1
|
Henriquez S, Nosal CR, Knoff JR, Coco LB, Meyers CLF. Bisubstrate Analog Inhibitors of DXP Synthase Show Species Specificity. Biochemistry 2025; 64:432-447. [PMID: 39764603 PMCID: PMC11806520 DOI: 10.1021/acs.biochem.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) is a unique thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the formation of DXP, a branchpoint metabolite required for the biosynthesis of vitamins and isoprenoids in bacterial pathogens. DXPS has relaxed substrate specificity and utilizes a gated mechanism, equipping DXPS to sense and respond to diverse substrates. We speculate that pathogens utilize this distinct gated mechanism in different ways to support metabolic adaptation during infection. DXPS is susceptible to time-dependent inhibition by bisubstrate analogs. We suggest that potential differences in the ligand-gated mechanism that may accompany alternative activities of DXPS homologues may enable the development of species-specific bisubstrate analog inhibitors. Here, we evaluate known bisubstrate analog inhibitors of Escherichia coli DXPS (EcDXPS) against DXPS from Pseudomonas aeruginosa (PaDXPS), a Gram-negative pathogen with a remarkable capacity to adapt to diverse environments. Our results indicate that these inhibitors are significantly less potent against PaDXPS compared to EcDXPS. Acceptor site residues that stabilize the phosphonolactyl-ThDP adduct (PLThDP) of bisubstrate analog d-PheTrAP on EcDXPS are not as critical for stabilization of this PLThDP adduct on PaDXPS. Substitution of EcR99 or the analogous PaR106 reduces the potency of both d-PheTrAP and the simpler BAP scaffold, suggesting a common role of these arginine residues in stabilizing PLThDP adducts. However, although EcR99 is required for potent, time-dependent inhibition of EcDXPS by d-PheTrAP, PaR106 does not appear to govern slow-onset inhibition. This work demonstrates that species-specific targeting of DXPS by bisubstrate analogs is possible and highlights mechanistic differences that should be considered in the design of homologue-specific inhibitors, toward narrow-spectrum approaches targeting DXPS.
Collapse
Affiliation(s)
- Stephanie Henriquez
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Charles R. Nosal
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Joseph R. Knoff
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lauren B. Coco
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
2
|
Toci EM, Majumdar A, Meyers CLF. Aldehyde-based Activation of C2α-lactylthiamin Diphosphate Decarboxylation on Bacterial 1-deoxy-d-xylulose 5-phosphate Synthase. Chembiochem 2024:e202400558. [PMID: 39268973 DOI: 10.1002/cbic.202400558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate (donor substrate) and d-glyceraldehyde 3-phosphate (d-GAP, acceptor substrate) in bacterial central metabolism. DXPS uses a ligand-gated mechanism in which binding of a small molecule "trigger" activates the first enzyme-bound intermediate, C2α-lactylThDP (LThDP), to form the reactive carbanion via LThDP decarboxylation. d-GAP is the natural acceptor substrate for DXPS and also serves a role as a trigger to induce LThDP decarboxylation in the gated step. Additionally, we have shown that O2 and d-glyceraldehyde (d-GA) can induce LThDP decarboxylation. We hypothesize this ligand-gated mechanism poises DXPS to sense and respond to cellular cues in metabolic remodeling during bacterial adaptation. Here we sought to characterize features of small molecule inducers of LThDP decarboxylation. Using a combination of CD, NMR and biochemical methods, we demonstrate that the α-hydroxy aldehyde moiety of d-GAP is sufficient to induce LThDP decarboxylation en route to DXP formation. A variety of aliphatic aldehydes also induce LThDP decarboxylation. The study highlights the capacity of DXPS to respond to different molecular cues, lending support to potential multifunctionality of DXPS and its metabolic regulation by this mechanism.
Collapse
Affiliation(s)
- Eucolona M Toci
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland, 21218, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States
| |
Collapse
|
3
|
Chan AHY, Ho TCS, Fathoni I, Hamid R, Hirsch AKH, Saliba KJ, Leeper FJ. Evaluation of ketoclomazone and its analogues as inhibitors of 1-deoxy-d-xylulose 5-phosphate synthases and other thiamine diphosphate (ThDP)-dependent enzymes. RSC Med Chem 2024; 15:1773-1781. [PMID: 38784473 PMCID: PMC11110791 DOI: 10.1039/d4md00083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024] Open
Abstract
Most pathogenic bacteria, apicomplexan parasites and plants rely on the methylerythritol phosphate (MEP) pathway to obtain precursors of isoprenoids. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS), a thiamine diphosphate (ThDP)-dependent enzyme, catalyses the first and rate-limiting step of the MEP pathway. Due to its absence in humans, DXPS is considered as an attractive target for the development of anti-infectious agents and herbicides. Ketoclomazone is one of the earliest reported inhibitors of DXPS and antibacterial and herbicidal activities have been documented. This study investigated the activity of ketoclomazone on DXPS from various species, as well as the broader ThDP-dependent enzyme family. To gain further insights into the inhibition, we have prepared analogues of ketoclomazone and evaluated their activity in biochemical and computational studies. Our findings support the potential of ketoclomazone as a selective antibacterial agent.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Imam Fathoni
- Research School of Biology, The Australian National University Canberra ACT 2601 Australia
| | - Rawia Hamid
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI) Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University Campus Building E8.1 66123 Saarbrücken Germany
| | - Kevin J Saliba
- Research School of Biology, The Australian National University Canberra ACT 2601 Australia
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
4
|
Coco LB, Freel Meyers CL. An activity-based probe for antimicrobial target DXP synthase, a thiamin diphosphate-dependent enzyme. FRONTIERS IN CHEMICAL BIOLOGY 2024; 3:1389620. [PMID: 39544285 PMCID: PMC11562961 DOI: 10.3389/fchbi.2024.1389620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This work reports an alkyl acetylphosphonate (alkylAP) activity-based probe (ABP) for 1-deoxy-d-xylulose 5-phosphate synthase DXPS, a promising antimicrobial target. This essential thiamin diphosphate (ThDP)-dependent enzyme operates at a branchpoint in bacterial central metabolism and is believed to play key roles in pathogen adaptation during infection. How different bacterial pathogens harness DXPS activity to adapt and survive within host environments remains incompletely understood, and tools for probing DXPS function in different contexts of infection are lacking. Here, we have developed alkylAP-based ABP 1, designed to react with the ThDP cofactor on active DXPS to form a stable C2α-phosphonolactylThDP adduct which subsequently crosslinks to the DXPS active site upon photoactivation. ABP 1 displays low micromolar potency against DXPS and dose-dependent labeling of DXPS that is blocked by alkylAP-based inhibitors. The probe displays selectivity for DXPS over ThDP-dependent enzymes and is capable of detecting active DXPS in a complex proteome. These studies represent an important advance toward development of tools to probe DXPS function in different contexts of bacterial infection, and for drug discovery efforts on this target.
Collapse
Affiliation(s)
- Lauren B Coco
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Coco L, Toci EM, Chen PYT, Drennan CL, Freel Meyers CL. Potent Inhibition of E. coli DXP Synthase by a gem-Diaryl Bisubstrate Analog. ACS Infect Dis 2024; 10:1312-1326. [PMID: 38513073 PMCID: PMC11019550 DOI: 10.1021/acsinfecdis.3c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
New antimicrobial strategies are needed to address pathogen resistance to currently used antibiotics. Bacterial central metabolism is a promising target space for the development of agents that selectively target bacterial pathogens. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) converts pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) to DXP, which is required for synthesis of essential vitamins and isoprenoids in bacterial pathogens. Thus, DXPS is a promising antimicrobial target. Toward this goal, our lab has demonstrated selective inhibition of Escherichia coli DXPS by alkyl acetylphosphonate (alkylAP)-based bisubstrate analogs that exploit the requirement for ternary complex formation in the DXPS mechanism. Here, we present the first DXPS structure with a bisubstrate analog bound in the active site. Insights gained from this cocrystal structure guided structure-activity relationship studies of the bisubstrate scaffold. A low nanomolar inhibitor (compound 8) bearing a gem-dibenzyl glycine moiety conjugated to the acetylphosphonate pyruvate mimic via a triazole-based linker emerged from this study. Compound 8 was found to exhibit slow, tight-binding inhibition, with contacts to E. coli DXPS residues R99 and R478 demonstrated to be important for this behavior. This work has discovered the most potent DXPS inhibitor to date and highlights a new role of R99 that can be exploited in future inhibitor designs toward the development of a novel class of antimicrobial agents.
Collapse
Affiliation(s)
- Lauren
B. Coco
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Eucolona M. Toci
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Percival Yang-Ting Chen
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Howard
Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caren L. Freel Meyers
- Department
of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
6
|
Chen EC, Shapiro RL, Pal A, Bartee D, DeLong K, Carter DM, Serrano-Diaz E, Rais R, Ensign LM, Freel Meyers CL. Investigating inhibitors of 1-deoxy-d-xylulose 5-phosphate synthase in a mouse model of UTI. Microbiol Spectr 2024; 12:e0389623. [PMID: 38376151 PMCID: PMC10986598 DOI: 10.1128/spectrum.03896-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
The rising rate of antimicrobial resistance continues to threaten global public health. Further hastening antimicrobial resistance is the lack of new antibiotics against new targets. The bacterial enzyme, 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), is thought to play important roles in central metabolism, including processes required for pathogen adaptation to fluctuating host environments. Thus, impairing DXPS function represents a possible new antibacterial strategy. We previously investigated a DXPS-dependent metabolic adaptation as a potential target in uropathogenic Escherichia coli (UPEC) associated with urinary tract infection (UTI), using the DXPS-selective inhibitor butyl acetylphosphonate (BAP). However, investigations of DXPS inhibitors in vivo have not been conducted. The goal of the present study is to advance DXPS inhibitors as in vivo probes and assess the potential of inhibiting DXPS as a strategy to prevent UTI in vivo. We show that BAP was well-tolerated at high doses in mice and displayed a favorable pharmacokinetic profile for studies in a mouse model of UTI. Further, an alkyl acetylphosphonate prodrug (homopropargyl acetylphosphonate, pro-hpAP) was significantly more potent against UPEC in urine culture and exhibited good exposure in the urinary tract after systemic dosing. Prophylactic treatment with either BAP or pro-hpAP led to a partial protective effect against UTI, with the prodrug displaying improved efficacy compared to BAP. Overall, our results highlight the potential for DXPS inhibitors as in vivo probes and establish preliminary evidence that inhibiting DXPS impairs UPEC colonization in a mouse model of UTI.IMPORTANCENew antibiotics against new targets are needed to prevent an antimicrobial resistance crisis. Unfortunately, antibiotic discovery has slowed, and many newly FDA-approved antibiotics do not inhibit new targets. Alkyl acetylphosphonates (alkyl APs), which inhibit the enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), represent a new possible class of compounds as there are no FDA-approved DXPS inhibitors. To our knowledge, this is the first study demonstrating the in vivo safety, pharmacokinetics, and efficacy of alkyl APs in a urinary tract infection mouse model.
Collapse
Affiliation(s)
- Eric C. Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachel L. Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arindom Pal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Bartee
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Davell M. Carter
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Serrano-Diaz
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rana Rais
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura M. Ensign
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Toci EM, Austin SL, Majumdar A, Woodcock HL, Freel Meyers CL. Disruption of an Active Site Network Leads to Activation of C2α-Lactylthiamin Diphosphate on the Antibacterial Target 1-Deoxy-d-xylulose-5-phosphate Synthase. Biochemistry 2024; 63:671-687. [PMID: 38393327 PMCID: PMC11015862 DOI: 10.1021/acs.biochem.3c00735] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The bacterial metabolic enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and d-glyceraldehyde-3-phosphate (d-GAP). DXP is an essential bacteria-specific metabolite that feeds into the biosynthesis of isoprenoids, pyridoxal phosphate (PLP), and ThDP. DXPS catalyzes the activation of pyruvate to give the C2α-lactylThDP (LThDP) adduct that is long-lived on DXPS in a closed state in the absence of the cosubstrate. Binding of d-GAP shifts the DXPS-LThDP complex to an open state which coincides with LThDP decarboxylation. This gated mechanism distinguishes DXPS in ThDP enzymology. How LThDP persists on DXPS in the absence of cosubstrate, while other pyruvate decarboxylases readily activate LThDP for decarboxylation, is a long-standing question in the field. We propose that an active site network functions to prevent LThDP activation on DXPS until the cosubstrate binds. Binding of d-GAP coincides with a conformational shift and disrupts the network causing changes in the active site that promote LThDP activation. Here, we show that the substitution of putative network residues, as well as nearby residues believed to contribute to network charge distribution, predictably affects LThDP reactivity. Substitutions predicted to disrupt the network have the effect to activate LThDP for decarboxylation, resulting in CO2 and acetate production. In contrast, a substitution predicted to strengthen the network fails to activate LThDP and has the effect to shift DXPS toward the closed state. Network-disrupting substitutions near the carboxylate of LThDP also have a pronounced effect to shift DXPS to an open state. These results offer initial insights to explain the long-lived LThDP intermediate and its activation through disruption of an active site network, which is unique to DXPS. These findings have important implications for DXPS function in bacteria and its development as an antibacterial target.
Collapse
Affiliation(s)
- Eucolona M Toci
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Steven L Austin
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - H Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
8
|
Wang J, Chen F, Chen QY, Wang GJ. Europium- and Black Phosphorus-Functionalized Porphyrin as an l-Arginine Sensor and l-Arginine-Activated PDT/PTT Agent for Bacterial Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41861-41869. [PMID: 37610772 DOI: 10.1021/acsami.3c07354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The attenuation of bacterial metabolism provides an adjunct to the treatment of bacterial infections. To develop a bacterial eradication agent, a bioactivatable material (BP@Eu-TCPP) was designed and synthesized by coordination and reduction of europium(III) with thin-layer black phosphorus (BP) and tetrakis (4-carboxyphenyl) porphyrin (TCPP). The existence of the P-Eu bond and Eu2+ 3d5/2 in X-ray photoelectron spectroscopy confirmed the successful synthesis of BP@Eu-TCPP. This material showed high fluorescence sensitivity to l-Arginine (l-Arg) and the main binding ratio of BP@Eu-TCPP to l-Arg was ca. 1:2 or 1:3, with the limit of detection of 4.0 μM. The material also showed good photothermal properties and stability, with a photothermal conversion efficiency of 37.3%. Although metal coordination has blocked the generation of 1O2, the addition of l-Arg to BP@Eu-TCPP can restore 1O2 generation upon red light-emitting diode (LED) light irradiation due to the formation of water-soluble Arg-TCPP species. Additionally, BP@Eu-TCPP was enabled to change the bacterial membrane and interfered with the bacterial iron absorption that effectively contributes to bacterial eradication. Such BP@Eu-TCPP is promised to be a novel material for the detection of l-Arg and l-Arg-activated photodynamic therapy.
Collapse
Affiliation(s)
- Jun Wang
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| | - Feng Chen
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| | - Qiu-Yun Chen
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| | - Gao-Ji Wang
- School of the Environment and Safety Engineering, School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Road, Jingkou District, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
9
|
Hamid R, Adam S, Lacour A, Monjas L, Köhnke J, Hirsch AKH. 1-deoxy-D-xylulose-5-phosphate synthase from Pseudomonas aeruginosa and Klebsiella pneumoniae reveals conformational changes upon cofactor binding. J Biol Chem 2023; 299:105152. [PMID: 37567475 PMCID: PMC10504544 DOI: 10.1016/j.jbc.2023.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The ESKAPE bacteria are the six highly virulent and antibiotic-resistant pathogens that require the most urgent attention for the development of novel antibiotics. Detailed knowledge of target proteins specific to bacteria is essential to develop novel treatment options. The methylerythritol-phosphate (MEP) pathway, which is absent in humans, represents a potentially valuable target for the development of novel antibiotics. Within the MEP pathway, the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) catalyzes a crucial, rate-limiting first step and a branch point in the biosynthesis of the vitamins B1 and B6. We report the high-resolution crystal structures of DXPS from the important ESKAPE pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae in both the co-factor-bound and the apo forms. We demonstrate that the absence of the cofactor thiamine diphosphate results in conformational changes that lead to disordered loops close to the active site that might be important for the design of potent DXPS inhibitors. Collectively, our results provide important structural details that aid in the assessment of DXPS as a potential target in the ongoing efforts to combat antibiotic resistance.
Collapse
Affiliation(s)
- Rawia Hamid
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Sebastian Adam
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Antoine Lacour
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Leticia Monjas
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Jesko Köhnke
- Institute of Food Chemistry, Leibniz University Hannover, Hannover, Germany; School of Chemistry, University of Glasgow, Glasgow, UK
| | - Anna K H Hirsch
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
10
|
Chen EC, Freel Meyers CL. DXP Synthase Function in a Bacterial Metabolic Adaptation and Implications for Antibacterial Strategies. Antibiotics (Basel) 2023; 12:692. [PMID: 37107054 PMCID: PMC10135061 DOI: 10.3390/antibiotics12040692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Pathogenic bacteria possess a remarkable ability to adapt to fluctuating host environments and cause infection. Disturbing bacterial central metabolism through inhibition of 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) has the potential to hinder bacterial adaptation, representing a new antibacterial strategy. DXPS functions at a critical metabolic branchpoint to produce the metabolite DXP, a precursor to pyridoxal-5-phosphate (PLP), thiamin diphosphate (ThDP) and isoprenoids presumed essential for metabolic adaptation in nutrient-limited host environments. However, specific roles of DXPS in bacterial adaptations that rely on vitamins or isoprenoids have not been studied. Here we investigate DXPS function in an adaptation of uropathogenic E. coli (UPEC) to d-serine (d-Ser), a bacteriostatic host metabolite that is present at high concentrations in the urinary tract. UPEC adapt to d-Ser by producing a PLP-dependent deaminase, DsdA, that converts d-Ser to pyruvate, pointing to a role for DXPS-dependent PLP synthesis in this adaptation. Using a DXPS-selective probe, butyl acetylphosphonate (BAP), and leveraging the toxic effects of d-Ser, we reveal a link between DXPS activity and d-Ser catabolism. We find that UPEC are sensitized to d-Ser and produce sustained higher levels of DsdA to catabolize d-Ser in the presence of BAP. In addition, BAP activity in the presence of d-Ser is suppressed by β-alanine, the product of aspartate decarboxylase PanD targeted by d-Ser. This BAP-dependent sensitivity to d-Ser marks a metabolic vulnerability that can be exploited to design combination therapies. As a starting point, we show that combining inhibitors of DXPS and CoA biosynthesis displays synergy against UPEC grown in urine where there is increased dependence on the TCA cycle and gluconeogenesis from amino acids. Thus, this study provides the first evidence for a DXPS-dependent metabolic adaptation in a bacterial pathogen and demonstrates how this might be leveraged for development of antibacterial strategies against clinically relevant pathogens.
Collapse
Affiliation(s)
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Chan AHY, Ho TCS, Parle DR, Leeper FJ. Furan-based inhibitors of pyruvate dehydrogenase: SAR study, biochemical evaluation and computational analysis. Org Biomol Chem 2023; 21:1755-1763. [PMID: 36723268 DOI: 10.1039/d2ob02272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Suppression of pyruvate dehydrogenase complex (PDHc) is a mechanism for cancer cells to manifest the Warburg effect. However, recent evidence suggests that whether PDHc activity is suppressed or activated depends on the type of cancer. The PDHc E1 subunit (PDH E1) is a thiamine pyrophosphate (TPP)-dependent enzyme, catalysing the first and rate-limiting step of PDHc; thus, there is a need for selective PDH E1 inhibitors. There is, however, inadequate understanding of the structure-activity relationship (SAR) and a lack of inhibitors specific for mammalian PDH E1. Our group have reported TPP analogues as TPP-competitive inhibitors to study the family of TPP-dependent enzymes. Most of these TPP analogues cannot be used to study PDHc in cells because (a) they inhibit all members of the family and (b) they are membrane-impermeable. Here we report derivatives of thiamine/TPP analogues that identify elements distinctive to PDH E1 for selectivity. Based on our SAR findings, we developed a series of furan-based thiamine analogues as potent, selective and membrane-permeable inhibitors of mammalian PDH E1. We envision that our SAR findings and inhibitors will aid work on using chemical inhibition to understand the oncogenic role of PDHc.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Daniel R Parle
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. .,Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
12
|
The Multifaceted MEP Pathway: Towards New Therapeutic Perspectives. Molecules 2023; 28:molecules28031403. [PMID: 36771066 PMCID: PMC9919496 DOI: 10.3390/molecules28031403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Isoprenoids, a diverse class of natural products, are present in all living organisms. Their two universal building blocks are synthesized via two independent pathways: the mevalonate pathway and the 2-C-methyl-ᴅ-erythritol 4-phosphate (MEP) pathway. The presence of the latter in pathogenic bacteria and its absence in humans make all its enzymes suitable targets for the development of novel antibacterial drugs. (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), the last intermediate of this pathway, is a natural ligand for the human Vγ9Vδ2 T cells and the most potent natural phosphoantigen known to date. Moreover, 5-hydroxypentane-2,3-dione, a metabolite produced by Escherichia coli 1-deoxy-ᴅ-xylulose 5-phosphate synthase (DXS), the first enzyme of the MEP pathway, structurally resembles (S)-4,5-dihydroxy-2,3-pentanedione, a signal molecule implied in bacterial cell communication. In this review, we shed light on the diversity of potential uses of the MEP pathway in antibacterial therapies, starting with an overview of the antibacterials developed for each of its enzymes. Then, we provide insight into HMBPP, its synthetic analogs, and their prodrugs. Finally, we discuss the potential contribution of the MEP pathway to quorum sensing mechanisms. The MEP pathway, providing simultaneously antibacterial drug targets and potent immunostimulants, coupled with its potential role in bacterial cell-cell communication, opens new therapeutic perspectives.
Collapse
|
13
|
Johnston ML, Bonett EM, DeColli AA, Freel Meyers CL. Antibacterial Target DXP Synthase Catalyzes the Cleavage of d-Xylulose 5-Phosphate: a Study of Ketose Phosphate Binding and Ketol Transfer Reaction. Biochemistry 2022; 61:1810-1823. [PMID: 35998648 PMCID: PMC9531112 DOI: 10.1021/acs.biochem.2c00274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) in a thiamin diphosphate (ThDP)-dependent manner. In addition to its role in isoprenoid biosynthesis, DXP is required for ThDP and pyridoxal phosphate biosynthesis. Due to its function as a branch-point enzyme and its demonstrated substrate and catalytic promiscuity, we hypothesize that DXPS could be key for bacterial adaptation in the dynamic metabolic landscape during infection. Prior work in the Freel Meyers laboratory has illustrated that DXPS displays relaxed specificity toward donor and acceptor substrates and varies acceptor specificity according to the donor used. We have reported that DXPS forms dihydroxyethyl (DHE)ThDP from ketoacid or aldehyde donor substrates via decarboxylation and deprotonation, respectively. Here, we tested other DHE donors and found that DXPS cleaves d-xylulose 5-phosphate (X5P) at C2-C3, producing DHEThDP through a third mechanism involving d-GAP elimination. We interrogated DXPS-catalyzed reactions using X5P as a donor substrate and illustrated (1) production of a semi-stable enzyme-bound intermediate and (2) O2, H+, and d-erythrose 4-phosphate act as acceptor substrates, highlighting a new transketolase-like activity of DXPS. Furthermore, we examined X5P binding to DXPS and suggest that the d-GAP binding pocket plays a crucial role in X5P binding and turnover. Overall, this study reveals a ketose-cleavage reaction catalyzed by DXPS, highlighting the remarkable flexibility for donor substrate usage by DXPS compared to other C-C bond-forming enzymes.
Collapse
Affiliation(s)
- Melanie L. Johnston
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eucolona M. Bonett
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Chan AHY, Ho TCS, Agyei-Owusu K, Leeper FJ. Synthesis of pyrrothiamine, a novel thiamine analogue, and evaluation of derivatives as potent and selective inhibitors of pyruvate dehydrogenase. Org Biomol Chem 2022; 20:8855-8858. [DOI: 10.1039/d2ob01819e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pyrrothiamine, a new thiamine analogue with the S replaced by CH, has been synthesised and is a moderate inhibitor of a range of thiamine pyrophosphate-dependent enzymes. Its ester 19 is a potent and selective inhibitor of pyruvate dehydrogenase.
Collapse
Affiliation(s)
- Alex H. Y. Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Terence C. S. Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Kwasi Agyei-Owusu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Finian J. Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
15
|
Zhu D, Johannsen S, Masini T, Simonin C, Haupenthal J, Illarionov B, Andreas A, Awale M, Gierse RM, van der Laan T, van der Vlag R, Nasti R, Poizat M, Buhler E, Reiling N, Müller R, Fischer M, Reymond JL, Hirsch AKH. Discovery of novel drug-like antitubercular hits targeting the MEP pathway enzyme DXPS by strategic application of ligand-based virtual screening. Chem Sci 2022; 13:10686-10698. [PMID: 36320685 PMCID: PMC9491098 DOI: 10.1039/d2sc02371g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022] Open
Abstract
In the present manuscript, we describe how we successfully used ligand-based virtual screening (LBVS) to identify two small-molecule, drug-like hit classes with excellent ADMET profiles against the difficult to address microbial enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). In the fight against antimicrobial resistance (AMR), it has become increasingly important to address novel targets such as DXPS, the first enzyme of the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, which affords the universal isoprenoid precursors. This pathway is absent in humans but essential for pathogens such as Mycobacterium tuberculosis, making it a rich source of drug targets for the development of novel anti-infectives. Standard computer-aided drug-design tools, frequently applied in other areas of drug development, often fail for targets with large, hydrophilic binding sites such as DXPS. Therefore, we introduce the concept of pseudo-inhibitors, combining the benefits of pseudo-ligands (defining a pharmacophore) and pseudo-receptors (defining anchor points in the binding site), for providing the basis to perform a LBVS against M. tuberculosis DXPS. Starting from a diverse set of reference ligands showing weak inhibition of the orthologue from Deinococcus radiodurans DXPS, we identified three structurally unrelated classes with promising in vitro (against M. tuberculosis DXPS) and whole-cell activity including extensively drug-resistant strains of M. tuberculosis. The hits were validated to be specific inhibitors of DXPS and to have a unique mechanism of inhibition. Furthermore, two of the hits have a balanced profile in terms of metabolic and plasma stability and display a low frequency of resistance development, making them ideal starting points for hit-to-lead optimization of antibiotics with an unprecedented mode of action. We identified two drug-like antitubercular hits with submicromolar inhibition constants against the target 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) with a new mode of action and promising activity against drug-resistant tuberculosis.![]()
Collapse
Affiliation(s)
- Di Zhu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Sandra Johannsen
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
| | - Tiziana Masini
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Céline Simonin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry Grindelallee 117 20146 Hamburg Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
| | - Mahendra Awale
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Robin M Gierse
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Tridia van der Laan
- Department of Mycobacteria, National Institute of Public Health and the Environment (RIVM), Diagnostics and Laboratory Surveillance (IDS) Infectious Diseases Research Antonie van Leeuwenhoeklaan 9 3721 MA Bilthoven The Netherlands
| | - Ramon van der Vlag
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Rita Nasti
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Mael Poizat
- Symeres Kadijk 3 9747 AT Groningen The Netherlands
| | - Eric Buhler
- Laboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité Bâtiment Condorcet 75205 Paris Cedex 13 France
| | - Norbert Reiling
- RG Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center Borstel Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems Borstel Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Helmholtz International Lab for Anti-infectives Campus Building E8.1 66123 Saarbrücken Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry Grindelallee 117 20146 Hamburg Germany
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1 66123 Saarbrücken Germany
- Department of Pharmacy, Saarland University, Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
- Helmholtz International Lab for Anti-infectives Campus Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
16
|
Eberl M, Oldfield E, Herrmann T. Immuno-antibiotics: targeting microbial metabolic pathways sensed by unconventional T cells. IMMUNOTHERAPY ADVANCES 2021; 1:ltab005. [PMID: 35919736 PMCID: PMC9327107 DOI: 10.1093/immadv/ltab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Human Vγ9/Vδ2 T cells, mucosal-associated invariant T (MAIT) cells, and other unconventional T cells are specialised in detecting microbial metabolic pathway intermediates that are absent in humans. The recognition by such semi-invariant innate-like T cells of compounds like (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), the penultimate metabolite in the MEP isoprenoid biosynthesis pathway, and intermediates of the riboflavin biosynthesis pathway and their metabolites allows the immune system to rapidly sense pathogen-associated molecular patterns that are shared by a wide range of micro-organisms. Given the essential nature of these metabolic pathways for microbial viability, they have emerged as promising targets for the development of novel antibiotics. Here, we review recent findings that link enzymatic inhibition of microbial metabolism with alterations in the levels of unconventional T cell ligands produced by treated micro-organisms that have given rise to the concept of 'immuno-antibiotics': combining direct antimicrobial activity with an immunotherapeutic effect via modulation of unconventional T cell responses.
Collapse
Affiliation(s)
- Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK,Systems Immunity Research Institute, Cardiff University, Cardiff, UK,Correspondence: Matthias Eberl, Division of Infection and Immunity, Henry Wellcome Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK. Tel: +44-29206-87011;
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thomas Herrmann
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Johnston ML, Freel Meyers CL. Revealing Donor Substrate-Dependent Mechanistic Control on DXPS, an Enzyme in Bacterial Central Metabolism. Biochemistry 2021; 60:929-939. [PMID: 33660509 PMCID: PMC8015787 DOI: 10.1021/acs.biochem.1c00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Indexed: 11/28/2022]
Abstract
The thiamin diphosphate-dependent enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the formation of DXP from pyruvate (donor) and d-glyceraldehyde 3-phosphate (d-GAP, acceptor). DXPS is essential in bacteria but absent in human metabolism, highlighting it as a potential antibacterial drug target. The enzyme possesses unique structural and mechanistic features that enable development of selective inhibition strategies and raise interesting questions about DXPS function in bacterial pathogens. DXPS distinguishes itself within the ThDP enzyme class by its exceptionally large active site and random sequential mechanism in DXP formation. In addition, DXPS displays catalytic promiscuity and relaxed acceptor substrate specificity, yet previous studies have suggested a preference for pyruvate as the donor substrate when d-GAP is the acceptor substrate. However, such donor specificity studies are potentially hindered by a lack of knowledge about specific, alternative donor-acceptor pairs. In this study, we exploited the promiscuous oxygenase activity of DXPS to uncover alternative donor substrates for DXPS. Characterization of glycolaldehyde, hydroxypyruvate, and ketobutyrate as donor substrates revealed differences in stabilization of enzyme-bound intermediates and acceptor substrate usage, illustrating the influence of the donor substrate on reaction mechanism and acceptor specificity. In addition, we found that DXPS prevents abortive acetyl-ThDP formation from a DHEThDP carbanion/enamine intermediate, similar to transketolase, supporting the potential physiological relevance of this intermediate on DXPS. Taken together, these results offer clues toward alternative roles for DXPS in bacterial pathogen metabolism.
Collapse
Affiliation(s)
- Melanie L. Johnston
- Department of Pharmacology and Molecular Sciences,
Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, United States
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences,
Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, United States
| |
Collapse
|
18
|
Ogunade IM, Taiwo G, Estrada-Reyes ZM, Yun J, Pech-Cervantes AA, Peters SO. Effects of a blend of mannan and glucan on growth performance, apparent nutrient digestibility, energy status, and whole-blood immune gene expression of beef steers during a 42-d receiving period. Transl Anim Sci 2021; 5:txaa226. [PMID: 33542996 PMCID: PMC7846145 DOI: 10.1093/tas/txaa226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 11/14/2022] Open
Abstract
We examined the effects of dietary supplementation of a blend of mannan and glucan on the growth performance, energy status, and whole-blood immune gene expression of newly weaned beef steers during a 42-d receiving period. Forty-eight newly weaned Angus crossbred steers (2-d post-weaning; 199 ± 13 kg of initial body weight [BW]) from a single source were stratified by BW and randomly assigned to one of the two treatments: basal diet with no additive (CON; n = 24) or a basal diet top-dressed with 5 g of a blend of mannan and glucan (MANGLU; n = 24). Average daily gain (ADG) and feed efficiency (FE) from days 1 to 14, 15 to 42, and 1 to 42 were calculated from daily dry matter intake (DMI) and weekly BW. Blood samples were collected on days 0, 14, and 42 for measurement of plasma glucose and nonesterified fatty acids (NEFA). Blood samples collected on days 14 and 42 were composited for each steer for untargeted carbonyl-metabolome analysis (measurement of carbonyl-containing metabolites). Expression of 84 immune-related genes was analyzed on blood samples collected on day 42. Beginning on days 37 to 42, total mixed ration, refusals, and fecal samples were collected once daily to determine apparent total tract digestibility of DM, CP, NDF, and ADF using indigestible NDF as an internal marker. Over the 42-d feeding trial, supplemental MANGLU tended to increase final BW (P = 0.07) and ADG (P = 0.06). Compared to CON, beef steers fed supplemental MANGLU had greater (P = 0.01) DMI during the first 14 d, greater DM digestibility (P = 0.03), and tended to have greater NDF digestibility (P = 0.09). No treatment effects (P > 0.10) on plasma glucose and NEFA on days 14 and 42 were detected; however, carbonyl-metabolome analysis revealed increased (FDR ≤ 0.05) plasma concentrations of galactose and glyceraldehydes, and altered (FDR ≤ 0.05) concentrations of some microbiome-derived metabolites in beef steers fed MANGLU. Compared with CON, MANGLU increased (P ≤ 0.05) the expression of five immune-related genes involved in recognition of and mounting immune defense against microbial pathogens. In conclusion, the results of this study demonstrated that supplemental MANGLU enhances beef cattle immunocompetence and productivity during feedlot receiving period.
Collapse
Affiliation(s)
- Ibukun M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV
| | - Godstime Taiwo
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV
| | - Zaira M Estrada-Reyes
- College of Agricultural, Family Sciences, and Technology, Fort Valley State University, Fort Valley, GA
| | - Jiang Yun
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Andres A Pech-Cervantes
- College of Agricultural, Family Sciences, and Technology, Fort Valley State University, Fort Valley, GA
| | - Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA
| |
Collapse
|
19
|
Zhong Q, Deng Y, Qin H, Ou H, Qu Y, Ye J. Metabolic network and recovery mechanism of Escherichia coli associated with triclocarban stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111140. [PMID: 32858325 DOI: 10.1016/j.ecoenv.2020.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Although the toxicity of triclocarban at molecular level has been investigated, the metabolic networks involved in regulating the stress processes are not clear. Whether the cells would maintain specific phenotypic characteristics after triclocarban stress is also needed to be clarified. In this study, Escherichia coli was selected as a model to elucidate the cellular metabolism response associated with triclocarban stress and the recovery metabolic network of the triclocarban-treated cells using the proteomics and metabolomics approaches. Results showed that triclocarban caused systematic metabolic remodeling. The adaptive pathways, glyoxylate shunt and acetate-switch were activated. These arrangements allowed cells to use more acetyl-CoA and to reduce carbon atom loss. The upregulation of NH3-dependent NAD+ synthetase complemented the NAD+ consumption by catabolism, maintaining the redox balance. The synthesis of 1-deoxy-D-xylulose-5-phosphate was suppressed, which would affect the accumulation of end products of its downstream pathway of isoprenoid synthesis. After recovery culture for 12 h, the state of cells returned to stability and the main impacts on metabolic network triggered by triclocarban have disappeared. However, drug resistance caused by long-term exposure to environmentally relevant concentration of triclocarban is still worthy of attention. The present study revealed the molecular events under triclocarban stress and clarified how triclocarban influence the metabolic networks.
Collapse
Affiliation(s)
- Qiao Zhong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Huaming Qin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Huase Ou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yanfen Qu
- Zhongji Ecological Science & Technology Co., Ltd. Guangzhou, 511443, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
20
|
Koksharova OA, Butenko IO, Pobeguts OV, Safronova NA, Govorun VM. The First Proteomics Study of Nostoc sp. PCC 7120 Exposed to Cyanotoxin BMAA under Nitrogen Starvation. Toxins (Basel) 2020; 12:E310. [PMID: 32397431 PMCID: PMC7290344 DOI: 10.3390/toxins12050310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/10/2023] Open
Abstract
The oldest prokaryotic photoautotrophic organisms, cyanobacteria, produce many different metabolites. Among them is the water-soluble neurotoxic non-protein amino acid beta-N-methylamino-L-alanine (BMAA), whose biological functions in cyanobacterial metabolism are of fundamental scientific and practical interest. An early BMAA inhibitory effect on nitrogen fixation and heterocyst differentiation was shown in strains of diazotrophic cyanobacteria Nostoc sp. PCC 7120, Nostocpunctiforme PCC 73102 (ATCC 29133), and Nostoc sp. strain 8963 under conditions of nitrogen starvation. Herein, we present a comprehensive proteomic study of Nostoc (also called Anabaena) sp. PCC 7120 in the heterocyst formation stage affecting by BMAA treatment under nitrogen starvation conditions. BMAA disturbs proteins involved in nitrogen and carbon metabolic pathways, which are tightly co-regulated in cyanobacteria cells. The presented evidence shows that exogenous BMAA affects a key nitrogen regulatory protein, PII (GlnB), and some of its protein partners, as well as glutamyl-tRNA synthetase gltX and other proteins that are involved in protein synthesis, heterocyst differentiation, and nitrogen metabolism. By taking into account the important regulatory role of PII, it becomes clear that BMAA has a severe negative impact on the carbon and nitrogen metabolism of starving Nostoc sp. PCC 7120 cells. BMAA disturbs carbon fixation and the carbon dioxide concentrating mechanism, photosynthesis, and amino acid metabolism. Stress response proteins and DNA repair enzymes are upregulated in the presence of BMAA, clearly indicating severe intracellular stress. This is the first proteomic study of the effects of BMAA on diazotrophic starving cyanobacteria cells, allowing a deeper insight into the regulation of the intracellular metabolism of cyanobacteria by this non-protein amino acid.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory, 1-40, 119992 Moscow, Russia;
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Ivan O. Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Olga V. Pobeguts
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| | - Nina A. Safronova
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory, 1-40, 119992 Moscow, Russia;
| | - Vadim M. Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, 119435 Moscow, Russia; (I.O.B.); (O.V.P.); (V.M.G.)
| |
Collapse
|
21
|
DeColli AA, Zhang X, Heflin KL, Jordan F, Freel Meyers CL. Active Site Histidines Link Conformational Dynamics with Catalysis on Anti-Infective Target 1-Deoxy-d-xylulose 5-Phosphate Synthase. Biochemistry 2019; 58:4970-4982. [PMID: 31724401 DOI: 10.1021/acs.biochem.9b00878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The product of 1-deoxy-d-xyluose 5-phosphate (DXP) synthase, DXP, feeds into the bacterial biosynthesis of isoprenoids, thiamin diphosphate (ThDP), and pyridoxal phosphate. DXP is essential for human pathogens but not utilized by humans; thus, DXP synthase is an attractive anti-infective target. The unique ThDP-dependent mechanism and structure of DXP synthase offer ideal opportunities for selective targeting. Upon reaction with pyruvate, DXP synthase uniquely stabilizes the predecarboxylation intermediate, C2α-lactylThDP (LThDP), in a closed conformation. Subsequent binding of d-glyceraldehyde 3-phosphate induces an open conformation that is proposed to destabilize LThDP, triggering decarboxylation. Evidence for the closed and open conformations has been revealed by hydrogen-deuterium exchange mass spectrometry and X-ray crystallography, which indicate that H49 and H299 are involved in conformational dynamics and movement of the fork and spoon motifs away from the active site is important for the closed-to-open transition. Interestingly, H49 and H299 are critical for DXP formation and interact with the predecarboxylation intermediate in the closed conformation. H299 is removed from the active site in the open conformation of the postdecarboxylation state. In this study, we show that substitution at H49 and H299 negatively impacts LThDP formation by shifting the conformational equilibrium of DXP synthase toward an open conformation. We also present a method for monitoring the dynamics of the spoon motif that uncovered a previously undetected role for H49 in coordinating the closed conformation. Overall, our results suggest that H49 and H299 are critical for the closed, predecarboxylation state providing the first direct link between catalysis and conformational dynamics.
Collapse
Affiliation(s)
- Alicia A DeColli
- Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| | - Xu Zhang
- Department of Chemistry , Rutgers University , Newark , New Jersey 07102 , United States
| | - Kathryn L Heflin
- Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| | - Frank Jordan
- Department of Chemistry , Rutgers University , Newark , New Jersey 07102 , United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| |
Collapse
|
22
|
Liang YF, Liu H, Li H, Gao WY. Determination of the Activity of 1-Deoxy-D-Xylulose 5-Phosphate Synthase by Pre-column Derivatization-HPLC Using 1,2-Diamino-4,5-Methylenedioxybenzene as a Derivatizing Reagent. Protein J 2019; 38:160-166. [PMID: 30707333 DOI: 10.1007/s10930-019-09816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
α-Ketoacids can be determined by HPLC through pre-column derivatization with 1,2-diamino-4,5-methylenedioxybenzene (DMB) as a derivatizing reagent. Using this method, the specific activity and the steady-state kinetic of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) were measured. Firstly, DXS substrate pyruvate was derivatized with DMB in acidic solution; then the corresponding quinoxalinone was elucidated by LC-ESI-MS and quantified by HPLC-UV. The optimum derivatization conditions were as follows: aqueous medium at pH 1.0, reaction temperature 80 °C, reaction time 60 min, molar ratio of DMB to pyruvate 10:1. The HPLC was run with isocratic elution using the mixture of methanol and water (60:40, v/v) as a mobile phase. The detective limit and the linear correlation range of the method were 0.05 µM and 0.002-1.0 mM (R = 0.994), respectively. The relative standard deviation (RSD) of six determinations was 2.48%. The steady-state kinetic parameters of DXS for pyruvate determined with the method were identical to the reported data. The established method is a practical route for evaluation of DXS activity, especially in the research and development of DXS inhibitors.
Collapse
Affiliation(s)
- Yan-Fei Liang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Hui Liu
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Heng Li
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Wen-Yun Gao
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
23
|
Chen PYT, DeColli AA, Freel Meyers CL, Drennan CL. X-ray crystallography-based structural elucidation of enzyme-bound intermediates along the 1-deoxy-d-xylulose 5-phosphate synthase reaction coordinate. J Biol Chem 2019; 294:12405-12414. [PMID: 31239351 PMCID: PMC6699841 DOI: 10.1074/jbc.ra119.009321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/16/2019] [Indexed: 01/07/2023] Open
Abstract
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) uses thiamine diphosphate (ThDP) to convert pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) into 1-deoxy-d-xylulose 5-phosphate (DXP), an essential bacterial metabolite. DXP is not utilized by humans; hence, DXPS has been an attractive antibacterial target. Here, we investigate DXPS from Deinococcus radiodurans (DrDXPS), showing that it has similar kinetic parameters Kmd-GAP and Kmpyruvate (54 ± 3 and 11 ± 1 μm, respectively) and comparable catalytic activity (kcat = 45 ± 2 min-1) with previously studied bacterial DXPS enzymes and employing it to obtain missing structural data on this enzyme family. In particular, we have determined crystallographic snapshots of DrDXPS in two states along the reaction coordinate: a structure of DrDXPS bound to C2α-phosphonolactylThDP (PLThDP), mimicking the native pre-decarboxylation intermediate C2α-lactylThDP (LThDP), and a native post-decarboxylation state with a bound enamine intermediate. The 1.94-Å-resolution structure of PLThDP-bound DrDXPS delineates how two active-site histidine residues stabilize the LThDP intermediate. Meanwhile, the 2.40-Å-resolution structure of an enamine intermediate-bound DrDXPS reveals how a previously unknown 17-Å conformational change removes one of the two histidine residues from the active site, likely triggering LThDP decarboxylation to form the enamine intermediate. These results provide insight into how the bi-substrate enzyme DXPS limits side reactions by arresting the reaction on the less reactive LThDP intermediate when its cosubstrate is absent. They also offer a molecular basis for previous low-resolution experimental observations that correlate decarboxylation of LThDP with protein conformational changes.
Collapse
Affiliation(s)
- Percival Yang-Ting Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alicia A. DeColli
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, To whom correspondence may be addressed:
Dept. of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205. Tel.:
410-502-4807; Fax:
410-955-3023; E-mail:
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, A Howard Hughes Medical Institute investigator and a senior fellow of the Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR). To whom correspondence may be addressed:
Depts. of Biology and Chemistry, Massachusetts Institute of Technology, 31 Ames St., Bldg. 68-680, Cambridge, MA 02139. Tel.:
617-253-5622; Fax:
617-258-7847; E-mail:
| |
Collapse
|
24
|
Bartee D, Sanders S, Phillips PD, Harrison MJ, Koppisch AT, Freel Meyers CL. Enamide Prodrugs of Acetyl Phosphonate Deoxy-d-xylulose-5-phosphate Synthase Inhibitors as Potent Antibacterial Agents. ACS Infect Dis 2019; 5:406-417. [PMID: 30614674 DOI: 10.1021/acsinfecdis.8b00307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To fight the growing threat of antibiotic resistance, new antibiotics are required that target essential bacterial processes other than protein, DNA/RNA, and cell wall synthesis, which constitute the majority of currently used antibiotics. 1-Deoxy-d-xylulose-5-phosphate (DXP) synthase is a vital enzyme in bacterial central metabolism, feeding into the de novo synthesis of thiamine diphosphate, pyridoxal phosphate, and essential isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate. While potent and selective inhibitors of DXP synthase in vitro activity have been discovered, their antibacterial activity is modest. To improve the antibacterial activity of selective alkyl acetylphosphonate (alkylAP) inhibitors of DXP synthase, we synthesized peptidic enamide prodrugs of alkylAPs inspired by the natural product dehydrophos, a prodrug of methyl acetylphosphonate. This prodrug strategy achieves dramatic increases in activity against Gram-negative pathogens for two alkylAPs, butyl acetylphosphonate and homopropargyl acetylphosphonate, decreasing minimum inhibitory concentrations against Escherichia coli by 33- and nearly 2000-fold, respectively. Antimicrobial studies and LC-MS/MS analysis of alkylAP-treated E. coli establish that the increased potency of prodrugs is due to increased accumulation of alkylAP inhibitors of DXP synthase via transport of the prodrug through the OppA peptide permease and subsequent amide hydrolysis. This work demonstrates the promise of targeting DXP synthase for the development of novel antibacterial agents.
Collapse
Affiliation(s)
- David Bartee
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Sara Sanders
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Paul D. Phillips
- Department of Chemistry, Northern Arizona University, 700 South Osborne Drive, Flagstaff, Arizona 86011, United States
| | - Mackenzie J. Harrison
- Department of Chemistry, Northern Arizona University, 700 South Osborne Drive, Flagstaff, Arizona 86011, United States
| | - Andrew T. Koppisch
- Department of Chemistry, Northern Arizona University, 700 South Osborne Drive, Flagstaff, Arizona 86011, United States
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|