao
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Han Yeong Kaw
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Jiaxuan Cui
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Haibo Shang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Hyok Chol Ri
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Ji Man Kim
- Department of Chemistry, Sungkyunkwan University, Korea
| | - Mingshi Jin
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| | - Donghao Li
- Department of Chemistry, Yanbian University, Park Road 977, Yanji City, Jilin Province 133002, PR China.
| |
Collapse
|
22
|
Abstract
Background::
Nano level chiral separation is necessary and demanding in the development
of the drug, genomic, proteomic, and other chemical and the environmental sciences. Few drugs exist
in human body cells for some days at nano level concentrations, that are out of the jurisdiction of the
detection by standard separation techniques. Likewise, the separation and identification of xenobiotics
and other environmental contaminants (at nano or low levels) are necessary for our healthiness.
Discussion:
Conclusion:
This article will be beneficial for chiral chromatographers, academicians, pharmaceutical
industries, environmental researchers and Government regulation authorities.
Collapse
Affiliation(s)
- Al Arsh Basheer
- State University of New York, Flint Entrance, Amherst, NY 14260, Buffalo, United States
| | - Iqbal Hussain
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, Jubail, Saudi Arabia
| | - Marcus T. Scotti
- Cheminformatics Laboratory - Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraiba-Campus I, 58051-970, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Teaching and Research Management - University Hospital, Cheminformatics Laboratory - Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraiba-Campus I, 58051-970, Joao Pessoa, PB, Brazil
| | - Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara - 41477, Saudi Arabia
| |
Collapse
|
23
|
Karami M, Yamini Y. On-disc electromembrane extraction-dispersive liquid-liquid microextraction: A fast and effective method for extraction and determination of ionic target analytes from complex biofluids by GC/MS. Anal Chim Acta 2020; 1105:95-104. [DOI: 10.1016/j.aca.2020.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/05/2023]
|
24
|
Sakamoto H, Shoji H, Amaya S, Saiki T, Takamura E, Satomura T, Suye SI. Electrochemical characteristics of a hyperthermophilic enzyme in microdroplets stirred and heated by surface acoustic waves. Biotechnol Prog 2019; 36:e2943. [PMID: 31756290 DOI: 10.1002/btpr.2943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
Micro total analysis system (μTAS) is expected to be applied in various fields. In particular, since electrochemical measurement is inexpensive and easy, electrochemical measurement can be integrated with a microchannel. However, electrochemical detection sensitivity in a microchannel is lowered because the diffusion of the detection target is limited. In an ordinary electrochemical detection system, using a stirrer in a beaker can overcome limited diffusion. We previously proposed a new detection system that combines a microliquid solution agitation technology using surface acoustic waves (SAWs) with the μTAS. The SAWs function as microstirrers, thus making electrochemical detection possible by overcoming limited diffusion of the sample. However, when the solution is stirred by the SAWs, the temperature of the solution increases to 70°C due to vibrational energy. This leads to enzyme inactivation and impaired electrochemical response. Therefore, in this study, we used a hyperthermophile-derived enzyme. Temperature and electrochemical characteristics of the detection system using SAWs and a multi-copper oxidase (MCO) derived from the hyperthermophilic archaea Pyrobaculum aerophilum were studied. Laccase, which is an MCO derived from the thermophilic fungus Trametes versicolor, was also studied. We also characterized the enzyme-electrochemical reaction using SAWs by comparing the magnitude of the reduction current obtained using the two enzymes with different heat resistances. We observed an increase in the electrochemical response with the SAWs, without impaired enzyme activity. Thus, the use of a thermostable enzyme is suitable for the development of a biosensor that uses SAWs for agitation.
Collapse
Affiliation(s)
- Hiroaki Sakamoto
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Hikaru Shoji
- Department of Materials Development Engineering, University of Fukui, Fukui, Japan
| | - Satoshi Amaya
- Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tsunemasa Saiki
- Materials and Analysis Department, Hyogo Prefectural Institute of Technology, Kobe, Japan.,Graduate School of Engineering, University of Hyogo, Kobe, Japan
| | - Eiichiro Takamura
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Takenori Satomura
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Shin-Ichiro Suye
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui, Japan
| |
Collapse
|
25
|
Abstract
Background:
Green chemistry is the application of methodologies and techniques to reduce
the use of hazardous substances, minimize waste generation and apply benign and cheap applications.
Methods:
In this article, the following issues were considered: greener solvents and reagents, miniaturization
of analytical instrumentation, reagent-free methodologies, greening with automation, greener
sample preparation methods, and greener detection systems. Moreover, the tables along with the investigated
topics including environmental analysis were included. The future aspects and the challenges
in green analytical chemistry were also discussed.
Results:
The prevention of waste generation, atomic economy, use of less hazardous materials for
chemical synthesis and design, use of safer solvents, auxiliaries and renewable raw materials, reduction
of unnecessary derivatization, design degradation products, prevention of accidents and development
of real-time analytical methods are important for the development of greener methodologies.
Conclusion:
Efforts should also be given for the evaluation of novel solid phases, new solvents, and
sustainable reagents to reduce the risks associated with the environment. Moreover, greener methodologies
enable energy efficient, safe and faster that reduce the use of reagents, solvents and preservatives
which are hazardous to both environment and human health.
Collapse
Affiliation(s)
| | - Onur Yayayürük
- Department of Chemistry, Faculty of Science, Ege University, İzmir, Turkey
| |
Collapse
|
26
|
Thermoelectric Materials—Strategies for Improving Device Performance and Its Medical Applications. SCI 2019. [DOI: 10.3390/sci1020037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thermoelectrics, in particular solid-state conversion of heat to electricity and vice versa, is expected to be a key energy harvesting and temperature management solution in coming years. There has been a resurgence in the search for new materials for advanced thermoelectric energy conversion applications and to enhance the properties of existing materials. In this paper, we review recent efforts on improving figure-of-merit (ZT) through alloying and nano structuring. As heatsink characteristics dictate the performance of thermoelectric modules, various types of heatsink designs has been investigated. Several reported strategies for improving ZT are critically assessed. A notable increase in figure-of-merit of thermoelectric materials (TE) has opened up new areas of applications especially in the medical field. Peltier cooling devices are widely employed for patient core temperature control, skin cooling, medical device and laboratory equipment cooling. Application of these devices in the medical field both in temperature control and power generation has been studied in detail. It is envisioned that this study will provide profound knowledge on the thermoelectric based materials and its role in medical applications.
Collapse
|
27
|
Williams MJ, Lee NK, Mylott JA, Mazzola N, Ahmed A, Abhyankar VV. A Low-Cost, Rapidly Integrated Debubbler (RID) Module for Microfluidic Cell Culture Applications. MICROMACHINES 2019; 10:mi10060360. [PMID: 31151206 PMCID: PMC6632054 DOI: 10.3390/mi10060360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 01/08/2023]
Abstract
Microfluidic platforms use controlled fluid flows to provide physiologically relevant biochemical and biophysical cues to cultured cells in a well-defined and reproducible manner. Undisturbed flows are critical in these systems, and air bubbles entering microfluidic channels can lead to device delamination or cell damage. To prevent bubble entry into microfluidic channels, we report a low-cost, Rapidly Integrated Debubbler (RID) module that is simple to fabricate, inexpensive, and easily combined with existing experimental systems. We demonstrate successful removal of air bubbles spanning three orders of magnitude with a maximum removal rate (dV/dt)max = 1.5 mL min−1, at flow rates required to apply physiological wall shear stress (1–200 dyne cm−2) to mammalian cells cultured in microfluidic channels.
Collapse
Affiliation(s)
- Matthew J Williams
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Nicholas K Lee
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Joseph A Mylott
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Nicole Mazzola
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Adeel Ahmed
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| |
Collapse
|
28
|
Karlinsey JM. Sample Injection Techniques. Methods Mol Biol 2019; 1906:55-64. [PMID: 30488384 DOI: 10.1007/978-1-4939-8964-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sample introduction is an important consideration in any microchip electrophoresis (ME) separation. The number of applications and level of complexity of ME devices continue to increase, but the introduction of sample into the separation channel has remained relatively constant. This work describes the most common electrophoretic methods of performing sample injection for ME applications using electroosmotic flow (EOF), providing both a transition from capillary electrophoresis (CE) separations and a straightforward entry point into ME.
Collapse
|
29
|
Kunti G, Dhar J, Bhattacharya A, Chakraborty S. Joule heating-induced particle manipulation on a microfluidic chip. BIOMICROFLUIDICS 2019; 13:014113. [PMID: 30867883 PMCID: PMC6404938 DOI: 10.1063/1.5082978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/13/2019] [Indexed: 05/07/2023]
Abstract
We develop an electrokinetic technique that continuously manipulates colloidal particles to concentrate into patterned particulate groups in an energy efficient way, by exclusive harnessing of the intrinsic Joule heating effects. Our technique exploits the alternating current electrothermal flow phenomenon which is generated due to the interaction between non-uniform electric and thermal fields. Highly non-uniform electric field generates sharp temperature gradients by generating spatially-varying Joule heat that varies along the radial direction from a concentrated point hotspot. Sharp temperature gradients induce a local variation in electric properties which, in turn, generate a strong electrothermal vortex. The imposed fluid flow brings the colloidal particles at the centre of the hotspot and enables particle aggregation. Furthermore, maneuvering structures of the Joule heating spots, different patterns of particle clustering may be formed in a low power budget, thus opening up a new realm of on-chip particle manipulation process without necessitating a highly focused laser beam which is much complicated and demands higher power budget. This technique can find its use in Lab-on-a-chip devices to manipulate particle groups, including biological cells.
Collapse
Affiliation(s)
- Golak Kunti
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Jayabrata Dhar
- CNRS, Universite de Rennes 1, Geosciences Rennes UMR6118, Rennes, France
| | - Anandaroop Bhattacharya
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
30
|
Svejdal RR, Dickinson ER, Sticker D, Kutter JP, Rand KD. Thiol-ene Microfluidic Chip for Performing Hydrogen/Deuterium Exchange of Proteins at Subsecond Time Scales. Anal Chem 2018; 91:1309-1317. [DOI: 10.1021/acs.analchem.8b03050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rasmus R. Svejdal
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Eleanor R. Dickinson
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Drago Sticker
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Microscale Analytical Systems Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jörg P. Kutter
- Microscale Analytical Systems Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kasper D. Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
31
|
Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron 2018; 117:112-128. [PMID: 29890393 PMCID: PMC6082696 DOI: 10.1016/j.bios.2018.05.050] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
Abstract
The rapid diagnosis of pathogens is crucial in the early stages of treatment of diseases where the choice of the correct drug can be critical. Although conventional cell culture-based techniques have been widely utilized in clinical applications, newly introduced optical-based, microfluidic chips are becoming attractive. The advantages of the novel methods compared to the conventional techniques comprise more rapid diagnosis, lower consumption of patient sample and valuable reagents, easy application, and high reproducibility in the detection of pathogens. The miniaturized channels used in microfluidic systems simulate interactions between cells and reagents in microchannel structures, and evaluate the interactions between biological moieties to enable diagnosis of microorganisms. The overarching goal of this review is to provide a summary of the development of microfluidic biochips and to comprehensively discuss different applications of microfluidic biochips in the detection of pathogens. New types of microfluidic systems and novel techniques for viral pathogen detection (e.g. HIV, HVB, ZIKV) are covered. Next generation techniques relying on high sensitivity, specificity, lower consumption of precious reagents, suggest that rapid generation of results can be achieved via optical based detection of bacterial cells. The introduction of smartphones to replace microscope based observation has substantially improved cell detection, and allows facile data processing and transfer for presentation purposes.
Collapse
Affiliation(s)
- Behzad Nasseri
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Chemical Engineering Deptartment and Bioengineeing Division, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| | - Neda Soleimani
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran.
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Ren L, Yang S, Zhang P, Qu Z, Mao Z, Huang PH, Chen Y, Wu M, Wang L, Li P, Huang TJ. Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801996. [PMID: 30168662 PMCID: PMC6291339 DOI: 10.1002/smll.201801996] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/27/2018] [Indexed: 05/15/2023]
Abstract
Microfluidic fluorescence-activated cell sorters (μFACS) have attracted considerable interest because of their ability to identify and separate cells in inexpensive and biosafe ways. Here a high-performance μFACS is presented by integrating a standing surface acoustic wave (SSAW)-based, 3D cell-focusing unit, an in-plane fluorescent detection unit, and an SSAW-based cell-deflection unit on a single chip. Without using sheath flow or precise flow rate control, the SSAW-based cell-focusing technique can focus cells into a single file at a designated position. The tight focusing of cells enables an in-plane-integrated optical detection system to accurately distinguish individual cells of interest. In the acoustic-based cell-deflection unit, a focused interdigital transducer design is utilized to deflect cells from the focused stream within a minimized area, resulting in a high-throughput sorting ability. Each unit is experimentally characterized, respectively, and the integrated SSAW-based FACS is used to sort mammalian cells (HeLa) at different throughputs. A sorting purity of greater than 90% is achieved at a throughput of 2500 events s-1 . The SSAW-based FACS is efficient, fast, biosafe, biocompatible and has a small footprint, making it a competitive alternative to more expensive, bulkier traditional FACS.
Collapse
Affiliation(s)
- Liqiang Ren
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhiguo Qu
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhangming Mao
- Ascent Bio-Nano Technologies, Inc., Research Triangle Park, NC, 27709, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mengxi Wu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Lin Wang
- Ascent Bio-Nano Technologies, Inc., Research Triangle Park, NC, 27709, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
33
|
Mao Y, Pan Y, Li X, Li B, Chu J, Pan T. High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip. LAB ON A CHIP 2018; 18:2720-2729. [PMID: 30014071 DOI: 10.1039/c8lc00505b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Emerging demands for handling minute liquid samples and reagents have been constantly growing in a wide variety of medical and biological areas. This calls for low-volume and high-precision liquid handling solutions with ease-of-use and portability. In this article, a new digital droplet pipetting method is introduced for the first time, derived from the microfluidic impact printing principle. Configured as a conventional handheld pipette, the prototype device consists of a plug-and-play and disposable microfluidic pipetting chip, driven by a programmable electromagnetic actuator for on-demand dispensing of nanoliter droplets. In particular, the impact-driven microfluidic pipetting chip, in place of the traditional disposable pipette tips, offers both liquid loading and droplet generation. The printing nozzle has been micro-fabricated using a femtosecond laser with a super-hydrophobic structure, in order to minimize the dispensing residues. As a result of the high-precision droplet dispensing principle, the variations of the dispensed volume have been successfully reduced from 49.5% to 0.6% at 0.1 μL, as compared to its commercial counterparts. A proof-of-concept study for concentration dilution and quantitative analysis of cell drug resistance has been carried out by using the digital droplet pipetting system, demonstrating its potential in a broad range of biomedical applications which require both high precision and low-volume processing.
Collapse
Affiliation(s)
- Yuxin Mao
- Department of Precision Machinery & Precision Instrumentation, University of Science & Technology of China, Hefei, Anhui 230027, China.
| | | | | | | | | | | |
Collapse
|
34
|
Christadore L, Grinstaff MW, Schaus SE. Fluorescent Dendritic Micro-Hydrogels: Synthesis, Analysis and Use in Single-Cell Detection. Molecules 2018; 23:E936. [PMID: 29669998 PMCID: PMC6017717 DOI: 10.3390/molecules23040936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/19/2023] Open
Abstract
Hydrogels are of keen interest for a wide range of medical and biotechnological applications including as 3D substrate structures for the detection of proteins, nucleic acids, and cells. Hydrogel parameters such as polymer wt % and crosslink density are typically altered for a specific application; now, fluorescence can be incorporated into such criteria by specific macromonomer selection. Intrinsic fluorescence was observed at λmax 445 nm from hydrogels polymerized from lysine and aldehyde- terminated poly(ethylene glycol) macromonomers upon excitation with visible light. The hydrogel’s photochemical properties are consistent with formation of a nitrone functionality. Printed hydrogels of 150 μm were used to detect individual cell adherence via a decreased in fluorescence. The use of such intrinsically fluorescent hydrogels as a platform for cell sorting and detection expands the current repertoire of tools available.
Collapse
Affiliation(s)
- Lisa Christadore
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
- Departments of Biomedical Engineering and Medicine, Boston University, Boston, MA 02215, USA.
| | - Scott E Schaus
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
35
|
Zhang L, Xu Z, Kang Y, Xue P. Three-dimensional microfluidic chip with twin-layer herringbone structure for high efficient tumor cell capture and release via antibody-conjugated magnetic microbeads. Electrophoresis 2018; 39:1452-1459. [DOI: 10.1002/elps.201800043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Silkworm Genome Biology; Southwest University; Chongqing P. R. China
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy; Southwest University; Chongqing P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices; Chongqing P. R. China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy; Southwest University; Chongqing P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices; Chongqing P. R. China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy; Southwest University; Chongqing P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices; Chongqing P. R. China
| |
Collapse
|
36
|
Wang J, Zhu Z, Wang X, Yang L, Liu L, Wang J, Igbinigie E, Liu X, Li J, Qiu L, Li YQ, Jiang P. A novel monitoring approach of antibody-peptide binding using "bending" capillary electrophoresis. Int J Biol Macromol 2018. [PMID: 29524489 DOI: 10.1016/j.ijbiomac.2018.03.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recently, the in-capillary electrophoresis assay has been applied to variety kinds of analyses owing to its multiple functional integrating features, including mixing of samples, reaction process of the mixtures, and the separation and detection in one capillary system. However, the micro-reactor still has its limitations to the currently available applications, especially the mixing step of the samples inside the capillary could not be well controlled automatically or manually. Herein, we have developed a novel capillary electrophoresis assay for the detection of antibody-peptide binding inside a bending capillary. Its efficacy was monitored using an anti-FLAG M2 antibody and its ligand conjugated with FAM dye (FAM-DYKD). The antibody and the peptide were mixed inside the bending capillary with sequential injections. It was found that the numbers of semi-circle on the capillary interfered by the antibody and peptide binding dynamic. Additionally, an online competition assay was performed, which further validated the efficacy of the bending capillary device on monitoring the dynamic binding between the antigen and antibody. In summary, our data suggests that the novel assay is a practical approach in monitoring the antibody-antigen complex formation at a nano-scale. It could be applied to detect any biomolecule-biomolecule interaction as a general strategy.
Collapse
Affiliation(s)
- Jianhao Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Zhilan Zhu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Xiang Wang
- Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Li Yang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Li Liu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Jianpeng Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Eseosaserea Igbinigie
- Department of Biomedical Science, Mercer University School of Medicine, Savannah Campus, Hoskins Building, Room #2209, 4700 Waters Ave, Savannah, GA, USA, 31404
| | - Xiaoqian Liu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
| | - Jinping Li
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China; Department of Biomedical Science, Mercer University School of Medicine, Savannah Campus, Hoskins Building, Room #2209, 4700 Waters Ave, Savannah, GA, USA, 31404.
| | - Lin Qiu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China.
| | - Yong-Qiang Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.
| | - Pengju Jiang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China.
| |
Collapse
|
37
|
Rothbauer M, Zirath H, Ertl P. Recent advances in microfluidic technologies for cell-to-cell interaction studies. LAB ON A CHIP 2018; 18:249-270. [PMID: 29143053 DOI: 10.1039/c7lc00815e] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microfluidic cell cultures are ideally positioned to become the next generation of in vitro diagnostic tools for biomedical research, where key biological processes such as cell signalling and dynamic cell-to-cell interactions can be reliably analysed under reproducible physiological cell culture conditions. In the last decade, a large number of microfluidic cell analysis systems have been developed for a variety of applications including drug target optimization, drug screening and toxicological testing. More recently, advanced in vitro microfluidic cell culture systems have emerged that are capable of replicating the complex three-dimensional architectures of tissues and organs and thus represent valid biological models for investigating the mechanism and function of human tissue structures, as well as studying the onset and progression of diseases such as cancer. In this review, we present the most important developments in single-cell, 2D and 3D microfluidic cell culture systems for studying cell-to-cell interactions published over the last 6 years, with a focus on cancer research and immunotherapy, vascular models and neuroscience. In addition, the current technological development of microdevices with more advanced physiological cell microenvironments that integrate multiple organ models, namely, the so-called body-, human- and multi-organ-on-a-chip, is reviewed.
Collapse
Affiliation(s)
- Mario Rothbauer
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 1060 Vienna, Austria.
| | | | | |
Collapse
|
38
|
Orton DJ, Tfaily MM, Moore RJ, LaMarche BL, Zheng X, Fillmore TL, Chu RK, Weitz KK, Monroe ME, Kelly RT, Smith RD, Baker ES. A Customizable Flow Injection System for Automated, High Throughput, and Time Sensitive Ion Mobility Spectrometry and Mass Spectrometry Measurements. Anal Chem 2018; 90:737-744. [PMID: 29161511 PMCID: PMC5764703 DOI: 10.1021/acs.analchem.7b02986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To better understand disease conditions and environmental perturbations, multiomic studies combining proteomic, lipidomic, and metabolomic analyses are vastly increasing in popularity. In a multiomic study, a single sample is typically extracted in multiple ways, and various analyses are performed using different instruments, most often based upon mass spectrometry (MS). Thus, one sample becomes many measurements, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injections. While some FIA systems have been created to address these challenges, many have limitations such as costly consumables, low pressure capabilities, limited pressure monitoring, and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at a range of flow rates (∼50 nL/min to 500 μL/min) to accommodate both low- and high-flow MS ionization sources. This system also functions at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system, and results showed a highly robust and reproducible platform capable of providing consistent performance over many days without carryover, as long as washing buffers specific to each molecular analysis were utilized.
Collapse
Affiliation(s)
- Daniel J. Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Malak M. Tfaily
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Brian L. LaMarche
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | | | - Thomas L. Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Rosalie K. Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Karl K. Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Matthew E. Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Ryan T. Kelly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | | | - Erin S. Baker
- Corresponding Author Mailing Address: 902 Battelle Boulevard, P.O. Box 999, MSIN K8-98, Richland, WA 99352, United States; Phone: 509-371-6219; (E.S.B.)
| |
Collapse
|
39
|
Lin YH, Wu CC, Peng YS, Wu CW, Chang YT, Chang KP. Detection of anti-p53 autoantibodies in saliva using microfluidic chips for the rapid screening of oral cancer. RSC Adv 2018; 8:15513-15521. [PMID: 35539469 PMCID: PMC9080182 DOI: 10.1039/c7ra13734f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
Autoantibodies have high specificity and stability and are easy to detect. Anti-p53 autoantibodies can be used as biomarkers for the early detection of oral cancer. However, most studies detected anti-p53 in sera samples. In this study, a microfluidic chip combined with magnetic immunoassay, which can automatically detect the concentration of anti-p53 in saliva, was developed. The use of a micromixer can shorten the immunoassay time: the mixing time of the antigen and antibody can be reduced from the original 60 min off-chip to 20 min, making the total immunoassay time around 60 min. A method of moving magnetic beads and the antibody instead of manipulating fluid was utilized to simplify fluid control and decrease contamination caused by non-specific protein adsorption to the surface of reaction wells. The detection limit of anti-p53 was 4 ng mL−1. In addition, a relative concentration of anti-p53 in the saliva of patients was detected in the chip. A microfluidic chip with multiple reaction wells is capable of automatically detecting anti-p53 autoantibody in saliva for oral cancer screening.![]()
Collapse
Affiliation(s)
- Yen-Heng Lin
- Department of Electronic Engineering
- Chang Gung University
- Taoyuan 333
- Taiwan
- Graduate Institute of Medical Mechatronics
| | - Chih-Ching Wu
- Department of Otolaryngology-Head & Neck Surgery
- Chang Gung Memorial Hospital
- Taoyuan 333
- Taiwan
- Department of Medical Biotechnology and Laboratory Science
| | - Yong-Sheng Peng
- Department of Electronic Engineering
- Chang Gung University
- Taoyuan 333
- Taiwan
| | - Chia-Wei Wu
- Graduate Institute of Medical Mechatronics
- Chang Gung University
- Taoyuan 333
- Taiwan
| | - Ya-Ting Chang
- Molecular Medicine Research Center
- Chang Gung University
- Taoyuan 333
- Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery
- Chang Gung Memorial Hospital
- Taoyuan 333
- Taiwan
- Molecular Medicine Research Center
| |
Collapse
|
40
|
Ahmed I, Iqbal HMN, Akram Z. Microfluidics Engineering: Recent Trends, Valorization, and Applications. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018; 43:23-32. [DOI: 10.1007/s13369-017-2662-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Shih TT, Lee HL, Chen SC, Kang CY, Shen RS, Su YA. Rapid analysis of traditional Chinese medicinePinellia ternataby microchip electrophoresis with electrochemical detection. J Sep Sci 2017; 41:740-746. [DOI: 10.1002/jssc.201700901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Tsung-Ting Shih
- Material and Chemical Research Laboratories; Industrial Technology Research Institute; Hsinchu Taiwan
| | - Hui-Ling Lee
- Department of Chemistry; Fu Jen Catholic University; New Taipei City Taiwan
| | - Show-Chuen Chen
- Department of Chemistry; Fu Jen Catholic University; New Taipei City Taiwan
| | - Chih-Yuan Kang
- Department of Chemistry; Fu Jen Catholic University; New Taipei City Taiwan
| | - Ren-Shang Shen
- Department of Chemistry; Fu Jen Catholic University; New Taipei City Taiwan
| | - Yi-An Su
- Material and Chemical Research Laboratories; Industrial Technology Research Institute; Hsinchu Taiwan
| |
Collapse
|
42
|
Kim JH, Je K, Shim TS, Kim SH. Reaction-Diffusion-Mediated Photolithography for Designing Pseudo-3D Microstructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603516. [PMID: 28234425 DOI: 10.1002/smll.201603516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Microstructures with 3D features provide advanced functionalities in many applications. Reaction-diffusion process has been employed in photolithography to produce pseudo-3D microstructures in a reproducible manner. In this work, the influences of various parameters on growth behavior of polymeric structures are investigated and the use of the reaction-diffusion-mediated photolithography (RDP) is expanded to a wide range of structural dimensions. In addition, how a lens effect alters the growth behavior of microstructures in conjunction with reaction-diffusion process is studied. For small separation between reaction sites in the array, ultraviolet (UV) exposure time is optimized along with the separation to avoid film or plateau formation. It is further proved that the RDP process is highly reproducible and applicable to various photocurable resins. In a demonstrative purpose, the use of microdomes created by the RDP process as microlens arrays is shown. The RDP process enables the production of pseudo-3D microstructures even with collimated UV light in the absence of complex optical setups, thereby potentially serving as a useful means to create micropatterns and particles with unique structural features.
Collapse
Affiliation(s)
- Ju Hyeon Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daejeon, 305-701, Korea
| | - Kwanghwi Je
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daejeon, 305-701, Korea
| | - Tae Soup Shim
- Department of Chemical Engineering and Department of Energy System Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daejeon, 305-701, Korea
| |
Collapse
|
43
|
Zhan D, Han L, Zhang J, He Q, Tian ZW, Tian ZQ. Electrochemical micro/nano-machining: principles and practices. Chem Soc Rev 2017; 46:1526-1544. [DOI: 10.1039/c6cs00735j] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Micro/nano-machining (MNM) is becoming the cutting-edge of high-tech manufacturing because of the ever increasing industrial demands for super smooth surfaces and functional three-dimensional micro/nano-structures in miniaturized and integrate devices, and electrochemistry plays an irreplaceable role in MNM.
Collapse
Affiliation(s)
- Dongping Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Lianhuan Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jie Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Quanfeng He
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhao-Wu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
- Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
44
|
Zhan D, Han L, Zhang J, Shi K, Zhou JZ, Tian ZW, Tian ZQ. Confined Chemical Etching for Electrochemical Machining with Nanoscale Accuracy. Acc Chem Res 2016; 49:2596-2604. [PMID: 27668827 DOI: 10.1021/acs.accounts.6b00336] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the past several decades, electrochemical machining (ECM) has enjoyed the reputation of a powerful technique in the manufacturing industry. Conventional ECM methods can be classified as electrolytic machining and electroforming: the former is based on anodic dissolution and the latter is based on cathodic deposition of metallic materials. Strikingly, ECM possesses several advantages over mechanical machining, such as high removal rate, the capability of making complex three-dimensional structures, and the practicability for difficult-to-cut materials. Additionally, ECM avoids tool wear and thermal or mechanical stress on machining surfaces. Thus, ECM is widely used for various industrial applications in the fields of aerospace, automobiles, electronics, etc. Nowadays, miniaturization and integration of functional components are becoming significant in ultralarge scale integration (ULSI) circuits, microelectromechanical systems (MEMS), and miniaturized total analysis systems (μ-TAS). As predicted by Moore's law, the feature size of interconnectors in ULSI circuits are down to several nanometers. In this Account, we present our perseverant research in the last two decades on how to "confine" the ECM processes to occur at micrometer or even nanometer scale, that is, to ensure ECM with nanoscale accuracy. We have been developing the confined etchant layer technique (CELT) to fabricate three-dimensional micro- and nanostructures (3D-MNS) on different metals and semiconductor materials since 1992. In general, there are three procedures in CELT: (1) generating the etchant on the surface of the tool electrode by electrochemical or photoelectrochemical reactions; (2) confining the etchant in a depleted layer with a thickness of micro- or nanometer scale; (3) feeding the tool electrode to etch the workpiece. Scavengers, which can react with the etchant, are usually adopted to form a confined etchant layer. Through the subsequent homogeneous reaction between the scavenger and the photo- or electrogenerated etchant in the electrolyte solution, the diffusion distance of the etchant is confined to micro- or nanometer scale, which ensures the nanoscale accuracy of electrochemical machining. To focus on the "confinement" of chemical etching reactions, external physical-field modulations have recently been introduced into CELT by introducing various factors such as light field, force field, hydrodynamics, and so on. Meanwhile, kinetic investigations of the confined chemical etching (CCE) systems are established based on the finite element analysis and simulations. Based on the obtained kinetic parameters, the machining accuracy is tunable and well controlled. CELT is now applicable for 1D milling, 2D polishing, and 3D microfabrication with an accuracy at nanometer scale. CELT not only inherits all the advantages of electrochemical machining but also provides advantages over photolithography and nanoimprint for its applicability to different functional materials without involving any photocuring and thermoplastic resists. Although there are some technical problems, for example, mass transfer and balance, which need to be solved, CELT has shown its prospective competitiveness in electrochemical micromachining, especially in the semiconductor industry.
Collapse
Affiliation(s)
- Dongping Zhan
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, and Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lianhuan Han
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, and Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jie Zhang
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, and Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kang Shi
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, and Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian-Zhang Zhou
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, and Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhao-Wu Tian
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, and Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, Collaborative Innovation
Center of Chemistry for Energy Materials, and Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
45
|
Zhao D, He Z, Wang G, Wang H, Zhang Q, Li Y. Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment. J Colloid Interface Sci 2016; 478:227-35. [DOI: 10.1016/j.jcis.2016.05.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 01/03/2023]
|
46
|
Ozhikandathil J, Badilescu S, Packirisamy M. A brief review on microfluidic platforms for hormones detection. J Neural Transm (Vienna) 2016; 124:47-55. [PMID: 27567900 DOI: 10.1007/s00702-016-1610-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/18/2016] [Indexed: 01/10/2023]
Abstract
Lab-on-chip technology is attracting great interest due to its potential as miniaturized devices that can automate and integrate many sample-handling steps, minimize consumption of reagent and samples, have short processing time and enable multiplexed analysis. Microfluidic devices have demonstrated their potential for a broad range of applications in life sciences, including point-of-care diagnostics and personalized medicine, based on the routine diagnosis of levels of hormones, cancer markers, and various metabolic products in blood, serum, etc. Microfluidics offers an adaptable platform that can facilitate cell culture as well as monitor their activity and control the cellular environment. Signaling molecules released from cells such as neurotransmitters and hormones are important in assessing the health of cells and the effect of drugs on their functions. In this review, we provide an insight into the state-of-art applications of microfluidics for monitoring of hormones released by cells. In our works, we have demonstrated efficient detection methods for bovine growth hormones using nano and microphotonics integrated microfluidics devices. The bovine growth hormone can be used as a growth promoter in dairy farming to enhance the milk and meat production. In the recent years, a few attempts have been reported on developing very sensitive, fast and low-cost methods of detection of bovine growth hormone using micro devices. This paper reviews the current state-of-art of detection and analysis of hormone using integrated optical micro and nanofluidics systems. In addition, the paper also focuses on various lab-on-a-chip technologies reported recently, and their benefits for screening growth hormones in milk.
Collapse
Affiliation(s)
- Jayan Ozhikandathil
- Optical-Bio Microsystems Laboratory, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Simona Badilescu
- Optical-Bio Microsystems Laboratory, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Muthukumaran Packirisamy
- Optical-Bio Microsystems Laboratory, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada.
| |
Collapse
|
47
|
Mecker LC, Martin RS. Coupling Microdialysis Sampling to Microchip Electrophoresis in a Reversibly Sealed Device. ACTA ACUST UNITED AC 2016; 12:296-302. [PMID: 18836517 DOI: 10.1016/j.jala.2007.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this paper, we describe the fabrication and characterization of a reversibly sealed microchip device that is used to couple microdialysis sampling to microchip electrophoresis. The ability to interface microdialysis sampling and microchip electrophoresis in a device that is amenable to reversible sealing is advantageous from a repeated use standpoint. Commercially available tubing coming from the microdialysis probe is directly inserted into the chip and flow from the probe is interfaced to the electrophoresis portion of the device through integrated pneumatic valves. Fluorescence detection was used to characterize the poly(dimethylsiloxane)-based device in terms of injection reproducibility. It was found that the entire system (microdialysis probe and microchip device) has a concentration response lag time of 170 sec. Microdialysis sampling followed by an electrophoretic separation of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide was also demonstrated.
Collapse
Affiliation(s)
- Laura C Mecker
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | | |
Collapse
|
48
|
Integrated Sample Preparation, Reaction, and Detection on a High-Frequency Centrifugal Microfluidic Platform. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.jala.2005.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We extend the toolbox of lab procedures in life sciences by development of centrifugal microfluidics for high-level process integration. This is accomplished by implementing novel functional principles for sedimentation, batch-mode mixing, frequency-dependent online flow control, and optical read-out, which can be integrated into a process chain. The modular centrifugal setup comprises a microstructured disposable polymer disk as well as a reusable spinning and detection unit. We successfully developed centrifugal microfluidic technologies, which are suitable for sample preparation, process engineering, personalized diagnostics, and hematology, on this platform.
Collapse
|
49
|
Cell Monitoring and Manipulation Systems (CMMSs) based on Glass Cell-Culture Chips (GC³s). MICROMACHINES 2016; 7:mi7070106. [PMID: 30404280 PMCID: PMC6190263 DOI: 10.3390/mi7070106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/10/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023]
Abstract
We developed different types of glass cell-culture chips (GC3s) for culturing cells for microscopic observation in open media-containing troughs or in microfluidic structures. Platinum sensor and manipulation structures were used to monitor physiological parameters and to allocate and permeabilize cells. Electro-thermal micro pumps distributed chemical compounds in the microfluidic systems. The integrated temperature sensors showed a linear, Pt1000-like behavior. Cell adhesion and proliferation were monitored using interdigitated electrode structures (IDESs). The cell-doubling times of primary murine embryonic neuronal cells (PNCs) were determined based on the IDES capacitance-peak shifts. The electrical activity of PNC networks was detected using multi-electrode arrays (MEAs). During seeding, the cells were dielectrophoretically allocated to individual MEAs to improve network structures. MEA pads with diameters of 15, 20, 25, and 35 µm were tested. After 3 weeks, the magnitudes of the determined action potentials were highest for pads of 25 µm in diameter and did not differ when the inter-pad distances were 100 or 170 µm. Using 25-µm diameter circular oxygen electrodes, the signal currents in the cell-culture media were found to range from approximately −0.08 nA (0% O2) to −2.35 nA (21% O2). It was observed that 60-nm thick silicon nitride-sensor layers were stable potentiometric pH sensors under cell-culture conditions for periods of days. Their sensitivity between pH 5 and 9 was as high as 45 mV per pH step. We concluded that sensorized GC3s are potential animal replacement systems for purposes such as toxicity pre-screening. For example, the effect of mefloquine, a medication used to treat malaria, on the electrical activity of neuronal cells was determined in this study using a GC3 system.
Collapse
|
50
|
|