1
|
Zhuang L, Gong J, Shen Q, Yang J, Song C, Liu Q, Zhao B, Zhang Y, Zhu M. Advances in detection methods for viable Salmonella spp.: current applications and challenges. ANAL SCI 2023; 39:1643-1660. [PMID: 37378821 DOI: 10.1007/s44211-023-00384-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Salmonella is a common intestinal pathogen that can cause food poisoning and intestinal disease. The high prevalence of Salmonella necessitates efficient and sensitive methods for its identification, detection, and monitoring, especially of viable Salmonella. Conventional culture methods need to be more laborious and time-consuming. And they are relatively limited in their ability to detect Salmonella in the viable but non-culturable status if present in the sample to be tested. As a result, there is an increasing need for rapid and accurate techniques to detect viable Salmonella spp. This paper reviewed the status and progress of various methods reported in recent years that can be used to detect viable Salmonella, such as culture-based methods, molecular methods targeting RNAs and DNAs, phage-based methods, biosensors, and some techniques that have the potential for future application. This review can provide researchers with a reference for additional method options and help facilitate the development of rapid and accurate assays. In the future, viable Salmonella detection approaches will become more stable, sensitive, and fast and are expected to play a more significant role in food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
2
|
Lazanas A, Prodromidis MI. Electrochemical Impedance Spectroscopy-A Tutorial. ACS MEASUREMENT SCIENCE AU 2023; 3:162-193. [PMID: 37360038 PMCID: PMC10288619 DOI: 10.1021/acsmeasuresciau.2c00070] [Citation(s) in RCA: 246] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/25/2023]
Abstract
This tutorial provides the theoretical background, the principles, and applications of Electrochemical Impedance Spectroscopy (EIS) in various research and technological sectors. The text has been organized in 17 sections starting with basic knowledge on sinusoidal signals, complex numbers, phasor notation, and transfer functions, continuing with the definition of impedance in electrical circuits, the principles of EIS, the validation of the experimental data, their simulation to equivalent electrical circuits, and ending with practical considerations and selected examples on the utility of EIS to corrosion, energy related applications, and biosensing. A user interactive excel file showing the Nyquist and Bode plots of some model circuits is provided in the Supporting Information. This tutorial aspires to provide the essential background to graduate students working on EIS, as well as to endow the knowledge of senior researchers on various fields where EIS is involved. We also believe that the content of this tutorial will be a useful educational tool for EIS instructors.
Collapse
Affiliation(s)
| | - Mamas I. Prodromidis
- Department
of Chemistry, University of Ioannina, 45 110 Ioannina, Greece
- Institute
of Materials Science and Computing, University
Research Center of Ioannina (URCI), 45 110 Ioannina, Greece
| |
Collapse
|
3
|
Rodoplu Solovchuk D, Boyaci IH, Tamer U, Sahiner N, Cetin D. A simple gradient centrifugation method for bacteria detection in skim milk. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
4
|
Hassan RYA. Advances in Electrochemical Nano-Biosensors for Biomedical and Environmental Applications: From Current Work to Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197539. [PMID: 36236638 PMCID: PMC9573286 DOI: 10.3390/s22197539] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 05/17/2023]
Abstract
Modern life quality is strongly supported by the advances made in biosensors, which has been attributed to their crucial and viable contribution in point-of-care (POC) technology developments. POC devices are exploited for the fast tracing of disease progression, rapid analysis of water, and food quality assessment. Blood glucose meters, home pregnancy strips, and COVID-19 rapid tests all represent common examples of successful biosensors. Biosensors can provide great specificity due to the incorporation of selective bio-recognition elements and portability at significantly reduced costs. Electrochemical biosensor platforms are one of the most advantageous of these platforms because they offer many merits, such as being cheap, selective, specific, rapid, and portable. Furthermore, they can be incorporated into smartphones and various analytical approaches in order to increase their sensitivity and many other properties. As a very broad and interdisciplinary area of research and development, biosensors include all disciplines and backgrounds from materials science, chemistry, physics, medicine, microbiology/biology, and engineering. Accordingly, in this state-of-the-art article, historical background alongside the long journey of biosensing construction and development, starting from the Clark oxygen electrode until reaching highly advanced wearable stretchable biosensing devices, are discussed. Consequently, selected examples among the miscellaneous applications of nanobiosensors (such as microbial detection, cancer diagnosis, toxicity analysis, food quality-control assurance, point of care, and health prognosis) are described. Eventually, future perspectives for intelligent biosensor commercialization and exploitation in real-life that is going to be supported by machine learning and artificial intelligence (AI) are stated.
Collapse
Affiliation(s)
- Rabeay Y. A. Hassan
- Applied Organic Chemistry Department, National Research Centre Dokki, Cairo 12622, Egypt; ; Tel.: +20-11292-16152
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| |
Collapse
|
5
|
N, O-codoped hierarchical porous graphitic carbon for electrochemical immunosensing of Lactobacillus rhamnosus GG. Mikrochim Acta 2021; 189:5. [PMID: 34855013 DOI: 10.1007/s00604-021-05049-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
An ultrasensitive label-free electrochemical immunosensor was fabricated for quantitative detection of Lactobacillus rhamnosus GG (LGG). The N/O co-doped three-dimensional hierarchical porous graphitic (THPG) carbon was synthesized by a one-step synthesis of polyaniline hydrogel, and followed by simple carbonization and chemical activation procedures. Because of the unique structure design, the obtained THPG carbon networks possess an ultra-large specific surface area of 4859 m2 g-1 along with a class of highly graphitic carbons. The results offer an enormous surface area and excellent electrical conductivity for label-free electrochemical immunosensing of probiotic L. rhamnosus strain. Under optimal conditions, the immunosensor showed a good linear relationship between peak current and concentration of LGG (R2 = 0.9976), with a detection limit of 2 CFU mL-1. Furthermore, this label-free immunosensor also shows good specificity, long-term stability, and reliability, and could be applied to detect probiotic LGG in dairy products and drinks with satisfactory results. The present protocol was shown to be quite promising for practical screening and functional evaluation of probiotic products containing LGG. A ultrasensitive label-free electrochemical immunosensor based on THPG carbon was fabricated for detection of Lactobacillus rhamnosus GG.
Collapse
|
6
|
Melo AMA, Furtado RF, de Fatima Borges M, Biswas A, Cheng HN, Alves CR. Performance of an amperometric immunosensor assembled on carboxymethylated cashew gum for Salmonella detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Abstract
There is an increasing interest for low cost, ultrasensitive, time saving yet reliable, point-of-care bioelectronic sensors. Electrolyte gated organic field effect transistors (EGOFETs) are proven compelling transducers for various sensing applications, offering direct electronic, label-free transduction of bio-recognition events along with miniaturization, fast data handling and processing. Given that field effect transistors act as intrinsically signal amplifiers, even a small change of a chemical or biological quantity may significantly alter the output electronic signal. In EGOFETs selectivity can be guaranteed by the immobilization of bioreceptors able to bind specifically a target analyte. The layer of receptors can be linked to one of the electronic active interfaces of the transistor, and the interactions with a target molecule affect the electronic properties of the device. The present chapter discusses main aspects of EGOFETs transducers along with detailed examples of how to tailor the device interfaces with desired functionality. The development of an "electronic tongue" based on an EGOFET device coupled to odorant binding proteins (OBPs) for enantiomers differentiation is presented.
Collapse
|
8
|
Chai C, Oh SW. Electrochemical impedimetric biosensors for food safety. Food Sci Biotechnol 2020; 29:879-887. [PMID: 32582450 PMCID: PMC7297935 DOI: 10.1007/s10068-020-00776-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022] Open
Abstract
Electrochemical impedimetric biosensors (EIBs) have a simple structure and can be used to rapidly and sensitively detect and measure hazards in food. EIBs detect and measure target molecules by transducing biochemical reactions on their surface to electrical signal outputs responding to a sinusoidal electrical signal input. Due to their structural simplicity and analytical sensitivity, EIBs are regarded as the most potent method of food hazard monitoring that can be implemented in the food supply chain. This paper discusses the theoretical background, structure, and construction of EIB and its applications in food safety.
Collapse
Affiliation(s)
- Changhoon Chai
- Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, 02707 Republic of Korea
| |
Collapse
|
9
|
Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosens Bioelectron 2020; 159:112214. [PMID: 32364936 PMCID: PMC7152911 DOI: 10.1016/j.bios.2020.112214] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022]
Abstract
Recent advances in electrochemical biosensors for pathogen detection are reviewed. Electrochemical biosensors for pathogen detection are broadly reviewed in terms of transduction elements, biorecognition elements, electrochemical techniques, and biosensor performance. Transduction elements are discussed in terms of electrode material and form factor. Biorecognition elements for pathogen detection, including antibodies, aptamers, and imprinted polymers, are discussed in terms of availability, production, and immobilization approach. Emerging areas of electrochemical biosensor design are reviewed, including electrode modification and transducer integration. Measurement formats for pathogen detection are classified in terms of sample preparation and secondary binding steps. Applications of electrochemical biosensors for the detection of pathogens in food and water safety, medical diagnostics, environmental monitoring, and bio-threat applications are highlighted. Future directions and challenges of electrochemical biosensors for pathogen detection are discussed, including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, reusable biosensors for process monitoring applications, and low-cost, disposable biosensors.
Collapse
Affiliation(s)
- Ellen Cesewski
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
10
|
Leva-Bueno J, Peyman SA, Millner PA. A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol 2020; 209:343-362. [PMID: 32246198 PMCID: PMC7248053 DOI: 10.1007/s00430-020-00668-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Since the discovery of antibiotics in the first quarter of the twentieth century, their use has been the principal approach to treat bacterial infection. Modernized medicine such as cancer therapy, organ transplantation or advanced major surgeries require effective antibiotics to manage bacterial infections. However, the irresponsible use of antibiotics along with the lack of development has led to the emergence of antimicrobial resistance which is considered a serious global threat due to the rise of multidrug-resistant bacteria (Wang et al. in Antibiotic resistance: a rundown of a global crisis, pp. 1645-1658, 2018). Currently employed diagnostics techniques are microscopy, colony counting, ELISA, PCR, RT-PCR, surface-enhanced Raman scattering and others. These techniques provide satisfactory selectivity and sensitivity (Joung et al. in Sens Actuators B Chem 161:824-831, 2012). Nevertheless, they demand specialized personnel and expensive and sophisticated machinery which can be labour-intensive and time-consuming, (Malvano et al. in Sensors (Switzerland) 18:1-11, 2018; Mantzila et al. in Anal Chem 80:1169-1175, 2008). To get around these problems, new technologies such as biosensing and lab-on-a-chip devices have emerged in the last two decades. Impedimetric immunosensors function by applying electrochemical impedance spectroscopy to a biosensor platform using antibodies or other affinity proteins such as Affimers (Tiede et al. in Elife 6(c):1-35, 2017) or other binding proteins (Weiss et al. in Electrochim Acta 50:4248-4256, 2005) as bioreceptors, which provide excellent sensitivity and selectivity. Pre-enrichment steps are not required and this allows miniaturization and low-cost. In this review different types of impedimetric immunosensors are reported according to the type of electrode and their base layer materials, either self-assembled monolayers or polymeric layers, composition and functionalization for different types of bacteria, viruses, fungi and disease biomarkers. Additionally, novel protein scaffolds, both antibody derived and non-antibody derived, used to specifically target the analyte are considered.
Collapse
Affiliation(s)
- J. Leva-Bueno
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT England, UK
| | - Sally A. Peyman
- Molecular and Nanoscale Physics Group, Department of Physics and Astronomy, University of Leeds, Leeds, LS2 9JS England, UK
| | - P. A. Millner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT England, UK
| |
Collapse
|
11
|
Liu J, Jasim I, Shen Z, Zhao L, Dweik M, Zhang S, Almasri M. A microfluidic based biosensor for rapid detection of Salmonella in food products. PLoS One 2019; 14:e0216873. [PMID: 31086396 PMCID: PMC6516674 DOI: 10.1371/journal.pone.0216873] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
An impedance based microfluidic biosensor for simultaneous and rapid detection of Salmonella serotypes B and D in ready-to-eat (RTE) Turkey matrix has been presented. Detection of Salmonella at a concentration as low as 300 cells/ml with a total detection time of 1 hour has been achieved. The sensor has two sensing regions, with each formed from one interdigitated electrode array (IDE array) consisting of 50 finger pairs. First, Salmonella antibody type B and D were prepared and delivered to the sensor to functionalize each sensing region without causing any cross contamination. Then the RTE Turkey samples spiked with Salmonella types B and D were introduced into the biosensor via the antigen inlet. The response signal resulted from the binding between Salmonella and its specific antibody demonstrated the sensor’s ability to detect a single type of pathogen, and multiple pathogens simultaneously. In addition, the biosensor’s selectivity was tested using non-specific binding of E. coli O157 and E. coli DH5 Alpha while the IDE array was coated with the Salmonella antibody. The results also showed the sensor is capable to differentiate low concentration of live Salmonella cells from high concentration of dead Salmonella cells, and high concentration of E. coli cells. A detailed study on antibody immobilization that includes antibody concentration, antibody coating time (0.5–3 hours) and use of cross-linker has been performed. The study showed that Salmonella antibody to Salmonella antigen is not a factor of antibody concentration after electrodes were saturated with antibody, while the optimal coating time was found to be 1.5 hours, and the use of cross-linker has improved the signal response by 45–60%.
Collapse
Affiliation(s)
- Jiayu Liu
- University of Missouri–Columbia, Electrical and Computer Engineering, Columbia, MO, United States of America
| | - Ibrahem Jasim
- University of Missouri–Columbia, Electrical and Computer Engineering, Columbia, MO, United States of America
| | - Zhenyu Shen
- University of Missouri–Columbia, School of Veterinary Medicine, Columbia, MO, United States of America
| | - Lu Zhao
- University of Missouri–Columbia, Electrical and Computer Engineering, Columbia, MO, United States of America
| | - Majed Dweik
- Lincoln University, Department of Life and Physical Sciences, Jefferson City, MO, United States of America
| | - Shuping Zhang
- University of Missouri–Columbia, School of Veterinary Medicine, Columbia, MO, United States of America
| | - Mahmoud Almasri
- University of Missouri–Columbia, Electrical and Computer Engineering, Columbia, MO, United States of America
- * E-mail:
| |
Collapse
|
12
|
Raman Spectroscopy and Aptamers for a Label-Free Approach: Diagnostic and Application Tools. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:2815789. [PMID: 31183028 PMCID: PMC6512054 DOI: 10.1155/2019/2815789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 01/04/2023]
Abstract
Raman spectroscopy is a powerful optical technique based on the inelastic scattering of incident light to assess the chemical composition of a sample, including biological ones. Medical diagnostic applications of Raman spectroscopy are constantly increasing to provide biochemical and structural information on several specimens, being not affected by water interference, and potentially avoiding the constraint of additional labelling procedures. New strategies have been recently developed to overcome some Raman limitations related, for instance, to the need to deal with an adequate quantity of the sample to perform a reliable analysis. In this regard, the use of metallic nanoparticles, the optimization of fiber optic probes, and other approaches can actually enhance the signal intensity compared to spontaneous Raman scattering. Moreover, to further increase the potential of this investigation technique, aptamers can be considered as a valuable means, being synthetic, short, single, or double-stranded oligonucleotides (RNAs or DNAs) that fold up into unique 3D structures to specifically bind to selected molecules, even at very low concentrations, and thus allowing an early diagnosis of a possible disease. Due to the paramount relevance of the topic, this review focuses on the main Raman spectroscopy techniques combined with aptamer arrays in the label-free mode, providing an overview on different applications to support healthcare management.
Collapse
|
13
|
An integrated impedance biosensor platform for detection of pathogens in poultry products. Sci Rep 2018; 8:16109. [PMID: 30382115 PMCID: PMC6208425 DOI: 10.1038/s41598-018-33972-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/02/2018] [Indexed: 01/18/2023] Open
Abstract
This paper presents an impedance-based biosensor for rapid and simultaneous detection of Salmonella serotypes B, D, and E with very low concentration. The biosensor consists of a focusing region, and three detection regions. The cells focusing was achieved using a ramp down electroplated vertical electrode pair along with tilted thin film finger pairs that generate p-DEP forces to focus and concentrate the bacterial cells into the center of the microchannel, and direct them toward the detection region. The detection regions consist of three interdigitated electrode arrays (IDEA), each with 20 pairs of finger coated with a mixture of anti-Salmonella antibody and crosslinker to enhance the adhesion to IDEA. The impedance changes as the target Salmonella binds to the antibody. The biosensor has showed excellent performance as proven by the detection of a single Salmonella serotype B, and simultaneous detection of two Salmonella serotypes B and D with a limit of detection (LOD) of 8 Cells/ml in ready-to-eat turkey samples, the addition of focusing capability improved the measured signal by a factor of between 4-4.5, the total detection time of 45 minutes, selectivity of the sensor on different types of bacterial cells, and the ability to distinguish between dead and live cells.
Collapse
|
14
|
Treated Gold Screen-Printed Electrode as Disposable Platform for Label-Free Immunosensing of Salmonella Typhimurium. Electrocatalysis (N Y) 2018. [DOI: 10.1007/s12678-018-0491-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Pali M, Suni II. Impedance Detection of 3‐Phenoxybenzoic Acid Comparing Wholes Antibodies and Antibody Fragments for Biomolecular Recognition. ELECTROANAL 2018. [DOI: 10.1002/elan.201800495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Madhavi Pali
- Department of Chemistry & BiochemistryMaterials Technology CenterSouthern Illinois University Carbondale, IL 62901 USA
| | - Ian I. Suni
- Department of Chemistry & BiochemistryMaterials Technology CenterSouthern Illinois University Carbondale, IL 62901 USA
- Department of Mechanical Engineering & Energy ProcessesSouthern Illinois University Carbondale, IL 62901 USA
| |
Collapse
|
16
|
Liu T, Li M, Wang Y, Fang Y, Wang W. Electrochemical impedance spectroscopy of single Au nanorods. Chem Sci 2018; 9:4424-4429. [PMID: 29896383 PMCID: PMC5956977 DOI: 10.1039/c8sc00983j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022] Open
Abstract
Monochromatic dark-field microscopy coupled with high-frequency potential modulation leads to non-faradaic electrochemical impedance spectroscopy of single Au nanorods.
We propose monochromatic dark-field imaging microscopy (DFM) to measure the non-faradaic electrochemical impedance spectroscopy (EIS) of single Au nanorods (AuNRs). DFM was utilized to monitor the plasmonic scattering of monochromatic incident light by surface-immobilized individual AuNRs. When modulating the surface potential at a certain frequency, non-faradaic charging and discharging of AuNRs altered their electron density, leading to periodical fluctuations in the scattering intensity. Analysis of the amplitude and phase of the optical intensity fluctuation as a function of modulation frequency resulted in the EIS of single AuNRs. High-frequency (>100 Hz) modulation allowed us to differentiate the intrinsic charging effect from other contributions such as the periodic migration and accumulation of counterions in the surrounding medium, because the latter occurred at a longer timescale. As a result, single nanoparticle EIS led to the surface capacitance of single AuNRs being closer to the theoretical value. Since interfacial capacitance has been proven sensitive to molecular interactions, the present work also offers a new platform for single nanoparticle sensing by measuring the single nanoparticle capacitance.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Meng Li
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Yongjie Wang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Yimin Fang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| |
Collapse
|
17
|
Melo AMA, Alexandre DL, Oliveira MRF, Furtado RF, Borges MF, Ribeiro PRV, Biswas A, Cheng HN, Alves CR, Figueiredo EAT. Optimization and characterization of a biosensor assembly for detection of Salmonella Typhimurium. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3767-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Lu D, Pang G, Xie J. A new phosphothreonine lyase electrochemical immunosensor for detecting Salmonella based on horseradish peroxidase/GNPs-thionine/chitosan. Biomed Microdevices 2017; 19:12. [PMID: 28194610 DOI: 10.1007/s10544-017-0149-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the current study, a novel double-layer gold nanoparticles- electrochemical immunosensor electrode (DGN-EIE) immobilized with Salmonella plasmid virulence C (SpvC) antibody was developed. To increase the fixed quantity of antibodies and electrochemical signal, an electrochemical biosensing signal amplification system was utilized with gold nanoparticles-thionine-chitosan absorbing horseradish peroxidase (HRP). In addition, the SpvC monoclonal antibodies (derived from Balb/c mice) were prepared and screened with a high affinity to SpvC. To evaluate the quality of DGN-EIE, the amperometric I-t curve method was applied to determine Salmonella in PBS. The results showed that the response current had a good linear correlation with the bacterial quantity ranged from 1.0 × 101-5.0 × 104 cfu/mL. The lowest detection limit was found at 5 cfu/mL. Furthermore, the proposed immunosensor has been demonstrated with high sensitivity, good selectivity and reproducibility. Apparently, DGN-EIE may be a very useful tool for monitoring the bacteria.
Collapse
Affiliation(s)
- Dingqiang Lu
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300314, China
| | - Guangchang Pang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300314, China. .,Tianjin Key Laboratory of Food Biotechnology, Tianjin, 300314, China.
| | - Junbo Xie
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300314, China. .,Tianjin Key Laboratory of Food Biotechnology, Tianjin, 300314, China.
| |
Collapse
|
19
|
Duan N, Xu B, Wu S, Wang Z. Magnetic Nanoparticles-based Aptasensor Using Gold Nanoparticles as Colorimetric Probes for the Detection of Salmonella typhimurium. ANAL SCI 2016; 32:431-6. [PMID: 27063716 DOI: 10.2116/analsci.32.431] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper presents a sensitive and convenient visual methodology for Salmonella typhimurium detection using gold nanoparticles (AuNPs) as colorimetric probes and magnetic nanoparticles (MNPs) as concentration elements. In the protocol, the aptamers were first immobilized onto the surface of AuNPs and MNPs, respectively. Then, S. typhimurium were added into the above solution and incubated for 45 min. During the incubation, aptamer on the surface of nanoparticles could specifically bind to the target and form a MNPs-aptamer-S. typhimurium-aptamer-AuNPs sandwich structure complex. In a magnetic field, the formed complexes were easily separated from the solution, resulting in a fading of the AuNPs suspension and a decrease of the ultraviolet visible (UV/Vis) signal. The assay shows a linear response toward S. typhimurium concentration through a range of 25 to 10(5) cfu/mL, and the detection limit was improved to 10 cfu/mL. The applicability of the bioassay in real food samples was also investigated; the results were consistent with the experimental results obtained from plate-counting methods. It is believed that the developed aptasensor will broaden the application in bioassays.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University
| | | | | | | |
Collapse
|
20
|
Tuteja SK, Chen R, Kukkar M, Song CK, Mutreja R, Singh S, Paul AK, Lee H, Kim KH, Deep A, Suri CR. A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs). Biosens Bioelectron 2016; 86:548-556. [DOI: 10.1016/j.bios.2016.07.052] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
|
21
|
Mutreja R, Jariyal M, Pathania P, Sharma A, Sahoo D, Suri CR. Novel surface antigen based impedimetric immunosensor for detection of Salmonella typhimurium in water and juice samples. Biosens Bioelectron 2016; 85:707-713. [DOI: 10.1016/j.bios.2016.05.079] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/05/2016] [Accepted: 05/23/2016] [Indexed: 11/27/2022]
|
22
|
Melo AMA, Alexandre DL, Furtado RF, Borges MF, Figueiredo EAT, Biswas A, Cheng HN, Alves CR. Electrochemical immunosensors for Salmonella detection in food. Appl Microbiol Biotechnol 2016; 100:5301-12. [DOI: 10.1007/s00253-016-7548-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/10/2016] [Accepted: 04/12/2016] [Indexed: 01/20/2023]
|
23
|
Poltronieri P, Cimaglia F, De Lorenzis E, Chiesa M, Mezzolla V, Reca IB. Protein Chips for Detection of Salmonella spp. from Enrichment Culture. SENSORS (BASEL, SWITZERLAND) 2016; 16:574. [PMID: 27110786 PMCID: PMC4851088 DOI: 10.3390/s16040574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
Food pathogens are the cause of foodborne epidemics, therefore there is a need to detect the pathogens in food productions rapidly. A pre-enrichment culture followed by selective agar plating are standard detection methods. Molecular methods such as qPCR have provided a first rapid protocol for detection of pathogens within 24 h of enrichment culture. Biosensors also may provide a rapid tool to individuate a source of Salmonella contamination at early times of pre-enrichment culture. Forty mL of Salmonella spp. enrichment culture were processed by immunoseparation using the Pathatrix, as in AFNOR validated qPCR protocols. The Salmonella biosensor combined with immunoseparation showed a limit of detection of 100 bacteria/40 mL, with a 400 fold increase to previous results. qPCR analysis requires processing of bead-bound bacteria with lysis buffer and DNA clean up, with a limit of detection of 2 cfu/50 μL. Finally, a protein chip was developed and tested in screening and identification of 5 common pathogen species, Salmonella spp., E. coli, S. aureus, Campylobacter spp. and Listeria spp. The protein chip, with high specificity in species identification, is proposed to be integrated into a Lab-on-Chip system, for rapid and reproducible screening of Salmonella spp. and other pathogen species contaminating food productions.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- CNR-ISPA, Institute of Sciences of Food Productions, via Monteroni km 7, 73100 Lecce, Italy.
| | - Fabio Cimaglia
- Biotecgen, c/o Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Enrico De Lorenzis
- Biotecgen, c/o Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Maurizio Chiesa
- Biotecgen, c/o Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Valeria Mezzolla
- CNR-ISPA, Institute of Sciences of Food Productions, via Monteroni km 7, 73100 Lecce, Italy.
| | - Ida Barbara Reca
- CNR-ISPA, Institute of Sciences of Food Productions, via Monteroni km 7, 73100 Lecce, Italy.
| |
Collapse
|
24
|
Qiao SP, Lang C, Wang RD, Li XM, Yan TF, Pan TZ, Zhao LL, Fan XT, Zhang X, Hou CX, Luo Q, Xu JY, Liu JQ. Metal induced self-assembly of designed V-shape protein into 2D wavy supramolecular nanostructure. NANOSCALE 2016; 8:333-341. [PMID: 26612683 DOI: 10.1039/c5nr06378g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In order to understand and imitate the more complex bio-processes and fascinating functions in nature, protein self-assembly has been studied and has attracted more and more interest in recent years. Artificial self-assemblies of proteins have been constructed through many strategies. However, the design of complicated protein self-assemblies utilizing the special profile of building blocks remains a challenge. We herein report linear and 2D nanostructures constructed from a V shape SMAC protein and induced by metal coordination. Zigzag nanowires and wavy 2D nanostructures have been demonstrated by AFM and TEM. The zigzag nanowires can translate to a 2D nanostructure with an excess of metal ions, which reveals the step by step assembly process. Fluorescence and UV/Vis spectra have also been obtained to further study the mechanism and process of self-assembly. Upon the protein nanostructure, fluorescence resonance energy transfer (FRET) could also be detected using fluorescein modified proteins as building blocks. This article provides an approach for designing and controlling self-assembled protein nanostructures with a distinctive topological morphology.
Collapse
Affiliation(s)
- S P Qiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - C Lang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - R D Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - X M Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - T F Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - T Z Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - L L Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - X T Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - X Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - C X Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Q Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - J Y Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - J Q Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
25
|
Duan N, Chang B, Zhang H, Wang Z, Wu S. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int J Food Microbiol 2015; 218:38-43. [PMID: 26599860 DOI: 10.1016/j.ijfoodmicro.2015.11.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/19/2015] [Accepted: 11/14/2015] [Indexed: 12/21/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based aptasensor approach for quantitative detection of pathogenic bacteria. A SERS substrate bearing Au@Ag core/shell nanoparticles (NPs) is functionalized with aptamer 1 (apt 1) for the capture of target molecules. X-rhodamine (ROX)-modified aptamer 2 (apt 2) is used as recognition element and Raman reporter. Salmonella typhimurium specifically interacted with the aptamers to form Au@Ag-apt 1-target-apt 2-ROX sandwich-like complexes. As a result, the concentration of S. typhimurium was determined using this developed aptasensor structure, and a calibration curve is obtained in the range of 15 to 1.5 × 10(6) cfu/mL with a limit of detection of 15 cfu/mL. Our method was successfully applied to real food samples, and the results are consistent with the results obtained using plate counting methods. We believe that the developed method shows potential for the rapid and sensitive detection of pathogenic bacteria in food safety assurance.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Boya Chang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- China Rural Technology Development Center, Beijing 100045, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
26
|
Xu M, Wang R, Li Y. Rapid detection of Escherichia coli O157:H7 and Salmonella Typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation. Talanta 2015; 148:200-8. [PMID: 26653441 DOI: 10.1016/j.talanta.2015.10.082] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/25/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
Foodborne pathogens have continuously been a serious food safety issue and there is a growing demand for a rapid and sensitive method to screen the pathogens for on-line or in-field applications. Therefore, an impedimetric immunosensor based on the use of magnetic beads (MBs) for separation and a screen-printed interdigitated microelectrode (SP-IDME) for measurement was studied for the rapid detection of Escherichia coli O157:H7 and Salmonella Typhimurium in foods. Streptavidin coated MBs were functionalized with corresponding biotinylated antibodies (Ab) to capture the target bacteria. The glucose oxidase (GOx)-Ab conjugates were employed to label the MBs-Ab-cell complexes. The yielded MBs-Ab-cell-Ab-GOx biomass was mixed with the glucose solution to trigger an enzymatic reaction which produced gluconic acid. This increased the ion strength of the solution, thus decreasing the impedance of the solution measured on the SP-IDME. Our results showed that the immunosensor was capable of specifically detecting E. coli O157:H7 and S. Typhimurium within the range of 10(2)-10(6) cfu ml(-1) in the pure culture samples. E. coli O157:H7 in ground beef and S. Typhimurium in chicken rinse water were also examined. The limits of detection (LODs) for the two bacteria in foods were 2.05×10(3) cfu g(-1) and 1.04×10(3) cfu ml(-1), respectively. This immunosensor required only a bare electrode to measure the impedance changes, and no surficial modification on the electrode was needed. It was low-cost, reproducible, easy-to-operate, and easy-to-preserve. All these merits demonstrated this immunosensor has great potential for the rapid and on-site detection of pathogenic bacteria in foods.
Collapse
Affiliation(s)
- Meng Xu
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ronghui Wang
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA; Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
27
|
Colorimetric detection of pathogenic bacteria using platinum-coated magnetic nanoparticle clusters and magnetophoretic chromatography. Anal Chim Acta 2015; 883:61-6. [DOI: 10.1016/j.aca.2015.04.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 11/24/2022]
|
28
|
Ma Z, Liu N. Design of immunoprobes for electrochemical multiplexed tumor marker detection. Expert Rev Mol Diagn 2015; 15:1075-83. [PMID: 26027743 DOI: 10.1586/14737159.2015.1052798] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many approaches have been developed for simultaneous detection of multiple tumor markers. Among these approaches, the electrochemical immunoassay has the advantage of high sensitivity and specificity and could be easily expanded into multiplex detection platform. For the simultaneous multianalyte electrochemical immunosensor, performance is closely related with the characteristics of the immunoprobes and substrate. In order to construct a multilabeled immunoprobe platform, the most important issue is how to discriminate each signal for each analyte from the multiple antigen-antibody reactions. Currently, enzyme-based, noble metal nanomaterials, carbonmaterials and polymer-based nanomaterial immunoprobes have been used for dual- or three-analyte detections. However, there are still some challenges in developing sensitive method to detect three or more tumor markers owing to the lack of redox-active species that can produce three or more distinctive peaks. Additionally, for the immunosensing substrate, good conductivity, high specific surface area and good biocompatibility are further necessities.
Collapse
Affiliation(s)
- Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | | |
Collapse
|
29
|
J MD. Molecular simulations of mixed self-assembled monolayer coated gold nanoparticles in water. J Mol Model 2015; 21:149. [DOI: 10.1007/s00894-015-2684-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
|
30
|
Yang Y, Pan J, Hua W, Tu Y. An approach for the preparation of highly sensitive electrochemical impedimetric immunosensors for the detection of illicit drugs. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Ahmed A, Rushworth JV, Hirst NA, Millner PA. Biosensors for whole-cell bacterial detection. Clin Microbiol Rev 2014; 27:631-46. [PMID: 24982325 PMCID: PMC4135896 DOI: 10.1128/cmr.00120-13] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost.
Collapse
Affiliation(s)
- Asif Ahmed
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jo V Rushworth
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Natalie A Hirst
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul A Millner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
32
|
Elshafey R, Tavares AC, Siaj M, Zourob M. Electrochemical impedance immunosensor based on gold nanoparticles–protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosens Bioelectron 2013; 50:143-9. [DOI: 10.1016/j.bios.2013.05.063] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 02/08/2023]
|
33
|
|
34
|
Derkus B, Cebesoy Emregul K, Mazi H, Emregul E, Yumak T, Sinag A. Protein A immunosensor for the detection of immunoglobulin G by impedance spectroscopy. Bioprocess Biosyst Eng 2013; 37:965-76. [DOI: 10.1007/s00449-013-1068-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 09/20/2013] [Indexed: 11/29/2022]
|
35
|
Tlili C, Sokullu E, Safavieh M, Tolba M, Ahmed MU, Zourob M. Bacteria Screening, Viability, And Confirmation Assays Using Bacteriophage-Impedimetric/Loop-Mediated Isothermal Amplification Dual-Response Biosensors. Anal Chem 2013; 85:4893-901. [DOI: 10.1021/ac302699x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chaker Tlili
- Cranfield Health, Vincent Building, Cranfield University, Bedfordshire MK43 0AL, United Kingdom
| | - Esen Sokullu
- Cranfield Health, Vincent Building, Cranfield University, Bedfordshire MK43 0AL, United Kingdom
| | - Mohammadali Safavieh
- Cranfield Health, Vincent Building, Cranfield University, Bedfordshire MK43 0AL, United Kingdom
| | - Mona Tolba
- Cranfield Health, Vincent Building, Cranfield University, Bedfordshire MK43 0AL, United Kingdom
| | - Minhaz Uddin Ahmed
- Cranfield Health, Vincent Building, Cranfield University, Bedfordshire MK43 0AL, United Kingdom
| | - Mohammed Zourob
- Cranfield Health, Vincent Building, Cranfield University, Bedfordshire MK43 0AL, United Kingdom
| |
Collapse
|
36
|
Emregul E, Kocabay O, Derkus B, Yumak T, Emregul KC, Sınag A, Polat K. A novel carboxymethylcellulose–gelatin–titanium dioxide–superoxide dismutase biosensor; electrochemical properties of carboxymethylcellulose–gelatin–titanium dioxide–superoxide dismutase. Bioelectrochemistry 2013; 90:8-17. [DOI: 10.1016/j.bioelechem.2012.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/03/2012] [Accepted: 09/17/2012] [Indexed: 01/05/2023]
|
37
|
Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid–carbon nanotubes modified electrode: Application as cancer biomarker for prostatebiopsies. Biosens Bioelectron 2013; 42:439-46. [DOI: 10.1016/j.bios.2012.10.053] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 11/23/2022]
|
38
|
Myelin basic protein immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy. Biosens Bioelectron 2013; 46:53-60. [PMID: 23500477 DOI: 10.1016/j.bios.2013.01.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/05/2023]
Abstract
A novel highly sensitive impedimetric Myelin Basic Protein (MBP) immunosensor for the determination of a Multiple Sclerosis (MS) autoantibody, Anti-Myelin Basic Protein (Anti-MBP) was developed by immobilization of MBP on Gelatin and Gelatin-Titanium Dioxide (TiO₂) modified platinium electrode. Cyclic voltammetric (CV) and Electrochemical Impedance Spectroscopic (EIS) methods were employed in determination of the electrode responses and applicability. Gelatin-MBP and gelatin-TiO₂-MBP electrodes were prepared by chemical immobilization of the substrates onto the platinium electrodes. The formal potentials of MBP confined on gelatin-MBP and gelatin-TiO₂-MBP surfaces are estimated to be 195 and 205 mV, respectively. Thus, a little more reversible electron transfer reaction occurs on the gelatin-TiO₂-MBP immunosensor surface. The peak separations of MBP (150 mV and 110 mV s(-1) at 100 mV s(-1)) and the asymmetric anodic and cathodic peak currents indicate that the electron transfer between Anti-MBP and gelatin-MBP/gelatin-TiO₂-MBP immunosensor is quasireversible. Control samples containing a nonspecific human immunoglobulin G (hIgG) antibody were also studied, and calibration curves were obtained by subtraction of the responses for specific and nonspecific antibody-based sensors. Gelatin-MBP and gelatin-TiO₂-MBP immunosensors have detection limit of 0.1528 ng ml(-1) and 0.1495 ng ml(-1) respectively. This immunosensor exhibits high sensitivity and low response times (58 s for gelatin-MBP and 46 s for gelatin-TiO₂-MBP immunosensor). The developed label-free impedimetric immunosensors also provide a simple and sensitive detection method for the specific determination of Anti-MBP in human cerebrospinal fluid (CSF) and serum samples.
Collapse
|
39
|
Lu L, Chee G, Yamada K, Jun S. Electrochemical impedance spectroscopic technique with a functionalized microwire sensor for rapid detection of foodborne pathogens. Biosens Bioelectron 2012; 42:492-5. [PMID: 23238324 DOI: 10.1016/j.bios.2012.10.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/05/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
In this study, a label-free biosensor based on electrochemical impedance measurement followed by dielectrophoretic force and antibody-antigen interaction was developed for detection and quantification of foodborne pathogenic bacteria. In our previous work, gold-tungsten wires (25 μm in diameter) were functionalized by coating with polyethyleneimine-streptavidin-anti-Escherichia coli antibodies to improve sensing specificity, and fluorescence intensity measurement was employed to quantify bacteria captured by the sensor. The focus of this research is to evaluate the performance of the developed biosensor by monitoring the changes of electron-transfer resistance (ΔR(et)) of the microwire after the bioaffinity reaction between bacterial cells and antibodies on its surface as an alternative quantification technique to fluorescence microscopy. Electrochemical impedance spectroscopy (EIS) has been used to detect and validate the resistance changes in a conventional three-electrode system in which [Fe(CN)₆³⁻]/[Fe(CN)₆⁴⁻] served as the redox probe. The impedance data demonstrated a linear relationship between the increments of ΔR(et) and the logarithmic concentrations of E. coli suspension in the range of 10³-10⁸ CFU/mL. In addition, there were little changes of ΔR(et) when the sensor worked with Salmonella, which clearly evidenced the sensing specificity to E. coli. EIS was proven to be an ideal alternative to fluorescence microscopy for enumeration of captured cells.
Collapse
Affiliation(s)
- Lin Lu
- Department of Molecular Biosciences and Bioengineering, 1955 East West Road, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
40
|
|
41
|
Yang T, Zhou N, Li Q, Guan Q, Zhang W, Jiao K. Highly sensitive electrochemical impedance sensing of PEP gene based on integrated Au-Pt alloy nanoparticles and polytyramine. Colloids Surf B Biointerfaces 2012; 97:150-4. [PMID: 22609596 DOI: 10.1016/j.colsurfb.2012.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 03/28/2012] [Accepted: 04/05/2012] [Indexed: 01/08/2023]
Abstract
Fabrication of an electrochemical impedimetric DNA biosensor based on the integration of Au-Pt alloy nanoparticles (Au-Pt(NPs)) and electropolymerized polytyramine (Pty) film for the detection of phosphoenolpyruvate carboxylase (PEP) gene is described in this article, where Pty films acted as an ideal combination platform for Au-Pt(NPs) via electrostatic adsorption. The electrochemical properties of the Au-Pt(NPs)/Pty, the characteristics of the immobilization and hybridization of DNA were investigated by cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy (EIS), respectively. Primary study indicated that Au-Pt(NPs)/Pty had a synergistic effect on the electrochemical signal of [Fe(CN)(6)](3-/4-), which served as the classic redox probe in the most electrochemical impedimetric sensors. DNA sequence-specific of PEP transgene existed in some transgenic crops was detected by this EIS protocol. The dynamic detection range of this DNA electrochemical biosensor to the DNA target sequence was from 1.0×10(-12)M to 1.0×10(-7)M. The detection limit was measured to be 3.6×10(-13)M. The DNA biosensor also had good selectivity, stability and reproducibility.
Collapse
Affiliation(s)
- Tao Yang
- Shandong Provincial Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | | | | | | | | | | |
Collapse
|
42
|
Matharu Z, Bandodkar AJ, Gupta V, Malhotra BD. Fundamentals and application of ordered molecular assemblies to affinity biosensing. Chem Soc Rev 2012; 41:1363-402. [DOI: 10.1039/c1cs15145b] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Muñoz-Berbel X, Escudé-Pujol R, Vigués N, Cortina-Puig M, García-Aljaro C, Mas J, Muñoz FX. Real Time Automatic System for the Impedimetric Monitoring of Bacterial Growth. ANAL LETT 2011. [DOI: 10.1080/00032719.2011.553008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
44
|
Lu X, Zhao D, Song Z, Wu B, Lu B, Zhou X, Xue Z. A valuable visual colorimetric and electrochemical biosensor for porphyrin. Biosens Bioelectron 2011; 27:172-7. [DOI: 10.1016/j.bios.2011.06.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
|
45
|
Mandler D, Kraus-Ophir S. Self-assembled monolayers (SAMs) for electrochemical sensing. J Solid State Electrochem 2011. [DOI: 10.1007/s10008-011-1493-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Electrochemical impedance immunosensor based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes for the detection of antibody. Biosens Bioelectron 2011; 26:3660-5. [DOI: 10.1016/j.bios.2011.02.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/13/2011] [Accepted: 02/15/2011] [Indexed: 11/24/2022]
|
47
|
Khan R, Dey NC, Hazarika AK, Saini KK, Dhayal M. Mycotoxin detection on antibody-immobilized conducting polymer-supported electrochemically polymerized acacia gum. Anal Biochem 2011; 410:185-90. [DOI: 10.1016/j.ab.2010.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/01/2010] [Accepted: 11/04/2010] [Indexed: 11/26/2022]
|
48
|
Wan Y, Zhang D, Wang Y, Qi P, Hou B. Direct immobilisation of antibodies on a bioinspired architecture as a sensing platform. Biosens Bioelectron 2010; 26:2595-600. [PMID: 21163640 DOI: 10.1016/j.bios.2010.11.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/28/2010] [Accepted: 11/09/2010] [Indexed: 02/07/2023]
Abstract
A sensitive and selective immunosensor for the nonlabeled detection of sulfate-reducing bacteria (SRB) is constructed using a self-polymerised polydopamine film as the immobilisation platform. Self-polymerisation of dopamine is used as a powerful approach for applying multifunctional coatings onto the surface of a gold electrode. The polydopamine film is used not only as the immobilisation platform, but also as a cross-linker reagent for the immobilisation of the anti-SRB antibody. The polydopamine film is loaded with a high density of anti-SRB antibodies linked to the substrate to obtain high response signals. The formation and fabrication of the biosensor and the quantification of antibody anchoring are monitored, and SRB detection is performed by either quartz crystal microbalance (QCM) or electrochemical impedance spectroscopy (EIS). After modeling the impedance Nyquist plots of the SRB/anti-SRB/polydopamine/gold electrode for increasing concentrations of SRB, the electron transfer resistance (R(ct)) is used as a measure of immunocomplex binding. The R(ct) is correlated with the concentration of bacterial cells in the range of 1.8×10(2) to 1.8×10(6) CFU mL(-1); the detection limit is 50 CFU mL(-1). This work demonstrates a new immobilisation platform for the development of a sensitive and label-less impedimetric and piezoelectric immunosensor. This immunosensor may be broadly applied in clinical diagnoses and the monitoring of water environmental pollution. The method proposed is distinct in its ease of application, use of a simple protocol, and mild reaction conditions. These allow it to be applied to a wide variety of materials.
Collapse
Affiliation(s)
- Yi Wan
- Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | | | |
Collapse
|
49
|
Directed immobilization of reduced antibody fragments onto a novel SAM on gold for myoglobin impedance immunosensing. Bioelectrochemistry 2010; 80:49-54. [PMID: 20880761 DOI: 10.1016/j.bioelechem.2010.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 08/12/2010] [Accepted: 08/23/2010] [Indexed: 11/23/2022]
Abstract
The successful construction of an immunosensor depends on having an effective procedure for immobilising the bio-recognition element to the transducer surface. In the present study, an amino-terminated 4-aminothiophenol (ATP) self-assembled monolayer (SAM) was modified with heterobifunctional crosslinker sulfosuccinimidyl 4-[N-maleimidomethyl] cyclohexane-1-carboxylate to couple reduced anti-myoglobin half-antibody fragments. The disulphide groups present in the hinge region of IgG molecules were selectively cleaved by 2-mercaptoethylamine to produce reduced half-antibody fragments with free sulphydryl groups. The maleimide terminated 4-ATP SAM modified surface was coupled to these reduced antibody fragments to produce highly oriented immobilization of the half-antibody via its Fc domain and to allow free access to the Fv bindings sites. This represents an improvement by comparison with biotin/avidin mediated IgG attachment which is essentially randomly oriented. Functional immunosensors were able to detect myoglobin in both phosphate buffered saline and whole serum over the range of concentrations from 10(-13)M to 10(-6)M, and order of magnitude better than avidin/biotin linked immunosensors. In addition, atomic force microscopy (AFM) was carried out to elucidate the nanotopology of the immunosensor surface at different stages of fabrication; the images demonstrate that half antibodies bind as described and show structural changes on subsequent antigen binding.
Collapse
|
50
|
Wan Y, Lin Z, Zhang D, Wang Y, Hou B. Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosens Bioelectron 2010; 26:1959-64. [PMID: 20888216 DOI: 10.1016/j.bios.2010.08.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/31/2010] [Accepted: 08/02/2010] [Indexed: 11/16/2022]
Abstract
A facile, sensitive and reliable impedimetric immunosensor doped with reduced graphene sheets (RGSs) and combined with a controllable electrodeposition technique was developed for the selective detection of marine pathogenic sulphate-reducing bacteria (SRB). The morphology of RGSs and the electrochemical properties of RGSs-doped chitosan (CS) nanocomposite film were investigated by atomic force microscopy, Fourier transform infrared spectroscopy, and cyclic voltammetry (CV). Electrochemical impedance spectroscopy and CV were used to verify the stepwise assembly of the sensor system. Faradic impedance spectroscopy for charge transfer for the redox probe Fe(CN)(6)(3-/4-) was done to determine SRB concentrations. The diameter of the Nyquist diagram that is equal to the charge-transfer resistance (R(ct)) increased with increasing SRB concentration. A linear relationship between R(ct) and SRB concentration was obtained in the SRB concentration range of 1.8×10(1) to 1.8×10(7) cfu/ml. The impedimetric biosensor gave a distinct response to SRB, but had no obvious response to Vibrio angillarum. It showed a high selectivity for the detection of the pathogen. Based on a combination of the biocompatibility of CS and good electrical conductivity of RGSs, a nanocomposite film with novel architecture was used to immobilize biological and chemical targets and to develop a new type of biosensor.
Collapse
Affiliation(s)
- Yi Wan
- Key Lab of Corrosion Science, Shandong Province, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | | | |
Collapse
|