1
|
Lin J, Hou Y, Zhang Q, Lin JM. Droplets in open microfluidics: generation, manipulation, and application in cell analysis. LAB ON A CHIP 2025; 25:787-805. [PMID: 39774470 DOI: 10.1039/d4lc00646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Open droplet microfluidics is an emerging technology that generates, manipulates, and analyzes droplets in open configuration systems. Droplets function as miniaturized reactors for high-throughput analysis due to their compartmentalization and parallelization, while openness enables addressing and accessing the targeted contents. The convergence of two technologies facilitates the localization and intricate manipulation of droplets using external tools, showing great potential in large-scale chemical and biological applications, particularly in cell analysis. In this review, we first introduce various methods of droplet generation and manipulation in open environments. Next, we summarize the typical applications of open droplet systems in cell culture. Then, a comprehensive overview of cell analysis is provided, including nucleic acids, proteins, metabolites, and behaviors. Finally, we present a discussion of current challenges and perspectives in this field.
Collapse
Affiliation(s)
- Jiaxu Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Ying Hou
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
2
|
Yan X, Tan D, Yu L, Li D, Huang W, Huang W, Wu H. A High-Throughput and Logarithm-Serial-Dilution Microfluidic Chip for Combinational Drug Screening on Tumor Organoids. ACS Pharmacol Transl Sci 2024; 7:4135-4143. [PMID: 39698291 PMCID: PMC11650729 DOI: 10.1021/acsptsci.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Tumor organoids are biological models for studying precision medicine. Microfluidic technology offers significant benefits for high throughput drug screening using tumor organoids. However, the range of concentrations achievable with traditional linear gradient generators in microfluidics is restricted, generating logarithmic drug concentration gradients by adjusting the channel ratio in the chip is confined to single-drug dilution chips, significantly restricting the application of microfluidics in drug screening. Here, we presented a microfluidic chip featuring continuous dilution capabilities, which generates logarithmic stepwise drug concentration gradients. We have devised a "mathematical-circuit-chip" model for designing such chips, and based on this model, we have developed and fabricated a device capable of providing 36 distinct drug concentration conditions for two types of drugs. The chip is composed of two structurally identical yet orthogonally arranged layers, each containing a dilution network capable of forming a 5-fold gradient and a tumor organoid culture module. Drug and culture medium delivery to the open culture chamber array is driven by syringe pumps. We have conducted drug screening experiments on patient-derived tumor organoids. This device facilitates high-throughput drug screening for patient-derived organoids, representing a significant stride toward the realization of precision medicine.
Collapse
Affiliation(s)
- Xingyang Yan
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Deng Tan
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Department
of Biology, Southern University of Science
and Technology, Shenzhen 518055, Guangdong, China
| | - Lei Yu
- Shenzhen
Institute of Synthetic Biology, Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - DanYu Li
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Wei Huang
- Department
of Biology, Southern University of Science
and Technology, Shenzhen 518055, Guangdong, China
| | - Weiren Huang
- Shenzhen
Institute of Synthetic Biology, Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department
of Urology, Shenzhen Institute of Translational Medicine, Shenzhen
Institutes of Advanced Technology, The First
Affiliated Hospital of Shenzhen University, International Cancer Center
of Shenzhen University, Shenzhen 518039, China
| | - Hongkai Wu
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- The
Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen 518172, China
| |
Collapse
|
3
|
Kaladharan K, Ouyang CH, Yang HY, Tseng FG. Selectively cross-linked hydrogel-based cocktail drug delivery micro-chip for colon cancer combinatorial drug screening using AI-CSR platform for precision medicine. LAB ON A CHIP 2024; 24:4766-4777. [PMID: 39246026 DOI: 10.1039/d4lc00520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Cancer, ranked as the second leading cause of global mortality with a prevalence of 1 in 6 deaths, necessitates innovative approaches for effective treatment. Combinatorial drug therapy for cancer treatment targets several key pathways simultaneously and potentially enhances anti-cancer efficacy without intolerable side effects. However, it demands precise and accurate control of drug-dose combinations and their release. In this study, we demonstrated a selectively cross-linked hydrogel-based platform that can quantify and release drugs simultaneously for in-parallel cocktail drug screening. PDMS was used as the flow channel substrate and the poly (ethylene glycol) diacrylate (PEGDA) hydrogel array was formed by UV exposure using the photomask. Employing our platform, cocktails of anticancer drugs are precisely loaded and simultaneously released in-parallel into HCT-116 colon cancer cells, facilitating combinatorial drug screening. The integration of an artificial intelligence-based complex system response (AI-CSR) platform successfully identifies optimal drug-dose combinations from a pool of ten approved drugs. Notably, our cocktail drug chip demonstrates exceptional efficiency, screening 155 drug-dose combinations within a brief two and a half hours, a marked improvement over traditional methods. Furthermore, the device exhibits low drug consumption, requiring a mere 1 μL per patch of chip. Thus, our developed PDMS drug-loaded hydrogel platform presents a novel and expedited approach to quantifying drug concentrations, promising to be a faster, efficient and more precise approach for conducting cocktail drug screening experiments.
Collapse
Affiliation(s)
- Kiran Kaladharan
- Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | - Chih-Hsuan Ouyang
- Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | - Hsin-Yu Yang
- Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | - Fan-Gang Tseng
- Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
4
|
Wang Y, Wang Y, Wang X, Sun W, Yang F, Yao X, Pan T, Li B, Chu J. Label-free active single-cell encapsulation enabled by microvalve-based on-demand droplet generation and real-time image processing. Talanta 2024; 276:126299. [PMID: 38788384 DOI: 10.1016/j.talanta.2024.126299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Droplet microfluidics-based single-cell encapsulation is a critical technology that enables large-scale parallel single-cell analysis by capturing and processing thousands of individual cells. As the efficiency of passive single-cell encapsulation is limited by Poisson distribution, active single-cell encapsulation has been developed to theoretically ensure that each droplet contains one cell. However, existing active single-cell encapsulation technologies still face issues related to fluorescence labeling and low throughput. Here, we present an active single-cell encapsulation technique by using microvalve-based drop-on-demand technology and real-time image processing to encapsulate single cells with high throughput in a label-free manner. Our experiments demonstrated that the single-cell encapsulation system can encapsulate individual polystyrene beads with 96.3 % efficiency and HeLa cells with 94.9 % efficiency. The flow speed of cells in this system can reach 150 mm/s, resulting in a corresponding theoretical encapsulation throughput of 150 Hz. This technology has significant potential in various biomedical applications, including single-cell omics, secretion detection, and drug screening.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| | - Yousu Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaojie Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| | - Wei Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Tingrui Pan
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Baoqing Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China.
| | - Jiaru Chu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
5
|
Sharkey C, White R, Finocchiaro M, Thomas J, Estevam J, Konry T. Advancing Point-of-Care Applications with Droplet Microfluidics: From Single-Cell to Multicellular Analysis. Annu Rev Biomed Eng 2024; 26:119-139. [PMID: 38316063 DOI: 10.1146/annurev-bioeng-110222-102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in single-cell and multicellular microfluidics technology have provided powerful tools for studying cancer biology and immunology. The ability to create controlled microenvironments, perform high-throughput screenings, and monitor cellular interactions at the single-cell level has significantly advanced our understanding of tumor biology and immune responses. We discuss cutting-edge multicellular and single-cell microfluidic technologies and methodologies utilized to investigate cancer-immune cell interactions and assess the effectiveness of immunotherapies. We explore the advantages and limitations of the wide range of 3D spheroid and single-cell microfluidic models recently developed, highlighting the various approaches in device generation and applications in immunotherapy screening for potential opportunities for point-of-care approaches.
Collapse
Affiliation(s)
- Christina Sharkey
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
- Department of Surgery, Division of Urology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel White
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
| | - Michael Finocchiaro
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
| | - Judene Thomas
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Jose Estevam
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
| | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
| |
Collapse
|
6
|
Huang F, Zhang J, Chen T, Pan Q, Zhu Z. Advancements in manufacturing and applications of multi-dimensional micro-nano materials through interface shearing. CELL REPORTS PHYSICAL SCIENCE 2024; 5:102033. [DOI: 10.1016/j.xcrp.2024.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Fevre R, Mary G, Vertti-Quintero N, Durand A, Tomasi RFX, Del Nery E, Baroud CN. Combinatorial drug screening on 3D Ewing sarcoma spheroids using droplet-based microfluidics. iScience 2023; 26:106651. [PMID: 37168549 PMCID: PMC10165258 DOI: 10.1016/j.isci.2023.106651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/02/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Culturing and screening cells in microfluidics, particularly in three-dimensional formats, has the potential to impact diverse areas from fundamental biology to cancer precision medicine. Here, we use a platform based on anchored droplets for drug screening. The response of spheroids of Ewing sarcoma (EwS) A673 cells to simultaneous or sequential combinations of etoposide and cisplatin was evaluated. This was done by culturing spheroids of EwS cells inside 500 nL droplets then merging them with secondary droplets containing fluorescent-barcoded drugs at different concentrations. Differences in EwS spheroid growth and viability were measured by microscopy. After drug exposure such measurements enabled estimation of their IC50 values, which were in agreement with values obtained in standard multiwell plates. Then, synergistic drug combination was evaluated. Sequential combination treatment of EwS with etoposide applied 24 h before cisplatin resulted in amplified synergistic effect. As such, droplet-based microfluidics offers the modularity required for evaluation of drug combinations.
Collapse
Affiliation(s)
- Romain Fevre
- Laboratoire d’ Hydrodynamique (LadHyX), CNRS, EcolePolytechnique, InstitutPolytechnique de Paris, 91128 Palaiseau, France
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gaëtan Mary
- Okomera, iPEPS, the HealthTech Hub, Paris Brain Institute, HôpitalPitiéSalpêtrière, 75013 Paris, France
| | - Nadia Vertti-Quintero
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Aude Durand
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Raphaël F.-X. Tomasi
- Laboratoire d’ Hydrodynamique (LadHyX), CNRS, EcolePolytechnique, InstitutPolytechnique de Paris, 91128 Palaiseau, France
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
- Okomera, iPEPS, the HealthTech Hub, Paris Brain Institute, HôpitalPitiéSalpêtrière, 75013 Paris, France
| | - Elaine Del Nery
- Biophenics High-Content Screening Laboratory, Translational Research Department, PICT-IBiSA, Institut Curie, PSL Research University, 75005 Paris, France
- Corresponding author
| | - Charles N. Baroud
- Laboratoire d’ Hydrodynamique (LadHyX), CNRS, EcolePolytechnique, InstitutPolytechnique de Paris, 91128 Palaiseau, France
- Institut Pasteur, Université Paris Cité, Physical microfluidics and Bioengineering, 25-28 Rue du Dr. Roux, 75015 Paris, France
- Corresponding author
| |
Collapse
|
8
|
Li C, Zhai J, Jia Y. Digital Microfluidics with an On-Chip Drug Dispenser for Single or Combinational Drug Screening. Methods Mol Biol 2023; 2679:25-39. [PMID: 37300607 DOI: 10.1007/978-1-0716-3271-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rapid and accurate cancer drug screening is of great importance in precision medicine. However, the limited amount of tumor biopsy samples has hindered the application of traditional drug screening methods with microwell plates for individual patients. A microfluidic system provides an ideal platform for handling trace amounts of samples. This emerging platform has a good role in nucleic acid-related and cell related assays. Nevertheless, convenient drug dispensing remains a challenge for clinical on-chip cancer drug screening. Similar sized droplets are merged to add drugs for a desired screened concentration which significantly complicated the on-chip drug dispensing protocols. Here, we introduce a novel digital microfluidic system with a specially structured electrode (a drug dispenser) to dispense drugs by droplet electro-ejection under a high-voltage actuation signal, which can be conveniently adjusted by external electric controls. With this system, the screened drug concentrations span up to four orders of magnitude with small sample consumption. Various amounts of drugs can be delivered to the cell sample with desired amount in a flexible electric control. Moreover, single drug or combinatorial multidrug on-chip screening can be readily achieved. The drug response of normal MCF-10A breast cells and MDA-MB-231 breast tumor cells to two chemotherapeutic substances, cisplatin (Cis) and epirubicin (EP), was tested individually and in combination for proof-of-principle verification. The comparable on-chip and off-chip results confirmed the feasibility of our innovative DMF system for cancer drug screening.
Collapse
Affiliation(s)
- Caiwei Li
- State Key Laboratory of Analog- and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
| | - Jiao Zhai
- State Key Laboratory of Analog- and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
| | - Yanwei Jia
- State Key Laboratory of Analog- and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China.
- Faculty of Health Sciences, University of Macau, Macau, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China.
| |
Collapse
|
9
|
Pan JZ, Fan C, Zuo ZQ, Yuan YX, Wang HF, Dong Z, Fang Q. Lab at home: a promising prospect for on-site chemical and biological analysis. Anal Bioanal Chem 2023; 415:17-25. [PMID: 36334114 PMCID: PMC9638225 DOI: 10.1007/s00216-022-04392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
The continuing pursuit for a healthy life has led to the urgent need for on-site analysis. In response to the urgent needs of on-site analysis, we propose a novel concept, called lab at home (LAH), for building automated and integrated total analysis systems to perform chemical and biological testing at home. It represents an emerging research area with broad prospects that has not yet attracted sufficient attention. In this paper, we discuss the urgent need, challenges, and future prospects of this area, and the possible roadmap for achieving the goal of LAH has also been proposed.
Collapse
Affiliation(s)
- Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
| | - Chen Fan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Qiang Zuo
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Xin Yuan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Feng Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Zhi Dong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310007, China.
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Li X, Fan X, Li Z, Shi L, Liu J, Luo H, Wang L, Du X, Chen W, Guo J, Li C, Liu S. Application of Microfluidics in Drug Development from Traditional Medicine. BIOSENSORS 2022; 12:bios12100870. [PMID: 36291008 PMCID: PMC9599478 DOI: 10.3390/bios12100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 05/08/2023]
Abstract
While there are many clinical drugs for prophylaxis and treatment, the search for those with low or no risk of side effects for the control of infectious and non-infectious diseases is a dilemma that cannot be solved by today's traditional drug development strategies. The need for new drug development strategies is becoming increasingly important, and the development of new drugs from traditional medicines is the most promising strategy. Many valuable clinical drugs have been developed based on traditional medicine, including drugs with single active ingredients similar to modern drugs and those developed from improved formulations of traditional drugs. However, the problems of traditional isolation and purification and drug screening methods should be addressed for successful drug development from traditional medicine. Advances in microfluidics have not only contributed significantly to classical drug development but have also solved many of the thorny problems of new strategies for developing new drugs from traditional drugs. In this review, we provide an overview of advanced microfluidics and its applications in drug development (drug compound synthesis, drug screening, drug delivery, and drug carrier fabrication) with a focus on its applications in conventional medicine, including the separation and purification of target components in complex samples and screening of active ingredients of conventional drugs. We hope that our review gives better insight into the potential of traditional medicine and the critical role of microfluidics in the drug development process. In addition, the emergence of new ideas and applications will bring about further advances in the field of drug development.
Collapse
Affiliation(s)
- Xue Li
- Sichuan Hanyuan County People’s Hospital, Hanyuan 625300, China
| | - Xiaoming Fan
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhu Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Lina Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jinkuan Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongzhi Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi 563002, China
| | - Lijun Wang
- Department of Ophthalmology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaoxin Du
- Office of Scientific Research & Development, University of Electronic Science and Technology, Chengdu 610054, China
| | - Wenzhu Chen
- Department of Blood Transfusion, The First People’s Hospital of Longquanyi District, Chengdu 610041, China
| | - Jiuchuan Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
- Correspondence: (J.G.); (C.L.); (S.L.)
| | - Chenzhong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Correspondence: (J.G.); (C.L.); (S.L.)
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Correspondence: (J.G.); (C.L.); (S.L.)
| |
Collapse
|
11
|
Valle NME, Nucci MP, Alves AH, Rodrigues LD, Mamani JB, Oliveira FA, Lopes CS, Lopes AT, Carreño MNP, Gamarra LF. Advances in Concentration Gradient Generation Approaches in a Microfluidic Device for Toxicity Analysis. Cells 2022; 11:cells11193101. [PMID: 36231063 PMCID: PMC9563958 DOI: 10.3390/cells11193101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
This systematic review aimed to analyze the development and functionality of microfluidic concentration gradient generators (CGGs) for toxicological evaluation of different biological organisms. We searched articles using the keywords: concentration gradient generator, toxicity, and microfluidic device. Only 33 of the 352 articles found were included and examined regarding the fabrication of the microdevices, the characteristics of the CGG, the biological model, and the desired results. The main fabrication method was soft lithography, using polydimethylsiloxane (PDMS) material (91%) and SU-8 as the mold (58.3%). New technologies were applied to minimize shear and bubble problems, reduce costs, and accelerate prototyping. The Christmas tree CGG design and its variations were the most reported in the studies, as well as the convective method of generation (61%). Biological models included bacteria and nematodes for antibiotic screening, microalgae for pollutant toxicity, tumor and normal cells for, primarily, chemotherapy screening, and Zebrafish embryos for drug and metal developmental toxicity. The toxic effects of each concentration generated were evaluated mostly with imaging and microscopy techniques. This study showed an advantage of CGGs over other techniques and their applicability for several biological models. Even with soft lithography, PDMS, and Christmas tree being more popular in their respective categories, current studies aim to apply new technologies and intricate architectures to improve testing effectiveness and reduce common microfluidics problems, allowing for high applicability of toxicity tests in different medical and environmental models.
Collapse
Affiliation(s)
- Nicole M. E. Valle
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
| | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | - Caique S. Lopes
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
| | - Alexandre T. Lopes
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil
| | - Marcelo N. P. Carreño
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
12
|
Xiong N, Wang A, Xie T, Hu T, Chen Q, Zhao Q, Li G. Oil-Triggered and Template-Confined Dewetting for Facile and Low-Loss Sample Digitization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20813-20822. [PMID: 35485956 DOI: 10.1021/acsami.2c04728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper proposes a simple and robust method for spontaneously digitizing aqueous samples into a high-density microwell array. The method is based on an oil-triggered template-confined dewetting phenomenon. To realize the dewetting-induced sample digitization, an aqueous sample is first infused into a networked microwell array (NMA) through a pre-degassing-based self-pumping mechanism, and an immiscible oil phase is then applied over the surface of NMA chip to induce the templated dewetting. Due to periodic interfacial tension heterogeneity, such dewetting ruptures the sample at the thinnest parts (i.e., connection channels) and spontaneously splits the sample into droplets in individual microwells. Without requiring any complex pumping or valving systems, this method can discretize a sample into tens of thousands of addressable droplets in a matter of minutes with nearly 98% usage. To demonstrate the utility and universality of this self-digitization method, we exploited it to discretize samples into 40 233 wells for a digital PCR assay, the digital quantification of bacteria, the self-assembly of spherical colloidal photonic crystals, and the spherical crystallization of drugs. We believe this facile technique will provide a substantial benefit to many compartmentalized assays or syntheses where it is necessary to partition samples into a large number of small individual volumes.
Collapse
Affiliation(s)
- Nankun Xiong
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Anyan Wang
- Institute of Fluid Measurement and Simulation, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tengbao Xie
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Tianbao Hu
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Qiang Chen
- Institute of Fluid Measurement and Simulation, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qiang Zhao
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Gang Li
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| |
Collapse
|
13
|
Huang L, Zhang X, Feng Y, Liang F, Wang W. High content drug screening of primary cardiomyocytes based on microfluidics and real-time ultra-large-scale high-resolution imaging. LAB ON A CHIP 2022; 22:1206-1213. [PMID: 34870652 DOI: 10.1039/d1lc00740h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High content screening (HCS) plays an important role in biological applications and drug development. Existing techniques fail to simultaneously meet multiple needs of throughput, efficiency in sample and chemical consumption, and real-time imaging of a large view at high resolution. Leveraging advances in microfluidics and imaging technology, we setup a new paradigm of large-scale, high-content drug screening solutions for rapid biological processes, like cardiotoxicity. The designed microfluidic chips enable 10 types of drugs each with 5 concentrations to be assayed simultaneously. The imaging system has 30 Hz video rate for a centimeter filed-of-view at 0.8 μm resolution. Using the HCS system, we assayed 12 small molecules through their effects on the Ca2+ ion signal of cardiomyocytes. Experimental results demonstrated the unparalleled capability of the system in revealing the spatiotemporal patterns of Ca2+ imaging of cardiomyocytes, and validated the cardiotoxicity of certain molecules. We envision that this new HCS paradigm and cutting-edge platform offer the most advanced alternative to well-plate based methods.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Xu Zhang
- Beijing Institute of Collaborative Innovation, Beijing, 100094, China
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Abstract
Cell manipulation in droplets has emerged as one of the great successes of microfluidic technologies, with the development of single-cell screening. However, the droplet format has also served to go beyond single-cell studies, namely by considering the interactions between different cells or between cells and their physical or chemical environment. These studies pose specific challenges linked to the need for long-term culture of adherent cells or the diverse types of measurements associated with complex biological phenomena. Here we review the emergence of droplet microfluidic methods for culturing cells and studying their interactions. We begin by characterizing the quantitative aspects that determine the ability to encapsulate cells, transport molecules, and provide sufficient nutrients within the droplets. This is followed by an evaluation of the biological constraints such as the control of the biochemical environment and promoting the anchorage of adherent cells. This first part ends with a description of measurement methods that have been developed. The second part of the manuscript focuses on applications of these technologies for cancer studies, immunology, and stem cells while paying special attention to the biological relevance of the cellular assays and providing guidelines on improving this relevance.
Collapse
Affiliation(s)
- Sébastien Sart
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gustave Ronteix
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Shreyansh Jain
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gabriel Amselem
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Charles N Baroud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
15
|
Li H, Zhang P, Hsieh K, Wang TH. Combinatorial nanodroplet platform for screening antibiotic combinations. LAB ON A CHIP 2022; 22:621-631. [PMID: 35015012 PMCID: PMC9035339 DOI: 10.1039/d1lc00865j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The emergence and spread of multidrug resistant bacterial strains and concomitant dwindling of effective antibiotics pose worldwide healthcare challenges. To address these challenges, advanced engineering tools are developed to personalize antibiotic treatments by speeding up the diagnostics that is critical to prevent antibiotic misuse and overuse and make full use of existing antibiotics. Meanwhile, it is necessary to investigate novel antibiotic strategies. Recently, repurposing mono antibiotics into combinatorial antibiotic therapies has shown great potential for treatment of bacterial infections. However, widespread adoption of drug combinations has been hindered by the complexity of screening techniques and the cost of reagent consumptions in practice. In this study, we developed a combinatorial nanodroplet platform for automated and high-throughput screening of antibiotic combinations while consuming orders of magnitude lower reagents than the standard microtiter-based screening method. In particular, the proposed platform is capable of creating nanoliter droplets with multiple reagents in an automatic manner, tuning concentrations of each component, performing biochemical assays with high flexibility (e.g., temperature and duration), and achieving detection with high sensitivity. A biochemical assay, based on the reduction of resazurin by the metabolism of bacteria, has been characterized and employed to evaluate the combinatorial effects of the antibiotics of interest. In a pilot study, we successfully screened pairwise combinations between 4 antibiotics for a model Escherichia coli strain.
Collapse
Affiliation(s)
- Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
16
|
Kuo CT, Lai YS, Lu SR, Lee H, Chang HH. Microcrater-Arrayed Chemiluminescence Cell Chip to Boost Anti-Cancer Drug Administration in Zebrafish Tumor Xenograft Model. BIOLOGY 2021; 11:4. [PMID: 35053002 PMCID: PMC8773422 DOI: 10.3390/biology11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE The aim of this study was to develop a rapid and automatic drug screening platform using microcrater-arrayed (µCA) cell chips. METHODS The µCA chip was fabricated using a laser direct writing technique. The fabrication time required for one 9 × 9 microarray wax chip was as quick as 1 min. On a nanodroplet handling platform, the chip was pre-coated with anti-cancer drugs, including cyclophosphamide, cisplatin, doxorubicin, oncovin, etoposide, and 5-fluorouracil, and their associated mixtures. Cell droplets containing 100 SK-N-DZ or MCF-7 cells were then loaded onto the chip. Cell viability was examined directly through a chemiluminescence assay on the chip using the CellTiter-Glo assay. RESULTS The time needed for the drug screening assay was demonstrated to be less than 30 s for a total of 81 tests. The prediction of optimal drug synergy from the µCA chip was found by matching it to that of the zebrafish MCF-7 tumor xenograft model, instead of the conventional 96-well plate assay. In addition, the critical reagent volume and cell number for each µCA chip test were 200 nL and 100 cells, respectively, which were significantly lower than 100 µL and 4000 cells, which were achieved using the 96-well assay. CONCLUSION Our study for the µCA chip platform could improve the high-throughput drug synergy screening targeting the applications of tumor cell biology.
Collapse
Affiliation(s)
- Ching-Te Kuo
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yu-Sheng Lai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (Y.-S.L.); (S.-R.L.); (H.L.)
| | - Siang-Rong Lu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (Y.-S.L.); (S.-R.L.); (H.L.)
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10617, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (Y.-S.L.); (S.-R.L.); (H.L.)
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Jia X, Yang X, Luo G, Liang Q. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal 2021; 209:114534. [PMID: 34929566 DOI: 10.1016/j.jpba.2021.114534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
In recent years, the progress of microfluidic technology has provided new tools for pharmaceutical analysis and the proposal of pharm-lab-on-a-chip is appealing for its great potential to integrate pharmaceutical test and pharmacological test in a single chip system. Here, we summarize and highlight recent advances of chip-based principles, techniques and devices for pharmaceutical test and pharmacological/toxicological test focusing on the separation and analysis of drug molecules on a chip and the construction of pharmacological models on a chip as well as their demonstrative applications in quality control, drug screening and precision medicine. The trend and challenge of microfluidic technology for pharmaceutical analysis are also discussed and prospected. We hope this review would update the insight and development of pharm-lab-on-a-chip.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Guoan Luo
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
18
|
Zhai J, Li C, Li H, Yi S, Yang N, Miao K, Deng C, Jia Y, Mak PI, Martins RP. Cancer drug screening with an on-chip multi-drug dispenser in digital microfluidics. LAB ON A CHIP 2021; 21:4749-4759. [PMID: 34761772 DOI: 10.1039/d1lc00895a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidics has been the most promising platform for drug screening with a limited number of cells. However, convenient on-chip preparation of a wide range of drug concentrations remains a large challenge and has restricted wide acceptance of microfluidics in precision medicine. In this paper, we report a digital microfluidic system with an innovative control structure and chip design for on-chip drug dispensing to generate concentrations that span three to four orders of magnitude, enabling single drug or combinatorial multi-drug screening with simple electronic control. Specifically, we utilize droplet ejection from a drug drop sitting on a special electrode, named a drug dispenser, under high-voltage pulse actuation to deliver the desired amount of drugs to be picked up by a cell suspension drop driven by low-voltage sine wave actuation. Our proof-of-principle validation for this technique as a convenient single and multi-drug screening involved testing of the drug toxicity of two chemotherapeutics, cisplatin (Cis) and epirubicin (EP), towards MDA-MB-231 breast cancer cells and MCF-10A normal breast cells. The results are consistent with those screened based on traditional 96-well plates. These findings demonstrate the reliability of the drug screening system with an on-chip drug dispenser. This system with fewer cancer cells, less drug consumption, a small footprint, and high scalability with regard to concentration could pave the way for drug screening on biopsied primary tumor cells for precision medicine or any concentration-related research.
Collapse
Affiliation(s)
- Jiao Zhai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Department of Biomedical Sciences/Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Caiwei Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
| | - Haoran Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
| | - Shuhong Yi
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Yang
- Department of Electronic Information Engineering, Jiangsu University, Zhenjiang, China
| | - Kai Miao
- Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Yanwei Jia
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
- Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Pui-In Mak
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
| | - Rui P Martins
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
- Faculty of Science and Technology - DECE, University of Macau, Macau, China
- On leave from Instituto Superior Tecnico, Universidade de Lisboa, Portugal
| |
Collapse
|
19
|
Kerk YJ, Jameel A, Xing X, Zhang C. Recent advances of integrated microfluidic suspension cell culture system. ENGINEERING BIOLOGY 2021; 5:103-119. [PMID: 36970555 PMCID: PMC9996741 DOI: 10.1049/enb2.12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Microfluidic devices with superior microscale fluid manipulation ability and large integration flexibility offer great advantages of high throughput, parallelisation and multifunctional automation. Such features have been extensively utilised to facilitate cell culture processes such as cell capturing and culturing under controllable and monitored conditions for cell-based assays. Incorporating functional components and microfabricated configurations offered different levels of fluid control and cell manipulation strategies to meet diverse culture demands. This review will discuss the advances of single-phase flow and droplet-based integrated microfluidic suspension cell culture systems and their applications for accelerated bioprocess development, high-throughput cell selection, drug screening and scientific research to insight cell biology. Challenges and future prospects for this dynamically developing field are also highlighted.
Collapse
Affiliation(s)
- Yi Jing Kerk
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Aysha Jameel
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Xin‐Hui Xing
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| | - Chong Zhang
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| |
Collapse
|
20
|
Zhong R, Yang S, Ugolini GS, Naquin T, Zhang J, Yang K, Xia J, Konry T, Huang TJ. Acoustofluidic Droplet Sorter Based on Single Phase Focused Transducers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103848. [PMID: 34658129 PMCID: PMC8686687 DOI: 10.1002/smll.202103848] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Indexed: 05/13/2023]
Abstract
Droplet microfluidics has revolutionized the biomedical and drug development fields by allowing for independent microenvironments to conduct drug screening at the single cell level. However, current microfluidic sorting devices suffer from drawbacks such as high voltage requirements (e.g., >200 Vpp), low biocompatibility, and/or low throughput. In this article, a single-phase focused transducer (SPFT)-based acoustofluidic chip is introduced, which outperforms many microfluidic droplet sorting devices through high energy transmission efficiency, high accuracy, and high biocompatibility. The SPFT-based sorter can be driven with an input power lower than 20 Vpp and maintain a postsorting cell viability of 93.5%. The SPFT sorter can achieve a throughput over 1000 events per second and a sorting purity up to 99.2%. The SPFT sorter is utilized here for the screening of doxorubicin cytotoxicity on cancer and noncancer cells, proving its drug screening capability. Overall, the SPFT droplet sorting device shows great potential for fast, precise, and biocompatible drug screening.
Collapse
Affiliation(s)
- Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Giovanni Stefano Ugolini
- Department of Pharmaceutical Sciences, Faculty, School of Pharmacy, Northeastern University, Palo Alto, CA, 94301, USA
| | - Ty Naquin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Jinxin Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Tania Konry
- Department of Pharmaceutical Sciences, Faculty, School of Pharmacy, Northeastern University, Palo Alto, CA, 94301, USA
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
21
|
Wang B, Warden AR, Ding X. The optimization of combinatorial drug therapies: Strategies and laboratorial platforms. Drug Discov Today 2021; 26:2646-2659. [PMID: 34332097 DOI: 10.1016/j.drudis.2021.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022]
Abstract
Designing optimal combinatorial drug therapies is challenging, because the drug interactions depend not only on the drugs involved, but also on their doses. With recent advances, combinatorial drug therapy is closer than ever to clinical application. Herein, we summarize approaches and advances over the past decade for identifying and optimizing drug combination therapies, with innovations across research fields, covering physical laboratory platforms for combination screening to computational models and algorithms designed for synergism prediction and optimization. By comparing different types of approach, we detail a three-step workflow that could maximize the overall optimization efficiency, thus enabling the application of personalized optimization of combinatorial drug therapy.
Collapse
Affiliation(s)
- Boqian Wang
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Antony R Warden
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Xianting Ding
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China.
| |
Collapse
|
22
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
23
|
LIANG Y, PAN J, FANG Q. [Research advances of high-throughput cell-based drug screening systems based on microfluidic technique]. Se Pu 2021; 39:567-577. [PMID: 34227317 PMCID: PMC9404090 DOI: 10.3724/sp.j.1123.2020.07014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/01/2022] Open
Abstract
Drug screening is the process of screening new drugs or leading compounds with biological activity from natural products or synthetic compounds, and it plays an essential role in drug discovery. The discovery of innovative drugs requires the screening of a large number of compounds with appropriate drug targets. With the development of genomics, proteomics, metabolomics, combinatorial chemistry, and other disciplines, the library of drug molecules has been largely expanded, and the number of drug targets is continuously increasing. High-throughput screening systems enable the parallel analysis of thousands of reactions through automated operation, thereby enhancing the experimental scale and efficiency of drug screening. Among them, cell-based high-throughput drug screening has become the main screening mode because it can provide a microenvironment similar to human physiological conditions. However, the current high-throughput screening systems are mainly built based on multiwell plates, which have several disadvantages such as simple cell culture conditions, laborious and time-consuming operation, and high reagent consumption. In addition, it is difficult to achieve complex drug combination screening. Therefore, there is an urgent need for rapid and low-cost drug screening methods to reduce the time and cost of drug development. Microfluidic techniques, which can manipulate and control microfluids in microscale channels, have the advantages of low consumption, high efficiency, high throughput, and automation. It can overcome the shortcomings of screening systems based on multi-well plates and provide an efficient and reliable technical solution for establishing high-throughput cell-based screening systems. Moreover, microfluidic systems can be flexibly changed in terms of cell culture materials, chip structure design, and fluid control methods to enable better control and simulation of cell growth microenvironment. Operations such as cell seeding, culture medium replacement or addition, drug addition and cleaning, and cell staining reagent addition are usually involved in cell-based microfluidic screening systems. These operations are all based on the manipulation of microfluids. This paper reviews the research advances in cell-based microfluidic screening systems using different microfluidic manipulation modes, namely perfusion flow mode, droplet mode, and microarray mode. In addition, the advantages and disadvantages of these systems are summarized. Moreover, the development prospects of high-throughput screening systems based on microfluidic techniques has been looked forward. Furthermore, the current problems in this field and the directions to overcome these problems are discussed.
Collapse
Affiliation(s)
- Yixiao LIANG
- 浙江大学化学系, 微分析系统研究所, 浙江 杭州 310058
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jianzhang PAN
- 浙江大学化学系, 微分析系统研究所, 浙江 杭州 310058
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qun FANG
- 浙江大学化学系, 微分析系统研究所, 浙江 杭州 310058
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Hassan MR, Zhang J, Wang C. Digital Microfluidics: Magnetic Transportation and Coalescence of Sessile Droplets on Hydrophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5823-5837. [PMID: 33961445 DOI: 10.1021/acs.langmuir.1c00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic digital microfluidics is advantageous over other existing droplet manipulation methods, which exploits magnetic forces for actuation and offers the flexibility of implementation in resource-limited point-of-care applications. This article discusses the dynamic behavior of a pair of sessile droplets on a hydrophobic surface under the presence of a permanent magnetic field. A phase field method-based solver is employed in a two-dimensional computational domain to numerically capture the dynamic evolution of the droplet interfaces, which again simultaneously solves the magnetic and flow fields. On a superhydrophobic surface (i.e., θc = 150°), the nonuniform magnetic field forces the pair of sessile droplets to move toward each other, which eventually leads to a jumping off phenomenon of the merged droplet from the solid surface after coalescence. Also, there exists a critical magnetic Bond number Bomcr, beyond which no coalescence event between droplets is observed. Moreover, on a less hydrophobic surface (θc ≤ 120°), the droplets still coalesce under a magnetic field, although the merged droplet does not experience any upward flight after coalescence. Also, the merging phenomenon at lower contact angle values (i.e., θc = 90°) appears significantly different than at higher contact angle values (i.e., θc = 120°). Additionally, if the pair of sessile droplets is dispersed to a different surrounding medium, the viscosity ratio plays a significant role in the upward flight of the merged droplet, where the coalesced droplet exhibits increased vertical migration at higher viscosity ratios.
Collapse
Affiliation(s)
- Md Rifat Hassan
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 400 W. 13th Street, Rolla, Missouri 65409, United States
| | - Jie Zhang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 400 W. 13th Street, Rolla, Missouri 65409, United States
| | - Cheng Wang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 400 W. 13th Street, Rolla, Missouri 65409, United States
| |
Collapse
|
25
|
Universal Plasma Jet for Droplet Manipulation on a PDMS Surface towards Wall-Less Scaffolds. Polymers (Basel) 2021; 13:polym13081321. [PMID: 33920710 PMCID: PMC8073805 DOI: 10.3390/polym13081321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Droplet manipulation is important in the fields of engineering, biology, chemistry, and medicine. Many techniques, such as electrowetting and magnetic actuation, have been developed for droplet manipulation. However, the fabrication of the manipulation platform often takes a long time and requires well-trained skills. Here we proposed a novel method that can directly generate and manipulate droplets on a polymeric surface using a universal plasma jet. One of its greatest advantages is that the jet can tremendously reduce the time for the platform fabrication while it can still perform stable droplet manipulation with controllable droplet size and motion. There are two steps for the proposed method. First, the universal plasma jet is set in plasma mode for modifying the manipulation path for droplets. Second, the jet is switched to air-jet mode for droplet generation and manipulation. The jetted air separates and pushes droplets along the plasma-treated path for droplet generation and manipulation. According to the experimental results, the size of the droplet can be controlled by the treatment time in the first step, i.e., a shorter treatment time of plasma results in a smaller size of the droplet, and vice versa. The largest and the smallest sizes of the generated droplets in the results are about 6 µL and 0.1 µL, respectively. Infrared spectra of absorption on the PDMS surfaces with and without the plasma treatment are investigated by Fourier-transform infrared spectroscopy. Tests of generating and mixing two droplets on a PDMS surface are successfully achieved. The aging effect of plasma treatment for the proposed method is also discussed. The proposed method provides a simple, fast, and low-cost way to generate and manipulate droplets on a polymeric surface. The method is expected to be applied to droplet-based cell culture by manipulating droplets encapsulating living cells and towards wall-less scaffolds on a polymeric surface.
Collapse
|
26
|
Zhang Q, Feng S, Li W, Xie T, Zhang W, Lin J. In Situ Stable Generation of Reactive Intermediates by Open Microfluidic Probe for Subcellular Free Radical Attack and Membrane Labeling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Shuo Feng
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Tianze Xie
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Wanling Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
27
|
Zhang Q, Feng S, Li W, Xie T, Zhang W, Lin J. In Situ Stable Generation of Reactive Intermediates by Open Microfluidic Probe for Subcellular Free Radical Attack and Membrane Labeling. Angew Chem Int Ed Engl 2021; 60:8483-8487. [DOI: 10.1002/anie.202016171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Indexed: 01/19/2023]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Shuo Feng
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Tianze Xie
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Wanling Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
28
|
Experimental Studies of Droplet Formation Process and Length for Liquid–Liquid Two-Phase Flows in a Microchannel. ENERGIES 2021. [DOI: 10.3390/en14051341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, changes in the droplet formation mechanism and the law of droplet length in a two-phase liquid–liquid system in 400 × 400 μm standard T-junction microchannels were experimentally studied using a high-speed camera. The study investigated the effects of various dispersed phase viscosities, various continuous phase viscosities, and two-phase flow parameters on droplet length. Two basic flow patterns were observed: slug flow dominated by the squeezing mechanism, and droplet flow dominated by the shear mechanism. The dispersed phase viscosity had almost no effect on droplet length. However, the droplet length decreased with increasing continuous phase viscosity, increasing volume flow rate in the continuous phase, and the continuous-phase capillary number Cac. Droplet length also increased with increasing volume flow rate in the dispersed phase and with the volume flow rate ratio. Based on the droplet formation mechanism, a scaling law governing slug and droplet length was proposed and achieved a good fit with experimental data.
Collapse
|
29
|
Lou Q, Ma Y, Zhao SP, Du GS, Fang Q. A flexible and cost-effective manual droplet operation platform for miniaturized cell assays and single cell analysis. Talanta 2021; 224:121874. [PMID: 33379083 DOI: 10.1016/j.talanta.2020.121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 11/27/2022]
Abstract
Herein, we developed a flexible and cost-effective manual droplet operation system (MDOS) for performing miniaturized cell assays as well as single cell analysis. The MDOS consists of a manual x-y-z translation stage for liquid transferring and switching, a high-precision syringe pump for liquid driving and metering, a tapered capillary probe for droplet manipulation, a droplet array chip for droplet loading and reaction, sample/reagent reservoirs for storage, and a microscope for droplet observation, with a total expense of only $4,000. By using the flexible combination of three elementary operations of the x-y-z stage's moving and the pump's aspirating and depositing, the MDOS can manually achieve multiple droplet handling operations in the nanoliter to picoliter range, including droplet generation, assembling, fusion, diluting, and splitting. On this basis, multiple cell-related operations could be performed, such as nanoliter-scale in-droplet cell culture, cell coculture, drug stimulation, cell washing, and cell staining, as well as formation of picoliter single-cell droplets. The feasibility and flexibility of the MDOS was demonstrated in multi-mode miniaturized cell assays, including cell-based drug test, first-pass effect assay, and single-cell enzyme assay. The MDOS with the features of low cost, easy to build and flexible to use, could provide a promising alternative for performing miniaturized assays in routine laboratories, in addition to conventional microfluidic chip-based systems and automated robot systems.
Collapse
Affiliation(s)
- Qi Lou
- Institute of Microanalytical Systems, Department of Chemistry, Key Lab for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310058, China
| | - Yan Ma
- Institute of Microanalytical Systems, Department of Chemistry, Key Lab for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310058, China
| | - Shi-Ping Zhao
- Institute of Microanalytical Systems, Department of Chemistry, Key Lab for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310058, China
| | - Guan-Sheng Du
- Institute of Microanalytical Systems, Department of Chemistry, Key Lab for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Key Lab for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Shi Y, Cai Y, Cao Y, Hong Z, Chai Y. Recent advances in microfluidic technology and applications for anti-cancer drug screening. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Puentes PR, Henao MC, Torres CE, Gómez SC, Gómez LA, Burgos JC, Arbeláez P, Osma JF, Muñoz-Camargo C, Reyes LH, Cruz JC. Design, Screening, and Testing of Non-Rational Peptide Libraries with Antimicrobial Activity: In Silico and Experimental Approaches. Antibiotics (Basel) 2020; 9:E854. [PMID: 33265897 PMCID: PMC7759991 DOI: 10.3390/antibiotics9120854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
One of the challenges of modern biotechnology is to find new routes to mitigate the resistance to conventional antibiotics. Antimicrobial peptides (AMPs) are an alternative type of biomolecules, naturally present in a wide variety of organisms, with the capacity to overcome the current microorganism resistance threat. Here, we reviewed our recent efforts to develop a new library of non-rationally produced AMPs that relies on bacterial genome inherent diversity and compared it with rationally designed libraries. Our approach is based on a four-stage workflow process that incorporates the interplay of recent developments in four major emerging technologies: artificial intelligence, molecular dynamics, surface-display in microorganisms, and microfluidics. Implementing this framework is challenging because to obtain reliable results, the in silico algorithms to search for candidate AMPs need to overcome issues of the state-of-the-art approaches that limit the possibilities for multi-space data distribution analyses in extremely large databases. We expect to tackle this challenge by using a recently developed classification algorithm based on deep learning models that rely on convolutional layers and gated recurrent units. This will be complemented by carefully tailored molecular dynamics simulations to elucidate specific interactions with lipid bilayers. Candidate AMPs will be recombinantly-expressed on the surface of microorganisms for further screening via different droplet-based microfluidic-based strategies to identify AMPs with the desired lytic abilities. We believe that the proposed approach opens opportunities for searching and screening bioactive peptides for other applications.
Collapse
Affiliation(s)
- Paola Ruiz Puentes
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - María C. Henao
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carlos E. Torres
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Saúl C. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Laura A. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Juan C. Burgos
- Chemical Engineering Program, Universidad de Cartagena, Cartagena 130015, Colombia;
| | - Pablo Arbeláez
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
32
|
Sattari A, Hanafizadeh P, Hoorfar M. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures. Adv Colloid Interface Sci 2020; 282:102208. [PMID: 32721624 DOI: 10.1016/j.cis.2020.102208] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
Microfluidic technologies have a unique ability to control more precisely and effectively on two-phase flow systems in comparison with macro systems. Controlling the size of the droplets and bubbles has led to an ever-increasing expansion of this technology in two-phase systems. Liquid-liquid and gas-liquid two-phase flows because of their numerous applications in different branches such as reactions, synthesis, emulsions, cosmetic, food, drug delivery, etc. have been the most critical two-phase flows in microfluidic systems. This review highlights recent progress in two-phase flows in microfluidic devices. The fundamentals of two-phase flows, including some essential dimensionless numbers, governing equations, and some most well-known numerical methods are firstly introduced, followed by a review of standard methods for producing segmented flows such as emulsions in microfluidic systems. Then various encapsulated structures, a common two-phase flow structure in microfluidic devices, and different methods of their production are reviewed. Finally, applications of two-phase microfluidic flows in drug-delivery, biotechnology, mixing, and microreactors are briefly discussed.
Collapse
|
33
|
Sun WH, Wei Y, Guo XL, Wu Q, Di X, Fang Q. Nanoliter-Scale Droplet-Droplet Microfluidic Microextraction Coupled with MALDI-TOF Mass Spectrometry for Metabolite Analysis of Cell Droplets. Anal Chem 2020; 92:8759-8767. [PMID: 32496763 DOI: 10.1021/acs.analchem.0c00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The further miniaturization of liquid-phase microextraction (LPME) systems has important significance and major challenges for microscale sample analysis. Herein, we developed a rapid and flexible droplet-droplet microfluidic microextraction approach to perform nanoliter-scale miniaturized sample pretreatment, by combining droplet-based microfluidics, robotic liquid handling, and LPME techniques. Differing from the previous microextraction methods, both the extractant and sample volumes were decreased from the microliter scale or even milliliter scale to the nanoliter scale. We utilized the ability of a liquid-handling robot to manipulate nanoliter-scale droplets and micrometer-scale positioning to overcome the scaling effect difficulties in performing liquid-liquid extraction of nanoliter-volume samples in microsystems. Two microextraction modes, droplet-in-droplet microfluidic microextraction and droplet-on-droplet microfluidic microextraction, were developed according to the different solubility properties of the extractants. Various factors affecting the microextraction process were investigated, including the extraction time, recovery method of the extractant droplet, static and dynamic extraction mode, and cross-contamination. To demonstrate the validity and adaptability of the pretreatment and analysis of droplet samples with complex matrices, the present microextraction system coupled with MALDI-TOF mass spectrometry (MS) detection was applied to the quantitative determination of 7-ethyl-10-hydroxylcamptothecin (SN-38), an active metabolite of the anticancer drug irinotecan, in 800-nL droplets containing HepG2 cells. A linear relationship (y = 0.0305x + 0.376, R2 = 0.984) was obtained in the range of 4-100 ng/mL, with the limits of detection and quantitation being 2.2 and 4.5 ng/mL for SN-38, respectively.
Collapse
Affiliation(s)
- Wen-Hua Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan Wei
- Department of Chemistry, Institute of Microanalytical Systems, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Li Guo
- Department of Chemistry, Institute of Microanalytical Systems, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Wu
- Department of Chemistry, Institute of Microanalytical Systems, Zhejiang University, Hangzhou, 310058, China
| | - Xin Di
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qun Fang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Department of Chemistry, Institute of Microanalytical Systems, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
34
|
Microfluidic adhesion analysis of single glioma cells for evaluating the effect of drugs. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9734-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Dong Z, Fang Q. Automated, flexible and versatile manipulation of nanoliter-to-picoliter droplets based on sequential operation droplet array technique. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115812] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Microbioreactors for Process Development and Cell-Based Screening Studies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:67-100. [PMID: 32712680 DOI: 10.1007/10_2020_130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microbioreactors (MBRs) have emerged as potent cultivation devices enabling automated small-scale experiments in parallel while enhancing their cost efficiency. The widespread use of MBRs has contributed to recent advances in industrial and pharmaceutical biotechnology, and they have proved to be indispensable tools in the development of many modern bioprocesses. Being predominantly applied in early stage process development, they open up new fields of research and enhance the efficacy of biotechnological product development. Their reduced reaction volume is associated with numerous inherent advantages - particularly the possibility for enabling parallel screening operations that facilitate high-throughput cultivations with reduced sample consumption (or the use of rare and expensive educts). As a result, multiple variables can be examined in a shorter time and with a lower expense. This leads to a simultaneous acceleration of research and process development along with decreased costs.MBRs range from simple miniaturized cultivations vessels (i.e., in the milliliter scale with limited possibilities for process control) to highly complex and automated small-scale microreactors with integrated sensors that allow for comprehensive screenings in very short time or a precise reflection of large-scale cultivation conditions. Progressive developments and improvements in manufacturing and automation techniques are already helping researchers to make use of the advantages that MBRs offer. This overview of current MBR systems surveys the diverse application for microbial and mammalian cell cultivations that have been developed in recent years.
Collapse
|
37
|
Sun J, Warden AR, Ding X. Recent advances in microfluidics for drug screening. BIOMICROFLUIDICS 2019; 13:061503. [PMID: 31768197 PMCID: PMC6870548 DOI: 10.1063/1.5121200] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/07/2019] [Indexed: 05/03/2023]
Abstract
With ever increasing drug resistance and emergence of new diseases, demand for new drug development is at an unprecedented urgency. This fact has led to extensive recent efforts to develop new drugs and novel techniques for efficient drug screening. However, new drug development is commonly hindered by cost and time span. Thus, developing more accessible, cost-effective methods for drug screening is necessary. Compared with conventional drug screening methods, a microfluidic-based system has superior advantages in sample consumption, reaction time, and cost of the operation. In this paper, the advantages of microfluidic technology in drug screening as well as the critical factors for device design are described. The strategies and applications of microfluidics for drug screening are reviewed. Moreover, current limitations and future prospects for a drug screening microdevice are also discussed.
Collapse
Affiliation(s)
- Jiahui Sun
- State Key Laboratory of Oncogenes and Related Genes, Institute for
Personalized Medicine and School of Biomedical Engineering, Shanghai Jiao Tong
University, Shanghai 200030, China
| | - Antony R. Warden
- State Key Laboratory of Oncogenes and Related Genes, Institute for
Personalized Medicine and School of Biomedical Engineering, Shanghai Jiao Tong
University, Shanghai 200030, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for
Personalized Medicine and School of Biomedical Engineering, Shanghai Jiao Tong
University, Shanghai 200030, China
| |
Collapse
|
38
|
Kim JA, Hong S, Rhee WJ. Microfluidic three-dimensional cell culture of stem cells for high-throughput analysis. World J Stem Cells 2019; 11:803-816. [PMID: 31693013 PMCID: PMC6828593 DOI: 10.4252/wjsc.v11.i10.803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/02/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research, the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems. Recently, researchers have been actively developing and evaluating three-dimensional (3D) cell culture-based platforms using microfluidic technologies, such as organ-on-a-chip and organoid-on-a-chip platforms, and they have achieved promising breakthroughs in stem cell engineering. In this review, we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery. In a subsequent section, we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research. In addition, some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.
Collapse
Affiliation(s)
- Jeong Ah Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, South Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea
| | - Soohyun Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, South Korea
- Program in Biomicro System Technology, Korea University, Seoul 02841, South Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, South Korea
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, South Korea
| |
Collapse
|
39
|
Sun J, Wang B, Warden AR, Cui D, Ding X. Overcoming Multidrug-Resistance in Bacteria with a Two-Step Process to Repurpose and Recombine Established Drugs. Anal Chem 2019; 91:13562-13569. [DOI: 10.1021/acs.analchem.9b02690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiahui Sun
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Boqian Wang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Antony R. Warden
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Thin Film and Microfabrication Key Laboratory of Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Wang JW, Gao J, Wang HF, Jin QH, Rao B, Deng W, Cao Y, Lei M, Ye S, Fang Q. Miniaturization of the Whole Process of Protein Crystallographic Analysis by a Microfluidic Droplet Robot: From Nanoliter-Scale Purified Proteins to Diffraction-Quality Crystals. Anal Chem 2019; 91:10132-10140. [PMID: 31276402 DOI: 10.1021/acs.analchem.9b02138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To obtain diffraction-quality crystals is one of the largest barriers to analyze the protein structure using X-ray crystallography. Here we describe a microfluidic droplet robot that enables successful miniaturization of the whole process of crystallization experiments including large-scale initial crystallization screening, crystallization optimization, and crystal harvesting. The combination of the state-of-the-art droplet-based microfluidic technique with the microbatch crystallization mode dramatically reduces the volumes of droplet crystallization reactors to tens nanoliter range, allowing large-scale initial screening of 1536 crystallization conditions and multifactor crystallization condition optimization with extremely low protein consumption, and on-chip harvesting of diffraction-quality crystals directly from the droplet reactors. We applied the droplet robot in miniaturized crystallization experiments of seven soluble proteins and two membrane proteins, and on-chip crystal harvesting of six proteins. The X-ray diffraction data sets of these crystals were collected using synchrotron radiation for analyzing the structures with similar diffraction qualities as conventional crystallization methods.
Collapse
Affiliation(s)
- Jian-Wei Wang
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| | - Jie Gao
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| | - Hui-Feng Wang
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| | - Qiu-Heng Jin
- Life Sciences Institute , Zhejiang University , Hangzhou , 310058 , China
| | - Bing Rao
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Wei Deng
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Yu Cao
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Ming Lei
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Sheng Ye
- Life Sciences Institute , Zhejiang University , Hangzhou , 310058 , China.,School of Life Sciences , Tianjin University , Tianjin , 300072 , China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| |
Collapse
|
41
|
Dhiman N, Kingshott P, Sumer H, Sharma CS, Rath SN. On-chip anticancer drug screening - Recent progress in microfluidic platforms to address challenges in chemotherapy. Biosens Bioelectron 2019; 137:236-254. [PMID: 31121461 DOI: 10.1016/j.bios.2019.02.070] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022]
Abstract
There is an increasing need for advanced and inexpensive preclinical models to accelerate the development of anticancer drugs. While costly animal models fail to predict human clinical outcomes, in vitro models such as microfluidic chips ('tumor-on-chip') are showing tremendous promise at predicting and providing meaningful preclinical drug screening outcomes. Research on 'tumor-on-chips' has grown enormously worldwide and is being widely accepted by pharmaceutical companies as a drug development tool. In light of this shift in philosophy, it is important to review the recent literature on microfluidic devices to determine how rapidly the technology has progressed as a promising model for drug screening and aiding cancer therapy. We review the past five years of successful developments and capabilities in microdevice technology (cancer models) for use in anticancer drug screening. Microfluidic devices that are being designed to address current challenges in chemotherapy, such as drug resistance, combinatorial drug therapy, personalized medicine, and cancer metastasis are also reviewed in detail. We provide a perspective on how personalized 'tumor-on-chip', as well as high-throughput microfluidic platforms based on patient-specific tumor cells, can potentially replace the more expensive and 'non-human' animal models in preclinical anticancer drug development.
Collapse
Affiliation(s)
- Nandini Dhiman
- Regenerative Medicine and Stem Cells Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India; Department of Chemistry and Biotechnology, Faculty of Science and Engineering Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Faculty of Science and Engineering Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, Faculty of Science and Engineering Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Chandra S Sharma
- Creative & Advanced Research Based On Nanomaterials Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cells Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
42
|
Li Z, Li L, Liao M, He L, Wu P. Multiple splitting of droplets using multi-furcating microfluidic channels. BIOMICROFLUIDICS 2019; 13:024112. [PMID: 31065311 PMCID: PMC6486392 DOI: 10.1063/1.5086716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Removing volumes from droplets is a challenging but critical step in many droplet-based applications. Geometry-mediated droplet splitting has the potential to reliably divide droplets and thus facilitate the implementation of this step. In this paper, we report the design of multi-furcating microfluidic channels for efficient droplet splitting. We studied the splitting regimes as the size of the mother droplets varied and investigated the dependence of the transition between splitting regimes on the capillary number and the dimensionless droplet length. We found that the results obtained with our device agreed with the reported dimensionless analysis law in T-junctions. We further investigated the effect of channel lengths on the volume allocation in branch channels and achieved droplet splitting with various splitting ratios. This study proposed an efficient on-demand droplet splitting method and the findings could potentially be applied in washing steps in droplet-based biological assays or assays that require aliquot.
Collapse
Affiliation(s)
- Zida Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Luoquan Li
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Meixiang Liao
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Liqun He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Ping Wu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
43
|
Wei Y, Zhu Y, Fang Q. Nanoliter Quantitative High-Throughput Screening with Large-Scale Tunable Gradients Based on a Microfluidic Droplet Robot under Unilateral Dispersion Mode. Anal Chem 2019; 91:4995-5003. [DOI: 10.1021/acs.analchem.8b04564] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yan Wei
- Institute of Microanalytical Systems, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhu
- Institute of Microanalytical Systems, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry and Center for Chemistry of Novel & High-Performance Materials, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
44
|
Gill NK, Ly C, Nyberg KD, Lee L, Qi D, Tofig B, Reis-Sobreiro M, Dorigo O, Rao J, Wiedemeyer R, Karlan B, Lawrenson K, Freeman MR, Damoiseaux R, Rowat AC. A scalable filtration method for high throughput screening based on cell deformability. LAB ON A CHIP 2019; 19:343-357. [PMID: 30566156 DOI: 10.1039/c8lc00922h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell deformability is a label-free biomarker of cell state in physiological and disease contexts ranging from stem cell differentiation to cancer progression. Harnessing deformability as a phenotype for screening applications requires a method that can simultaneously measure the deformability of hundreds of cell samples and can interface with existing high throughput facilities. Here we present a scalable cell filtration device, which relies on the pressure-driven deformation of cells through a series of pillars that are separated by micron-scale gaps on the timescale of seconds: less deformable cells occlude the gaps more readily than more deformable cells, resulting in decreased filtrate volume which is measured using a plate reader. The key innovation in this method is that we design customized arrays of individual filtration devices in a standard 96-well format using soft lithography, which enables multiwell input samples and filtrate outputs to be processed with higher throughput using automated pipette arrays and plate readers. To validate high throughput filtration to detect changes in cell deformability, we show the differential filtration of human ovarian cancer cells that have acquired cisplatin-resistance, which is corroborated with cell stiffness measurements using quantitative deformability cytometry. We also demonstrate differences in the filtration of human cancer cell lines, including ovarian cancer cells that overexpress transcription factors (Snail, Slug), which are implicated in epithelial-to-mesenchymal transition; breast cancer cells (malignant versus benign); and prostate cancer cells (highly versus weekly metastatic). We additionally show how the filtration of ovarian cancer cells is affected by treatment with drugs known to perturb the cytoskeleton and the nucleus. Our results across multiple cancer cell types with both genetic and pharmacologic manipulations demonstrate the potential of this scalable filtration device to screen cells based on their deformability.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang Y, Wang TH. Rapid generation of chemical combinations on a magnetic digital microfluidic array. RSC Adv 2019; 9:21741-21747. [PMID: 35518867 PMCID: PMC9066432 DOI: 10.1039/c9ra03469b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Combinatorial screening is frequently used to identify chemicals with synergistic effects by measuring the response of biological entities exposed to various chemical-dose combinations. Conventional microwell-based combinatorial screening is resource-demanding, and the closed microfluidics-based screening requires sophisticated fluidic control systems. In this work, we present a novel combinatorial screening platform based on the surface energy trap (SET)-assisted magnetic digital microfluidics. This platform, known as FlipDrop, rapidly generates chemical combinations by coupling two droplet arrays with orthogonal chemical concentration gradients with a simple flip. We have illustrated the working principle of FlipDrop by generating combinations of quantum dots. We have also successfully demonstrated the screening of quantum dot fluorescence resonance energy transfer (QD-FRET) on the FlipDrop platform by measuring the FRET response. This report demonstrates that FlipDrop is capable of rapidly generating chemical combinations with unprecedented ease for combinatorial screening. FlipDrop is a combinatorial screening platform. It enables rapid generation of chemical combinations by flipping and coupling two droplet arrays generated by surface energy traps on the magnetic digital microfluidic platform.![]()
Collapse
Affiliation(s)
- Yi Zhang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
| | - Tza-Huei Wang
- Department of Biomedical Engineering
- Department of Mechanical Engineering
- Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
46
|
Jie M, Mao S, Liu H, He Z, Li HF, Lin JM. Evaluation of drug combination for glioblastoma based on an intestine-liver metabolic model on microchip. Analyst 2018; 142:3629-3638. [PMID: 28853486 DOI: 10.1039/c7an00453b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An intestine-liver-glioblastoma biomimetic system was developed to evaluate the drug combination therapy for glioblastoma. A hollow fiber (HF) was embedded into the upper layer of the microfluidic chip for culturing Caco-2 cells to mimic drug delivery as an artificial intestine. HepG2 cells cultured in the bottom chamber of the chip acted as an artificial liver for metabolizing the drugs. The dual-drug combination to glioblastoma U251 cells was evaluated based on the intestine-liver metabolic model. The drugs, irinotecan (CPT-11), temozolomide (TMZ) and cyclophosphamide (CP), were used to dynamically stimulate the cells by continuous infusion into the intestine unit. After intestine absorption and liver metabolism, the prodrugs were transformed to active metabolites, which induced glioblastoma cells apoptosis. The anticancer activity of the CPT-11 and TMZ combination is significantly enhanced compared to that of the single drug treatments. Combination index (CI) values of the combination groups, CPT-11 and TMZ, CPT-11 and CP, and TMZ and CP, at half maximal inhibitory concentration were 0.137, 0.288, and 0.482, respectively. The results indicated that the CPT-11 and TMZ combination was superior to the CPT-11 and CP group as well as the TMZ and CP group towards the U251 cells. The metabolism mechanism of CPT-11 and TMZ was further studied by coupling with mass spectrometric analysis. The biomimetic model enables the performance of long-term cell co-culture, drug delivery, metabolism and real-time analysis of drug effects, promising systematic in vitro mimicking of physiological and pharmacological processes.
Collapse
Affiliation(s)
- Mingsha Jie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | | | | | | | |
Collapse
|
47
|
Cui P, Wang S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J Pharm Anal 2018; 9:238-247. [PMID: 31452961 PMCID: PMC6704040 DOI: 10.1016/j.jpha.2018.12.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 01/18/2023] Open
Abstract
The development of pharmaceutical analytical methods represents one of the most significant aspects of drug development. Recent advances in microfabrication and microfluidics could provide new approaches for drug analysis, including drug screening, active testing and the study of metabolism. Microfluidic chip technologies, such as lab-on-a-chip technology, three-dimensional (3D) cell culture, organs-on-chip and droplet techniques, have all been developed rapidly. Microfluidic chips coupled with various kinds of detection techniques are suitable for the high-throughput screening, detection and mechanistic study of drugs. This review highlights the latest (2010–2018) microfluidic technology for drug analysis and discusses the potential future development in this field.
Collapse
Affiliation(s)
- Ping Cui
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, #76, Yanta West Road, Xi'an 710061, China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, #76, Yanta West Road, Xi'an 710061, China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| |
Collapse
|
48
|
Alam MK, Koomson E, Zou H, Yi C, Li CW, Xu T, Yang M. Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Anal Chim Acta 2018; 1044:29-65. [DOI: 10.1016/j.aca.2018.06.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022]
|
49
|
Zhang Z, Chen YC, Urs S, Chen L, Simeone DM, Yoon E. Scalable Multiplexed Drug-Combination Screening Platforms Using 3D Microtumor Model for Precision Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703617. [PMID: 30239130 DOI: 10.1002/smll.201703617] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/12/2018] [Indexed: 05/15/2023]
Abstract
Cancer heterogeneity is a notorious hallmark of this disease, and it is desirable to tailor effective treatments for each individual patient. Drug combinations have been widely accepted in cancer treatment for better therapeutic efficacy as compared to a single compound. However, experimental complexity and cost grow exponentially with more target compounds under investigation. The primary challenge remains to efficiently perform a large-scale drug combination screening using a small number of patient primary samples for testing. Here, a scalable, easy-to-use, high-throughput drug combination screening scheme is reported, which has the potential of screening all possible pairwise drug combinations for arbitrary number of drugs with multiple logarithmic mixing ratios. A "Christmas tree mixer" structure is introduced to generate a logarithmic concentration mixing ratio between drug pairs, providing a large drug concentration range for screening. A three-layer structure design and special inlets arrangement facilitate simple drug loading process. As a proof of concept, an 8-drug combination chip is implemented, which is capable of screening 172 different treatment conditions over 1032 3D cancer spheroids on a single chip. Using both cancer cell lines and patient-derived cancer cells, effective drug combination screening is demonstrated for precision medicine.
Collapse
Affiliation(s)
- Zhixiong Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Sumithra Urs
- University of Michigan Health System, Ann Arbor, MI, 48109, USA
| | - Lili Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA
| | - Diane M Simeone
- University of Michigan Health System, Ann Arbor, MI, 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
50
|
Kunding AH, Busk LL, Webb H, Klafki HW, Otto M, Kutter JP, Dufva M. Micro-droplet arrays for micro-compartmentalization using an air/water interface. LAB ON A CHIP 2018; 18:2797-2805. [PMID: 30123911 DOI: 10.1039/c8lc00608c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here we present a water-in-air droplet platform for micro-compartmentalization for single molecule guided synthesis and analysis consisting of a flow-system hosting dense arrays of aqueous microdroplets on a glass surface surrounded by air. The droplets are formed in a few seconds by passing a waterfront over the array of hydrophilic spots surrounded by a hydrophobic coating, thus forming a micro-droplet array (MDA). The droplet volumes are tunable from approximately 50 femtoliter to 20 picoliter by adjusting the size of the hydrophilic spots. MDAs consisting of femtoliter volume droplets were stable for more than 24 hours in air at 37 °C in a reversibly sealed flow-system, thus allowing us to perform assays that require long incubations in the droplets. Using differently fluorescing liquids, it was further shown that droplets can be reformed on the same MDA several times by passing a new liquid plug over the surface, and that fluorescence from one reaction can be washed away with little to no carry-over, hence allowing for multistep reactions to be carried out on the system. The MDA created by an air/water interface supported digital immunoassays as was demonstrated by measuring the Aβ42 peptide in cerebrospinal fluid of Alzheimers patients and control patients. To demonstrate a two step droplet assay, first, histidine tagged peptides were expressed in the droplets and bound to the droplet-enclosed surface. Subsequently, the his-tagged peptides were detected using enzyme-conjugated antibodies in a second droplet generation step. As such, the chip demonstrates features necessary for library preparations for high throughput screening applications.
Collapse
Affiliation(s)
- Andreas H Kunding
- Dept. of research & development, SELMA Diagnostics ApS, Copenhagen Bio-Science Park, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|