1
|
Alexeenko AA, Darwish A, Strongrich D, Kazarin P, Patil C, Tower CW, Wheeler IS, Munson E, Zhou Q, Narsimhan V, Yoon K, Nail SL, Cofer A, Stanbro J, Renawala H, Roth D, DeMarco F, Griffiths J, Peroulis D. Randomized-field microwave-assisted pharmaceutical lyophilization with closed-loop control. Sci Rep 2025; 15:10536. [PMID: 40148465 PMCID: PMC11950371 DOI: 10.1038/s41598-025-91642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
The current lyophilization technology for biopharmaceuticals and vaccine products is capital and energy-intensive, largely due to the use of indirect, conductive heat transfer. The heat removal and input in freezing, primary drying, and secondary drying are via contact between the product and shelves cooled or heated by a circulating working fluid such as silicone oil. This is slow, inefficient, and leads to non-uniform freezing and drying, especially in large-scale production systems. To address the current throughput limitations of conventional lyophilization, this collaborative project by Purdue University, Merck and IMA Life develops the next generation of tunable randomized-field microwave lyophilization system demonstrating significant acceleration over conventional freeze-drying processes. The system uses a microwave source delivering electromagnetic energy to the lyophilization chamber at frequencies between 8 GHz and 18 GHz at power levels below 400 W and mechanical stirrers for field randomization to achieve uniform heating. The frequency range is selected due to its greater efficiency for heating ice relative to traditional industrial microwave frequencies of 915 MHz and 2.45 GHz. During operation, temperature is measured directly using optical sensors, providing robust real-time product data. Closed-loop control algorithms enable direct control of the product temperature throughout the drying process, ensuring the material is dried at an optimal rate. The results of quasi-Random Field (qRF) microwave drying for several benchmark formulations, including an attenuated live virus vaccine, are presented and compared with the corresponding conventional lyophilization processes. A model for the product temperature and primary drying time is developed and validated against experimental cases.
Collapse
Affiliation(s)
- Alina A Alexeenko
- School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, 47907, USA.
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA.
| | - Ahmad Darwish
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Drew Strongrich
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Petr Kazarin
- School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, 47907, USA
- IMA Life North America, Tonawanda, NY, 14150, USA
| | - Chanakya Patil
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, 47907, USA
| | - Cole W Tower
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, 47907, USA
| | - Isaac S Wheeler
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Eric Munson
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, 47907, USA
| | - Qi Zhou
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, 47907, USA
| | - Vivek Narsimhan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Kyu Yoon
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Steven L Nail
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Anthony Cofer
- School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, 47907, USA
| | - Justin Stanbro
- Vaccine Drug Product Development (VDPD), Merck & Co., Inc., West Point, PA, 19486, USA
| | - Harshil Renawala
- Sterile Drug Product Commercialization (SDPC), Merck & Co., Inc., West Point, PA, 19486, USA
| | - Daniel Roth
- Vaccine Drug Product Development (VDPD), Merck & Co., Inc., West Point, PA, 19486, USA
| | | | | | - Dimitrios Peroulis
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
2
|
Xiang D, Yan X, Liu J, Zhou Y, Cui A, Wang Q, He X, Ma M, Huang J, Liu J, Yang X, Wang K. Magnetofluidic-Assisted Portable Automated Microfluidic Devices for Protein Detection. Anal Chem 2025; 97:1933-1940. [PMID: 39815389 DOI: 10.1021/acs.analchem.4c06384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
To facilitate on-site detection by nonspecialists, there is a demand for the development of portable "sample-to-answer" devices capable of executing all procedures in an automated or easy-to-operate manner. Here, we developed an automated detection device that integrated a magnetofluidic manipulation system and a signal acquisition system. Both systems were controllable via a smartphone. In the device, the mixing of solutions and magnetic beads in the static chamber was enhanced by steel bead agitation, which improved the reaction efficiency. We demonstrate the performance of the device using myoglobin detection as an example. During the detection process, the plasma was separated from the whole blood sample using a homemade mini-centrifuge, and subsequently, the plasma, magnetic beads, and reagents were added to a magnetofluidic chip with multiple chambers. After the chip was loaded, the device was initiated with a smartphone App via Bluetooth. Then, the magnetic beads were shuttled through different chambers of the chip and multiple steps were completed automatically: first, the targets were separated and enriched using antibody-modified magnetic beads, followed by washing, binding with aptamer-functionalized G-quadruplex, signal amplifying (optional), and chromogenic reaction. Finally, the images of colored solutions were captured and processed by a smartphone to obtain the concentrations of myoglobin. The detection limits depended on the mode of signal conversion, which were 0.1 or 2.7 nM (with or without signal amplifying). With its simple operation, compact design, low cost, and ease of scalability, this automated detection device holds potential applications in human health, food safety, environmental monitoring, etc.
Collapse
Affiliation(s)
- Dongliu Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xueting Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jia Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Aiping Cui
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Mingze Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Gao J, Huang S, Jiang J, Miao Q, Zheng R, Kang Y, Tang W, Zuo H, He J, Xie J. Dual-CRISPR/Cas12a-assisted RT-RAA visualization system for rapid on-site detection of nervous necrosis virus (NNV). Anal Chim Acta 2025; 1335:343469. [PMID: 39643320 DOI: 10.1016/j.aca.2024.343469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/27/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Nervous necrosis virus (NNV) poses a severe threat to the aquaculture industry, particularly infecting fish fry with devastating mortality rates and inflicting heavy economic losses. Traditional detection methods, such as cell culture and conventional RT-PCR, are not only time-consuming and require specialized laboratory facilities but also hard to eliminate contamination. Rapid and accurate on-site detection methods in aquaculture settings are crucial for effective control of NNV outbreaks in fish farms. RESULTS This study developed a one-tube visualization system for rapid and precise identification of NNV in a pond-side setting. This system utilizes the dual-clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-assisted reverse transcription-recombinase aided amplification (RT-RAA) detection method, employing fluorescence intensity to indicate positive results for easy interpretation by field operators. The key to this system involved the meticulous selection of RT-RAA primer sets and CRISPR RNA (crRNA) primer sets targeting two genes of NNV, the capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), distributing on two particles of genomic sequences. The assay demonstrated a speed and efficiency process within 30 min and a detection limit of 0.5 copies/μL, achieving 100 % accuracy when compared to qRT-PCR. The practical utility and effectiveness were validated by using 32 field samples. The results underscored the simplicity, rapidity, and reliability of the system, confirming its potential as a robust tool for NNV diagnosis in fish farms. SIGNIFICANCE This study introduces the first application of a dual-CRISPR/Cas12a-assisted RT-RAA visualization system for diagnosing NNV infections. The novel approach substantially enhances on-site diagnostic capabilities, offering a rapid, reliable, and cost-effective solution for fish farm operators. This innovation not only streamlines the detection process but also ensures timely intervention, thereby mitigating the impact of NNV on aquaculture.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Siyou Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Jing Jiang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Qijin Miao
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Rui Zheng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Yiling Kang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Wanting Tang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China.
| | - Junfeng Xie
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, China.
| |
Collapse
|
4
|
Chen J, Liu T, Zhang Y, Duan M, Yang Z, Chen M, Wang Y, Zheng L, Zhuang S, Zhang D. One-step time-resolved cascade logic gate microfluidic chip for home testing of SARS-CoV-2 and flu B. Biosens Bioelectron 2024; 263:116564. [PMID: 39033655 DOI: 10.1016/j.bios.2024.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Home testing technology strategy is critical for early screening of disease. However, current home testing technologies often require complex processes, which limits their application. In this study, a time-resolved cascade logic gate microfluidic chip (TCLMC) was revealed to enable capillary force-based one-step operation without manual intervention or professional equipment. By analogy with logic gates in the circuit, TCLMC could automatically control the fluid flow and regulate the incubation time to optimize the immunoassay. The limit of detection of TCLMC for SARS-CoV-2 and influenza B virus (Flu B) was 134.94 and 79.17 pg mL-1 within 10 min. Additionally, this study tested saliva samples from 12 Flu B patients and 24 healthy controls to verify its clinical application. The results showed that TCLMC had high sensitivity (100%), specificity (100%), and accuracy (100%). This study provides a new one-step strategy for home testing and demonstrates its great potential in the diagnosis field.
Collapse
Affiliation(s)
- Jingwei Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Tingting Liu
- Department of Pediatric Hematology/Oncology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Kongjiang Road 1665, Shanghai, 200092, PR China
| | - Yule Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Mengnan Duan
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhijin Yang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Mengya Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yiran Wang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai, 200093, PR China; Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
5
|
Liu W, Chung K, Yu S, Lee LP. Nanoplasmonic biosensors for environmental sustainability and human health. Chem Soc Rev 2024; 53:10491-10522. [PMID: 39192761 DOI: 10.1039/d3cs00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Monitoring the health conditions of the environment and humans is essential for ensuring human well-being, promoting global health, and achieving sustainability. Innovative biosensors are crucial in accurately monitoring health conditions, uncovering the hidden connections between the environment and human well-being, and understanding how environmental factors trigger autoimmune diseases, neurodegenerative diseases, and infectious diseases. This review evaluates the use of nanoplasmonic biosensors that can monitor environmental health and human diseases according to target analytes of different sizes and scales, providing valuable insights for preventive medicine. We begin by explaining the fundamental principles and mechanisms of nanoplasmonic biosensors. We investigate the potential of nanoplasmonic techniques for detecting various biological molecules, extracellular vesicles (EVs), pathogens, and cells. We also explore the possibility of wearable nanoplasmonic biosensors to monitor the physiological network and healthy connectivity of humans, animals, plants, and organisms. This review will guide the design of next-generation nanoplasmonic biosensors to advance sustainable global healthcare for humans, the environment, and the planet.
Collapse
Affiliation(s)
- Wenpeng Liu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Kyungwha Chung
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Yu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Luke P Lee
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
6
|
Ko K, Lokteva LM, Akuffo GA, Phyo Z, Chhoung C, Bunthen E, Ouoba S, Sugiyama A, Akita T, Rattana K, Vichit O, Takahashi K, Tanaka J. A comparative study of extraction free detection of HBV DNA using sodium dodecyl sulfate, N-lauroylsarcosine sodium salt, and sodium dodecyl benzene sulfonate. Sci Rep 2024; 14:25442. [PMID: 39455809 PMCID: PMC11512040 DOI: 10.1038/s41598-024-75944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to develop an extraction-free method for quantitative and qualitative detection of HBV DNA compared to traditional nucleic acid extraction. Paired serum and dried blood spot (DBS) samples from 67 HBsAg-positive and 67 HBsAg-negative individuals were included. Two samples with known HBV DNA titers (~ 109 copies/mL) were examined by extraction-free detection using three surfactants (0.2 to 1% of Sodium dodecyl sulfate:SDS, N-Lauroylsarcosine sodium salt:NL, Sodium dodecyl benzene sulfonate:SDBS), two stabilizing agents (0.1 or 0.01% 2-Mercaptoethanol:2ME and 3.5 or 7% Bovine Serum Albumin:BSA) and two Taq polymerases (Fast Advanced and Prime Direct Probe). HBV DNA in all 67 HBsAg-positive and 67 HBsAg-negative serum and DBS samples was directly quantified by Rt-PCR using 0.4% SDS or 0.4% NL with Fast Advance or Prime Direct Probe Taq. Extraction-free amplification was also performed. Detection limits were varied by different surfactants and Taq. SDS combined with Fast Advanced Taq showed lower detection limits, while SDS with Prime Direct Probe Taq outperformed NL or SDBS-based detection. Adding 2ME to SDS improved detection limit with Prime Direct Probe Taq but not significantly compared to SDS alone. BSA did not significantly enhance detection limits but provided insights into sample stability. The senitivity and specificity of 0.4% SDS and NL in combination with either Fast advanced or Prime Direct Probe Taq polymerase in serum samples were > 90% and 100% resepctively, while it was > 80% and 100% respectively in DBS samples. Extraction-free HBV DNA amplification provided 100% identity with original genomes. Our study suggests that SDS, NL or SDBS-based extraction-free HBV DNA detection strategies using Prime Direct Probe Taq have potential to simplify and accelerate HBV DNA detection with high sensitivity and specificity in both serum and DBS samples, with implications for resource-limited settings and clinical applications. Utilizing surfactants with 2ME is optional, and further research and validation are necessary to broaden its application in real-world diagnostics.
Collapse
Affiliation(s)
- Ko Ko
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami, Hiroshima, 734-8551, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Lyubov Mikhailovna Lokteva
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami, Hiroshima, 734-8551, Japan
- Research Institute of Virology, Tashkent, Uzbekistan
| | - Golda Ataa Akuffo
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami, Hiroshima, 734-8551, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Zayar Phyo
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami, Hiroshima, 734-8551, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Chanroth Chhoung
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami, Hiroshima, 734-8551, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - E Bunthen
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami, Hiroshima, 734-8551, Japan
- National Payment Certification Agency, National Social Protection Council, Ministry of Economic and Finance, Phnom Penh, Cambodia
| | - Serge Ouoba
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami, Hiroshima, 734-8551, Japan
- Unité de Recherche Clinique de Nanoro (URCN), Institut de Recherche en Science de La Santé (IRSS), Nanoro, Burkina Faso
| | - Aya Sugiyama
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami, Hiroshima, 734-8551, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami, Hiroshima, 734-8551, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Kim Rattana
- National Maternal and Child Health Center (NMCHC), Ministry of Health, Phnom Penh, Cambodia
| | - Ork Vichit
- National Immunization Program (NIP), Ministry of Health, Phnom Penh, Cambodia
| | - Kazuaki Takahashi
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami, Hiroshima, 734-8551, Japan
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami, Hiroshima, 734-8551, Japan.
- Project Research Center for Epidemiology and Prevention of Viral Hepatitis and Hepatocellular Carcinoma, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
7
|
Politza AJ, Liu T, Kshirsagar A, Dong M, Ahamed MA, Guan W. Development and validation of a portable device for lab-free versatile nucleic acid extraction. Biotechniques 2024; 76:505-515. [PMID: 39620898 DOI: 10.1080/07366205.2024.2427544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/04/2024] [Indexed: 01/18/2025] Open
Abstract
Nucleic acid testing (NAT) has revolutionized diagnostics by providing precise, rapid, and scalable detection methods for diverse biological samples. These recent advancements satisfy the increasing demand for on-site diagnostics, yet sample preparation remains a significant bottleneck for achieving highly sensitive diagnostic assays. There is an unmet need for compatible, efficient, and lab-free sample preparation for point-of-care NAT. To address this, we developed a portable, lab-free, and battery-powered device for extracting nucleic acids. We explored using low centrifugal forces with existing commercial chemistry, demonstrating excellent performance. We designed and tested a battery-powered device to enable lab-free extractions, and verified reagents stored out to 6 months, suggesting exceptional deployment capabilities. We evaluated our device, comparing our results against those from a benchtop centrifuge across three types of samples: HIV RNA in buffer, HIV RNA in plasma, and SARS-CoV-2 RNA in saliva. The portable device demonstrated excellent agreement with the benchtop centrifuge, indicating high reliability. By providing an effective on-site sample preparation solution, the widespread adoption of low centrifugal extractions will improve the sensitivity and reliability of NAT and will positively impact other point-of-care technologies such as next generation sequencing (NGS), biomarker detection, and environmental monitoring.
Collapse
Affiliation(s)
- Anthony J Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Aneesh Kshirsagar
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Md Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Weihua Guan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
8
|
Teo AJT, Ng SK, Khoo K, Wong SH, Li KHH. Microfluidic Gastrointestinal Cell Culture Technologies-Improvements in the Past Decade. BIOSENSORS 2024; 14:449. [PMID: 39329824 PMCID: PMC11429516 DOI: 10.3390/bios14090449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Gastrointestinal cell culture technology has evolved in the past decade with the integration of microfluidic technologies, bringing advantages with greater selectivity and cost effectiveness. Herein, these technologies are sorted into three categories, namely the cell-culture insert devices, conventional microfluidic devices, and 3D-printed microfluidic devices. Each category is discussed in brief with improvements also discussed here. Introduction of different companies and applications derived from each are also provided to encourage uptake. Subsequently, future perspectives of integrating microfluidics with trending topics like stool-derived in vitro communities and gut-immune-tumor axis investigations are discussed. Insights on modular microfluidics and its implications on gastrointestinal cell cultures are also discussed here. Future perspectives on point-of-care (POC) applications in relations to gastrointestinal microfluidic devices are also discussed here. In conclusion, this review presents an introduction of each microfluidic platform with an insight into the greater contribution of microfluidics in gastrointestinal cell cultures.
Collapse
Affiliation(s)
- Adrian J. T. Teo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (A.J.T.T.); (K.K.)
| | - Siu-Kin Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (S.-K.N.); (S.H.W.)
| | - Kaydeson Khoo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (A.J.T.T.); (K.K.)
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (S.-K.N.); (S.H.W.)
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (A.J.T.T.); (K.K.)
| |
Collapse
|
9
|
Zhang Y, Guo Y, Liu G, Zhou S, Su R, Ma Q, Ge Y, Lu YQ, Cui L, Wang G. Portable all-in-one microfluidic system for CRISPR-Cas13a-based fully integrated multiplexed nucleic acid detection. LAB ON A CHIP 2024; 24:3367-3376. [PMID: 38845509 DOI: 10.1039/d4lc00326h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Point-of-care testing of "sample in, answer out" is urgently needed for communicable diseases. Recently, rapid nucleic acid tests for infectious diseases have been developed for use in resource-limited areas, but they require types of equipment in central laboratories and are poorly integrated. In this work, a portable centrifugal microfluidic testing system is developed, integrated with magnetic bead-based nucleic acid extraction, recombinase-assisted amplification and CRISPR-Cas13a detection. The system, with the advantage of its power-supplied active rotating chip and highly programable flow control through integrated addressable active thermally-triggered wax valves, has a rapid turnaround time within 45 min, requiring only one user step. All reagents are preloaded into the chip and can be automatically released. By exploiting a multichannel chip, it is capable of simultaneously detecting 10 infectious viruses with limits of detection of 1 copy per reaction and 5 copies per reaction in plasmid samples and mock plasma samples, respectively. The system was used to analyse clinical plasma samples with good consistency compared to laboratory-based molecular testing. Moreover, the generalizability of our device is reported by successfully testing nasopharyngeal swabs and whole blood samples. The portable device does not require the operation of professional technicians, making it an excellent assay for on-site testing.
Collapse
Affiliation(s)
- Ya Zhang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu 210093, China
| | - Yue Guo
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Jiangsu 210009, China
- Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu 210009, China.
| | - Guozhen Liu
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu 210093, China
| | - Shiqi Zhou
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu 210093, China
| | - Rouyu Su
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu 210093, China
| | - Qian Ma
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu 210093, China
| | - Yiyue Ge
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Jiangsu 210009, China
- Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu 210009, China.
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
| | - Lunbiao Cui
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Jiangsu 210009, China
- Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu 210009, China.
| | - Guanghui Wang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu 210093, China.
- Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu 210093, China
| |
Collapse
|
10
|
Li S, Wan C, Xiao Y, Liu C, Zhao X, Zhang Y, Yuan H, Wu L, Qian C, Li Y, Chen P, Liu BF. Multiple on-line active valves based centrifugal microfluidics for dynamic solid-phase enrichment and purification of viral nucleic acid. LAB ON A CHIP 2024; 24:3158-3168. [PMID: 38787694 DOI: 10.1039/d4lc00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Point of care testing (POCT) of nucleic acids holds significant importance in the realm of infectious disease prevention and control, as well as the advancement of personalized precision medicine. Nevertheless, conventional nucleic acid testing methods continue to face challenges such as prolonged detection times and dependence on extensive specialized equipment and personnel, rendering them unsuitable for point of care applications. Here, we proposed an innovative active centrifugal microfluidic system (ACMS) for automatic nucleic acid extraction, encompassing modules for active valve control and magnetic control. An on-chip centrifugal puncture valve (PV) was devised based on the elastic tolerance differences between silicone membranes and tinfoils to release pre-embedded liquid reagents on demand. Furthermore, we have utilized the returnable valve (RV) technology to accurately control the retention and release of liquids, leveraging the high elastic tolerance of the silicone membrane. By incorporating an online controllable magnetic valve, we have achieved controlled and rapid aggregation and dispersion of magnetic beads. The final chip encapsulates multiple reagents and magnetic beads necessary for nucleic acid extraction. Upon sample addition and loading into the instrument, automated on-chip sample loading and nucleic acid extraction, purification, and collection can be accomplished within 30 minutes, halving the overall operation time and even increasing the efficiency of pseudovirus extraction by three orders of magnitude. Consequently, real-time fluorescence quantitative PCR amplification has successfully detected multiple targets of the SARS-CoV-2 virus (with an impressive detection limit as low as 10 copies per μL), along with targeted sequencing analysis yielding a conformity rate of 99%.
Collapse
Affiliation(s)
- Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yujin Xiao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Changgen Liu
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Xudong Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ying Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Liqiang Wu
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Chungen Qian
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
11
|
Fan J, Gong H, Wang F, Wang L, Yu Y, Liu D, Yang W. Multiplexed electrochemical nucleic acid sensor based on visible light-mediated metal-free thiol-yne click reaction for simultaneous detection of different nucleic acid targets. Talanta 2024; 273:125856. [PMID: 38442565 DOI: 10.1016/j.talanta.2024.125856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Simultaneous detection of multiple tumor biomarkers with a simple and low-cost assay is crucial for early cancer detection and diagnosis. Herein, we presented a low-cost and simple assay for multiplexed detection of tumor biomarkers using a spatially separated electrodes strategy. The sensor is fabricated based on a metal-free thiol-yne click reaction, which is mediated by visible light, on commercially available indium tin oxide (ITO) electrodes. Four biomarkers, including p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA, were used as model analytes, and the corresponding oligonucleotide probes were modified on the desired electrode units sequentially with 530 nm irradiation light in the presence of photosensitizer Eosin Y. By this visible light-mediated coupling reaction, oligonucleotide probe densities of up to 9.2 ± 0.7 × 1010 molecules/cm2 were readily obtained on the ITO electrode surface. The proposed multiplexed E-NA sensor could detect four different nucleic acid targets concurrently without crosstalk among adjacent electrodes and was also successfully applied for detecting targets in a 20% fetal calf serum sample. The detection limits for p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA were 0.72 nM, 0.97 nM, 2.15 nM, and 1.73 nM, respectively. The developed approach not only has a great potential for developing cost-effective biosensors on affordable substrates for nucleic acid target detection, but also be easily extended to detect other targets by modifying the specific oligonucleotide probes anchored on the electrode.
Collapse
Affiliation(s)
- Jinlong Fan
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Hanlin Gong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Fan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150001, China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
12
|
Yuan H, Wan C, Wang X, Li S, Xie H, Qian C, Du W, Feng X, Li Y, Chen P, Liu BF. Programmable Gravity Self-Driven Microfluidic Chip for Point-of-Care Multiplied Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310206. [PMID: 38085133 DOI: 10.1002/smll.202310206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/02/2023] [Indexed: 05/25/2024]
Abstract
Point-of-care testing (POCT) is experiencing a groundbreaking transformation with microfluidic chips, which offer precise fluid control and manipulation at the microscale. Nevertheless, chip design or operation for existing platforms is rather cumbersome, with some even heavily depending on external drivers or devices, impeding their broader utilization. This study develops a unique programmable gravity self-driven microfluidic chip (PGSMC) capable of simultaneous multi-reagent sequential release, multi-target analysis, and multi-chip operation. All necessary reagents are introduced in a single step, and the process is initiated simply by flipping the PGSMC vertically, eliminating the need for additional steps or devices. Additionally, it demonstrates successful immunoassays in less than 60 min for antinuclear antibodies testing, compared to more than 120 min by traditional methods. Assessment using 25 clinically diagnosed cases showcases remarkable sensitivity (96%), specificity (100%), and accuracy (99%). These outcomes underscored its potential as a promising platform for POCT with high accuracy, speed, and reliability, highlighting its capability for automated fluid control.
Collapse
Affiliation(s)
- Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
13
|
Shi Y, Tan Q, Gong T, Li QY, Zhu Y, Duan X, Yang C, Ding JW, Li S, Xie H, Li Y, Chen L. Cascaded signal amplification strategy for ultra-specific, ultra-sensitive, and visual detection of Shigella flexneri. Mikrochim Acta 2024; 191:271. [PMID: 38632191 DOI: 10.1007/s00604-024-06309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Pathogen infections including Shigella flexneri have posed a significant threat to human health for numerous years. Although culturing and qPCR were the gold standards for pathogen detection, time-consuming and instrument-dependent restrict their application in rapid diagnosis and economically less-developed regions. Thus, it is urgently needed to develop rapid, simple, sensitive, accurate, and low-cost detection methods for pathogen detection. In this study, an immunomagnetic beads-recombinase polymerase amplification-CRISPR/Cas12a (IMB-RPA-CRISPR/Cas12a) method was built based on a cascaded signal amplification strategy for ultra-specific, ultra-sensitive, and visual detection of S. flexneri in the laboratory. Firstly, S. flexneri was specifically captured and enriched by IMB (Shigella antibody-coated magnetic beads), and the genomic DNA was released and used as the template in the RPA reaction. Then, the RPA products were mixed with the pre-loaded CRISPR/Cas12a for fluorescence visualization. The results were observed by naked eyes under LED blue light, with a sensitivity of 5 CFU/mL in a time of 70 min. With no specialized equipment or complicated technical requirements, the IMB-RPA-CRISPR/Cas12a diagnostic method can be used for visual, rapid, and simple detection of S. flexneri and can be easily adapted to monitoring other pathogens.
Collapse
Affiliation(s)
- Yaoqiang Shi
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Qi Tan
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Tao Gong
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Qing-Yuan Li
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Ya Zhu
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Xiaoqiong Duan
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Chunhui Yang
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Jia-Wei Ding
- Clinical Laboratory Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Shilin Li
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - He Xie
- The Hospital of Xidian Group, Xi'an, 710077, China
| | - Yujia Li
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.
| | - Limin Chen
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.
- The Joint Laboratory On Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, 530007, China.
- The Hospital of Xidian Group, Xi'an, 710077, China.
| |
Collapse
|
14
|
Yu Y, Ni W, Hu Q, Li H, Zhang Y, Gao X, Zhou L, Zhang S, Ma S, Zhang Y, Huang H, Li F, Han J. A Dual Fluorescence Turn-On Sensor Array Formed by Poly(para-aryleneethynylene) and Aggregation-Induced Emission Fluorophores for Sensitive Multiplexed Bacterial Recognition. Angew Chem Int Ed Engl 2024; 63:e202318483. [PMID: 38407995 DOI: 10.1002/anie.202318483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Bacterial infections have emerged as the leading causes of mortality and morbidity worldwide. Herein, we developed a dual-channel fluorescence "turn-on" sensor array, comprising six electrostatic complexes formed from one negatively charged poly(para-aryleneethynylene) (PPE) and six positively charged aggregation-induced emission (AIE) fluorophores. The 6-element array enabled the simultaneous identification of 20 bacteria (OD600=0.005) within 30s (99.0 % accuracy), demonstrating significant advantages over the array constituted by the 7 separate elements that constitute the complexes. Meanwhile, the array realized different mixing ratios and quantitative detection of prevalent bacteria associated with urinary tract infection (UTI). It also excelled in distinguishing six simulated bacteria samples in artificial urine. Remarkably, the limit of detection for E. coli and E. faecalis was notably low, at 0.000295 and 0.000329 (OD600), respectively. Finally, optimized by diverse machine learning algorithms, the designed array achieved 96.7 % accuracy in differentiating UTI clinical samples from healthy individuals using a random forest model, demonstrating the great potential for medical diagnostic applications.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Huihai Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Yi Zhang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Xu Gao
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Lingjia Zhou
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Shuming Zhang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Shuoyang Ma
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, 210006, China
| | - Hui Huang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China, Pharmaceutical University, Nanjing, 211109, China
| |
Collapse
|
15
|
Bai H, Liu Y, Gao L, Wang T, Zhang X, Hu J, Ding L, Zhang Y, Wang Q, Wang L, Li J, Zhang Z, Wang Y, Shen C, Ying B, Niu X, Hu W. A portable all-in-one microfluidic device with real-time colorimetric LAMP for HPV16 and HPV18 DNA point-of-care testing. Biosens Bioelectron 2024; 248:115968. [PMID: 38150799 DOI: 10.1016/j.bios.2023.115968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Screening for high-risk human papillomavirus (HPV) infection is one of the most important preventative measures for cervical cancer. However, fast, convenient, and low-cost HPV detection remains challenging, especially in resource-limited settings. Here, we report a portable all-in-one device (PAD) for point-of-care testing (POCT) for HPV16 and HPV18 DNA in cervical swabs. The PAD was engineered to integrate modules for extraction-free sample lysis, loop-mediated isothermal amplification (LAMP) with lyophilized reagent beads, and real-time colorimetric signal sensing into a single miniaturized device, considerably shortening the sample-to-result time to 15 min. The precision liquid handling in the completely sealed microfluidic chip is achieved by a uniquely designed pressure-balanced automatic liquid flow mechanism, thereby eliminating the need for manual manipulation of liquids and thus the risk of biohazards. The PAD employs an improved real-time colorimetric LAMP (rcLAMP) assay with a limit of detection (LOD) of 1 copy/μL, enabled by enhanced assay chemistry to maximize the reaction kinetics. To validate this device for clinical application, we tested 206 clinical cervical swab samples and obtained a sensitivity of 92.1% and a specificity of 99.0%. This custom PAD enabled by microfluidic and electronic engineering techniques can be configured for the simultaneous detection of HPV16 and HPV18 or other pathogens in point-of-care applications.
Collapse
Affiliation(s)
- Hao Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqing Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Linbo Gao
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Hu
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China; Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lisha Ding
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueting Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Wang
- One-Chip Biotechnology Co. Ltd, Chengdu, 610041, China
| | - Jianlong Li
- One-Chip Biotechnology Co. Ltd, Chengdu, 610041, China
| | - Zhifeng Zhang
- One-Chip Biotechnology Co. Ltd, Chengdu, 610041, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Chenlan Shen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiaoyu Niu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Laboratory of Metabolomics and Gynecological Disease Research, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenchuang Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China; Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Hasan J, Bok S. Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases. BIOSENSORS 2024; 14:130. [PMID: 38534237 DOI: 10.3390/bios14030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
The increasing demand for rapid, cost-effective, and reliable diagnostic tools in personalized and point-of-care medicine is driving scientists to enhance existing technology platforms and develop new methods for detecting and measuring clinically significant biomarkers. Humanity is confronted with growing risks from emerging and recurring infectious diseases, including the influenza virus, dengue virus (DENV), human immunodeficiency virus (HIV), Ebola virus, tuberculosis, cholera, and, most notably, SARS coronavirus-2 (SARS-CoV-2; COVID-19), among others. Timely diagnosis of infections and effective disease control have always been of paramount importance. Plasmonic-based biosensing holds the potential to address the threat posed by infectious diseases by enabling prompt disease monitoring. In recent years, numerous plasmonic platforms have risen to the challenge of offering on-site strategies to complement traditional diagnostic methods like polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA). Disease detection can be accomplished through the utilization of diverse plasmonic phenomena, such as propagating surface plasmon resonance (SPR), localized SPR (LSPR), surface-enhanced Raman scattering (SERS), surface-enhanced fluorescence (SEF), surface-enhanced infrared absorption spectroscopy, and plasmonic fluorescence sensors. This review focuses on diagnostic methods employing plasmonic fluorescence sensors, highlighting their pivotal role in swift disease detection with remarkable sensitivity. It underscores the necessity for continued research to expand the scope and capabilities of plasmonic fluorescence sensors in the field of diagnostics.
Collapse
Affiliation(s)
- Juiena Hasan
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| | - Sangho Bok
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
17
|
Gradisteanu Pircalabioru G, Raileanu M, Dionisie MV, Lixandru-Petre IO, Iliescu C. Fast detection of bacterial gut pathogens on miniaturized devices: an overview. Expert Rev Mol Diagn 2024; 24:201-218. [PMID: 38347807 DOI: 10.1080/14737159.2024.2316756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Gut microbes pose challenges like colon inflammation, deadly diarrhea, antimicrobial resistance dissemination, and chronic disease onset. Development of early, rapid and specific diagnosis tools is essential for improving infection control. Point-of-care testing (POCT) systems offer rapid, sensitive, low-cost and sample-to-answer methods for microbe detection from various clinical and environmental samples, bringing the advantages of portability, automation, and simple operation. AREAS COVERED Rapid detection of gut microbes can be done using a wide array of techniques including biosensors, immunological assays, electrochemical impedance spectroscopy, mass spectrometry and molecular biology. Inclusion of Internet of Things, machine learning, and smartphone-based point-of-care applications is an important aspect of POCT. In this review, the authors discuss various fast diagnostic platforms for gut pathogens and their main challenges. EXPERT OPINION Developing effective assays for microbe detection can be complex. Assay design must consider factors like target selection, real-time and multiplex detection, sample type, reagent stability and storage, primer/probe design, and optimizing reaction conditions for accuracy and sensitivity. Mitigating these challenges requires interdisciplinary collaboration among scientists, clinicians, engineers, and industry partners. Future efforts are essential to enhance sensitivity, specificity, and versatility of POCT systems for gut microbe detection and quantification, advancing infectious disease diagnostics and management.
Collapse
Affiliation(s)
- Gratiela Gradisteanu Pircalabioru
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Division of Earth, Environmental and Life Sciences, The Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Mina Raileanu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania
| | - Mihai Viorel Dionisie
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Irina-Oana Lixandru-Petre
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Ciprian Iliescu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Microsystems in Biomedical and Environmental Applications, National Research and Development Institute for Microtechnology, Bucharest, Romania
| |
Collapse
|
18
|
Roychoudhury A, Raj R. Role of 3D printing in microfluidics and applications. NEXT-GENERATION SMART BIOSENSING 2024:67-107. [DOI: 10.1016/b978-0-323-98805-6.00004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Parihar A, Yadav S, Sadique MA, Ranjan P, Kumar N, Singhal A, Khare V, Khan R, Natarajan S, Srivastava AK. Internet-of-medical-things integrated point-of-care biosensing devices for infectious diseases: Toward better preparedness for futuristic pandemics. Bioeng Transl Med 2023; 8:e10481. [PMID: 37206204 PMCID: PMC10189496 DOI: 10.1002/btm2.10481] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Microbial pathogens have threatened the world due to their pathogenicity and ability to spread in communities. The conventional laboratory-based diagnostics of microbes such as bacteria and viruses need bulky expensive experimental instruments and skilled personnel which limits their usage in resource-limited settings. The biosensors-based point-of-care (POC) diagnostics have shown huge potential to detect microbial pathogens in a faster, cost-effective, and user-friendly manner. The use of various transducers such as electrochemical and optical along with microfluidic integrated biosensors further enhances the sensitivity and selectivity of detection. Additionally, microfluidic-based biosensors offer the advantages of multiplexed detection of analyte and the ability to deal with nanoliters volume of fluid in an integrated portable platform. In the present review, we discussed the design and fabrication of POCT devices for the detection of microbial pathogens which include bacteria, viruses, fungi, and parasites. The electrochemical techniques and current advances in this field in terms of integrated electrochemical platforms that include mainly microfluidic- based approaches and smartphone and Internet-of-things (IoT) and Internet-of-Medical-Things (IoMT) integrated systems have been highlighted. Further, the availability of commercial biosensors for the detection of microbial pathogens will be briefed. In the end, the challenges while fabrication of POC biosensors and expected future advances in the field of biosensing have been discussed. The integrated biosensor-based platforms with the IoT/IoMT usually collect the data to track the community spread of infectious diseases which would be beneficial in terms of better preparedness for current and futuristic pandemics and is expected to prevent social and economic losses.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
| | - Shalu Yadav
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Mohd Abubakar Sadique
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Pushpesh Ranjan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Neeraj Kumar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ayushi Singhal
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Vedika Khare
- School of Nanotechnology, UTD, RGPV CampusBhopalMadhya PradeshIndia
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sathish Natarajan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Avanish K. Srivastava
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
20
|
Roh YH, Lee CY, Lee S, Kim H, Ly A, Castro CM, Cheon J, Lee J, Lee H. CRISPR-Enhanced Hydrogel Microparticles for Multiplexed Detection of Nucleic Acids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206872. [PMID: 36725305 PMCID: PMC10074104 DOI: 10.1002/advs.202206872] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
CRISPR/Cas systems offer a powerful sensing mechanism to transduce sequence-specific information into amplified analytical signals. However, performing multiplexed CRISPR/Cas assays remains challenging and often requires complex approaches for multiplexed assays. Here, a hydrogel-based CRISPR/Cas12 system termed CLAMP (Cas-Loaded Annotated Micro-Particles) is described. The approach compartmentalizes the CRISPR/Cas reaction in spatially-encoded hydrogel microparticles (HMPs). Each HMP is identifiable by its face code and becomes fluorescent when target DNA is present. The assay is further streamlined by capturing HMPs inside a microfluidic device; the captured particles are then automatically recognized by a machine-learning algorithm. The CLAMP assay is fast, highly sensitive (attomolar detection limits with preamplification), and capable of multiplexing in a single-pot assay. As a proof-of-concept clinical application, CLAMP is applied to detect nucleic acid targets of human papillomavirus in cervical brushing samples.
Collapse
Affiliation(s)
- Yoon Ho Roh
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
| | - Chang Yeol Lee
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Center for Systems BiologyMassachusetts General Hospital Research InstituteBostonMA02114USA
| | - Sujin Lee
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
| | - Hyunho Kim
- Center for Systems BiologyMassachusetts General Hospital Research InstituteBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Amy Ly
- Department of PathologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Cesar M. Castro
- Center for Systems BiologyMassachusetts General Hospital Research InstituteBostonMA02114USA
- Department of MedicineMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Jinwoo Cheon
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
- Department of ChemistryYonsei UniversitySeoul03722Republic of Korea
| | - Jae‐Hyun Lee
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
| | - Hakho Lee
- Institute for Basic Science (IBS)Center for NanomedicineSeoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute Yonsei UniversitySeoul03722Republic of Korea
- Center for Systems BiologyMassachusetts General Hospital Research InstituteBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| |
Collapse
|
21
|
Thwala LN, Ndlovu SC, Mpofu KT, Lugongolo MY, Mthunzi-Kufa P. Nanotechnology-Based Diagnostics for Diseases Prevalent in Developing Countries: Current Advances in Point-of-Care Tests. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1247. [PMID: 37049340 PMCID: PMC10096522 DOI: 10.3390/nano13071247] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The introduction of point-of-care testing (POCT) has revolutionized medical testing by allowing for simple tests to be conducted near the patient's care point, rather than being confined to a medical laboratory. This has been especially beneficial for developing countries with limited infrastructure, where testing often involves sending specimens off-site and waiting for hours or days for results. However, the development of POCT devices has been challenging, with simplicity, accuracy, and cost-effectiveness being key factors in making these tests feasible. Nanotechnology has played a crucial role in achieving this goal, by not only making the tests possible but also masking their complexity. In this article, recent developments in POCT devices that benefit from nanotechnology are discussed. Microfluidics and lab-on-a-chip technologies are highlighted as major drivers of point-of-care testing, particularly in infectious disease diagnosis. These technologies enable various bioassays to be used at the point of care. The article also addresses the challenges faced by these technological advances and interesting future trends. The benefits of point-of-care testing are significant, especially in developing countries where medical care is shifting towards prevention, early detection, and managing chronic conditions. Infectious disease tests at the point of care in low-income countries can lead to prompt treatment, preventing infections from spreading.
Collapse
Affiliation(s)
- Lungile Nomcebo Thwala
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Sphumelele Colin Ndlovu
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Kelvin Tafadzwa Mpofu
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Masixole Yvonne Lugongolo
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Patience Mthunzi-Kufa
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of Kwa-Zulu Natal, University Road, Westville, Durban 3630, South Africa
| |
Collapse
|
22
|
Chang Y, Zhang Q, Xue W, Wu Y, Liu Y, Liu M. Self-assembly of protein-DNA superstructures for alkaline phosphatase detection in blood. Chem Commun (Camb) 2023; 59:3399-3402. [PMID: 36847596 DOI: 10.1039/d3cc00228d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We designed a paper-based analytical device by integrating horseradish peroxidase (HRP)-encapsulated 3D DNA for visual detection of alkaline phosphatase (ALP). This device allows on-paper sample pre-treatment, target recognition and signal readout, enabling simple (without additional pre-treatment of blood samples) and rapid (within 23 min) determination of ALP in clinical samples.
Collapse
Affiliation(s)
- Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Qian Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Wei Xue
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Yanfang Wu
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated Hospital of Dalian Medical University, Dalian, 116033, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| |
Collapse
|
23
|
Weerasuriya DRK, Hiniduma K, Bhakta S, Nigro LM, Posada LF, Tan H, Suib SL, Kremer R, Rusling JF. COVID-19 Detection Using a 3D-Printed Micropipette Tip and a Smartphone. ACS Sens 2023; 8:848-857. [PMID: 36689276 PMCID: PMC9888406 DOI: 10.1021/acssensors.2c02516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/27/2022] [Indexed: 01/24/2023]
Abstract
The COVID-19 pandemic has caused over 7 million deaths worldwide and over 1 million deaths in the US as of October 15, 2022. Virus testing lags behind the level or availability necessary for pandemic events like COVID-19, especially in resource-limited settings. Here, we report a low cost, mix-and-read COVID-19 assay using a synthetic SARS-CoV-2 sensor, imaged and processed using a smartphone. The assay was optimized for saliva and employs 3D-printed micropipette tips with a layer of monoclonal anti-SARS-CoV-2 inside the tip. A polymeric sensor for SARS-CoV-2 spike (S) protein (COVRs) synthesized as a thin film on silica nanoparticles provides 3,3',5-5'-tetramethylbenzidine responsive color detection using streptavidin-poly-horseradish peroxidase (ST-poly-HRP) with 400 HRP labels per molecule. COVRs were engineered with an NHS-PEG4-biotin coating to reduce nonspecific binding and provide affinity for ST-poly-HRP labels. COVRs binds to S-proteins with binding strengths and capacities much larger than salivary proteins in 10% artificial saliva-0.01%-Triton X-100 (as virus deactivator). A limit of detection (LOD) of 200 TCID50/mL (TCID50 = tissue culture infectious dose 50%) in artificial saliva was obtained using the Color Grab smartphone app and verified using ImageJ. Viral load values obtained in 10% pooled human saliva spiked with inactivated SARS-COV-2 virus gave excellent correlation with viral loads obtained from qPCR (p = 0.0003, r = 0.99).
Collapse
Affiliation(s)
- D. Randil K. Weerasuriya
- Department of Chemistry, University of
Connecticut, Storrs, Connecticut06269-3060, United
States
| | - Keshani Hiniduma
- Department of Chemistry, University of
Connecticut, Storrs, Connecticut06269-3060, United
States
| | - Snehasis Bhakta
- Department of Chemistry, Cooch Behar
College, Cooch Behar, WB736101, India
| | - Lisa M. Nigro
- Microbial Analysis, Resources and Services, Center for
Open Research Resources and Equipment, University of
Connecticut, Storrs, Connecticut06269-3032, United
States
- Institute for Systems Genomics,
University of Connecticut, Storrs, Connecticut06269-3003,
United States
| | - Luisa F. Posada
- Department of Chemistry, University of
Connecticut, Storrs, Connecticut06269-3060, United
States
| | - Haiyan Tan
- Innovation Partnership Building at UConn Tech Park,
University of Connecticut, Storrs, Connecticut06269,
United States
| | - Steven L. Suib
- Department of Chemistry, University of
Connecticut, Storrs, Connecticut06269-3060, United
States
- Institute of Materials Science,
University of Connecticut, Storrs, Connecticut06269-3136,
United States
| | - Richard Kremer
- Department of Medicine, McGill University Health
Centre, 1001 Decarie Blvd., Montreal, QCH4A,
Canada
| | - James F. Rusling
- Department of Chemistry, University of
Connecticut, Storrs, Connecticut06269-3060, United
States
- Institute of Materials Science,
University of Connecticut, Storrs, Connecticut06269-3136,
United States
- Department of Surgery and Neag Cancer Center,
Uconn Health, Farmington, Connecticut06030, United
States
- School of Chemistry, National University
of Ireland at Galway, GalwayH91 TK33, Ireland
| |
Collapse
|
24
|
Ngo HT, Jin M, Trick AY, Chen FE, Chen L, Hsieh K, Wang TH. Sensitive and Quantitative Point-of-Care HIV Viral Load Quantification from Blood Using a Power-Free Plasma Separation and Portable Magnetofluidic Polymerase Chain Reaction Instrument. Anal Chem 2023; 95:1159-1168. [PMID: 36562405 PMCID: PMC11250783 DOI: 10.1021/acs.analchem.2c03897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Point-of-care (POC) HIV viral load (VL) tests are needed to enhance access to HIV VL testing in low- and middle-income countries (LMICs) and to enable HIV VL self-testing at home, which in turn have the potential to enhance the global management of the disease. While methods based on real-time reverse transcription-polymerase chain reaction (RT-PCR) are highly sensitive and quantitatively accurate, they often require bulky and expensive instruments, making applications at the POC challenging. On the other hand, although methods based on isothermal amplification techniques could be performed using low-cost instruments, they have shown limited quantitative accuracies, i.e., being only semiquantitative. Herein, we present a sensitive and quantitative POC HIV VL quantification method from blood that can be performed using a small power-free three-dimensional-printed plasma separation device and a portable, low-cost magnetofluidic real-time RT-PCR instrument. The plasma separation device, which is composed of a plasma separation membrane and an absorbent material, demonstrated 96% plasma separation efficiency per 100 μL of whole blood. The plasma solution was then processed in a magnetofluidic cartridge for automated HIV RNA extraction and quantification using the portable instrument, which completed 50 cycles of PCR in 15 min. Using the method, we achieved a limit of detection of 500 HIV RNA copies/mL, which is below the World Health Organization's virological failure threshold, and a good quantitative accuracy. The method has the potential for sensitive and quantitative HIV VL testing at the POC and at home self-testing.
Collapse
Affiliation(s)
- Hoan T Ngo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mei Jin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
25
|
Shirshikov FV, Bespyatykh JA. Loop-Mediated Isothermal Amplification: From Theory to Practice. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:1159-1174. [PMID: 36590469 PMCID: PMC9788664 DOI: 10.1134/s106816202206022x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
Increasing the accuracy of pathogen identification and reducing the duration of analysis remain relevant for modern molecular diagnostics up to this day. In laboratory and clinical practice, detection of pathogens mostly relies on methods of nucleic acid amplification, among which the polymerase chain reaction (PCR) is considered the "gold standard." Nevertheless, in some cases, isothermal amplification methods act as an alternative to PCR diagnostics. Upon more than thirty years of the development of isothermal DNA synthesis, the appearance of loop-mediated isothermal amplification (LAMP) has enabled new directions of in-field diagnostics of bacterial and viral infections. This review examines the key characteristics of the LAMP method and corresponding features in practice. We discuss the structure of LAMP amplicons with single-stranded loops, which have the sites for primer annealing under isothermal conditions. The latest achievements in the modification of the LAMP method are analyzed, which allow considering it as a unique platform for creating the next-generation diagnostic assays.
Collapse
Affiliation(s)
- F. V. Shirshikov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - J. A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
26
|
Bae M, Park J, Seong H, Lee H, Choi W, Noh J, Kim W, Shin S. Rapid Extraction of Viral Nucleic Acids Using Rotating Blade Lysis and Magnetic Beads. Diagnostics (Basel) 2022; 12:diagnostics12081995. [PMID: 36010344 PMCID: PMC9407373 DOI: 10.3390/diagnostics12081995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The complex and lengthy protocol of current viral nucleic acid extraction processes limits their use outside laboratory settings. Here, we describe a rapid and reliable method for extracting nucleic acids from viral samples using a rotating blade and magnetic beads. The viral membrane can be instantly lysed using a high-speed rotating blade, and nucleic acids can be immediately isolated using a silica magnetic surface. The process was completed within 60 s by this method. Routine washing and eluting processes were subsequently conducted within 5 min. The results achieved by this method were comparable to those of a commercially available method. When the blade-based lysis and magnetic bead adsorption processes were performed separately, the RNA recovery rate was very low, and the Ct value was delayed compared to simultaneous lysis and RNA adsorption. Overall, this method not only dramatically shortens the conventional extraction time but also allows for its convenient use outside the laboratory, such as at remote field sites and for point-of-care testing.
Collapse
Affiliation(s)
- Minju Bae
- School of Mechanical Engineering, Korea University, Seoul 02841, Korea
| | - Junsoo Park
- Department of Micro-Nano Systems, Korea University, Seoul 02841, Korea
| | - Hyeonah Seong
- School of Mechanical Engineering, Korea University, Seoul 02841, Korea
| | - Hansol Lee
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul 02841, Korea
| | - Wonsuk Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea
| | - Jiyun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea
| | - Woojoo Kim
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul 02841, Korea
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea
- Correspondence: (W.K.); (S.S.); Tel.: +82-2-2626-3051 (W.K.); +82-2-3290-3377 (S.S.)
| | - Sehyun Shin
- School of Mechanical Engineering, Korea University, Seoul 02841, Korea
- Department of Micro-Nano Systems, Korea University, Seoul 02841, Korea
- Engineering Research Center for Biofluid Biopsy, Seoul 02841, Korea
- Correspondence: (W.K.); (S.S.); Tel.: +82-2-2626-3051 (W.K.); +82-2-3290-3377 (S.S.)
| |
Collapse
|
27
|
Kim YL, Kim D, Park J, Kwak M, Shin JH. A carbon-black-embedded poly(dimethylsiloxane)-paper hybrid device for energy-efficient nucleic-acid amplification in point-of-care testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2569-2577. [PMID: 35699260 DOI: 10.1039/d2ay00554a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A paper-based device patterned with a carbon-black-poly(dimethylsiloxane) (PDMS) mixture is developed as a heating platform for nucleic-acid amplification tests. The photothermal effect of carbon black under 808 nm laser irradiation is used to conduct loop-mediated isothermal amplification (LAMP) to detect Escherichia coli (E. coli) O157:H7, a foodborne pathogen. We characterize the heat generation of carbon black by changing its concentration and the hardness of PDMS. Then, we optimize the minimum laser power required to perform LAMP. The proposed paper-based device requires less than 15 min to perform LAMP, and the result can be confirmed based on the color change observed by the naked eye. The rfbE gene of E. coli O157:H7 is specifically amplified, with a detection limit of 102 CFU mL-1. Amplification is also performed by using a laboratory-made laser-diode device, which consumes only 2 W h during its operation. The low cost, disposability, and easy fabrication of the paper-based device make it a powerful tool for point-of-care testing.
Collapse
Affiliation(s)
- Ye Lin Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Donghyeok Kim
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jihoon Park
- Seegene Inc, Seoul, 05552, Republic of Korea
| | - Minseok Kwak
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea.
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Joong Ho Shin
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea.
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
28
|
Chen FE, Trick AY, Hasnain AC, Hsieh K, Chen L, Shin DJ, Wang TH. Ratiometric PCR in a Portable Sample-to-Result Device for Broad-Based Pathogen Identification. Anal Chem 2022; 94:9372-9379. [PMID: 35730588 DOI: 10.1021/acs.analchem.2c01357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polymerase chain reaction (PCR)-based diagnostic testing is the gold standard method for pathogen identification (ID) with recent developments enabling automated PCR tests for point-of-care (POC) use. However, multiplexed identification of several pathogens in PCR assays typically requires optics for an equivalent number of fluorescence channels, increasing instrumentation's complexity and cost. In this study, we first developed ratiometric PCR that surpassed one target per color barrier to allow multiplexed identification while minimizing optical components for affordable POC use. We realized it by amplifying pathogenic targets with fluorescently labeled hydrolysis probes with a specific ratio of red-to-green fluorophores for each bacterial species. We then coupled ratiometric PCR and automated magnetic beads-based sample preparation within a thermoplastic cartridge and a portable droplet magnetofluidic platform. We named the integrated workflow POC-ratioPCR. We demonstrated that the POC-ratioPCR could detect one out of six bacterial targets related to urinary tract infections (UTIs) in a single reaction using only two-color channels. We further evaluated POC-ratioPCR using mock bacterial urine samples spiked with good agreement. The POC-ratioPCR presents a simple and effective method for enabling broad-based POC PCR identification of pathogens directly from crude biosamples with low optical instrumentation complexity.
Collapse
Affiliation(s)
- Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander C Hasnain
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dong Jin Shin
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
29
|
Xiao M, Tian F, Liu X, Zhou Q, Pan J, Luo Z, Yang M, Yi C. Virus Detection: From State-of-the-Art Laboratories to Smartphone-Based Point-of-Care Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105904. [PMID: 35393791 PMCID: PMC9110880 DOI: 10.1002/advs.202105904] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Indexed: 05/07/2023]
Abstract
Infectious virus outbreaks pose a significant challenge to public healthcare systems. Early and accurate virus diagnosis is critical to prevent the spread of the virus, especially when no specific vaccine or effective medicine is available. In clinics, the most commonly used viral detection methods are molecular techniques that involve the measurement of nucleic acids or proteins biomarkers. However, most clinic-based methods require complex infrastructure and expensive equipment, which are not suitable for low-resource settings. Over the past years, smartphone-based point-of-care testing (POCT) has rapidly emerged as a potential alternative to laboratory-based clinical diagnosis. This review summarizes the latest development of virus detection. First, laboratory-based and POCT-based viral diagnostic techniques are compared, both of which rely on immunosensing and nucleic acid detection. Then, various smartphone-based POCT diagnostic techniques, including optical biosensors, electrochemical biosensors, and other types of biosensors are discussed. Moreover, this review covers the development of smartphone-based POCT diagnostics for various viruses including COVID-19, Ebola, influenza, Zika, HIV, et al. Finally, the prospects and challenges of smartphone-based POCT diagnostics are discussed. It is believed that this review will aid researchers better understand the current challenges and prospects for achieving the ultimate goal of containing disease-causing viruses worldwide.
Collapse
Affiliation(s)
- Meng Xiao
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Feng Tian
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHunghomHong Kong999077P. R. China
| | - Xin Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Qiaoqiao Zhou
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Jiangfei Pan
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Zhaofan Luo
- Department of Clinical LaboratoryThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Mo Yang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHunghomHong Kong999077P. R. China
| | - Changqing Yi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| |
Collapse
|
30
|
Habimana JDD, Huang R, Muhoza B, Kalisa YN, Han X, Deng W, Li Z. Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review. Biosens Bioelectron 2022; 203:114033. [DOI: 10.1016/j.bios.2022.114033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022]
|
31
|
Wang X, Hong XZ, Li YW, Li Y, Wang J, Chen P, Liu BF. Microfluidics-based strategies for molecular diagnostics of infectious diseases. Mil Med Res 2022; 9:11. [PMID: 35300739 PMCID: PMC8930194 DOI: 10.1186/s40779-022-00374-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/10/2022] [Indexed: 02/08/2023] Open
Abstract
Traditional diagnostic strategies for infectious disease detection require benchtop instruments that are inappropriate for point-of-care testing (POCT). Emerging microfluidics, a highly miniaturized, automatic, and integrated technology, are a potential substitute for traditional methods in performing rapid, low-cost, accurate, and on-site diagnoses. Molecular diagnostics are widely used in microfluidic devices as the most effective approaches for pathogen detection. This review summarizes the latest advances in microfluidics-based molecular diagnostics for infectious diseases from academic perspectives and industrial outlooks. First, we introduce the typical on-chip nucleic acid processes, including sample preprocessing, amplification, and signal read-out. Then, four categories of microfluidic platforms are compared with respect to features, merits, and demerits. We further discuss application of the digital assay in absolute nucleic acid quantification. Both the classic and recent microfluidics-based commercial molecular diagnostic devices are summarized as proof of the current market status. Finally, we propose future directions for microfluidics-based infectious disease diagnosis.
Collapse
Affiliation(s)
- Xin Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xian-Zhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yi-Wei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071 China
| | - Jie Wang
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, School of Medicine, Stanford University, Palo Alto, CA 94304 USA
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
32
|
Zhang L, Jiang H, Zhu Z, Liu J, Li B. Integrating CRISPR/Cas within isothermal amplification for point-of-Care Assay of nucleic acid. Talanta 2022; 243:123388. [DOI: 10.1016/j.talanta.2022.123388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
|
33
|
Xiao Y, Li S, Pang Z, Wan C, Li L, Yuan H, Hong X, Du W, Feng X, Li Y, Chen P, Liu BF. Multi-reagents dispensing centrifugal microfluidics for point-of-care testing. Biosens Bioelectron 2022; 206:114130. [PMID: 35245866 DOI: 10.1016/j.bios.2022.114130] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
Point-of-care testing (POCT) has shown great advantages for public health monitoring in resource-limited settings. However, developing of POCT tools with automated and accurate quantitative dispensing of multiple reagents and samples is challenging. Here, we demonstrate a novel multi-reagents dispensing centrifugal microfluidics (MDCM) that allows rapid and automated dispensing of multiple reagents and samples with high throughput and accuracy. The MDCM was designed with multiple aliquoting units with the hydrophobic valve at different radial positions. All reagents and samples were loaded simultaneously, dispensed in parallel by centrifugation at low speed, and then introduced into the reaction chamber sequentially by centrifugation at high speed. Two MDCM chips are demonstrated, including a uniform concentration generator and a gradient concentration generator. The concentration coefficient of variation (CV) among the independent reaction chambers was lower than 0.56%, and the theoretical quantitative concentration gradient was strongly correlated with the actual concentration gradient (R2 = 0.9938). We have successfully applied the MDCM to loop-mediated isothermal amplification (LAMP)-based nucleic acid detection for multiple infectious pathogens and antimicrobial susceptibility testing (AST) for kanamycin sulfate against E. coli. To further extend the applications, the MDCM has also been applied to bicinchoninic acid (BCA) protein assays with online calibration, reducing the detection time from 2 h to 10 min with a twenty-fold reduction in reagent consumption. These results indicated that the MDCM is a high potential platform for POCT.
Collapse
Affiliation(s)
- Yujin Xiao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Pang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lina Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianzhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
34
|
Gradisteanu Pircalabioru G, Iliescu FS, Mihaescu G, Cucu AI, Ionescu ON, Popescu M, Simion M, Burlibasa L, Tica M, Chifiriuc MC, Iliescu C. Advances in the Rapid Diagnostic of Viral Respiratory Tract Infections. Front Cell Infect Microbiol 2022; 12:807253. [PMID: 35252028 PMCID: PMC8895598 DOI: 10.3389/fcimb.2022.807253] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Viral infections are a significant public health problem, primarily due to their high transmission rate, various pathological manifestations, ranging from mild to severe symptoms and subclinical onset. Laboratory diagnostic tests for infectious diseases, with a short enough turnaround time, are promising tools to improve patient care, antiviral therapeutic decisions, and infection prevention. Numerous microbiological molecular and serological diagnostic testing devices have been developed and authorised as benchtop systems, and only a few as rapid miniaturised, fully automated, portable digital platforms. Their successful implementation in virology relies on their performance and impact on patient management. This review describes the current progress and perspectives in developing micro- and nanotechnology-based solutions for rapidly detecting human viral respiratory infectious diseases. It provides a nonexhaustive overview of currently commercially available and under-study diagnostic testing methods and discusses the sampling and viral genetic trends as preanalytical components influencing the results. We describe the clinical performance of tests, focusing on alternatives such as microfluidics-, biosensors-, Internet-of-Things (IoT)-based devices for rapid and accurate viral loads and immunological responses detection. The conclusions highlight the potential impact of the newly developed devices on laboratory diagnostic and clinical outcomes.
Collapse
Affiliation(s)
| | - Florina Silvia Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
| | | | | | - Octavian Narcis Ionescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
- Petroleum-Gas University of Ploiesti, Ploiesti, Romania
| | - Melania Popescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
| | - Monica Simion
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
| | | | - Mihaela Tica
- Emergency University Hospital, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, Bucharest, Romania
| |
Collapse
|