1
|
Zhou W, Dutt M, Lan Q, Cappiello A, Pawliszyn J. High-Throughput Screening of Polyfluoroalkyl Substances Using Solid-Phase Microextraction Coupled to Microfluidic Open Interface-Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8756-8765. [PMID: 40273345 DOI: 10.1021/acs.est.5c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Efficient and sustainable methods for large-scale PFAS monitoring are critical for addressing environmental and public health challenges. This work presents a high-throughput sample preparation system capable of processing up to 48 samples simultaneously using solid-phase microextraction (SPME) and was directly coupled with mass spectrometry (MS) via an automated microfluidic open interface (MOI), bypassing the need for chromatographic separation. The SPME-MOI-MS approach achieves sensitive detection of 18 PFAS in drinking water, with limits of detection (LODs) between 1 and 10 pg/mL, using just 1.5 mL of sample and an average analysis time of 2.8 min per sample. The SPME blades, employed to enhance sensitivity in place of standard SPME fibers, incorporate a matrix-compatible coating material that enables effective PFAS screening in water as well as complex matrices including blood, beer, and beef. In addition, significantly low recovery and reproducibility of nonpolar PFAS in water analysis have been found and studied, indicating that using a glass container and adding a small percentage of acetonitrile can address this issue.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Malvika Dutt
- DiSPeA Department, University of Urbino Carlo Bo, Piazza Rinascimento, 6, Urbino 61029, Italy
| | - Qizhen Lan
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Achille Cappiello
- DiSPeA Department, University of Urbino Carlo Bo, Piazza Rinascimento, 6, Urbino 61029, Italy
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Vettorazzo C, Sandström E, Troalen LG, Mackay CL, Hulme AN. Heritage science applications of ambient mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3357-3369. [PMID: 40211803 DOI: 10.1039/d5ay00193e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
An overview of the applications of the ambient mass spectrometry techniques Desorption Electrospray Ionisation (DESI) and Direct Analysis in Real Time (DART) in the field of cultural heritage is given. These techniques were first used for heritage science studies in the 2010s, but did not become common in the field until recent years. Investigation of the composition of objects, the analysis of surface residues and material degradation are discussed alongside the use of data obtained by DESI and DART for planning better conservation interventions. Heritage science studies using other ambient mass spectrometry techniques such as Paper Spray mass spectrometry (PS)-MS, Surface Acoustic Wave Nebulisation (SAWN)-MS, and Laser Ablation Electrospray Ionisation (LAESI)-MS are also briefly described. The analysis of a variety of artefacts and materials including paper, wood, oil paintings and pottery are included, and potential future developments in the field are explored, highlighting the current exciting expansion of the application of ambient mass spectrometry techniques to heritage science questions.
Collapse
Affiliation(s)
- Chiara Vettorazzo
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Edith Sandström
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
- National Museums Scotland, Department of Collections Services, National Museums Collection Centre, 242 West Granton Road, Edinburgh, EH5 1JA, UK
| | - Lore G Troalen
- National Museums Scotland, Department of Collections Services, National Museums Collection Centre, 242 West Granton Road, Edinburgh, EH5 1JA, UK
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Alison N Hulme
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
3
|
Su H, Han L, Ge M, Wang X, Zeng H, Zhao D, Xiong W, Wen L. Simultaneous determination of pesticide residues and rapid discrimination of corn production origin using ambient ionization mass spectrometry combined with machine learning. Food Chem 2025; 485:144585. [PMID: 40318328 DOI: 10.1016/j.foodchem.2025.144585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/11/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Food traceability is a critical aspect of quality control and food safety. In this study, a high-throughput analysis system with an analysis time of 13 min was developed for the detection of pesticide residues in corn, achieving low limits of detection (LODs) ranging from 0.59 to 14.38 μg/kg. Using this method, corn samples from different origins were found to contain distinct exogenous pesticide profiles and were classified into six categories. Based on these differential analytes, stoichiometric models were applied to explore spectral differences among the corn samples, while some cluster overlap was observed. Subsequently, the Random Forest (RF) model was employed to achieve excellent prediction performance with accuracies of 100 % in training and 98.1 % in external validation, indicating high accuracy in origin traceability. Therefore, this high-throughput system combined with machine learning shows great potential for the rapid detection of pesticide residues and origin identification, contributing significantly to food quality monitoring.
Collapse
Affiliation(s)
- Hang Su
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, PR China
| | - Lifeng Han
- Dian Regional Forensic Science Institute·Zhejiang, Hangzhou 31000, Zhejiang, PR China
| | - Miaoxiu Ge
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China
| | - Xiangyu Wang
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, PR China
| | - Hongping Zeng
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, PR China
| | - Dan Zhao
- China Innovation Instrument Co., Ningbo 315100, PR China
| | - Wei Xiong
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China; China Innovation Instrument Co., Ningbo 315100, PR China.
| | - Luhong Wen
- The Research Institute of Advanced Technology, Ningbo University, Ningbo 315211, PR China; China Innovation Instrument Co., Ningbo 315100, PR China.
| |
Collapse
|
4
|
Olawuyi O, Stewart J, Sakib MMH, Bryant W, Wewers MK, Lewit N, Ali MA, Rahman MS, Halim MA. Elucidating gas phase microstructures of therapeutic deep eutectic systems. Analyst 2025; 150:1846-1855. [PMID: 40135552 DOI: 10.1039/d4an00645c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Therapeutic deep eutectic solvents are a new class of deep eutectic solvents (DESs), which include at least an active pharmaceutical ingredient (API) as one of the components. Therapeutic DESs are emerging alternatives that improve the bioavailability, solubility, delivery, and pharmacokinetics properties of drugs. DESs comprise two components, generally a hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD), with varying ratios. The interaction chemistry between HBA : HBD components in DESs is complex. Moreover, stoichiometry and cluster formation of DESs at the molecular level have received little attention. Mass spectrometry (MS) is an attractive technique for studying isolated gas phase molecules; however, such investigations have not been implemented for DESs. Compared to other techniques, MS is unique in providing information on the gas phase stoichiometry, cluster formation, and interaction network between the two components of DESs. In addition, computational modeling assists in visualizing the isolated DES clusters and unraveling a deeper understanding of the structure-property relationship. In this study, multi-technique approaches, including thermogravimetric (TGA), calorimetric (DSC), spectroscopic (IR and Raman), emerging mass spectrometry, and computational, were employed to characterize the menthol : ibuprofen-based therapeutic DES. The thermal, calorimetric, and spectroscopic studies showed that hydrogen bonding is the primary factor contributing to DES formation. This study also reported the stable gas phase cluster structure of a menthol : ibuprofen DES using electrospray ionization (ESI) and direct analysis in real time (DART) coupled with mass spectrometry. Subsequently, a temperature-dependent DART-MS investigation shows that different-temperature conditions impact the formation and intensity of clusters, and the presence of ester impurities. The most intense peak in the ESI-MS and DART-MS spectra was detected at m/z 363.1, corresponding to the hetero-molecular cluster of a 1 : 1 menthol : ibuprofen complex. In addition to the hetero-cluster, homo-clusters of a two-menthol molecule and a two-ibuprofen molecule were also detected. Density functional theory (DFT) was employed to investigate the possible gas phase structures of the selected clusters obtained from MS. The DFT results show that hydrogen bonds between the constituents stabilize most of the clusters. An MS-guided computational model visualized detailed microstructures and provided insights into the formation mechanism and intermolecular interaction of therapeutic DES.
Collapse
Affiliation(s)
- Oluseyi Olawuyi
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, USA.
| | - James Stewart
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, USA.
| | - Md Minhas Hossain Sakib
- Division of Quantum Chemistry, The Red-Green Research Center, BICCB, 16, Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - William Bryant
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, USA.
| | - Mary-Kate Wewers
- Department of Physical Sciences, University of Arkansas at Fort Smith, Fort Smith, AR 72913, USA
| | - Noam Lewit
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, USA.
| | - Md Ackas Ali
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, USA.
| | - Md Sajjadur Rahman
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, USA.
| |
Collapse
|
5
|
Wan J, Sun Z, Feng X, Zhou P, Macho MTN, Jiao Z, Cao H, Zhang C, Lin R, Zhang X, Fan M, Zhang N, Zhang J, Liu H, Li J, Guan S. Spatial omics strategies for investigating human carotid atherosclerotic disease. Clin Transl Med 2025; 15:e70277. [PMID: 40156163 PMCID: PMC11953060 DOI: 10.1002/ctm2.70277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Atherosclerosis is a chronic inflammatory condition of the arteries, marked by the development of plaques within the arterial intima. The rupture of unstable plaques can lead to thrombosis, downstream vessel occlusion and serious clinical events. The composition of atherosclerotic plaques is complex and highly heterogeneous, posing challenges for their study. The current pathology and histological subtype classification of plaques may fail to fully encompass the microscopic molecular components in the tissue, the disease progress in various stages of atherosclerosis and the potential mechanism of plaque rupture. However, spatial mapping of the heterogeneity in plaque tissue components can enhance our understanding of these lesions. Despite the considerable progress made by traditional omics in the field of disease research, and its status as an indispensable technology, there remain inherent limitations in the investigation of minute molecular. In recent years, spatial omics techniques have advanced significantly, enabling the visualisation and analysis of specific components within plaques that may serve as causal targets associated with disease progression. The effective application of spatial omics in both research and clinical settings represents a promising area for further exploration. This review focuses on the recent advancements and findings related to spatial omics in the study of extracranial carotid atherosclerotic cerebrovascular disease. Spatial omics analysis of atherosclerotic plaques can facilitate the detection of biomarkers with diagnostic significance or potential relevance to disease, offering new methods and insights into the diagnosis of atherosclerosis and its complications.
Collapse
Affiliation(s)
- Jiaxin Wan
- Department of Neurointerventionthe First Affiliated Hospital of Zhengzhou, UniversityHenan Provincial Neurointerventional Engineering Research CenterZhengzhouHenanChina
| | - Zhi Sun
- Department of Pharmacythe First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. Henan Engineering Research Center of Clinical Mass Spectrometry for Precision MedicineZhengzhouHenan ProvinceChina
| | - Xueqiong Feng
- Department of Pharmacythe First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. Henan Engineering Research Center of Clinical Mass Spectrometry for Precision MedicineZhengzhouHenan ProvinceChina
| | - Peipei Zhou
- Department of Pharmacythe First Affiliated Hospital of Zhengzhou University, Zhengzhou, China. Henan Engineering Research Center of Clinical Mass Spectrometry for Precision MedicineZhengzhouHenan ProvinceChina
| | - Mateus T. N. Macho
- Department of Cardiovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhouyang Jiao
- Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hui Cao
- Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chuang Zhang
- Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Rijin Lin
- Department of Neurointerventionthe First Affiliated Hospital of Zhengzhou, UniversityHenan Provincial Neurointerventional Engineering Research CenterZhengzhouHenanChina
| | - Xiaowen Zhang
- Department of Neurointerventionthe First Affiliated Hospital of Zhengzhou, UniversityHenan Provincial Neurointerventional Engineering Research CenterZhengzhouHenanChina
| | - Mengyan Fan
- Department of Neurointerventionthe First Affiliated Hospital of Zhengzhou, UniversityHenan Provincial Neurointerventional Engineering Research CenterZhengzhouHenanChina
| | - Nan Zhang
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou, UniversityZhengzhouChina
| | - Jiamei Zhang
- Department of Neurointerventionthe First Affiliated Hospital of Zhengzhou, UniversityHenan Provincial Neurointerventional Engineering Research CenterZhengzhouHenanChina
| | - Huixiang Liu
- Department of Neurointerventionthe First Affiliated Hospital of Zhengzhou, UniversityHenan Provincial Neurointerventional Engineering Research CenterZhengzhouHenanChina
| | - Jing Li
- Department of Neurointerventionthe First Affiliated Hospital of Zhengzhou, UniversityHenan Provincial Neurointerventional Engineering Research CenterZhengzhouHenanChina
| | - Sheng Guan
- Department of Neurointerventionthe First Affiliated Hospital of Zhengzhou, UniversityHenan Provincial Neurointerventional Engineering Research CenterZhengzhouHenanChina
| |
Collapse
|
6
|
Maimó-Barceló A, Pérez-Romero K, Rodríguez RM, Huergo C, Calvo I, Fernández JA, Barceló-Coblijn G. To image or not to image: Use of imaging mass spectrometry in biomedical lipidomics. Prog Lipid Res 2025; 97:101319. [PMID: 39765282 DOI: 10.1016/j.plipres.2025.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Lipid imaging mass spectrometry (LIMS) allows for establishing the bidimensional distribution of lipid species within a tissue section. One of the main advantages is the generation of spatial information on lipid species distribution at a spatial (lateral) resolution bordering on single-cell resolution with no need to isolate cells. Thus, LIMS images demonstrate, with a level of detail never described before, that lipid profiles are highly sensitive to cell type and pathophysiological state. The wealth and relevance of the information conveyed by LIMS makes up for the lack of a separation stage before sample injection into the mass analyzer, which can somehow be circumvented by other means. Hence, the possibility of describing the lipidome at the cellular level while preserving the microenvironment offers an incomparable opportunity to investigate physiological and pathological contexts. However, to fully grasp the biological implications of the lipid profiles, it is essential to contextualize LIMS data within the broader multiscale 'omic' landscape, entailing genomics, epigenomics, and proteomics, each offering a unique window into the regulatory layers of the cell. In this line, the number of techniques that can be combined with LIMS to delve into the molecular mechanisms underlying differential lipid profiles is continuously increasing. Herein, we aim to describe the key features of LIMS analyses, from sample preparation to data interpretation, as well as the current methodologies to enrich and complete the final outcome. While the field is rapidly advancing, we consider there is solid evidence to foresee the incorporation of LIMS into clinical environments.
Collapse
Affiliation(s)
- Albert Maimó-Barceló
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Karim Pérez-Romero
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Ramón M Rodríguez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Cristina Huergo
- Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ibai Calvo
- Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - José A Fernández
- Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain.
| |
Collapse
|
7
|
Liu J, Yu P, Wu T, Ma D, Sun Y, Zhang X, Yang H. Ionization characteristics of various amino acids in positive-ion helium direct analysis in real-time quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9879. [PMID: 39091272 DOI: 10.1002/rcm.9879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Jianing Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Tong Wu
- The Public Experimental Center, Changchun University of Chinese Medicine, Changchun, China
| | - Delai Ma
- The Public Experimental Center, Changchun University of Chinese Medicine, Changchun, China
| | - Yankun Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Hongmei Yang
- The Public Experimental Center, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Venter AR. Protein analysis by desorption electrospray ionization mass spectrometry. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39056172 DOI: 10.1002/mas.21900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This review presents progress made in the ambient analysis of proteins, in particular by desorption electrospray ionization-mass spectrometry (DESI-MS). Related ambient ionization techniques are discussed in comparison to DESI-MS only to illustrate the larger context of protein analysis by ambient ionization mass spectrometry. The review describes early and current approaches for the analysis of undigested proteins, native proteins, tryptic digests, and indirect protein determination through reporter molecules. Applications to mass spectrometry imaging for protein spatial distributions, the identification of posttranslational modifications, determination of binding stoichiometries, and enzymatic transformations are discussed. The analytical capabilities of other ambient ionization techniques such as LESA and nano-DESI currently exceed those of DESI-MS for in situ surface sampling of intact proteins from tissues. This review shows, however, that despite its many limitations, DESI-MS is making valuable contributions to protein analysis. The challenges in sensitivity, spatial resolution, and mass range are surmountable obstacles and further development and improvements to DESI-MS is justified.
Collapse
Affiliation(s)
- Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| |
Collapse
|
9
|
Kumar BS. Recent developments and applications of ambient mass spectrometry imaging in pharmaceutical research: an overview. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:8-32. [PMID: 38088775 DOI: 10.1039/d3ay01267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The application of ambient mass spectrometry imaging "MSI" is expanding in the areas of fundamental research on drug delivery and multiple phases of the process of identifying and developing drugs. Precise monitoring of a drug's pharmacological workflows, such as intake, distribution, metabolism, and discharge, is made easier by MSI's ability to determine the concentrations of the initiating drug and its metabolites across dosed samples without losing spatial data. Lipids, glycans, and proteins are just a few of the many phenotypes that MSI may be used to concurrently examine. Each of these substances has a particular distribution pattern and biological function throughout the body. MSI offers the perfect analytical tool for examining a drug's pharmacological features, especially in vitro and in vivo effectiveness, security, probable toxic effects, and putative molecular pathways, because of its high responsiveness in chemical and physical environments. The utilization of MSI in the field of pharmacy has further extended from the traditional tissue examination to the early stages of drug discovery and development, including examining the structure-function connection, high-throughput capabilities in vitro examination, and ex vivo research on individual cells or tumor spheroids. Additionally, an enormous array of endogenous substances that may function as tissue diagnostics can be scanned simultaneously, giving the specimen a highly thorough characterization. Ambient MSI techniques are soft enough to allow for easy examination of the native sample to gather data on exterior chemical compositions. This paper provides a scientific and methodological overview of ambient MSI utilization in research on pharmaceuticals.
Collapse
Affiliation(s)
- Bharath Sampath Kumar
- Independent researcher, 21, B2, 27th Street, Lakshmi Flats, Nanganallur, Chennai 600061, India.
| |
Collapse
|
10
|
Nazim T, Lusina A, Cegłowski M. Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques. Polymers (Basel) 2023; 15:3868. [PMID: 37835917 PMCID: PMC10574876 DOI: 10.3390/polym15193868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) encompass a diverse array of polymeric matrices that exhibit the unique capacity to selectively identify a designated template molecule through specific chemical moieties. Thanks to their pivotal attributes, including exceptional selectivity, extended shelf stability, and other distinct characteristics, this class of compounds has garnered interest in the development of highly responsive sensor systems. As a result, the incorporation of MIPs in crafting distinctive sensors and analytical procedures tailored for specific analytes across various domains has increasingly become a common practice within contemporary analytical chemistry. Furthermore, the range of polymers amenable to MIP formulation significantly influences the potential utilization of both conventional and innovative analytical methodologies. This versatility expands the array of possibilities in which MIP-based sensing can be employed in recognition systems. The following review summarizes the notable progress achieved within the preceding seven-year period in employing MIP-based sensing techniques for analyte determination.
Collapse
Affiliation(s)
| | | | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (T.N.); (A.L.)
| |
Collapse
|
11
|
Surface-Coated Acupuncture Needles as Solid-Phase Microextraction Probes for In Vivo Analysis of Bioactive Molecules in Living Plants by Mass Spectrometry. Metabolites 2023; 13:metabo13020220. [PMID: 36837839 PMCID: PMC9968076 DOI: 10.3390/metabo13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
In this work, we report the coupling of solid-phase microextraction (SPME) enabled by surface-coated acupuncture needles with nano-electrospray mass spectrometry (nanoESI-MS) for the analysis of bioactive molecules in living plants. The needle tip was oxidized by a mixture of nitric acid and hydrogen peroxide solution and then subject to surface coating via carbonization of paraffin. A combination of oxidation and surface coating resulted in a thin coating of carbon film, whereby the significantly increased surface area promoted both analyte enrichment and ionization for MS analysis. The analytical performances were evaluated through the characterization of small molecules, peptides and proteins. Compared with conventional nanoESI, our new strategy of employing surface-coated needles had a high salt tolerance. The streamlined experimental workflow could be completed within one minute. The linear dynamic ranges for L-histidine and L-lysine, as two representatives, were over two orders of magnitude with a limit of detection (LOD) of 3.0~5.0 ng/mL. A mark is made on the needle at 2 mm from the tip, the needle is then kept in the sample for 30 s. In vivo sampling and identification of α-tomatine and organic acids from the stem of a living tomato plant were demonstrated as a practical application, while the physiological activities of the plant were not disrupted due to the minimally invasive sampling. We anticipate that the developed strategy may be of potential use for real-time clinical and other on-site analyses.
Collapse
|
12
|
Liu M, Wang S, Ge W, Bi W, Chen DDY. Influence of host-guest interactions on analytical performance of direct analysis in real-time mass spectrometry. Anal Bioanal Chem 2023:10.1007/s00216-023-04539-4. [PMID: 36651975 DOI: 10.1007/s00216-023-04539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
To systematically study the influence of host-guest interactions on the analytical performance of direct analysis in real time mass spectrometry (DART-MS), the interactions between cyclodextrins (CDs) and different Sudan dyes were investigated. The results showed that the host-guest interaction between CDs and Sudan dyes did not affect qualitative analysis of the target compounds, but led to a lower signal intensity for Sudan dyes, thus affecting quantitative analysis of the target compounds. The stronger the host-guest interaction, the weaker the signal intensity of target compound on DART-MS. The results also show that both in solution and in solid-phase microextraction (SPME), the addition of organic solvents can weaken the host-guest interaction between CDs and Sudan dyes, thus improving the signal intensity in DART-MS. In SPME, adding organic solvents has a certain practical value and can improve the efficiency of Sudan dye analysis. This study suggests that appropriate sample pretreatment is needed to weaken noncovalent interactions prior to DART-MS analysis to obtain more accurate quantitative results. The data provide some insight into the effects of other noncovalent interactions on the efficiency of DART-MS as an analytical tool, as well as the potential to study intermolecular interactions with DART-MS.
Collapse
Affiliation(s)
- Min Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Simin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wuxia Ge
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wentao Bi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China. .,Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
13
|
In vitro: Anti-coccidia activity of Calotropis procera leaf extract on Eimeria papillata oocysts sporulation and sporozoite. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract
Natural products play an important role as environmentally friendly agents that can be used against parasitic diseases. Many Eimeria species cause eimeriosis in poultry. The negative effects of synthetic anti-coccidiosis medications necessitate the quest for alternative treatments derived from medicinal plants in the treatment of eimeriosis. The study was conducted to evaluate the effects of Calotropis procera leaf extract (CPLE) (Madar) on the sporulation of Eimeria oocysts and sporozoites that affect mammalian jejunum and to obtain the best concentration for sporulation inhibition and infection prevention. Extracts were tested in vitro to prevent oocyst sporulation, wall deformity, and anti-sporozoite activity with Eimeria papillata. The plant-chemical compounds analysis of CPLE some active compounds were shown as well as CPLE in vitro effects at various concentrations (200, 100, 50, 25,12.5, and 6.25 mg/mL), while potassium dichromate solution 2.5% and Toltrazuril 25 mg/mL were administered as the control groups. C. procera leaf extract showed the highest inhibitory percentage on E. papillata oocyst at 200 mg/mL of extract, approximately 91%. In addition, CPLE showed the sporozoite highest viability inhibitory percentage on E. papillata at 200 mg/mL of extract, approximately 88%, and the lowest efficacy was 5% at 6.25 mg/mL. Also, we noticed the deformation and destruction of the oocyst wall based on the concentration rate. Sporulation inhibition rate is significantly affected by incubation time and treatment concentration ratio. The results showed that Madar has an effective, inhibitory potential, and protective effect on coccidian oocyst sporulation and sporozoites of E. papillata.
Collapse
|
14
|
Lin M, Blevins MS, Sans M, Brodbelt JS, Eberlin LS. Deeper Understanding of Solvent-Based Ambient Ionization Mass Spectrometry: Are Molecular Profiles Primarily Dictated by Extraction Mechanisms? Anal Chem 2022; 94:14734-14744. [PMID: 36228313 DOI: 10.1021/acs.analchem.2c03360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solvent-based ambient ionization mass spectrometry (MS) techniques provide a powerful approach for direct chemical analysis and molecular profiling of biological tissues. While molecular profiling of tissues has been widely used for disease diagnosis, little is understood about how the interplay among solvent properties, matrix effects, and ion suppression can influence the detection of biological molecules. Here, we perform a systematic investigation of the extraction processes of lipids using an ambient ionization droplet microsampling platform to investigate how the physicochemical properties of the solvent systems and extraction time influence molecular extraction and detection. Direct molecular profiling and quantitative liquid chromatography-mass spectrometry (LC-MS) of discrete solvent droplets after surface sampling were investigated to provide insights into extraction and ionization mechanisms. The results of this study suggest that intermolecular interactions such as hydrogen bonding play a major role in extraction and detection of lipids using solvent-based ambient ionization techniques. In addition, extraction time was observed to impact the molecular profiles obtained, suggesting optimization of this parameter can be performed to favor detection of specific analytes.
Collapse
Affiliation(s)
- Monica Lin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Molly S Blevins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Marta Sans
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States.,Department of Surgery, Baylor College of Medicine, Houston, Texas77030, United States
| |
Collapse
|
15
|
Shi L, Habib A, Bi L, Hong H, Begum R, Wen L. Ambient Ionization Mass Spectrometry: Application and Prospective. Crit Rev Anal Chem 2022; 54:1584-1633. [PMID: 36206159 DOI: 10.1080/10408347.2022.2124840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mass spectrometry (MS) is a formidable analytical tool for the analysis of non-polar to polar compounds individually and/or from mixtures, providing information on the molecular weights and chemical structures of the analytes. During the last more than one-decade, ambient ionization mass spectrometry (AIMS) has developed quickly, producing a wide range of platforms and proving scientific improvements in a variety of domains, from biological imaging to quick quality control. These methods have made it possible to detect target analytes in real time without sample preparation in an open environment, and they can be connected to any MS system with an atmospheric pressure interface. They also have the ability to analyze explosives, illicit drugs, disease diagnostics, drugs in biological samples, adulterants in food and agricultural products, reaction progress, and environmental monitoring. The development of novel ambient ionization techniques, such as probe electrospray ionization, paper spray ionization, and fiber spray ionization, employed even at picolitre to femtolitre solution levels to provide femtogram to attogram levels of the target analytes. The special characteristic of this ambient ion source, which has been extensively used, is the noninvasive property of PESI of examination of biological real samples. The results in the current review supports the idea that AIMS has emerged as a pioneer in MS-based approaches and that methods will continue to be developed along with improvements to existing ones in the near future.
Collapse
Affiliation(s)
- Lulu Shi
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Huanhuan Hong
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| | - Rockshana Begum
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Luhong Wen
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
16
|
Microwave Plasma Torch Mass Spectrometry for some Rare Earth Elements. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Selvaprakash K, Chen YC. Using an insulating fiber as the sampling probe and ionization substrate for ambient ionization-mass spectrometric analysis of volatile, semi-volatile, and polar analytes. Anal Bioanal Chem 2022; 414:4633-4643. [PMID: 35445835 DOI: 10.1007/s00216-022-04080-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
A sharp metal needle used as the ionization emitter in conventional atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) is usually required for analyte ionization through corona discharge (i.e., gas discharge). Nevertheless, we herein demonstrate that an insulating fiber (tip diameter: 10-60 µm; length: ~ 1 cm) made of glass or bamboo can function as an APCI-like ionization emitter. Although no direct electric contact is made on the fiber, the ionization of volatiles and semi-volatiles occurs when the fiber is placed close (~ 1 mm) to the inlet of the mass spectrometer. No analyte ion signals can be observed without placing the insulating fiber in front of the mass spectrometer. The generation of ion species mainly relies on the electric field provided by the mass spectrometer. Presumably, owing to the high electric field provided by the mass spectrometer, the dielectric breakdown voltages of gas molecules in the air and the fiber are overcome, leading to the ionization of analytes in gas phase. In addition, the insulating fiber can function as a holder for sample solutions. Electrospray ionization-like processes derived from polar analytes such as amino acids, peptides, and proteins can readily occur when the insulating fiber deposited with a sample droplet is placed close to the inlet of the mass spectrometer. The feasibility of using the current approach for the detection of nonpolar and polar analytes from complex fetal bovine serum samples without tedious sample pretreatment is demonstrated in this work. The main advantage of using the suggested fiber is that the fiber can be used as the sampling probe to pick up samples and placed in front of a mass spectrometer for direct MS analysis. The application of using a robust, insulating, and disposable probe to pick up samples from real samples such as onion, honey, and pork samples followed by direct MS analysis is also demonstrated.
Collapse
Affiliation(s)
- Karuppuchamy Selvaprakash
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan. .,Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan. .,International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
18
|
Pizzo JS, Cruz VH, Santos PD, Silva GR, Souza PM, Manin LP, Santos OO, Visentainer JV. Instantaneous characterization of crude vegetable oils via triacylglycerols fingerprint by atmospheric solids analysis probe tandem mass spectrometry with multiple neutral loss scans. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Contemporary Research Progress on the Detection of Polycyclic Aromatic Hydrocarbons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052790. [PMID: 35270481 PMCID: PMC8910359 DOI: 10.3390/ijerph19052790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of the most common and widespread contaminants. The accumulation of PAHs has made a certain impact on the environment and is seriously threatening human health. Numerous general analytical methods suitable for PAHs were developed. With the development of economy, the environmental problems of PAHs in modern society are more extensive and prominent, and attract more attention from environmental scientists and analysts. Deeper understanding of the properties of PAHs depends on the advent of detection methods, which can also be more conducive to promoting the protection of the environment. Till now, more sensitive, more high-speed and more high-throughput analytical tools are being invented and have played important roles in the research of PAHs. In this short review article, we focused mainly on the contemporary analytical methods about PAHs. We started with a brief review on the hazards, migration, distribution and traditional analysis methods of PAHs in recent years, including liquid chromatography, gas chromatography, surface enhanced Raman spectroscopy and so on. We also presented the applications of the modern ambient mass spectrometry, especially microwave plasma torch mass spectrometry, in the detection of PAHs, as well as the far out novel results in our lab by using microwave plasma torch (MPT) mass spectrometry; for example, some new insights about Birch reduction, regular hydrogen addition and the robustness of molecular structure. These studies have demonstrated the versatility of MPT MS as a platform in the research of PAHs.
Collapse
|
20
|
Huang L, Mao X, Sun C, Li T, Song X, Li J, Gao S, Zhang R, Chen J, He J, Abliz Z. Molecular Pathological Diagnosis of Thyroid Tumors Using Spatially Resolved Metabolomics. Molecules 2022; 27:molecules27041390. [PMID: 35209182 PMCID: PMC8876246 DOI: 10.3390/molecules27041390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The pathological diagnosis of benign and malignant follicular thyroid tumors remains a major challenge using the current histopathological technique. To improve diagnosis accuracy, spatially resolved metabolomics analysis based on air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) technique was used to establish a molecular diagnostic strategy for discriminating four pathological types of thyroid tumor. Without any specific labels, numerous metabolite features with their spatial distribution information can be acquired by AFADESI-MSI. The underlying metabolic heterogeneity can be visualized in line with the cellular heterogeneity in native tumor tissue. Through micro-regional feature extraction and in situ metabolomics analysis, three sets of metabolic biomarkers for the visual discrimination of benign follicular adenoma and differentiated thyroid carcinomas were discovered. Additionally, the automated prediction of tumor foci was supported by a diagnostic model based on the metabolic profile of 65 thyroid nodules. The model prediction accuracy was 83.3% when a test set of 12 independent samples was used. This diagnostic strategy presents a new way of performing in situ pathological examinations using small molecular biomarkers and provides a model diagnosis for clinically indeterminate thyroid tumor cases.
Collapse
Affiliation(s)
- Luojiao Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.H.); (C.S.); (T.L.); (X.S.); (J.L.); (S.G.); (R.Z.); (Z.A.)
| | - Xinxin Mao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Chenglong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.H.); (C.S.); (T.L.); (X.S.); (J.L.); (S.G.); (R.Z.); (Z.A.)
| | - Tiegang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.H.); (C.S.); (T.L.); (X.S.); (J.L.); (S.G.); (R.Z.); (Z.A.)
| | - Xiaowei Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.H.); (C.S.); (T.L.); (X.S.); (J.L.); (S.G.); (R.Z.); (Z.A.)
| | - Jiangshuo Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.H.); (C.S.); (T.L.); (X.S.); (J.L.); (S.G.); (R.Z.); (Z.A.)
| | - Shanshan Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.H.); (C.S.); (T.L.); (X.S.); (J.L.); (S.G.); (R.Z.); (Z.A.)
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.H.); (C.S.); (T.L.); (X.S.); (J.L.); (S.G.); (R.Z.); (Z.A.)
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
- Correspondence: (J.C.); (J.H.)
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.H.); (C.S.); (T.L.); (X.S.); (J.L.); (S.G.); (R.Z.); (Z.A.)
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (J.C.); (J.H.)
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (L.H.); (C.S.); (T.L.); (X.S.); (J.L.); (S.G.); (R.Z.); (Z.A.)
- Center for Imaging and Systems Biology, School of Pharmacy, Minzu University of China, Beijing 100081, China
| |
Collapse
|
21
|
Hu Y, Lv S, Wan J, Zheng C, Shao D, Wang H, Tao Y, Li M, Luo Y. Recent advances in nanomaterials for prostate cancer detection and diagnosis. J Mater Chem B 2022; 10:4907-4934. [PMID: 35712990 DOI: 10.1039/d2tb00448h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the significant progress in the discovery of biomarkers and the exploitation of technologies for prostate cancer (PCa) detection and diagnosis, the initial screening of these PCa-related biomarkers using current...
Collapse
Affiliation(s)
- Yongwei Hu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jiaming Wan
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Dan Shao
- Institutes of Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| | - Yun Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
22
|
Huang DY, Wang MJ, Wu JJ, Chen YC. Ionization of Volatile Organics and Nonvolatile Biomolecules Directly from a Titanium Slab for Mass Spectrometric Analysis. Molecules 2021; 26:molecules26226760. [PMID: 34833852 PMCID: PMC8623480 DOI: 10.3390/molecules26226760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) and electrospray ionization (ESI)-MS can cover the analysis of analytes from low to high polarities. Thus, an ion source that possesses these two ionization functions is useful. Atmospheric surface-assisted ionization (ASAI), which can be used to ionize polar and nonpolar analytes in vapor, liquid, and solid forms, was demonstrated in this study. The ionization of analytes through APCI or ESI was induced from the surface of a metal substrate such as a titanium slab. ASAI is a contactless approach operated at atmospheric pressure. No electric contacts nor any voltages were required to be applied on the metal substrate during ionization. When placing samples with high vapor pressure in condensed phase underneath a titanium slab close to the inlet of the mass spectrometer, analytes can be readily ionized and detected by the mass spectrometer. Furthermore, a sample droplet (~2 μL) containing high-polarity analytes, including polar organics and biomolecules, was ionized using the titanium slab. One titanium slab is sufficient to induce the ionization of analytes occurring in front of a mass spectrometer applied with a high voltage. Moreover, this ionization method can be used to detect high volatile or polar analytes through APCI-like or ESI-like processes, respectively.
Collapse
Affiliation(s)
- De-Yi Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan;
| | - Jih-Jen Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 700, Taiwan;
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: ; Tel.: +886-3-5131527; Fax: +886-3-5723764
| |
Collapse
|
23
|
Ha NS, de Raad M, Han LZ, Golini A, Petzold CJ, Northen TR. Faster, better, and cheaper: harnessing microfluidics and mass spectrometry for biotechnology. RSC Chem Biol 2021; 2:1331-1351. [PMID: 34704041 PMCID: PMC8496484 DOI: 10.1039/d1cb00112d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
High-throughput screening technologies are widely used for elucidating biological activities. These typically require trade-offs in assay specificity and sensitivity to achieve higher throughput. Microfluidic approaches enable rapid manipulation of small volumes and have found a wide range of applications in biotechnology providing improved control of reaction conditions, faster assays, and reduced reagent consumption. The integration of mass spectrometry with microfluidics has the potential to create high-throughput, sensitivity, and specificity assays. This review introduces the widely-used mass spectrometry ionization techniques that have been successfully integrated with microfluidics approaches such as continuous-flow system, microchip electrophoresis, droplet microfluidics, digital microfluidics, centrifugal microfluidics, and paper microfluidics. In addition, we discuss recent applications of microfluidics integrated with mass spectrometry in single-cell analysis, compound screening, and the study of microorganisms. Lastly, we provide future outlooks towards online coupling, improving the sensitivity and integration of multi-omics into a single platform.
Collapse
Affiliation(s)
- Noel S Ha
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Markus de Raad
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
| | - La Zhen Han
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Amber Golini
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
| | - Trent R Northen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint BioEnergy Institute Emeryville CA USA
- Environmental Genomics and Systems Biology, Biosciences, Lawrence Berkeley National Laboratory Berkeley CA USA
- US Department of Energy Joint Genome Institute Berkeley CA USA
| |
Collapse
|
24
|
Bernardo RA, Sousa JCP, Gallimberti M, Junior FB, Vaz BG, Chaves AR. A fast and direct determination of bisphenol S in thermal paper samples using paper spray ionization mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57288-57296. [PMID: 34089157 DOI: 10.1007/s11356-021-14603-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Concerns about human health regarding the large use of bisphenol A in thermal papers have led to its replacement by bisphenol S. Analyses of bisphenols require several sample pretreatment steps, which are laborious, expensive, and time-consuming. A paper spray ionization mass spectrometry (PSI-MS) was developed to detect and quantify bisphenol S in three different brands of thermal papers commercially available. Parameters such as paper size, and paper position relative to the mass spectrometer inlet were evaluated. The analyses were performed in selected ion monitoring mode on a linear ion trap mass spectrometer. The developed method presented absolute recovery values ranging from 92.2 to 109.04%, accuracy values from -1.2 to 9.0%, and inter assay precision from 1.8 to 5.6% and enabled LOD as low as 5 ng g-1. The concentration of bisphenol S in all of the three brands of BPA-free thermal papers evaluated ranged from 1.36 to 6.77 μg g-1, and the concentrarion of BPA ranged from 6.56 to 16.4 μg g-1 in all samples of thermal paper evaluated. The PSI-MS method described here was comparable to the conventional ones, such as liquid chromatography coupled with mass spectrometry and gas chromatography coupled with mass spectrometry described in the literature. The present study proved to be practical, fast, and efficient for the direct determination of bisphenol S in thermal papers. Furthermore, the methodology here described showed to be a promising alternative to replace the classical methods for determination of bisphenol S, due to its simplicity, and no needing of any sample pretreatment.
Collapse
Affiliation(s)
| | | | - Matheus Gallimberti
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-900, Brazil
| | - Fernando Barbosa Junior
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-900, Brazil
| | - Boniek Gontijo Vaz
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | | |
Collapse
|
25
|
Oliva M, Zhang D, Prada-Tiedemann P, Gamez G. Laser assisted sampling vs direct desorption flowing atmospheric pressure afterglow mass spectrometry of complex polymer samples: Forensic implications for pressure sensitive tape chemical analysis. Talanta 2021; 231:122333. [PMID: 33965014 DOI: 10.1016/j.talanta.2021.122333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/29/2022]
Abstract
Flowing atmospheric pressure afterglow (FAPA) mass spectrometry (MS) is an easy-to-use, cost-effective, and potentially portable technique that allows direct desorption/ionization from samples with little-to-no sample preparation for real-time chemical analysis. However, it has limitations regarding analytes with low desorption efficiency, such as polymers. Here, laser assisted sampling (LAS) is developed and coupled to FAPA MS to allow access to a wider range of chemical information from polymer samples. This is achieved through laser-induced pyrolysis conditions that provide a much higher degree of spatio-temporal control compared to typical pyrolysis techniques. LAS FAPA MS, together with direct desorption FAPA MS, is implemented on pressure sensitive adhesive (PSA) tape samples, which are often found at crime scenes and recovered as forensic evidence. Comparative PSA tape examination is typically performed to assess any differences in the comparison of unknown and known samples and provide an evidentiary association between suspects and crime scenes in forensic applications. PSA tape samples from several manufacturers of duct, masking, and electrical tape were analyzed from the adhesive and backing side. Direct desorption FAPA provides top-surface selectivity and the tape mass spectra are dominated by more peaks at lower m/z, many of which correspond to polymer additives. LAS gives access to sampling from all of the tape layers and the FAPA mass spectra is extended to higher m/z, while polymer fragmentation patterns are evident. Principal components analysis (PCA) was implemented to assess the ability of each technique to distinguish and categorize identified tape classes within the sampled population. The complementary nature of the resulting mass spectra from direct desorption vs LAS FAPA was evident from the PCA as different tape brands sub-sets were discriminated by each technique. The differentiation obtained by combining both methods is already competitive, or better, than conventional techniques, with the additional benefits of AMS.
Collapse
Affiliation(s)
- Maureen Oliva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA; Department of Environmental Toxicology, Institute for Forensic Science, Texas Tech University, Lubbock, TX, 79414, USA
| | - Dong Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Paola Prada-Tiedemann
- Department of Environmental Toxicology, Institute for Forensic Science, Texas Tech University, Lubbock, TX, 79414, USA
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
26
|
Modernization of Control of Pathogenic Micro-Organisms in the Food-Chain Requires a Durable Role for Immunoaffinity-Based Detection Methodology-A Review. Foods 2021; 10:foods10040832. [PMID: 33920486 PMCID: PMC8069916 DOI: 10.3390/foods10040832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 01/03/2023] Open
Abstract
Food microbiology is deluged by a vastly growing plethora of analytical methods. This review endeavors to color the context into which methodology has to fit and underlines the importance of sampling and sample treatment. The context is that the highest risk of food contamination is through the animal and human fecal route with a majority of foodborne infections originating from sources in mass and domestic kitchens at the end of the food-chain. Containment requires easy-to-use, failsafe, single-use tests giving an overall risk score in situ. Conversely, progressive food-safety systems are relying increasingly on early assessment of batches and groups involving risk-based sampling, monitoring environment and herd/flock health status, and (historic) food-chain information. Accordingly, responsible field laboratories prefer specificity, multi-analyte, and high-throughput procedures. Under certain etiological and epidemiological circumstances, indirect antigen immunoaffinity assays outperform the diagnostic sensitivity and diagnostic specificity of e.g., nucleic acid sequence-based assays. The current bulk of testing involves therefore ante- and post-mortem probing of humoral response to several pathogens. In this review, the inclusion of immunoglobulins against additional invasive micro-organisms indicating the level of hygiene and ergo public health risks in tests is advocated. Immunomagnetic separation, immunochromatography, immunosensor, microsphere array, lab-on-a-chip/disc platforms increasingly in combination with nanotechnologies, are discussed. The heuristic development of portable and ambulant microfluidic devices is intriguing and promising. Tant pis, many new platforms seem unattainable as the industry standard. Comparability of results with those of reference methods hinders the implementation of new technologies. Whatever the scientific and technological excellence and incentives, the decision-maker determines this implementation after weighing mainly costs and business risks.
Collapse
|
27
|
Barlow RS, Fitzgerald AG, Hughes JM, McMillan KE, Moore SC, Sikes AL, Tobin AB, Watkins PJ. Rapid Evaporative Ionization Mass Spectrometry: A Review on Its Application to the Red Meat Industry with an Australian Context. Metabolites 2021; 11:171. [PMID: 33804276 PMCID: PMC8000567 DOI: 10.3390/metabo11030171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
The red meat supply chain is a complex network transferring product from producers to consumers in a safe and secure way. There can be times when fragmentation can arise within the supply chain, which could be exploited. This risk needs reduction so that meat products enter the market with the desired attributes. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) is a novel ambient mass spectrometry technique originally developed for rapid and accurate classification of biological tissue which is now being considered for use in a range of additional applications. It has subsequently shown promise for a range of food provenance, quality and safety applications with its ability to conduct ex vivo and in situ analysis. These are regarded as critical characteristics for technologies which can enable real-time decision making in meat processing plants and more broadly throughout the sector. This review presents an overview of the REIMS technology, and its application to the areas of provenance, quality and safety to the red meat industry, particularly in an Australian context.
Collapse
Affiliation(s)
- Robert S. Barlow
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Adam G. Fitzgerald
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Joanne M. Hughes
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Kate E. McMillan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Sean C. Moore
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Werribee, VIC 3030, Australia; (S.C.M.); (P.J.W.)
| | - Anita L. Sikes
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Aarti B. Tobin
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Peter J. Watkins
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Werribee, VIC 3030, Australia; (S.C.M.); (P.J.W.)
| |
Collapse
|
28
|
Pavlov J, Zheng Z, Douce D, Bajic S, Attygalle AB. Helium-Plasma-Ionization Mass Spectrometry of Metallocenes and Their Derivatives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:548-559. [PMID: 33395292 DOI: 10.1021/jasms.0c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ferrocene and its derivatives and nickelocene undergo facile ionization when exposed directly to the ionizing plasma of a helium-plasma ionization (HePI) source. Mass spectra recorded from such samples under ambient positive-ion-generating conditions show intense peaks for the respective molecular ions [M+•] and protonated species [(M + H)+]. The protonation process occurs most efficiently when traces of water are present in the heated nitrogen used as the "heating gas." In fact, the relative population of the two categories of ions generated in this way can be manipulated by regulating the heating-gas flow. Moreover, rapid and highly efficient gas-phase hydrogen-deuterium exchange (HDX) reactions can be performed in the ion source by passing the heating gas through a vial with D2O before it reaches the HePI source. Moreover, the ionized species generated in this way can be subjected to in-source CID fragmentation in the QDa-HePI source very efficiently by varying the sampling-cone voltage. By this procedure, ions generated from ferrocene and nickelocene could be stripped so far as to ultimately generate the bare-metal cation. Other typical fragment-ions produced from protonated metallocenes included the M(cp)1+ ions (M = Fe or Ni), by elimination of a cyclopentadiene molecule, or the molecular cation, by loss of a H• radical. Moreover, H/D exchanges and subsequent tandem mass spectrometric analysis indicated that the central metal core participates in the initial protonation process of ferrocene under HePI conditions. However, in compounds such as ferrocene carboxaldehyde and ferrocene boronic acid, the protonation takes place at the peripheral functional group.
Collapse
Affiliation(s)
- Julius Pavlov
- Center for Mass Spectrometry, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Zhaoyu Zheng
- Center for Mass Spectrometry, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - David Douce
- Waters Corporation, Wilmslow, Cheshire SK9 4AX, U.K
| | - Steve Bajic
- Waters Corporation, Wilmslow, Cheshire SK9 4AX, U.K
| | - Athula B Attygalle
- Center for Mass Spectrometry, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
29
|
Sarih NM, Romero-Perez D, Bastani B, Rauytanapanit M, Boisdon C, Praneenararat T, Tajuddin HA, Abdullah Z, Badu-Tawiah AK, Maher S. Accelerated nucleophilic substitution reactions of dansyl chloride with aniline under ambient conditions via dual-tip reactive paper spray. Sci Rep 2020; 10:21504. [PMID: 33299034 PMCID: PMC7725966 DOI: 10.1038/s41598-020-78133-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022] Open
Abstract
Paper spray ionization (PSI) mass spectrometry (MS) is an emerging tool for ambient reaction monitoring via microdroplet reaction acceleration. PSI-MS was used to accelerate and monitor the time course of the reaction of dansyl chloride with aniline, in acetonitrile, to produce dansyl aniline. Three distinct PSI arrangements were explored in this study representing alternative approaches for sample loading and interaction; conventional single tip as well as two novel setups, a dual-tip and a co-axial arrangement were designed so as to limit any on-paper interaction between reagents. The effect on product abundance was investigated using these different paper configurations as it relates to the time course and distance of microdroplet travel. It was observed that product yield increases at a given distance and then decreases thereafter for all PSI configurations. The fluorescent property of the product (dansyl aniline) was used to visually inspect the reaction progress on the paper substrate during the spraying process. Amongst the variety of sample loading methods the novel dual-tip arrangement showed an increased product yield and microdroplet density, whilst avoiding any on-paper interaction between the reagents.
Collapse
Affiliation(s)
- Norfatirah Muhamad Sarih
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - David Romero-Perez
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Behnam Bastani
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Monrawat Rauytanapanit
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd, Pathumwan, Bangkok, 10330, Thailand
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Thanit Praneenararat
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd, Pathumwan, Bangkok, 10330, Thailand
| | - Hairul Anuar Tajuddin
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zanariah Abdullah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
| |
Collapse
|
30
|
Cui X, Wang R, Hua Z, Yin H, Wu Z, Lian R, Chen G, Liang C, Zhang Y. Estimation of synthetic route of methamphetamine samples seized in China by direct analysis in real time with high-resolution mass spectrometry and chemometric analysis of organic impurities. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Xu S, Xue J, Bai Y, Liu H. High-Throughput Single-Cell Immunoassay in the Cellular Native Environment Using Online Desalting Dual-Spray Mass Spectrometry. Anal Chem 2020; 92:15854-15861. [DOI: 10.1021/acs.analchem.0c03167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shuting Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jinjuan Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
32
|
Evans-Nguyen KM, Rivera A, Fontanez-Adames J, Li F, Musselman B. Solvent-free, Noncontact Electrostatic Sampling for Rapid Analysis with Mass Spectrometry: Application to Drugs and Explosives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2237-2242. [PMID: 33107742 DOI: 10.1021/jasms.0c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A hand-held Van de Graaf generator is used to apply a high voltage, negligible current electrostatic potential to a wire mesh positioned in close proximity to a particle-laden surface in order to collect those particles for analysis. The electrostatic field effects transfer particles to the mesh without a requirement for mechanical contact between mesh and surface. Analysis of chemicals present in the sampled particles is completed by thermal desorption electrospray ionization. The utility of the method for noncontact sampling is demonstrated using solid drug powder samples, and inorganic explosives dispersed either on solid surfaces or in sand/soil in order to simulate common interfering matrices that might be encountered in the forensic environment. A metal mesh sampling substrate is utilized instead of traditional polymer-based swabs in order to permit thermal desorption at higher temperatures. The method leaves no visible trace of sampling leaving details such as a fingerprint image unperturbed, as demonstrated using fluorescence photography. Direct sampling of trace particles from hard surfaces and skin documents flexibility in the choice of sampling substrates, desorption temperatures, and sampling times. The potential of the device for use in forensic analyses is detailed.
Collapse
Affiliation(s)
- Kenyon M Evans-Nguyen
- The Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Amanda Rivera
- The Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Jannelys Fontanez-Adames
- The Department of Chemistry, Biochemistry, and Physics, The University of Tampa, Tampa, Florida 33606, United States
| | - Frederick Li
- Ionsense, Inc., Saugus, Massachussetts 01906, United States
| | | |
Collapse
|
33
|
Beneito-Cambra M, Gilbert-López B, Moreno-González D, Bouza M, Franzke J, García-Reyes JF, Molina-Díaz A. Ambient (desorption/ionization) mass spectrometry methods for pesticide testing in food: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4831-4852. [PMID: 33000770 DOI: 10.1039/d0ay01474e] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ambient mass spectrometry refers to the family of techniques that allows ions to be generated from condensed phase samples under ambient conditions and then, collected and analysed by mass spectrometry. One of their key advantages relies on their ability to allow the analysis of samples with minimal to no sample workup. This feature maps well to the requirements of food safety testing, in particular, those related to the fast determination of pesticide residues in foods. This review discusses the application of different ambient ionization methods for the qualitative and (semi)quantitative determination of pesticides in foods, with the focus on different specific methods used and their ionization mechanisms. More popular techniques used are those commercially available including desorption electrospray ionization (DESI-MS), direct analysis on real time (DART-MS), paper spray (PS-MS) and low-temperature plasma (LTP-MS). Several applications described with ambient MS have reported limits of quantitation approaching those of reference methods, typically based on LC-MS and generic sample extraction procedures. Some of them have been combined with portable mass spectrometers thus allowing "in situ" analysis. In addition, these techniques have the ability to map surfaces (ambient MS imaging) to unravel the distribution of agrochemicals on crops.
Collapse
Affiliation(s)
- Miriam Beneito-Cambra
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaén, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Bhatnagar A, McKay MJ, Arasaratnam M, Crumbaker M, Gurney H, Molloy MP. Evaluating bioanalytical capabilities of paper spray ionization for abiraterone drug quantification in patient plasma. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4584. [PMID: 32725840 DOI: 10.1002/jms.4584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Paper spray ionization (PSI) is a direct, fast, and low-cost ambient ionization technique which may have clinical utility for qualitative and quantitative analysis of therapeutic drugs and metabolites from patient specimens. We developed and validated a PSI-mass spectrometry (PSI-MS/MS) method according to the US-FDA guidelines for bioanalytical studies to measure the prostate cancer drug abiraterone directly from patient plasma. The established linearity range was 3.1-156.8 ng/mL with a precision (%CV) and an accuracy (%) range of 0.5-10.7 and 93.5-103.2, respectively. The mean internal standard normalized matrix factor for abiraterone was just below 1 with highest %CV of 10.2 at the low-level quality control. In benchmarking the performance of this assay against a published LC-MS/MS assay, we showed they were mostly equivalent, with the exception of accuracy with clinical samples. We found the quantitative values observed for abiraterone measured directly from patient plasma using PSI-MS/MS showed positive bias. Upon investigation, we concluded the increased values were due to summed quantitation of isomeric abiraterone conjugates and metabolites which are separable by LC-MS/MS, but not with the current PSI-MS/MS configuration. Despite demonstrating the utility of PSI-MS/MS for rapid bioanalysis, this study also highlighted a limitation encountered with the direct analysis of abiraterone in clinical samples.
Collapse
Affiliation(s)
- Atul Bhatnagar
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | | | - Megan Crumbaker
- Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - Howard Gurney
- Department of Clinical Sciences, Macquarie University, Sydney, Australia
- Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - Mark P Molloy
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, The University of Sydney, Sydney, Australia
| |
Collapse
|
35
|
Borden SA, Palaty J, Termopoli V, Famiglini G, Cappiello A, Gill CG, Palma P. MASS SPECTROMETRY ANALYSIS OF DRUGS OF ABUSE: CHALLENGES AND EMERGING STRATEGIES. MASS SPECTROMETRY REVIEWS 2020; 39:703-744. [PMID: 32048319 DOI: 10.1002/mas.21624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Mass spectrometry has been the "gold standard" for drugs of abuse (DoA) analysis for many decades because of the selectivity and sensitivity it affords. Recent progress in all aspects of mass spectrometry has seen significant developments in the field of DoA analysis. Mass spectrometry is particularly well suited to address the rapidly proliferating number of very high potency, novel psychoactive substances that are causing an alarming number of fatalities worldwide. This review surveys advancements in the areas of sample preparation, gas and liquid chromatography-mass spectrometry, as well as the rapidly emerging field of ambient ionization mass spectrometry. We have predominantly targeted literature progress over the past ten years and present our outlook for the future. © 2020 Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Scott A Borden
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Jan Palaty
- LifeLabs Medical Laboratories, Burnaby, BC, V3W 1H8, Canada
| | - Veronica Termopoli
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Giorgio Famiglini
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Achille Cappiello
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195
| | - Pierangela Palma
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| |
Collapse
|
36
|
Desorption atmospheric pressure chemical ionization: A review. Anal Chim Acta 2020; 1130:146-154. [DOI: 10.1016/j.aca.2020.05.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/27/2023]
|
37
|
Domenick TM, Vedam-Mai V, Yost RA. Design and Implementation of a Dual-Probe Microsampling Apparatus for the Direct Analysis of Adherent Mammalian Cells by Ion Mobility-Mass Spectrometry. Anal Chem 2020; 92:12055-12061. [DOI: 10.1021/acs.analchem.0c02714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Taylor M. Domenick
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Vinata Vedam-Mai
- Department of Neurology, University of Florida, P.O. Box 100236, Gainesville, Florida 32610-0236, United States
| | - Richard A. Yost
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
38
|
Selective and sensitive analysis by reactive easy ambient sonic-spray ionization: Synergistic combination of non-polar spray solvent and dicationic ionic liquid. Talanta 2020; 215:120929. [DOI: 10.1016/j.talanta.2020.120929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/30/2022]
|
39
|
Xiao Y, Chen S, Zhang G, Li Z, Xiao H, Chen C, He C, Zhang R, Yang X. Simple and rapid nicotine analysis using a disposable silica nanochannel-assisted electrochemiluminescence sensor. Analyst 2020; 145:4806-4814. [PMID: 32588848 DOI: 10.1039/d0an00588f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nicotine analysis is essential to medicine, toxicology and the tobacco industry. However, no simple, portable and disposable method was developed to meet their demands. Here, we report a simple, rapid and disposable silica nanochannel (SAN)-based electrochemiluminescence (ECL) sensor for nicotine analysis by simply assembling a SAN electrode with a paper cover. The sensing principle of the disposable sensor is based on the size exclusion effect and charge selectivity, which obviously prolong the sensor service time. We find that the sensor exhibits good specificity to nicotine, and most of the complex matrices are unlikely to impact the detection. The performance of the disposable sensor in cigarettes, e-cigarettes, nicotine gums, and lozenges is fully validated, showing satisfactory linearity, sensitivity (a limit of detection of 27.82 nM), and accuracy (a recovery between 96.00% and 106.51%). The disposable sensor can be potentially applied for on-site nicotine analysis.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China. and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Hunan Normal University), Ministry of Education, China
| | - Suhua Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China. and Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China
| | - Guocan Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Zhimao Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Han Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Chunlian He
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Ran Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha 410013, Hunan, China.
| |
Collapse
|
40
|
Wang Y, Jin Q, Shiea J, Sun W. Wire Desorption Combined with Electrospray Ionization Mass Spectrometry: Direct Analysis of Small Organic and Large Biological Compounds. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1656-1664. [PMID: 32559077 DOI: 10.1021/jasms.0c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel atmospheric pressure ionization mass spectrometry based on wire desorption and electrospray ionization (WD-ESI) for direct analysis was developed to characterize chemical compounds with different polarities and thermal stabilities at atmospheric pressure. This technique is a variant of the thermal desorption electrospray ion source developed by Shiea et al. One large improvement is that the heating speed (>500 °C/s) of the thermal desorption in this work is extremely fast, using a self-heating metal wire, with which sample solution can splash from the surface to form small droplets and thus the analytes can be protected from thermal decomposition. With this feature, we have successfully achieved soft ionization of highly polar organic and biological compounds such as aflatoxin, small peptides, and even large proteins from complex matrices. The simple structure and self-cleaning capability of the WD-ESI source make it ideal for on-site screening in various applications such as food safety and biodrug testing, especially when coupled with a transportable mass spectrometer.
Collapse
Affiliation(s)
- Yuanlong Wang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, People's Republic of China
| | - Qiao Jin
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, People's Republic of China
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, People's Republic of China
| |
Collapse
|
41
|
Li N, Nie H, Jiang L, Ruan G, Du F, Liu H. Recent advances of ambient ionization mass spectrometry imaging in clinical research. J Sep Sci 2020; 43:3146-3163. [PMID: 32573988 DOI: 10.1002/jssc.202000273] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
The structural information and spatial distribution of molecules in biological tissues are closely related to the potential molecular mechanisms of disease origin, transfer, and classification. Ambient ionization mass spectrometry imaging is an effective tool that provides molecular images while describing in situ information of biomolecules in complex samples, in which ionization occurs at atmospheric pressure with the samples being analyzed in the native state. Ambient ionization mass spectrometry imaging can directly analyze tissue samples at a fairly high resolution to obtain molecules in situ information on the tissue surface to identify pathological features associated with a disease, resulting in the wide applications in pharmacy, food science, botanical research, and especially clinical research. Herein, novel ambient ionization techniques, such as techniques based on spray and solid-liquid extraction, techniques based on plasma desorption, techniques based on laser desorption ablation, and techniques based on acoustic desorption were introduced, and the data processing of ambient ionization mass spectrometry imaging was briefly reviewed. Besides, we also highlight recent applications of this imaging technology in clinical researches and discuss the challenges in this imaging technology and the perspectives on the future of the clinical research.
Collapse
Affiliation(s)
- Na Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Honggang Nie
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Liping Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Huwei Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
42
|
Jjunju FPM, Damon DE, Romero-Perez D, Young IS, Ward RJ, Marshall A, Maher S, Badu-Tawiah AK. Analysis of non-conjugated steroids in water using paper spray mass spectrometry. Sci Rep 2020; 10:10698. [PMID: 32612114 PMCID: PMC7329809 DOI: 10.1038/s41598-020-67484-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/01/2020] [Indexed: 11/09/2022] Open
Abstract
A novel strategy for the direct analysis of non-conjugated steroids in water using paper spray mass spectrometry (PS-MS) has been developed. PS-MS was used in the identification and quantification of non-conjugated (free) steroids in fish tank water samples. Data shown herein indicates that individual amounts of free steroids can be detected in aqua as low as; 0.17 ng/µL, 0.039 ng/µL, 0.43 ng/µL, 0.0076 ng/µL for aldosterone, corticosterone, cortisol, and β-estrone, respectively, and with an average relative standard deviation of ca. < 10% in the positive ion mode using PS-MS/MS. Direct detection of free steroids in a raw water mixture, from aquaculture, without prior sample preparation is demonstrated. The presence of free steroids released in fish water samples was confirmed via tandem mass spectrometry using collision-induced dissociation. This approach shows promise for rapid and direct water quality monitoring to provide a holistic assessment of non-conjugated steroids in aqua.
Collapse
Affiliation(s)
- Fred P M Jjunju
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Deidre E Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - David Romero-Perez
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Iain S Young
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Ryan J Ward
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Alan Marshall
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK.
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
43
|
Wang X, Jiang Q, Li H, Chen DDY. Rapid determination of chemical composition in the particulate matter of cigarette mainstream smoke. Talanta 2020; 217:121060. [PMID: 32498828 DOI: 10.1016/j.talanta.2020.121060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022]
Abstract
Particulate matter from mainstream smoke (MSS) is significantly hazardous when inhaled into the human body. An ambient ionization mass spectrometric method, direct analysis in real time mass spectrometry (DART-MS), was applied to rapidly and simultaneously measure multiple particulate components in MSS. A variety of compounds were obtained in seconds, where different types of cigarettes and different solvent extracts generated distinct chemical constituents as validated by principle component analysis. Chemical formula assignment and compound identification were based on accurate m/z values with mass errors <10 ppm. Quantitation of nicotine was achieved using an isotope internal standard with DART-MS. Method validation with chromatographic-MS analysis further proved the advantages of DART-MS with respect to analysis speed and operational simplicity for the direct evaluation of complex samples. DART-MS is feasible for the rapid acquisition of cigarette fingerprints for quality control as well as for quantitative assessment of carcinogens for harm reduction.
Collapse
Affiliation(s)
- Xinxin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - David D Y Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
44
|
Shiea J, Bhat SM, Su H, Kumar V, Lee CW, Wang CH. Rapid quantification of acetaminophen in plasma using solid-phase microextraction coupled with thermal desorption electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8564. [PMID: 31490602 DOI: 10.1002/rcm.8564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/11/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Solid-phase microextraction coupled with thermal desorption electrospray ionization tandem mass spectrometry (SPME-TD-ESI-MS/MS) is proposed as a novel method for the rapid quantification of acetaminophen in plasma samples from a pharmacokinetics (PK) study. METHODS Traces of acetaminophen were concentrated on commercial fused-silica fibers coated with a polar polyacrylate (PA) polymer using direct immersion SPME. No agitation, heating, addition of salt, or adjustment of the pH of the sample solution was applied during the extraction. Any acetaminophen absorbed on the SPME fibers was subsequently desorbed and detected by TD-ESI-MS/MS. RESULTS Parameters of the absorption, sensitivity, reproducibility, and linearity for the SPME-TD-ESI-MS/MS method were evaluated. The time required to complete a TD-ESI-MS/MS analysis was less than 30 seconds. Matrix-matching calibration was performed to calculate the concentration of acetaminophen in the sample. A linear calibration curve with a concentration range of 100-10,000 ng/mL was constructed to calculate the quantity of acetaminophen. The SPME-TD-ESI-MS quantification results for acetaminophen in plasma were in good agreement with those obtained by the conventional LC/MS/MS method. CONCLUSIONS With the proposed method, a 10-min SPME time was enough to achieve the lower limit of quantitation (i.e. 100 ng/mL) and for a complete PK profiling of acetaminophen. A shorter extraction time could be achieved by applying agitation, heating, adding salt, or adjusting the pH of the sample solution to enhance analyte absorption efficiency. The time required to detect acetaminophen on the SPME fiber was less than 30 s, allowing the rapid quantification of acetaminophen in plasma with good accuracy.
Collapse
Affiliation(s)
- Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Medical and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Hung Su
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Vinoth Kumar
- Department of Medical and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Wei Lee
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chin-Hsiung Wang
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
45
|
Lin J, Yan J, Xu Q, Wang X. Study on properties of wooden capillary electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8600. [PMID: 31756782 DOI: 10.1002/rcm.8600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/15/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE In view of the unique properties of wooden materials as electrospray emitters, a novel wooden capillary electrospray ionization (WC-ESI) device was fabricated. The performance of a wooden capillary as an electrospray emitter was investigated by using a wooden capillary instead of the metal emitter of commercial ESI sources. METHODS The mass spectrometric measurement of baicalein, emodin and myoglobin was carried out by using wooden capillary (WC) and metal capillary (MC) ESI sources. Contrasting analysis of signal intensity between WC and MC electrospray ionization mass spectrometry (ESI-MS) was implemented at different sample flow rates. The effect of WC-ESI-MS and MC-ESI-MS was evaluated experimentally with electrospray solutions in different solvent ratios. RESULTS Generally, the signal generated by WC-ESI-MS was much stronger than that obtained by MC-ESI-MS. In particular, the MS signal in negative ion mode was very strong, which may solve the long-standing problem of low MS signals in negative ion mode, and fully improve the detection efficiency of ESI-MS. CONCLUSIONS The signal intensity produced by WC-ESI-MS is significantly higher than that from MC-ESI-MS, and polymerization and electrolysis are reduced; therefore, the spectra become simpler. In addition, it is also tolerant to high flow rates and high aqueous phase samples.
Collapse
Affiliation(s)
- Jiadi Lin
- Heilongjiang University of Chinese Medicine, Harbin, 150040, P. R. China
| | - Jing Yan
- Heilongjiang University of Chinese Medicine, Harbin, 150040, P. R. China
| | - Qingxuan Xu
- Crop Research Institute, Heilongjiang University, Harbin, 150080, P. R. China
| | - Xiwei Wang
- Crop Research Institute, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
46
|
De Bruycker K, Welle A, Hirth S, Blanksby SJ, Barner-Kowollik C. Mass spectrometry as a tool to advance polymer science. Nat Rev Chem 2020; 4:257-268. [PMID: 37127980 DOI: 10.1038/s41570-020-0168-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
In contrast to natural polymers, which have existed for billions of years, the first well-understood synthetic polymers date back to just over one century ago. Nevertheless, this relatively short period has seen vast progress in synthetic polymer chemistry, which can now afford diverse macromolecules with varying structural complexities. To keep pace with this synthetic progress, there have been commensurate developments in analytical chemistry, where mass spectrometry has emerged as the pre-eminent technique for polymer analysis. This Perspective describes present challenges associated with the mass-spectrometric analysis of synthetic polymers, in particular the desorption, ionization and structural interrogation of high-molar-mass macromolecules, as well as strategies to lower spectral complexity. We critically evaluate recent advances in technology in the context of these challenges and suggest how to push the field beyond its current limitations. In this context, the increasingly important role of high-resolution mass spectrometry is emphasized because of its unrivalled ability to describe unique species within polymer ensembles, rather than to report the average properties of the ensemble.
Collapse
|
47
|
Bouza M, Li Y, Wu C, Guo H, Wang ZL, Fernández FM. Large-Area Triboelectric Nanogenerator Mass Spectrometry: Expanded Coverage, Double-Bond Pinpointing, and Supercharging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:727-734. [PMID: 31971789 DOI: 10.1021/jasms.0c00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Efficient ionization is a necessary condition for mass spectrometric analysis, but many compounds fail to ionize well enough to yield sufficient detection limits. Triboelectric nanogenerators (TENG) coupled to nanoelectrospray ionization (nanoESI) mass spectrometry (MS) are a highly effective approach to high sensitivity MS analysis. Here, we report on new, large-area TENG that constructively leverage the relationship between electrode size, created charges, and open-circuit voltage, leading to wider chemical coverage. Large-area TENG were found to also promote electrospray gas-phase oxidation reactions that enabled double bond position pinpointing for unsaturated lipids and species-specific lipid quantitation. Furthermore, large-area TENG MS of proteins was observed to yield higher charge state distributions (i.e., supercharging) without the need for high surface tension additives.
Collapse
Affiliation(s)
- Marcos Bouza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Yafeng Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Changsheng Wu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hengyu Guo
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhong L Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), Beijing 100083, China
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
48
|
Zhang Q, Lin L, Yu Q, Wang X. Exploiting the native inspiratory ability of a mass spectrometer to improve analysis efficiency. RSC Adv 2020; 10:4103-4109. [PMID: 35492673 PMCID: PMC9048837 DOI: 10.1039/c9ra09104a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/17/2020] [Indexed: 01/07/2023] Open
Abstract
In this study, a new approach to perform self-aspirating sampling in mass spectrometry (MS) analysis was developed by using the native inspiratory ability of a mass spectrometer. Specifically, the inspiratory channel and sampling inlet of the MS instrument were integrated into a single pathway through a sealed ionization chamber to facilitate analyte delivery and improve sample utilization. Based on this approach, combined with structural simplification and optimization, a versatile electrospray ionization (ESI) source has been constructed and characterized using different mass spectrometers. In addition to the self-aspirating ability, this source configuration can provide sub-ambient pressure (SAP) conditions for ionization, which were conducive to suppressing the background ions generated from some air-involved reactions. Moreover, it can also be used directly for electrospray-driven extraction ionization. With the SAP-ESI source, a conventional mass spectrometer enables rapid analysis of both volatiles and solutions via secondary electrospray ionization and coaxial electrospray ionization, respectively. As the compact gas pathway of the source will promote the efficient transfer and ionization of the sampled substances, the total consumption of the analyte for each analysis can be reduced to subnanogram level and a subppbv limit detection is achieved. Other demonstrated features such as the versatility, easy operation as well as simple assembly will likely contribute to the prevalence of the proposed sampling and ionization strategy.
Collapse
Affiliation(s)
- Qian Zhang
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University Beijing 100084 China
| | - Lin Lin
- Materials Characterization & Preparation Center, Southern University of Science and Technology Shenzhen 518055 China
| | - Quan Yu
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
| | - Xiaohao Wang
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School Shenzhen 518055 China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University Beijing 100084 China
| |
Collapse
|
49
|
Potential of Recent Ambient Ionization Techniques for Future Food Contaminant Analysis Using (Trans)Portable Mass Spectrometry. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01666-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractIn food analysis, a trend towards on-site testing of quality and safety parameters is emerging. So far, on-site testing has been mainly explored by miniaturized optical spectroscopy and ligand-binding assay approaches such as lateral flow immunoassays and biosensors. However, for the analysis of multiple parameters at regulatory levels, mass spectrometry (MS) is the method of choice in food testing laboratories. Thanks to recent developments in ambient ionization and upcoming miniaturization of mass analyzers, (trans)portable mass spectrometry may be added to the toolkit for on-site testing and eventually compete with multiplex immunoassays in mixture analysis. In this study, we preliminary evaluated a selection of recent ambient ionization techniques for their potential in simplified testing of selected food contaminants such as pesticides, veterinary drugs, and natural toxins, aiming for a minimum in sample preparation while maintaining acceptable sensitivity and robustness. Matrix-assisted inlet ionization (MAI), handheld desorption atmospheric pressure chemical ionization (DAPCI), transmission-mode direct analysis in real time (TM-DART), and coated blade spray (CBS) were coupled to both benchtop Orbitrap and compact quadrupole single-stage mass analyzers, while CBS was also briefly studied on a benchtop triple-quadrupole MS. From the results, it can be concluded that for solid and liquid sample transmission configurations provide the highest sensitivity while upon addition of a stationary phase, such as in CBS, even low μg/L levels in urine samples can be achieved provided the additional selectivity of tandem mass spectrometry is exploited.
Collapse
|
50
|
Li Y, Cao Y, Guo Y. Recent Advances in Atmospheric Ionization Mass Spectrometry: Developments and Applications. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuling Li
- State Key Laboratory of Organometallic Chemistry, National Center for Organic Mass Spectrometry in ShanghaiShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yuqi Cao
- State Key Laboratory of Organometallic Chemistry, National Center for Organic Mass Spectrometry in ShanghaiShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, National Center for Organic Mass Spectrometry in ShanghaiShanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|