1
|
Li W, Hu Y, Li Y, Zhang W, Li M, Hu J, Ben W, Qiang Z. Performance of ultrafiltration-ozonation for municipal wastewater reclamation under rainstorm conditions: Impacts of DOM surge on micropollutant removal and associated risks. WATER RESEARCH 2025; 280:123530. [PMID: 40147305 DOI: 10.1016/j.watres.2025.123530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
This study investigated the impacts of rainstorms on the performance of a combined ultrafiltration (UF)-ozonation (O3) process for micropollutant removal and risk mitigation during municipal wastewater reclamation. Results reveal that the rainstorm triggered a substantial surge in dissolved organic matter (DOM) in secondary effluent, primarily composed of protein-like substances and terrestrial humus. Meanwhile, 12 commonly detected pharmaceuticals and personal care products (PPCPs) were found at concentrations slightly lower than in normal weather, ranging from 5.0 to 545.0 ng L-1. Following the rainstorm, the overall removals of PPCPs spanned a wide range of 14.8 %-77.7 %, where a significantly lower retention of high molecular-weight pollutants (e.g., ≥ 400 Da) was observed for UF. For the ozonation unit, the removals remained comparable, while the relative contribution of radical oxidation increased. This shift was related to the enhanced generation of HO• and/or other reactive species, driven by the enrichment of unsaturated proteins (originating from upstream sludge loss) as precursors. Higher concentrations of disinfection by-products (DBPs), reaching up to 1372.5 μg L-1, were observed in chlorinated effluents after the rainstorm, ascribing to the elevated content of terrestrial humus persisting through the treatments. While the risks associated with PPCPs were negligible, the formed DBPs posed considerable risks to human health (with cancer risk at 10-5) and aquatic ecosystem (with risk quotient up to 13.6), particularly post ozonation. These findings highlight the role of rainstorm-fueled DOM in reclaimed water quality and provide insights into ensuring reclaimed water safety under different weather conditions.
Collapse
Affiliation(s)
- Wentao Li
- State Key Laboratory of Green Papermaking and Resource Recycling, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yangang Li
- Beijing Drainage Group Co. Ltd., Beijing 100022, China
| | - Wenzhen Zhang
- Beijing Drainage Group Co. Ltd., Beijing 100022, China
| | - Mengkai Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weiwei Ben
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- State Key Laboratory of Green Papermaking and Resource Recycling, State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Li M, Zheng Y, Huang Y, Li J, Sun Z, Blatchley ER, Qiang Z. Calcium scaling on the quartz sleeve of ultraviolet reactor: On-line measurement and model prediction. WATER RESEARCH 2025; 275:123203. [PMID: 39889443 DOI: 10.1016/j.watres.2025.123203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Quartz sleeve scaling significantly affects the efficacy of ultraviolet (UV) processes for water treatment. Investigating the scaling process and developing prediction methods are important for selecting and optimizing scaling control measures. However, these have been limited by the lack of an appropriate experimental system. Therefore, this study investigated the kinetics, mechanisms, and prediction methods of calcium scaling (a predominant scale compound encountered in drinking water treatment) on quartz sleeves. An on-line experimental system for sleeve scale UV transmittance (UVTSS) was developed based on previously developed micro-fluorescent silica detectors. The scaling process was accelerated by increases in [Ca2+] (100-400 mg L-1), alkalinity (100-400 mg L-1), and pH (6.5-8.5). Furthermore, water temperature (20.0-30.0 °C), sleeve temperature (24.9-31.7 °C), and flow velocity (2.5-10.0 cm s-1) exhibited diverse effects on calcium scaling. By delving into scaling mechanisms such as mass transfer, surface crystallization, and scale stripping processes, we proposed a prediction model. The extinction coefficient and stripping rate of calcium scale were estimated to be 0.80 μm-1 and 0.155 h-1, respectively. Model predictions were validated through both laboratory and field tests. This study provides important methods for ensuring sufficient dose delivery by a UV reactor, enhancing energy efficiency, and improving reliability in UV processes for water treatment.
Collapse
Affiliation(s)
- Mengkai Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihao Zheng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Huang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaying Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, United States; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Zhimin Qiang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Zhao E, Zhang Y, Zhan J, Xia G, Yu G, Wang Y. Optimization and scaling-up of porous solid electrolyte electrochemical reactors for hydrogen peroxide electrosynthesis. Nat Commun 2025; 16:3212. [PMID: 40180943 PMCID: PMC11969008 DOI: 10.1038/s41467-025-58385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
The recently developed porous solid electrolyte (PSE) reactor for electrosynthesis of hydrogen peroxide (H2O2) has attracted significant global interest. However, scaling up the PSE reactor for practical applications poses challenges, particularly due to performance decline in enlarged reactors. Here we systematically investigate how factors such as material selection, assembly parameters, flow field patterns, and operating conditions influence H2O2 electrosynthesis in the PSE reactor. Our findings reveal that the performance decline during reactor scale-up is primarily caused by the uneven flow field in the PSE layer. Based on these insights, we optimize the reactor design and develop a 12-unit modular electrode stack PSE reactor with a total electrode area of 1200 cm2. The scaled-up reactor maintains efficient H2O2 electrosynthesis without significant performance decline. It operates stably for over 400 h and can produce up to 2.5 kg pure H2O2 (~83 kg 3% H2O2 solutions) per day with considerably lower energy costs (0.2‒0.8 USD/kg H2O2) than the market prices of H2O2 stocks. This work represents a crucial advancement in the development of PSE reactor technology for practical H2O2 electrosynthesis.
Collapse
Affiliation(s)
- Erzhuo Zhao
- School of Environment, Tsinghua University, Beijing, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, China
| | - Yixin Zhang
- School of Environment, Tsinghua University, Beijing, China
| | - Juhong Zhan
- School of Environment, Tsinghua University, Beijing, China
| | - Guangsen Xia
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing, China
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - Yujue Wang
- School of Environment, Tsinghua University, Beijing, China.
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China.
- Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Kantor RS, Kennedy LC, Miller SE, Favere J, Nelson KL. Reverse Osmosis in an Advanced Water Treatment Train Produces a Simple, Consistent Microbial Community. ACS ES&T ENGINEERING 2025; 5:772-781. [PMID: 40109356 PMCID: PMC11915367 DOI: 10.1021/acsestengg.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/22/2025]
Abstract
Potable water reuse has become a key component of water sustainability planning in arid regions. Many advanced water purification facilities use reverse osmosis (RO) as part of treatment, including as a barrier for microorganisms; however, regrowth after RO treatment has been observed. Questions remain about the identity, source, and survival mechanisms of microorganisms in RO permeate, but the extremely low biomass of this water is a limitation for common microbiological methods. Here, we performed high-throughput sequencing on samples collected throughout a potable reuse train, including samples collected by filtering large volumes of RO permeate and biomass collected from RO membranes during an autopsy. We observed a stable, consistent microbial community across three months and in two parallel RO trains. RO permeate samples contained Burkholderiaceae at high relative abundance, including one Aquabacterium sp. that accounted for 29% of the community, on average. Like most other RO permeate microorganisms, this sequence was not seen in upstream samples and we suggest that biofilm growing on unit process infrastructure, rather than active treatment breakthrough, was the primary source. A metagenome-assembled genome corresponding to Aquabacterium sp. from RO permeate was found to lack most sugar-utilization pathways and to be able to consume low molecular weight organic molecules, potentially those that pass through RO.
Collapse
Affiliation(s)
- Rose S Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Lauren C Kennedy
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
- Department of Civil Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Scott E Miller
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Jorien Favere
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent University, 9000 Gent, Belgium
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| |
Collapse
|
5
|
Mahmoodi M, Pishbin E. Ozone-based advanced oxidation processes in water treatment: recent advances, challenges, and perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3531-3570. [PMID: 39827442 DOI: 10.1007/s11356-024-35835-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Water pollution, driven by a variety of enduring contaminants, poses considerable threats to ecosystems, human health, and biodiversity, highlighting the urgent need for innovative and sustainable treatment approaches. Ozone-based advanced oxidation processes (AOPs) have demonstrated significant efficacy in breaking down stubborn pollutants, such as organic micropollutants and pathogens, that are not easily addressed by traditional treatment techniques. This review offers an in-depth analysis of ozonation mechanisms, covering both the direct oxidation by ozone and the indirect reactions facilitated by hydroxyl radicals, emphasizing their effectiveness and adaptability across various wastewater matrices. Significant progress in the combination of ozonation with additional technologies, including UV irradiation, hydrogen peroxide (H₂O₂), catalytic systems, and biological treatments, is examined, highlighting their effectiveness in enhancing pollutant breakdown, increasing biodegradability, and reducing secondary pollution. Hybrid methods, including catalytic ozonation and ozone-biological treatment, show significant enhancements in process efficiency and cost-effectiveness, while effectively tackling challenges associated with energy use and byproduct generation. Despite the promising possibilities, obstacles remain, such as scalability issues, high operational costs, and the risk of generating potentially harmful transformation products. Cutting-edge approaches, including the creation of sophisticated catalysts, integration of processes, and refinement of reactor designs, are suggested to address these challenges and improve the real-world implementation of ozone-based advanced oxidation processes. This review highlights the significant potential of ozone-based advanced oxidation processes as sustainable approaches for wastewater treatment, providing an essential route to environmental conservation and safeguarding public health.
Collapse
Affiliation(s)
- Mohammadreza Mahmoodi
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 2515 Speedway, Austin, TX, 78712, USA
- Bio-Microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Esmail Pishbin
- Bio-Microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran.
| |
Collapse
|
6
|
Smith J, Fischer J, Mathew M, Haessler S. A bridge over troubled water: reverse osmosis to maintain patient care in a boil water notice. Infect Control Hosp Epidemiol 2025:1-3. [PMID: 39865745 DOI: 10.1017/ice.2025.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A citywide boil water notice necessitated an alternative solution for treating contaminated water. We report our experience using portable reverse osmosis machines to treat the municipal water to provide purified water to patient care areas where non-sterile water was needed, preventing interruptions in services like elective surgeries.
Collapse
Affiliation(s)
- Jacob Smith
- Department of Internal Medicine, Baystate Medical Center, Springfield, MA, USA
- Division of Infectious Diseases, Department of Internal Medicine, Baystate Medical Center, Springfield, MA, USA
| | - Julia Fischer
- Department of Internal Medicine, Baystate Medical Center, Springfield, MA, USA
| | - Manju Mathew
- Division of Healthcare Quality, Baystate Health, Springfield, MA, USA
| | - Sarah Haessler
- Department of Internal Medicine, Baystate Medical Center, Springfield, MA, USA
- Division of Infectious Diseases, Department of Internal Medicine, Baystate Medical Center, Springfield, MA, USA
| |
Collapse
|
7
|
Yang K, Abu-Reesh IM, He Z. Domestic wastewater treatment towards reuse by "self-supplied" microbial electrochemical system assisted UV/H 2O 2 process. WATER RESEARCH 2024; 267:122504. [PMID: 39342707 DOI: 10.1016/j.watres.2024.122504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Domestic wastewater is a potential source of water for non-potable reuse that may help address the global water, energy, and resource challenges. Herein, a "self-supplied" process through integrating microbial electrochemical system (MES) with UV/H2O2 was developed and investigated for wastewater treatment. H2O2 was "self-supplied" from MES while the MES catholyte was "self-supplied" from the final effluent of UV/H2O2. It was found that the MES accomplished > 80 % degradation of chemical oxygen demand (COD) through bioanode degradation, and produced 18 - 20 mg L-1 H2O2 via oxygen reduction reaction in the gas diffusion cathode. The MES effluent was further treated by the UV/H2O2 process, which achieved the complete removal of recalcitrant diclofenac and > 6 log inactivation of Escherichia coli. The enhanced treatment performance of UV/H2O2 was demonstrated via a comparison with the control experiments (UV or H2O2 treatment) and benefited from ·OH generation and sulfide removal. When treating the actual wastewater, the proposed system exhibited consistent treatment performance for the organic compounds and recalcitrant contaminants, and the quality of the treated water would meet the non-potable water reuse guidelines. The results of this study encourage the further exploration of emerging contaminant removal, system coordination, and use of renewable energy by the cooperation between MES and UV/H2O2.
Collapse
Affiliation(s)
- Kaichao Yang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
8
|
Zhao J, Gong W, Yin R, Shang C, Mitch WA. Control of Aromatic Disinfection Byproducts in Potable Reuse Water by the UV 222/H 2O 2 vs UV 254/H 2O 2 Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15846-15854. [PMID: 39169482 DOI: 10.1021/acs.est.4c05181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Research has demonstrated the difficulty associated with degrading the conventional 1-2 carbon aliphatic halogenated byproducts of disinfectant reactions with organic matter [disinfection byproducts (DBPs)] within advanced oxidation process (AOP) units in potable reuse trains, but the efficacy of AOP units for treating the emerging classes of halogenated aromatic DBPs is unclear. We herein demonstrate more effective removal of 28 halogenated aromatic DBPs in the UV/H2O2 AOP at 222 nm (UV222) than in the conventional UV/H2O2 AOP at 254 nm. Direct photolysis of 28 halogenated aromatic DBPs was greatly enhanced at 222 nm with fluence-based photodecay rate constants of 4.31 × 10-4-1.53 × 10-2 cm2 mJ-1, which was mainly attributed to the higher molar absorption coefficients of halogenated aromatic DBPs at 222 nm than 254 nm. Generally, quantum yields of halogenated aromatic DBPs at both 222 and 254 nm followed the order of halophenols > halohydroxybenzaldehydes > halonitrophenols. All 28 halogenated aromatic DBPs exhibit high reactivity toward HO• with second-order rate constants ranging from 2.18 × 109 to 1.15 × 1010 M-1 s-1 determined by X-ray radiolysis. The UV fluence required to achieve 90% loss of halogenated aromatic DBPs in the UV222/H2O2 AOP was 75-95% lower than that in the UV254/H2O2 AOP, and 90% removal of most tested halogenated aromatic DBPs can be achieved in the UV222/H2O2 AOP within the UV fluence levels commonly applied in potable reuse (700-1000 mJ cm-2).
Collapse
Affiliation(s)
- Jing Zhao
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Weiran Gong
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Ran Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
9
|
Wu L, Liu S, Liu H. Dichloramine Hydrolysis in Membrane Desalination Permeate: Mechanistic Insights and Implications for Oxidative Capacity in Potable Reuse Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13157-13167. [PMID: 38996057 PMCID: PMC11270831 DOI: 10.1021/acs.est.4c04547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Dichloramine (NHCl2) naturally exists in reverse osmosis (RO) permeate due to its application as an antifouling chemical in membrane-based potable reuse treatment. This study investigated mechanisms of background NHCl2 hydrolysis associated with the generation of oxidative radical species in RO permeate, established a kinetic model to predict the oxidative capacity, and examined its removal efficiency on trace organic contaminants in potable reuse. Results showed that NHCl2 hydrolysis generated transient peroxynitrite (ONOO-) and subsequently dissociated into hydroxyl radical (HO•). The maximal HO• exposure was observed at an RO permeate pH of 8.4, higher than that from typical ultraviolet (UV)-based advanced oxidation processes. The HO• exposure during NHCl2 hydrolysis also peaked at a NH2Cl-to-NHCl2 molar ratio of 1:1. The oxidative capacity rapidly degraded 1,4-dioxane, carbamazepine, atenolol, and sulfamethoxazole in RO permeate. Furthermore, background elevated carbonate in fresh RO permeate can convert HO• to carbonate radical (CO3•-). Aeration of the RO permeate removed total carbonate, significantly increased HO• exposure, and enhanced the degradation kinetics of trace organic contaminants. The kinetic model of NHCl2 hydrolysis predicted well the degradation of contaminants in RO permeate. This study provides new mechanistic insights into NHCl2 hydrolysis that contributes to the oxidative degradation of trace organic contaminants in potable reuse systems.
Collapse
Affiliation(s)
- Liang Wu
- Environmental
Toxicology Program, University of California, Riverside, California 92521, United States
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Sitao Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Haizhou Liu
- Environmental
Toxicology Program, University of California, Riverside, California 92521, United States
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
10
|
Lau SS, Bokenkamp K, Tecza A, Wagner ED, Plewa MJ, Mitch WA. Mammalian Cell Genotoxicity of Potable Reuse and Conventional Drinking Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8654-8664. [PMID: 38709862 DOI: 10.1021/acs.est.4c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Potable reuse water is increasingly part of the water supply portfolio for municipalities facing water shortages, and toxicity assays can be useful for evaluating potable reuse water quality. We examined the Chinese hamster ovary cell acute direct genotoxicity of potable reuse waters contributed by disinfection byproducts (DBPs) and anthropogenic contaminants and used the local conventional drinking waters as benchmarks for evaluating potable reuse water quality. Our results showed that treatment trains based on reverse osmosis (RO) were more effective than RO-free treatment trains for reducing the genotoxicity of influent wastewaters. RO-treated reuse waters were less genotoxic than the local tap water derived from surface water, whereas reuse waters not treated by RO were similarly genotoxic as the local drinking waters when frequent replacement of granular activated carbon limited contaminant breakthrough. The genotoxicity contributed by nonvolatile, uncharacterized DBPs and anthropogenic contaminants accounted for ≥73% of the total genotoxicity. The (semi)volatile DBPs of current research interest contributed 2-27% toward the total genotoxicity, with unregulated DBPs being more important genotoxicity drivers than regulated DBPs. Our results underscore the need to look beyond known, (semi)volatile DBPs and the importance of determining whole water toxicity when assessing the quality of disinfected waters.
Collapse
Affiliation(s)
- Stephanie S Lau
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Katherine Bokenkamp
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, Illinois 61801, United States
| | - Aleksander Tecza
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, Illinois 61801, United States
| | - Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, Illinois 61801, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1101 West Peabody Dr., Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, Illinois 61801, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
11
|
Zhong Y, Chen Y, Ong SL, Hu J, Balakrishnan V, Ang WS. Disinfection by-products control in wastewater effluents treated with ozone and biological activated carbon followed by UV/Chlor(am)ine processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171317. [PMID: 38428610 DOI: 10.1016/j.scitotenv.2024.171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Sequential utilization of ozone (O3) and biological activated carbon (BAC) followed by UV/chlor(am)ine advanced oxidation process (AOP) has drawn attention in water reuse. However, the formation of disinfection by-products (DBPs) in this process is less evaluated. This study investigated the DBP formation and the relevant toxicity during the O3-BAC-UV/chlor(am)ine treatment of sand-filtered municipal secondary effluent. DBP formation in UV/chlorine and UV/dichloramine (NHCl2) processes were compared, where the impact of key operational parameters (e.g., UV wavelength, pH) on DBP formation were comprehensively evaluated. O3-BAC significantly reduced DBP formation potential (DBPFP) (58.2 %). Compared to UV/chlorine AOP, UV/NHCl2 AOP reduced DBP formation by 29.7 % in short-time treatment, while insignificantly impacting on DBPFP (p > 0.05). UV/NHCl2 AOP also led to lower calculated cytotoxicity (67.7 %) and genotoxicity (55.9 %) of DBPs compared to UV/chlorine AOP. Compared to 254 nm UV light, the utilization of 285 nm UV light decreased the formation of DBPs in wastewater treated with the UV/chlorine AOP and UV/NHCl2 AOP by 31.3 % and 19.2 %, respectively. However, the cytotoxicity and genotoxicity in UV/NHCl2 AOP using 285 nm UV light increased by 83.4 % and 58.5 %, respectively, compared to 254 nm. The concentration of DBPs formed in the UV/NHCl2 AOP at pH 8 was 54.3 % lower than that at pH 7, suggesting a better control of DBPs at alkaline condition. In the presence of bromide, UV/NHCl2 AOP tended to generate more brominated DBPs than UV/chlorine AOP. Overall, UV/NHCl2 AOP resulted in lower concentration and toxicity of DBPs compared to UV/chlorine AOP.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Yiwei Chen
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Say Leong Ong
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Viswanath Balakrishnan
- Water Reclamation (Plants) Department, PUB Singapore, 40 Scotts Road, Environment Building, Singapore 228231, Singapore
| | - Wui Seng Ang
- Water Reclamation (Plants) Department, PUB Singapore, 40 Scotts Road, Environment Building, Singapore 228231, Singapore
| |
Collapse
|
12
|
Rathinam Thiruppathi Venkadajapathy V, Sivaperumal S. Tailoring functional two-dimensional nanohybrids: A comprehensive approach for enhancing photocatalytic remediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116221. [PMID: 38547728 DOI: 10.1016/j.ecoenv.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Photocatalysis is gaining prominence as a viable alternative to conventional biohazard treatment technologies. Two-dimensional (2D) nanomaterials have become crucial for fabricating novel photocatalysts due to their nanosheet architectures, large surface areas, and remarkable physicochemical properties. Furthermore, a variety of applications are possible with 2D nanomaterials, either in combination with other functional nanoparticles or by utilizing their inherent properties. Henceforth, the review commences its exploration into the synthesis of these materials, delving into their inherent properties and assessing their biocompatibility. Subsequently, an overview of mechanisms involved in the photocatalytic degradation of pollutants and the processes related to antimicrobial action is presented. As an integral part of our review, we conduct a systematic analysis of existing challenges and various types of 2D nanohybrid materials tailored for applications in the photocatalytic degradation of contaminants and the inactivation of pathogens through photocatalysis. This investigation will aid to contribute to the formulation of decision-making criteria and design principles for the next generation of 2D nanohybrid materials. Additionally, it is crucial to emphasize that further research is imperative for advancing our understanding of 2D nanohybrid materials.
Collapse
|
13
|
Torre A, Vázquez-Rowe I, Parodi E, Kahhat R. A multi-criteria decision framework for circular wastewater systems in emerging megacities of the Global South. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169085. [PMID: 38056636 DOI: 10.1016/j.scitotenv.2023.169085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Lima faces increasing water stress due to demographic growth, climate change and outdated water management infrastructure. Moreover, its highly centralized wastewater management system is currently unable to recover water or other resources. Hence, the primary aim of this study is to identify suitable wastewater treatment alternatives for both eutrophication mitigation and indirect potable reuse (IPR). For eutrophication mitigation, we examined MLE, Bardenpho, Step-feed, HF-MBR, and FS-MBR. For IPR, we considered secondary treatment+UF + RO + AOP or MBR + RO + AOP. These alternatives form part of a WWTP network at a district level, aiding Lima's pursuit of a circular economy approach. This perspective allows reducing environmental impacts through resource recovery, making the system more resilient to disasters and future water shortages. The methods used to assess these scenarios were Life Cycle Assessment for the environmental dimension; Life Cycle Costing for the economic perspective; and Multi-Criteria Decision Analysis to integrate both the quantitative tools aforementioned and qualitative criteria for social and techno-operational dimensions, which combined, strengthen the decision-making process. The decision-making steered towards Bardenpho for eutrophication abatement when environmental and economic criteria were prioritized or when the four criteria were equally weighted, while HF-MBR was the preferred option when techno-operational and social aspects were emphasized. In this scenario, global warming (GW) impacts ranged from 0.23 to 0.27 kg CO2eq, eutrophication mitigation varied from 6.44 to 7.29 g PO4- equivalent, and costs ranged between 0.12 and 0.17 €/m3. Conversely, HF-MBR + RO + AOP showed the best performance when IPR was sought from the outset. In the IPR scenario, GW impacts were significantly higher, at 0.46-0.51 kg CO2eq, eutrophication abatement was above 98 % and costs increased to ca. 0.44 €/m3.
Collapse
Affiliation(s)
- Andre Torre
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru
| | - Ian Vázquez-Rowe
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru.
| | - Eduardo Parodi
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru
| | - Ramzy Kahhat
- Peruvian LCA & Industrial Ecology Network (PELCAN), Department of Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, San Miguel 15088, Lima, Peru
| |
Collapse
|
14
|
Wang HB, Wu YH, Sun YG, Xu YQ, Chen Z, Xue S, Zhang ZW, Ikuno N, Koji N, Hu HY. Flow-through electrode system (FES): An effective approach for biofouling control of reverse osmosis membranes for municipal wastewater reclamation. WATER RESEARCH 2024; 249:120890. [PMID: 38016222 DOI: 10.1016/j.watres.2023.120890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/01/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Emerging electrochemical disinfection techniques provide a promising pathway to the biofouling control of reverse osmosis (RO) process. However, the comparative effectiveness and mechanism of it under flow-through conditions with low voltage remains unclear. This study investigated the effect of a flow-through electrode system (FES) with both direct current (DC) and alternating pulse current (AC) on RO biofouling control compared with chlorine disinfection. At the initial stage of biofouling development, the normalized flux of AC-FES (67% on Day 5) was saliently higher than the control group (56% on Day 5). Subsequently, the normalized fluxes of each group tended similarity in their differences until the 20th day. After mild chemical cleaning, the RO membrane in the AC-FES group reached the highest chemical cleaning efficiency of 58%, implying its foulant was more readily removable and the biofouling was more reversible. The biofouling layer in the DC-FES group was also found to be easily cleanable. Morphological analysis suggested that the thickness and compactness of the fouling layers were the major reasons for the fouling behavior difference. The abundance of 4 fouling-related abundant genera (>1%), which were Pseudomonas, Thiobacillus, Sphingopyxis, and Mycobacterium exhibited a salient correlation with the biofouling degree. The operating cost of FES was also lower than that of chlorine disinfection. In summary, AC-FES is a promising alternative to chlorine disinfection in RO biofouling control, as it caused less and easy-cleaning biofouling layer mainly due to two advantages: a) reducing the regrowth potential after disinfection of the bacteria, leading to alleviated initial fouling, (b) reshaping the microbial community to those with weaker biofilm formation capacity.
Collapse
Affiliation(s)
- Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Yi-Ge Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu-Qing Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Song Xue
- CSCEC SCIMEE Sci.& Tech. Co., Ltd, Chengdu 610045, China
| | - Zhuo-Wei Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Nakata Koji
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
15
|
Cochran KH, Westerman DC, Montagner CC, Coffin S, Diaz L, Fryer B, Harraka G, Xu EG, Huang Y, Schlenk D, Dionysiou DD, Richardson SD. Chlorination of Emerging Contaminants for Application in Potable Wastewater Reuse: Disinfection Byproduct Formation, Estrogen Activity, and Cytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:704-716. [PMID: 38109774 DOI: 10.1021/acs.est.3c05978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
With increasing water scarcity, many utilities are considering the potable reuse of wastewater as a source of drinking water. However, not all chemicals are removed in conventional wastewater treatment, and disinfection byproducts (DBPs) can form from these contaminants when disinfectants are applied during or after reuse treatment, especially if applied upstream of advanced treatment processes to control biofouling. We investigated the chlorination of seven priority emerging contaminants (17β-estradiol, estrone, 17α-ethinylestradiol, bisphenol A (BPA), diclofenac, p-nonylphenol, and triclosan) in ultrapure water, and we also investigated the impact of chlorination on real samples from different treatment stages of an advanced reuse plant to evaluate the role of chlorination on the associated cytotoxicity and estrogenicity. Many DBPs were tentatively identified via liquid chromatography (LC)- and gas chromatography (GC)-high resolution mass spectrometry, including 28 not previously reported. These encompassed chlorinated, brominated, and oxidized analogs of the parent compounds as well as smaller halogenated molecules. Chlorinated BPA was the least cytotoxic of the DBPs formed but was highly estrogenic, whereas chlorinated hormones were highly cytotoxic. Estrogenicity decreased by ∼4-6 orders of magnitude for 17β-estradiol and estrone following chlorination but increased 2 orders of magnitude for diclofenac. Estrogenicity of chlorinated BPA and p-nonylphenol were ∼50% of the natural/synthetic hormones. Potential seasonal differences in estrogen activity of unreacted vs reacted advanced wastewater treatment field samples were observed.
Collapse
Affiliation(s)
- Kristin H Cochran
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Danielle C Westerman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Cassiana C Montagner
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Institute of Chemistry, University of Campinas, São Paulo 13083-970, Brazil
| | - Scott Coffin
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Lorivic Diaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Benjamin Fryer
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gary Harraka
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Elvis Genbo Xu
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Ying Huang
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
- School of the Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
16
|
Wang J, Xu J, Kim J, Huang CH. Mechanistic Insight for Disinfection Byproduct Formation Potential of Peracetic Acid and Performic Acid in Halide-Containing Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18898-18908. [PMID: 37489812 PMCID: PMC10690735 DOI: 10.1021/acs.est.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Peracetic acid (PAA) and performic acid (PFA) are two major peroxyacid (POA) oxidants of growing usage. This study reports the first systematic evaluation of PAA, PFA, and chlorine for their disinfection byproduct (DBP) formation potential in wastewater with or without high halide (i.e., bromide or iodide) concentrations. Compared with chlorine, DBP formation by PAA and PFA was minimal in regular wastewater. However, during 24 h disinfection of saline wastewater, PAA surprisingly produced more brominated and iodinated DBPs than chlorine, while PFA effectively kept all tested DBPs at bay. To understand these phenomena, a kinetic model was developed based on the literature and an additional kinetic investigation of POA decay and DBP (e.g., bromate, iodate, and iodophenol) generation in the POA/halide systems. The results show that PFA not only oxidizes halides 4-5 times faster than PAA to the corresponding HOBr or HOI but also efficiently oxidizes HOI/IO- to IO3-, thereby mitigating iodinated DBP formation. Additionally, PFA's rapid self-decay and slow release of H2O2 limit the HOBr level over the long-term oxidation in bromide-containing water. For saline water, this paper reveals the DBP formation potential of PAA and identifies PFA as an alternative to minimize DBPs. The new kinetic model is useful to optimize oxidant selection and elucidate involved DBP chemistry.
Collapse
Affiliation(s)
- Junyue Wang
- School of Civil and Environmental
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | - Juhee Kim
- School of Civil and Environmental
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School of Civil and Environmental
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Morrison C, Hogard S, Pearce R, Mohan A, Pisarenko AN, Dickenson ERV, von Gunten U, Wert EC. Critical Review on Bromate Formation during Ozonation and Control Options for Its Minimization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18393-18409. [PMID: 37363871 PMCID: PMC10690720 DOI: 10.1021/acs.est.3c00538] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Ozone is a commonly applied disinfectant and oxidant in drinking water and has more recently been implemented for enhanced municipal wastewater treatment for potable reuse and ecosystem protection. One drawback is the potential formation of bromate, a possible human carcinogen with a strict drinking water standard of 10 μg/L. The formation of bromate from bromide during ozonation is complex and involves reactions with both ozone and secondary oxidants formed from ozone decomposition, i.e., hydroxyl radical. The underlying mechanism has been elucidated over the past several decades, and the extent of many parallel reactions occurring with either ozone or hydroxyl radicals depends strongly on the concentration, type of dissolved organic matter (DOM), and carbonate. On the basis of mechanistic considerations, several approaches minimizing bromate formation during ozonation can be applied. Removal of bromate after ozonation is less feasible. We recommend that bromate control strategies be prioritized in the following order: (1) control bromide discharge at the source and ensure optimal ozone mass-transfer design to minimize bromate formation, (2) minimize bromate formation during ozonation by chemical control strategies, such as ammonium with or without chlorine addition or hydrogen peroxide addition, which interfere with specific bromate formation steps and/or mask bromide, (3) implement a pretreatment strategy to reduce bromide and/or DOM prior to ozonation, and (4) assess the suitability of ozonation altogether or utilize a downstream treatment process that may already be in place, such as reverse osmosis, for post-ozone bromate abatement. A one-size-fits-all approach to bromate control does not exist, and treatment objectives, such as disinfection and micropollutant abatement, must also be considered.
Collapse
Affiliation(s)
- Christina
M. Morrison
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| | - Samantha Hogard
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471-0911, United
States
- The
Charles Edward Via, Jr. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Robert Pearce
- Hampton
Roads Sanitation District, P.O. Box 5911, Virginia Beach, Virginia 23471-0911, United
States
- The
Charles Edward Via, Jr. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Aarthi Mohan
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| | - Aleksey N. Pisarenko
- Trussell
Technologies, Inc., 380
Stevens Avenue, Suite 212, Solana Beach, California 92075, United States
| | - Eric R. V. Dickenson
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| | - Urs von Gunten
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dubendorf, Switzerland
- School of
Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne
(EPFL), 1015 Lausanne, Switzerland
| | - Eric C. Wert
- Southern
Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, Nevada 89193-9954, United
States
| |
Collapse
|
18
|
Hua Z, Liang J, Wang D, Zhou Z, Fang J. Formation Mechanisms of Nitro Products from Transformation of Aliphatic Amines by UV/Chlorine Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18754-18764. [PMID: 37294018 DOI: 10.1021/acs.est.3c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Formation of nitrogenous disinfection byproducts from aliphatic amines is a widespread concern owing to the serious health risks associated with them. However, the mechanisms of transforming aliphatic amines and forming nitro products in the UV/chlorine process have rarely been discussed, which are investigated in this work. Initially, secondary amines (R1R2NH) are transformed into secondary organic chloramines (R1R2NCl) via chlorination. Subsequently, radicals, such as HO• and Cl•, are found to contribute predominantly to such transformations. The rate constants at which HO•, Cl•, and Cl2•- react with R1R2NCl are (2.4-5.1) × 109, (1.5-3.8) × 109, and (1.2-6.1) × 107 M-1 s-1, respectively. Consequently, R1R2NCl are transformed into primary amines (R1NH2/R2NH2) and chlorinated primary amines (R1NHCl/R2NHCl and R1NCl2/R2NCl2) by excess chlorine. Furthermore, primarily driven by UV photolysis, chlorinated primary amines can be transformed into nitroalkanes with conversion rates of ∼10%. Dissolved oxygen and free chlorine play crucial roles in forming nitroalkanes, and post-chlorination can further form chloronitroalkanes, such as trichloronitromethane (TCNM). Radicals are involved in forming TCNM in the UV/chlorine process. This study provides new insights into the mechanisms of transforming aliphatic amines and forming nitro products using the UV/chlorine process.
Collapse
Affiliation(s)
- Zhechao Hua
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jieying Liang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ding Wang
- General Institute of Water Resources and Hydropower Planning and Design, Beijing 100120, China
| | - Zhihong Zhou
- Guangzhou Ecological Environmental Monitoring Center, Guangzhou 510006, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
19
|
Gao L, Li Y, Yao W, Yu G, Wang H, Wang Y. Formation of dichloroacetic acid and dichloroacetamide from phenicol antibiotic abatement during ozonation and post-chlor(am)ination. WATER RESEARCH 2023; 245:120600. [PMID: 37713791 DOI: 10.1016/j.watres.2023.120600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
This study investigated the formation of dichloroacetamide (DCAM) and dichloroacetic acid (DCAA) from the abatement of three phenicol antibiotics (PABs, chloramphenicol, thiamphenicol, and florfenicol) during ozonation and post-chlor(am)ination. Results show that the three PABs have a low ozone reactivity (kO3 = 0.11‒0.12 M-1 s-1), and therefore are mainly abated through the hydrogen abstraction mechanism by hydroxyl radicals (•OH) during ozonation. During PAB degradation, the carboxamide moiety in the parent molecules can be cleaved off by •OH attack and thus gives rise to DCAM. The formed DCAM can then be further oxidized by O3 and/or •OH to DCAA as a more stable transformation product (TP). When the three PABs were adequately abated (abatement efficiency of ∼82 %‒95 %), the molar yields of DCAM and DCAA were determined to be 2.79 %‒4.71 % and 32.9 %‒37.2 %, respectively. Furthermore, post-chloramination of the ozonation effluents increased the yields of DCAM and DCAA slightly to 4.20 %‒6.45 % and 39.0 %‒41.1 %, respectively. In comparison, post-chlorination eliminated DCAM in the solutions, but significantly increased DCAA yields to ∼100 % due to the further conversion of DCAM and other ozonation TPs to DCAA by chlorine oxidation. The results of this study indicate that high yields of DCAM and DCAA can be generated from PAB degradation during ozonation, and post-chlorination and post-chloramination will result in very different fates of DCAM and DCAA in the disinfected effluent. The formation and transformation of DCAM and DCAA during PAB degradation need to be taken into account when selecting multi-barrier treatment processes for the treatment of PAB-containing water.
Collapse
Affiliation(s)
- Lingwei Gao
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| | - Yin Li
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| | - Weikun Yao
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environmental and Ecology, Beijing Normal University, Zhuhai 519000, China
| | - Huijiao Wang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Yujue Wang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Dong H, Aziz MT, Richardson SD. Transformation of Algal Toxins during the Oxidation/Disinfection Processes of Drinking Water: From Structure to Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12944-12957. [PMID: 37603687 DOI: 10.1021/acs.est.3c01912] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
With the increase of algal blooms worldwide, drinking water resources are threatened by the release of various algal toxins, which can be hepatotoxic, cytotoxic, or neurotoxic. Because of their ubiquitous occurrence in global waters and incomplete removal in conventional drinking water treatment, oxidation/disinfection processes have become promising alternative treatment options to destroy both the structures and toxicity of algal toxins. This Review first summarizes the occurrence and regulation of algal toxins in source water and drinking water. Then, the transformation kinetics, disinfection byproducts (DBPs)/transformation products (TPs), pathways, and toxicity of algal toxins in water oxidation/disinfection processes, including treatment by ozonation, chlorination, chloramination, ultraviolet-based advanced oxidation process, and permanganate, are reviewed. For most algal toxins, hydroxyl radicals (HO•) exhibit the highest oxidation rate, followed by ozone and free chlorine. Under practical applications, ozone and chlorine can degrade most algal toxins to meet water quality standards. However, the transformation of the parent structures of algal toxins by oxidation/disinfection processes does not guarantee a reduction in toxicity, and the formation of toxic TPs should also be considered, especially during chlorination. Notably, the toxicity variation of algal toxins is associated with the chemical moiety responsible for toxicity (e.g., Adda moiety in microcystin-LR and uracil moiety in cylindrospermopsin). Moreover, the formation of known halogenated DBPs after chlorination indicates that toxicity in drinking water may shift from toxicity contributed by algal toxins to toxicity contributed by DBPs. To achieve the simultaneous toxicity reduction of algal toxins and their TPs, optimized oxidation/disinfection processes are warranted in future research, not only for meeting water quality standards but also for effective reduction of toxicity of algal toxins.
Collapse
Affiliation(s)
- Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Md Tareq Aziz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
21
|
Cai HY, Wu QY, Ouyang WY, Hu HY, Wang WL. Efficient removal of electroneutral carbonyls by combined vacuum-UV oxidation and anion-exchange resin adsorption: mechanism, model simulation, and optimization. WATER RESEARCH 2023; 243:120435. [PMID: 37536248 DOI: 10.1016/j.watres.2023.120435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Electroneutral carbonyls (ENCs) with low molecular weights (e.g., aldehydes and ketones) are recalcitrant to single water treatment process to achieve ultralow concentration. Residual ENCs are present in reverse osmosis permeate and pose risks to human health during potable use or industrial application in manufacturing processes. Herein, a combined vacuum-UV (VUV) oxidation and anion-exchange resin (AER) adsorption method was developed to treat the ENCs and reduce total organic carbon (TOC) to an ultralow concentration (< 5 μg/L) with high efficiency and at low cost. VUV-AER was 2.1-2.4 times more efficient than VUV alone for the removal of TOC. VUV oxidized the ENCs to electronegative carboxylic acids, which were adsorbed by the AER through electrostatic interactions and hydrogen bonding. When the VUV fluence was lower than 643 mJ cm-2, the AER could not achieve ultralow TOC removal of ENCs. The treat capacity of 1500-2900 valid bed volume (BVs) was achieved after increasing the VUV fluence to 1929 mJ cm-2. The AER could more efficiently adsorb carboxylic acids that contained more carboxylic groups or shorter carbon chain. Acetate was identified as the primary breakthrough product at relatively low VUV fluence, and oxalate was the main byproduct at relatively high VUV fluence. A mathematical model to predict TOC breakthrough was developed considering the VUV-oxidation kinetics and the AER breakthrough curve. The model was used to optimize the method to maximize TOC removal and minimize energy consumption. These results imply that VUV-AER is technically feasible and economically applicable to eliminate recalcitrant ENCs to ultralow concentration for the production of water requires high quality (e.g., potable water or electronic-grade ultrapure water).
Collapse
Affiliation(s)
- Han-Ying Cai
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Institute of Environment and Ecology, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Institute of Environment and Ecology, Tsinghua University, Shenzhen 518055, China
| | - Wan-Yue Ouyang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Institute of Environment and Ecology, Tsinghua University, Shenzhen 518055, China
| | - Hong-Ying Hu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Institute of Environment and Ecology, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Institute of Environment and Ecology, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
22
|
Yang H, Xu L, Li Y, Liu H, Wu X, Zhou P, Graham NJD, Yu W. Fe xO/FeNC modified activated carbon packing media for biological slow filtration to enhance the removal of dissolved organic matter in reused water. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131736. [PMID: 37295334 DOI: 10.1016/j.jhazmat.2023.131736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/04/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
The biological slow filtration reactor (BSFR) process has been found to be moderately effective for the removal of refractory dissolved organic matter (DOM) in the treatment of reused water. In this study, bench scale experiments were conducted using a mixture of landscape water and concentrated landfill leachate as feed water, to compare a novel iron oxide (FexO)/FeNC modified activated carbon (FexO@AC) packed BSFR, with a conventional activated carbon packed BSFR (AC-BSFR), operated in parallel. The results showed that the FexO@AC packed BSFR had a refractory DOM removal rate of 90%, operated at a hydraulic retention time (HRT) of 10 h at room temperature for 30 weeks, while under the same conditions the removal by the AC-BSFR was only 70%. As a consequence, the treatment by the FexO@AC packed BSFR substantially reduced the formation potential of trihalomethanes, and to a less extent, haloacetic acids. The modification of FexO/FeNC media raised the conductivity and the oxygen reduction reaction (ORR) efficiency of the AC media to accelerate the anaerobic digestion by consuming the electrons that are generated by anaerobic digestion itself, which lead to the marked improvement in refractory DOM removal.
Collapse
Affiliation(s)
- Hankun Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yujuan Li
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment and Municipal Engineering, Qingdao Technological University, Qingdao 266033, Shandong, China
| | - Hongyu Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Colleges of Forestry, Northeast Forestry University, Mail Box 306, Hexing Road 26, Harbin, China
| | - Xue Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Zhou
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
23
|
Zhao J, Payne EM, Liu B, Shang C, Blatchley ER, Mitch WA, Yin R. Making waves: Opportunities and challenges of applying far-UVC radiation in controlling micropollutants in water. WATER RESEARCH 2023; 241:120169. [PMID: 37290191 DOI: 10.1016/j.watres.2023.120169] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Concerns over human health risks associated with chemical contaminants (micropollutants) in drinking waters are rising due to the increased use of reclaimed water or water supplies impacted by upstream wastewater discharges. Ultraviolet (UV)-driven advanced oxidation processes (UV-AOPs) using radiation sources that emit at 254 nm have been developed as advanced treatments to degrade contaminants, while those UV-AOPs can be improved towards higher radical yields and lower byproduct formation. Several previous studies have suggested that Far-UVC radiation (200-230 nm) is a promising radiance source to drive UV-AOPs because the direct photolysis of micropollutants and production of reactive species from oxidant precursors can both be improved. In this study, we summarize from the literature the photodecay rate constants of five micropollutants by direct UV photolysis, which are higher at 222 than 254 nm. We experimentally determine the molar absorption coefficients at 222 and 254 nm of eight oxidants commonly used in water treatment and present the quantum yields of the oxidant photodecay. Our experimental results also show that the concentrations of HO·, Cl·, and ClO· generated in the UV/chlorine AOP can be increased by 5.15-, 15.76-, and 2.86-fold, respectively, by switching the UV wavelength from 254 to 222 nm. We also point out the challenges of applying Far-UVC for micropollutant abatement in water treatment, including the strong light screening effect of matrix components (e.g., carbonate, nitrate, bromide, and dissolved organic matter), the formation of byproducts via new reaction pathways, and the needs to improve the energy efficiency of the Far-UVC radiation sources.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Emma M Payne
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States
| | - Bryan Liu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, United States; Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
24
|
Rodriguez EE, Bott CB, Wigginton KR, Love NG. In vitro bioassays to monitor complex chemical mixtures at a carbon-based indirect potable reuse plant. WATER RESEARCH 2023; 241:120094. [PMID: 37276655 DOI: 10.1016/j.watres.2023.120094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Potable water reuse technologies are used to treat wastewater to drinking water quality to help sustain a community's water resources. California has long led the adoption of potable water reuse technologies in the United States and more states are exploring these technologies as water resources decline. Reuse technologies also need to achieve adequate reductions in microbial and chemical contaminant risks to meet public health goals and secure public acceptance. In vitro bioassays are a useful tool for screening if reuse treatment processes adequately reduce toxicity associated with a range of chemical classes that are contaminants of concern. In this study, we used an aryl hydrocarbon receptor (AhR) and an estrogen receptor luciferase bioassay to detect the presence of dioxin-like and estrogenic compounds across a 3800 m3/d carbon-based indirect potable reuse plant that uses carbon-based treatment (SWIFT-RC). Our results demonstrate significant removal of dioxin-like compounds across the SWIFT-RC treatment train. Estrogenicity declined across the treatment train for some months but was extremely variable and low with many samples falling below the method quantification level; consequently, we were not able to reliably determine estrogenicity trends for SWIFT-RC. Comparing the bioanalytical equivalent concentrations detected in the SWIFT-RC water with established monitoring trigger levels from the state of California suggests that SWIFT-RC produced water that met the bioassay guidelines. The log total organic carbon concentration and AhR assay equivalent concentrations are weakly correlated when data across all SWIFT-RC processes are included. Overall, this research demonstrates the performance of in vitro bioassays at a demonstration-scale carbon-based IPR system and highlights both the potential utility and challenges associated with these methods for assessing system performance.
Collapse
Affiliation(s)
- Enrique E Rodriguez
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Charles B Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Krista R Wigginton
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nancy G Love
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Masjoudi M, Mohseni M. Photolysis of chloramines in vacuum-UV and vacuum-UV/chlorine advanced oxidation processes for removal of 1,4-dioxane: Effect of water matrix, kinetic modeling, and implications for potable reuse. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131454. [PMID: 37094441 DOI: 10.1016/j.jhazmat.2023.131454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Advanced oxidation processes (AOPs) are a key step in eliminating persistent micropollutants in potable reuse trains. Under such conditions, chloramines are an inevitable component in the AOP feed water given their application as an antifouling agent for the upstream membrane processes. In cases when other oxidants, such as free chlorine, are to be used in the AOP treatment, the effect of background chloramines and any potential interplays between the oxidants should be considered. In this study, vacuum-UV (VUV) and VUV/Cl2 have been proposed as promising AOP alternatives for potable reuse and the effect of chloramine photolysis has been considered on the removal of 1,4-dioxane. Results indicated that while presence of chloramine reduces the treatment efficiency in the VUV AOP, coexistence of free chlorine and chloramine oxidants significantly improves 1,4-dioxane degradation rates. Experimental data and kinetic modeling both confirmed the roles of OH• and Cl2•- in 1,4-dioxane removal with 62.5% and 32.5% contribution in the VUV/Cl2/chloramines, respectively. Among the other water matrix conditions, Cl- was shown to improve the degradation rates while HCO3- suppressed the reactions by scavenging radical species. Overall, the findings of this research are informative for the design and development of VUV AOPs at small scale potable reuse facilities.
Collapse
Affiliation(s)
- Mahsa Masjoudi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Budd R, Teerlink J, Alaimo C, Wong L, Young TM. Sub-sewershed Monitoring to Elucidate Down-the-Drain Pesticide Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5404-5413. [PMID: 36961760 PMCID: PMC10077586 DOI: 10.1021/acs.est.2c07443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides have been reported in treated wastewater effluent at concentrations that exceed aquatic toxicity thresholds, indicating that treatment may be insufficient to adequately address potential pesticide impacts on aquatic life. Gaining a better understanding of the relative contribution from specific use patterns, transport pathways, and flow characteristics is an essential first step to informing source control measures. The results of this study are the first of their kind, reporting pesticide concentrations at sub-sewershed sites within a single sewer catchment to provide information on the relative contribution from various urban sources. Seven monitoring events were collected from influent, effluent, and seven sub-sewershed sites to capture seasonal variability. In addition, samples were collected from sites with the potential for relatively large mass fluxes of pesticides (pet grooming operations, pest control operators, and laundromats). Fipronil and imidacloprid were detected in most samples (>70%). Pyrethroids were detected in >50% of all influent and lateral samples. There were significant removals of pyrethroids from the aqueous process stream within the facility to below reporting limits. Imidacloprid and fiproles were the only pesticides that were detected above reporting limits in effluent, highlighting the importance of source identification and control for the more hydrophilic compounds. Single source monitoring revealed large contributions of fipronil, imidacloprid, and permethrin originating from a pet groomer, with elevated levels of cypermethrin at a commercial laundry location. The results provide important information needed to prioritize future monitoring efforts, calibrate down-the-drain models, and identify potential mitigation strategies at the site of pesticide use to prevent introduction to sewersheds.
Collapse
Affiliation(s)
- Robert Budd
- Department
of Pesticide Regulation, Surface Water Protection
Program, California Environmental Protection Agency, Sacramento, California95812, United States
| | - Jennifer Teerlink
- Department
of Pesticide Regulation, Surface Water Protection
Program, California Environmental Protection Agency, Sacramento, California95812, United States
| | - Christopher Alaimo
- Department
of Civil and Environmental Engineering, University of California, Davis, California95616, United States
| | - Luann Wong
- Department
of Civil and Environmental Engineering, University of California, Davis, California95616, United States
| | - Thomas M. Young
- Department
of Civil and Environmental Engineering, University of California, Davis, California95616, United States
| |
Collapse
|
27
|
Liu J, Zhao C, Zheng J, Siddique MS, Yang H, Yu W. Efficiently photocatalysis activation of peroxydisulfate by Fe-doped g-C 3N 5 for pharmaceuticals and personal care products degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121182. [PMID: 36736570 DOI: 10.1016/j.envpol.2023.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Peroxydisulfate (PDS) based advanced oxidation processes (AOPs) are widely used for the degradation of pharmaceutical and personal care products (PPCP) in wastewater treatment. In this study, a Fe-doped g-C3N5 (Fe@g-C3N5) was synthesized as a photocatalyst for catalyzing the PDS-based AOPs to degrade tetracycline hydrochloride (TH) at pH 3 and Naproxen (NPX) at pH 7. The photocatalytic performance of Fe@g-C3N5 was 19% and 67% higher than g-C3N5 and g-C3N4 for degradation of TH at pH 3, respectively, while it was 21% and 35% at pH 7. The Fe:N ratio in Fe@g-C3N5, was calculated as 1:3.79, indicating that the doped Fe atom formed a FeN4 structure with an adjacent two-layer graphite structure of g-C3N5, which improved the charge separation capacity of g-C3N5 and act as a new reaction center that can efficiently combine and catalyze the PDS to radicals. Although the intrinsic photo-degradation performance is weak, the photocatalytic performance of Fe@g-C3N5 has great room for the improvement and application in wastewater treatment.
Collapse
Affiliation(s)
- Juanjuan Liu
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, 266580, PR China; Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, Binzhou University, 391 Huanghe 5th Rd, Bincheng District, Binzhou, 256600, PR China
| | - Chaocheng Zhao
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, 266580, PR China
| | - Jingtang Zheng
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, 266580, PR China
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hankun Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
28
|
Chen X, Huang N, Wang W, Wang Q, Hu HY. Enrichment and analysis methods for trace dissolved organic carbon in reverse osmosis effluent: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161393. [PMID: 36621505 DOI: 10.1016/j.scitotenv.2023.161393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Reverse osmosis (RO) is an essential unit for producing high-quality ultrapure water. The increasingly severe water shortage and water quality deterioration result in reclaimed water as an alternative source for ultrapure water production. However, when using reclaimed water as water sources, the dissolved organic carbon (DOC) in RO permeate exhibits higher concentration and more sophisticated components than when using clean water sources, thus affecting the effluent quality of ultrapure water and the effectiveness of subsequent treatment processes. To optimize the treatment processes, it is crucial to analyze the components of DOC. This review summarizes the enrichment and analysis methods of trace organic matter, and provides recommendations for the analysis and characterization of DOC in RO permeate. The study summarizes the operating conditions and enrichment properties of different enrichment methods, including solid-phase extraction, liquid-liquid extraction, purge-and-trap, lyophilization and rotary evaporation for low-concentration organic compounds, compares the applicability and limitations of different enrichment methods, and proposes the principles for the selection of enrichment methods. In this review, we discuss the application of mass spectrometry (including Fourier transform ion cyclotron resonance mass spectrometry) in the analysis of DOC components, and focus on data processing as the key procedure in analysis of DOC in RO permeate. Despite the advantages of mass spectrometry, an applicable workflow and open-source database are required to improve the reliability of the analysis. The treatability properties of DOC are suggested to be determined by analyzing the component characteristics or in combination with common removal techniques. This study provides theoretical support for a comprehensive analysis of DOC in RO permeates to improve the removal effect.
Collapse
Affiliation(s)
- Xiaowen Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Nan Huang
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China.
| | - Wenlong Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qi Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| |
Collapse
|
29
|
Huo Z, Kim YJ, Chen Y, Song T, Yang Y, Yuan Q, Kim SW. Hybrid energy harvesting systems for self-powered sustainable water purification by harnessing ambient energy. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2023; 17:118. [PMID: 37096021 PMCID: PMC10115484 DOI: 10.1007/s11783-023-1718-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 05/03/2023]
Abstract
The development of self-powered water purification technologies for decentralized applications is crucial for ensuring the provision of drinking water in resource-limited regions. The elimination of the dependence on external energy inputs and the attainment of self-powered status significantly expands the applicability of the treatment system in real-world scenarios. Hybrid energy harvesters, which convert multiple ambient energies simultaneously, show the potential to drive self-powered water purification facilities under fluctuating actual conditions. Here, we propose recent advancements in hybrid energy systems that simultaneously harvest various ambient energies (e.g., photo irradiation, flow kinetic, thermal, and vibration) to drive water purification processes. The mechanisms of various energy harvesters and point-of-use water purification treatments are first outlined. Then we summarize the hybrid energy harvesters that can drive water purification treatment. These hybrid energy harvesters are based on the mechanisms of mechanical and photovoltaic, mechanical and thermal, and thermal and photovoltaic effects. This review provides a comprehensive understanding of the potential for advancing beyond the current state-of-the-art of hybrid energy harvester-driven water treatment processes. Future endeavors should focus on improving catalyst efficiency and developing sustainable hybrid energy harvesters to drive self-powered treatments under unstable conditions (e.g., fluctuating temperatures and humidity).
Collapse
Affiliation(s)
- Zhengyang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 China
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Young Jun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Yuying Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 China
| | - Tianyang Song
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 China
| | - Yang Yang
- Institute of Scientific and Technical Information of China, Beijing, 100038 China
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 China
| | - Sang Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| |
Collapse
|
30
|
Bradley PM, Romanok KM, Smalling KL, Focazio MJ, Evans N, Fitzpatrick SC, Givens CE, Gordon SE, Gray JL, Green EM, Griffin DW, Hladik ML, Kanagy LK, Lisle JT, Loftin KA, Blaine McCleskey R, Medlock-Kakaley EK, Navas-Acien A, Roth DA, South P, Weis CP. Bottled water contaminant exposures and potential human effects. ENVIRONMENT INTERNATIONAL 2023; 171:107701. [PMID: 36542998 PMCID: PMC10123854 DOI: 10.1016/j.envint.2022.107701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.
Collapse
Affiliation(s)
| | | | | | | | - Nicola Evans
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | | | - Emily M Green
- U.S. Environmental Protection Agency, Durham, NC, USA
| | | | | | | | - John T Lisle
- U.S. Geological Survey, Saint Petersburg, Florida, USA
| | | | | | | | | | | | - Paul South
- U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Christopher P Weis
- National Institute of Environmental Health Sciences/NIH, Bethesda, MD, USA
| |
Collapse
|
31
|
Du X, Li Z, Peng Z, Zhang Z, Xiao M, Wang Z, Yang Y, Li X. A facile green "wastes-treat-wastes" strategy: Electrogenerated chloramines for nanofiltration concentrate recirculation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120465. [PMID: 36273691 DOI: 10.1016/j.envpol.2022.120465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/02/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Use of nanofiltration (NF) membrane to reuse the secondary wastewater suffers from severer biofouling and refractory concentrate. To realize sustainable NF membrane processes in water purification, the electro-oxidation (EO) process using boron-doped diamond (BDD) anodes was applied in current study to treat the NF concentrate for removal of organic contaminates and nutrients using simultaneously controllable in-situ generation of chloramines. The electrolytic effluent would be mixed with the raw secondary wastewater as the feed of subsequent NF process for conducting chloramination to mitigate membrane biofouling. It was found that under a constant current density of 30 mA/cm2, the chloramine formed with the electrolysis while its concentration reached the maximum at 30 min of electrolysis when NH3-N was 7 mg/L and Cl- concentration was below 500 mg/L. The complete elimination of antibiotics and bacteria can be attained in the hybrid NF-EO process thanks to the in-situ simultaneous generation of large amount of chloramine. In particular, the membrane biofouling was effectively alleviated to maintain a stable permeate flux during the 160-h period of sustainable operation. Our study provides a promising "wastes-treat-wastes" strategy for sustainable reuse of secondary wastewater.
Collapse
Affiliation(s)
- Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Ziyang Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhitian Peng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhong Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China
| | - Mengyao Xiao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yang Yang
- Faculty of Physics, Bielefeld University, 33615, Bielefeld, Germany
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China.
| |
Collapse
|
32
|
Wang L, Xu H, Lu J, Chovelon JM, Ji Y. Aquatic photolysis of the pharmaceutical ambroxol: The role of 2,4-dibromoaniline chromophore and heavy atom effect of bromine. WATER RESEARCH 2022; 226:119275. [PMID: 36288664 DOI: 10.1016/j.watres.2022.119275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
As one of the most effective expectorant class drugs, ambroxol (AMB) has been frequently used to treat acute and chronic bronchitis. Extensive use and human excretion result in the widespread occurrence of AMB in wastewater. Herein, we reported the photolysis of AMB in aqueous solution upon 254 nm ultraviolet radiation (UV254). Spectroscopic characterization showed that 2,4-dibromoaniline (DBA) moiety is the core chromophore of AMB. Quantum yield of DBA changed little at pH 4.0 - 9.0; however, AMB showed higher quantum yield at pH > 8.0. Both DBA and AMB have high photoreactivity, which can be attributed to the "heavy atom" effect of bromine substituents. The photolysis of AMB occurred through photoreduction, photoionization, photonucleophilic substitution, side-chain cleavage, and coupling reactions. Both AMB and DBA underwent debromination with yields reaching 80% under 3200 mJ cm-2 UV fluence. Photo-debromination occurred preferentially at the para-position. The presence of natural organic matter inhibited the photodegradation, mainly due to the light-screening effect. The photolysis of AMB was slightly enhanced in the presence of NO3- likely due to radical-induced oxidation. Bioluminescence inhibition assay revealed that photoproducts were not toxic. The results show that UV254 radiation with fluences relevant to advanced oxidation processes was effective for the abatement of AMB in wastewater. However, UV254 treatment of wastewater containing higher concentrations (˃ μg L-1) of AMB should be done with caution because the released Br- can be converted to toxic brominated disinfection byproducts and bromate in subsequent oxidation process.
Collapse
Affiliation(s)
- Lixiao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyan Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jean-Marc Chovelon
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne F-69626, France
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Wünsch R, Hettich T, Prahtel M, Thomann M, Wintgens T, von Gunten U. Tradeoff between micropollutant abatement and bromate formation during ozonation of concentrates from nanofiltration and reverse osmosis processes. WATER RESEARCH 2022; 221:118785. [PMID: 35949072 DOI: 10.1016/j.watres.2022.118785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Water treatment with nanofiltration (NF) or reverse osmosis (RO) membranes results in a purified permeate and a retentate, where solutes are concentrated and have to be properly managed and discharged. To date, little is known on how the selection of a semi-permeable dense membrane impacts the dissolved organic matter in the concentrate and what the consequences are for micropollutant (MP) abatement and bromate formation during concentrate treatment with ozone. Laboratory ozonation experiments were performed with standardized concentrates produced by three membranes (two NFs and one low-pressure reverse osmosis (LPRO) membrane) from three water sources (two river waters and one lake water). The concentrates were standardized by adjustment of pH and concentrations of dissolved organic carbon, total inorganic carbon, selected micropollutants (MP) with a low to high ozone reactivity and bromide to exclude factors which are known to impact ozonation. NF membranes had a lower retention of bromide and MPs than the LPRO membrane, and if the permeate quality of the NF membrane meets the requirements, the selection of this membrane type is beneficial due to the lower bromate formation risks upon concentrate ozonation. The bromate formation was typically higher in standardized concentrates of LPRO than of NF membranes, but the tradeoff between MP abatement and bromate formation upon ozonation of the standardized concentrates was not affected by the membrane type. Furthermore, there was no difference for the different source waters. Overall, ozonation of concentrates is only feasible for abatement of MPs with a high to moderate ozone reactivity with limited bromate formation. Differences in the DOM composition between NF and LPRO membrane concentrates are less relevant than retention of MPs and bromide by the membrane and the required ozone dose to meet a treatment target.
Collapse
Affiliation(s)
- R Wünsch
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - T Hettich
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland
| | - M Prahtel
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland; Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - M Thomann
- FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Institute for Ecopreneurship, 4132 Muttenz, Switzerland
| | - T Wintgens
- RWTH Aachen University, Institute of Environmental Engineering, 52074 Aachen, Germany
| | - U von Gunten
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
34
|
Wang Q, Luo L, Huang N, Wang W, Rong Y, Wang Z, Yuan Y, Xu A, Xiong J, Wu Q, Hu H. Evolution of low molecular weight organic compounds during ultrapure water production process: A pilot-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154713. [PMID: 35337873 DOI: 10.1016/j.scitotenv.2022.154713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the evolution of low molecular weight organic compounds in ultrapure water (UPW) production using a pilot-scale UPW production system and an ultrafiltration-reverse osmosis (UF-RO) system. During UPW production, a dissolved organic carbon (DOC) removal efficiency of 99.4% was achieved with a feedwater DOC level of 1.42 mg/L. The pretreatment, make-up, and polishing stages accounted for 85.3%, 13.7%, and 0.4% of DOC removal, respectively. Urea, trichloromethane, and dibromochloromethane persisted throughout UPW production process, contributing 24.7%, 9.2%, and 22.6%, respectively, to the final effluent DOC level of 8.1 μg/L. The pretreatment and make-up stages of the UPW production process could remove N-nitrosodimethylamine, chloral hydrate, dichloroacetonitrile, and tribromomethane. The UF-RO system could remove approximately 90% of DOC. However, the proportion of halogenated disinfection by-products (DBPs) in the DOC increased by 1.4-4.5 times in the RO effluents. RO could completely reject haloacetaldehydes. However, RO could not completely remove trichloromethane, tribromomethane, bromodichloromethane, and dibromoacetonitrile, which remained the main halogenated DBPs in the RO effluents.
Collapse
Affiliation(s)
- Qi Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Liwei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Nan Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China.
| | - Wenlong Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen 518055, China
| | - Yuzhou Rong
- China Electronics System Engineering NO. 2 Construction Co., Ltd., Jiangsu, Wuxi 214135, China
| | - Zhiwei Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen 518055, China
| | - Yi Yuan
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen 518055, China
| | - Ao Xu
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou 215163, China
| | - Jianglei Xiong
- China Electronics System Engineering NO. 2 Construction Co., Ltd., Jiangsu, Wuxi 214135, China
| | - Qianyuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen 518055, China
| | - Hongying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China
| |
Collapse
|
35
|
Lopes-Rocha L, Hernandez C, Gonçalves V, Pinho T, Tiritan ME. Analytical Methods for Determination of BPA Released from Dental Resin Composites and Related Materials: A Systematic Review. Crit Rev Anal Chem 2022; 54:653-668. [PMID: 35776702 DOI: 10.1080/10408347.2022.2093097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Knowing the impacts of bisphenol A (BPA) on human health, this systematic review aimed to gather the analytical methods for the quantification of BPA release of BPA in dental materials in in vitro and in vivo (biological fluids) studies. A brief critical discussion of the impacts of BPA on human health and the possible association with BPA in dental materials was also presented. The research was carried out by three independent researchers, (according to PRISMA guidelines) in PUBMED and SCOPUS databases, by searching for specific keywords and articles published between January 2011 and February 2022. Seventeen articles met the eligibility criteria and were included in this systematic review: 10 in vitro and 7 in vivo. In in vitro studies, the highest amounts of BPA released were from flowable to conventional resins, followed by resin-modified glass ionomer. In contrast, the smallest amount was released from "BPA-free" composites and CAD-CAM blocks. Regarding in vivo studies, a higher concentration of BPA were found in saliva than urine or blood. The best analytical method for trace quantifying BPA is LC-MS/MS (Liquid Chromatography with Tandem Mass Spectrometry) due to its selectivity, low quantification limits, and the unequivocal identification. However, further studies are required to develop faster and more sensitive methods, in order to obtain more reliable results.
Collapse
Affiliation(s)
- Lígia Lopes-Rocha
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Clara Hernandez
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Virgínia Gonçalves
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
| | - Teresa Pinho
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
- IBMC-Institute of Molecular and Cellular Biology, i3S-Institute of Innovation and Research in Health, Oporto University, Porto, Portugal
| | - Maria Elizabeth Tiritan
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, Gandra, Portugal
- Faculty of Pharmacy, University of Porto (FFUP), Portugal. Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da, Universidade do Porto, Porto, Portugal
| |
Collapse
|
36
|
Kim E, Cardosa GB, Stanley KE, Williams TJ, McCurry DL. Out of Thin Air? Catalytic Oxidation of Trace Aqueous Aldehydes with Ambient Dissolved Oxygen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8756-8764. [PMID: 35671187 DOI: 10.1021/acs.est.2c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water reuse is expanding due to increased water scarcity. Water reuse facilities treat wastewater effluent to a very high purity level, typically resulting in a product water that is essentially deionized water, often containing less than 100 μg/L organic carbon. However, recent research has found that low-molecular-weight aldehydes, which are toxic electrophiles, comprise a significant fraction of the final organic carbon pool in recycled wastewater in certain treatment configurations. In this manuscript, we demonstrate oxidation of trace aqueous aldehydes to their corresponding acids using a heterogeneous catalyst (5% Pt on C), with ambient dissolved oxygen serving as the terminal electron acceptor. Mass balances are essentially quantitative across a range of aldehydes, and pseudo-first-order reaction kinetics are observed in batch reactors, with kobs varying from 0.6 h-1 for acetaldehyde to 4.6 h-1 for hexanal, while they are low for unsaturated aldehydes. Through kinetic and isotopic labeling experiments, we demonstrate that while oxygen is essential for the reaction to proceed, it is not involved in the rate-limiting step, and the reaction appears to proceed primarily through a base-promoted β-hydride elimination mechanism from the hydrated gem-diol form of the corresponding aldehyde. This is the first report we are aware of that demonstrates useful abiotic oxidation of a trace organic contaminant using dissolved oxygen.
Collapse
Affiliation(s)
- Euna Kim
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Georgia B Cardosa
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Katarina E Stanley
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Travis J Williams
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
37
|
Asghar A, Lutze HV, Tuerk J, Schmidt TC. Influence of water matrix on the degradation of organic micropollutants by ozone based processes: A review on oxidant scavenging mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128189. [PMID: 35077976 DOI: 10.1016/j.jhazmat.2021.128189] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The prevalence of organic micropollutants (OMPs) in aquatic environment has expedited scientific and regulatory efforts to retrofit existing wastewater treatment plants (WWTPs). The current strategy involves WWTPs upgrading with post-ozonation i.e., ozone (O3) and/or peroxone process (O3 +H2O2). Still, ozone-based degradation of OMPs faces several challenges. For example, the degradation mechanism and kinetics of OMPs could largely be affected by water matrix compounds which include inorganic ions and natural organic matter (NOM). pH also plays a decisive role in determining the reactivity of the oxidants (O3, H2O2, andHO•), stability and speciation of matrix constituents and OMPs and thus susceptibility of OMPs to the reactions with oxidants. There have been reviews discussing the impact of matrix components on the degradation of OMPs by advanced oxidation processes (AOPs). Nevertheless, a review focusing on scavenging mechanisms, formation of secondary oxidants and their scavenging effects with a particular focus on ozonation and peroxone process is lacking. Therefore, in order to broaden the knowledge on this subject, the database 'Web of Science' was searched for the studies related to the 'matrix effect on the degradation of organic micropollutants by ozone based processes' over the time period of 2004-2021. The relevant literature was thoroughly reviewed and following conclusions were made: i) chloride has inhibitory effects if it exits at higher concentrations or as free chlorine i.e. HOCl/ClO-. ii) The inhibitory effects of chloride, bromide, HOBr/OBr- and HOCl/ClO- are dominant in neutral and alkaline conditions and may result in the formation of secondary oxidants (e.g., chlorine atoms or free bromine), which in turn contribute to pollutant degradation or form undesired oxidation by-products such as BrO3-, ClO3- and halogenated organic products. ii) NOM may induce inhibitory or synergetic effects depending on the type, chemical properties and concentration of NOM. Therefore, more efforts are required to understand the importance of pH variation as well as the effects of water matrix on the reactivity of oxidants and subsequent degradation of OMPs.
Collapse
Affiliation(s)
- Anam Asghar
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany.
| | - Holger V Lutze
- Department of Civil and Environmental Engineering Sciences, Technische Universität Darmstadt, Karolinenpl. 5, 64289 Darmstadt, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
| | - Jochen Tuerk
- Institut für Energie, und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
| |
Collapse
|
38
|
Lim S, Shi JL, von Gunten U, McCurry DL. Ozonation of organic compounds in water and wastewater: A critical review. WATER RESEARCH 2022; 213:118053. [PMID: 35196612 DOI: 10.1016/j.watres.2022.118053] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Ozonation has been applied in water treatment for more than a century, first for disinfection, later for oxidation of inorganic and organic pollutants. In recent years, ozone has been increasingly applied for enhanced municipal wastewater treatment for ecosystem protection and for potable water reuse. These applications triggered significant research efforts on the abatement efficiency of organic contaminants and the ensuing formation of transformation products. This endeavor was accompanied by developments in analytical and computational chemistry, which allowed to improve the mechanistic understanding of ozone reactions. This critical review assesses the challenges of ozonation of impaired water qualities such as wastewaters and provides an up-to-date compilation of the recent kinetic and mechanistic findings of ozone reactions with dissolved organic matter, various functional groups (olefins, aromatic compounds, heterocyclic compounds, aliphatic nitrogen-containing compounds, sulfur-containing compounds, hydrocarbons, carbanions, β-diketones) and antibiotic resistance genes.
Collapse
Affiliation(s)
- Sungeun Lim
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Jiaming Lily Shi
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
39
|
Wen Y, Dai R, Li X, Zhang X, Cao X, Wu Z, Lin S, Tang CY, Wang Z. Metal-organic framework enables ultraselective polyamide membrane for desalination and water reuse. SCIENCE ADVANCES 2022; 8:eabm4149. [PMID: 35263126 PMCID: PMC8906575 DOI: 10.1126/sciadv.abm4149] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
While reverse osmosis (RO) is the leading technology to address the global challenge of water scarcity through desalination and potable reuse of wastewater, current RO membranes fall short in rejecting certain harmful constituents from seawater (e.g., boron) and wastewater [e.g., N-nitrosodimethylamine (NDMA)]. In this study, we develop an ultraselective polyamide (PA) membrane by enhancing interfacial polymerization with amphiphilic metal-organic framework (MOF) nanoflakes. These MOF nanoflakes horizontally align at the water/hexane interface to accelerate the transport of diamine monomers across the interface and retain gas bubbles and heat of the reaction in the interfacial reaction zone. These mechanisms synergistically lead to the formation of a crumpled and ultrathin PA nanofilm with an intrinsic thickness of ~5 nm and a high cross-linking degree of ~98%. The resulting PA membrane delivers exceptional desalination performance that is beyond the existing upper bound of permselectivity and exhibited very high rejection (>90%) of boron and NDMA unmatched by state-of-the-art RO membranes.
Collapse
Affiliation(s)
- Yue Wen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xingzhong Cao
- Institute of High Energy Physics, CAS, Beijing 100049, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
- Corresponding author. (S.L.); (C.Y.T.); (Z.Wa.)
| | - Chuyang Y. Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., China
- Corresponding author. (S.L.); (C.Y.T.); (Z.Wa.)
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Corresponding author. (S.L.); (C.Y.T.); (Z.Wa.)
| |
Collapse
|
40
|
Hinneh KDC, Kosaka K, Echigo S, Itoh S. Predictable Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry Fragmentation of Ozone-Reactive N-Nitrosodimethylamine Precursors Coupled with In Silico Fragmentation and Ion Mobility-Quadrupole Time-of-Flight Facilitates Their Identification in Sewage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2345-2354. [PMID: 35119842 DOI: 10.1021/acs.est.1c05888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study investigated the liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) fragmentation of 10 potent model ozone (O3)-reactive N-nitrosodimethylamine (NDMA) precursors bearing (CH3)2N-N or (CH3)2N-(SO2)-N. Fragments (m/z 61.0766, 60.0688 Da loss, and 72.0688 Da loss) were discovered as pertinent diagnostic fragments for precursors bearing (CH3)2N-N, whereas a loss of 108.0119 Da was consistent for precursors bearing (CH3)2N-S(O2)-N. Using the fragments as structural hints on a sewage fraction with a high concentration of O3-reactive precursors, peaks of precursors sharing m/z 61.0766, a 60.0688 Da loss, or both were flagged. Then, using in silico fragmenters and (CH3)2N-N as a substructure filter on online-chemical structure databases, we identified PubChem's compound identifier (PCCID) 141210417 and 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene)disemicarbazide (TMDS). TMDS was confirmed using an authentic standard, and ion mobility (IM)-QTOF/MS confirmed its rider peak as PCCID 141210417. PCCID 141210417 is an isomer of TMDS, and its environmental occurrence is associated with technical-grade TMDS and industrial effluents. The estimated contribution of TMDS to the total NDMA formation potential of the sewage fraction was 20-24%, which was suggestive of the significance of PCCID 141210417 and other precursors.
Collapse
Affiliation(s)
- Klon D C Hinneh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Koji Kosaka
- Department of Environmental Health, National Institute of Public Health, Wako, Saitama 351-0197, Japan
| | - Shinya Echigo
- Department of Global Environmentally-Friendly Industries for Sustainable Development, Graduate School of Global Environmental Studies, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sadahiko Itoh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
41
|
Chuang YH, Wu KL, Lin WC, Shi HJ. Photolysis of Chlorine Dioxide under UVA Irradiation: Radical Formation, Application in Treating Micropollutants, Formation of Disinfection Byproducts, and Toxicity under Scenarios Relevant to Potable Reuse and Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2593-2604. [PMID: 35025487 DOI: 10.1021/acs.est.1c05707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conversion of potable reuse water utilities and drinking water utilities from a low-pressure UV/H2O2 (LPUV/H2O2) advanced oxidation process (AOP) to alternative AOPs in which oxidants can effectively absorb photons and rapidly generate radicals has attracted great interest. Herein, we propose a novel UVA/ClO2 AOP for different water treatment scenarios because of reduced photon absorption by the background matrix and high molar absorptivity for ClO2 at UVA wavelengths. While the photolysis of ClO2 produces •Cl + O2 or •ClO + O(3P) via distinct product channels, we determined the parameters needed to accurately model the loss of oxidants and the formation of byproducts and combined a kinetic model with experimental data to determine quantum yields (Φ). Modeling incorporating the optimized Φ simultaneously predicted oxidant loss and the formation of major products -HOCl, Cl-, and ClO3-. We also systematically investigated the removal of three contaminants exhibiting different radical reactivities, the formation of 35 regulated and unregulated halogenated disinfection byproducts (DBPs), DBP-associated toxicity, and N-acetylcysteine thiol reactivity in synthetic or authentic RO permeates/surface waters treated by different AOPs. The kinetic model developed in this study was used to optimize operating conditions to control undesired products and improve contaminant removal efficiency. The results indicate that UVA/ClO2 can outperform LPUV/H2O2 in terms of electrical energy per order of contaminant degradation, disinfection byproduct formation, and toxicity indices.
Collapse
Affiliation(s)
- Yi-Hsueh Chuang
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu City 30010, Taiwan
| | - Kai-Lin Wu
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu City 30010, Taiwan
| | - Wei-Chun Lin
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu City 30010, Taiwan
| | - Hong-Jia Shi
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Rd., Hsinchu City 30010, Taiwan
| |
Collapse
|
42
|
Long L, Wu C, Yang Z, Tang CY. Carbon Nanotube Interlayer Enhances Water Permeance and Antifouling Performance of Nanofiltration Membranes: Mechanisms and Experimental Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2656-2664. [PMID: 35113549 DOI: 10.1021/acs.est.1c07332] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interlayered thin-film nanocomposite (TFNi) membranes have been shown to achieve enhanced water permeance as a result of the gutter effect. Nevertheless, some studies report impaired separation performance after the inclusion of an interlayer. In this study, we resolve the competing mechanisms of water transport in the transverse direction vs that in the normal direction. To enable easy comparison, carbon nanotube (CNT)-incorporated TFNi membranes with an identical polyamide rejection layer but different interlayer thicknesses were investigated. While increasing the thickness of the CNT interlayer facilitates water transport in the transverse direction (therefore improving the gutter effect), it simultaneously increases its hydraulic resistance in the normal direction. An optimal water permeance of 13.0 ± 0.7 L m-2 h-1 bar-1, which was more than doubled over the control membrane of 6.1 ± 0.7 L m-2 h-1 bar-1, was realized at a moderate interlayer thickness, resulting from the trade-off between these two competing mechanisms. In this study, we demonstrate reduced membrane fouling and improved fouling reversibility for a TFNi membrane over its control without an interlayer, which can be attributed to its more uniform water flux distribution. The fundamental mechanisms revealed in this study lay a solid foundation for the future development of TFNi membranes toward enhanced separation properties and antifouling ability.
Collapse
Affiliation(s)
- Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P. R. China
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P. R. China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P. R. China
| |
Collapse
|
43
|
Essaïed KA, Brown LV, von Gunten U. Reactions of amines with ozone and chlorine: Two novel oxidative methods to evaluate the N-DBP formation potential from dissolved organic nitrogen. WATER RESEARCH 2022; 209:117864. [PMID: 34847390 DOI: 10.1016/j.watres.2021.117864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 05/09/2023]
Abstract
The composition of oxidant-reactive dissolved organic nitrogen (DON) is poorly characterized, although its ozonation is likely to form a great variety of disinfection by-products containing a nitrogen-oxygen bond (N-DBPs). In this study, two chemical oxidation procedures were developed: continuous ozonation at pH 7.0 and free available chlorine (FAC) titrations at pH 9.2. The formation of two oxidation products (nitrate (NO3-) and chloramines, respectively) was used to quantify and characterize oxidant-reactive nitrogenous moieties in DON. In addition, batch experiments were conducted to study the NO3- yields of 30 selected nitrogenous model compounds upon ozonation. The NO3- yields of 12 primary and secondary amines were highly variable (17-100%, specific ozone dose of 20 molO3/molN), 7 amino acids had high NO3- yields (≥90%), and tertiary amines as well as pyrrole, acetamide and urea had low NO3- yields (≤15%). The mechanisms of NO3- formation were further examined with benzylamine and N-methylbenzylamine as model compounds. Our results show that nitroalkanes are the last intermediate products before the formation of NO3-, both for primary and secondary amines. The presence of an electron-withdrawing group in the vicinity of the N-atom facilitates the formation of NO3- from nitroalkanes. Therefore, the formation of NO3- is attributed to amino acids and activated primary and secondary amines. In contrast, all primary and secondary amines were transformed to chloramines upon chlorination, which was determined by a novel oxidative titration with chlorine. To further support the selectivity of this assay, it was demonstrated by derivatization of amine moieties that chloramine formation could be inhibited. 13-45% of the DON of 4 dissolved organic matter isolates and 2 wastewater effluents formed NO3- and 0-39% formed chloramines, indicating that the potential for N-DBP formation is high (µMN/mgC-level). From differences in the formation of NO3- and chloramines the nature of the precursors can be hypothesized (e.g., activated or non-activated primary and secondary amines, partially oxidized nitrogenous compounds). This study highlights the capacity of two novel methods to characterize the oxidant-reactive DON fraction. Our results suggest that this fraction is significant and could form a variety of potentially toxic N-DBPs.
Collapse
Affiliation(s)
- Karim-Alexandre Essaïed
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Lucy Victoria Brown
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Urs von Gunten
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich 8092, Switzerland.
| |
Collapse
|
44
|
Guo K, Wu Z, Chen C, Fang J. UV/Chlorine Process: An Efficient Advanced Oxidation Process with Multiple Radicals and Functions in Water Treatment. Acc Chem Res 2022; 55:286-297. [PMID: 35025201 DOI: 10.1021/acs.accounts.1c00269] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of the deterioration of global water quality, the occurrence of chemical and microbial contaminants in water raises serious concerns for the health of the population. Identifying and developing effective and environmentally friendly water treatment technologies are critical to obtain clean water. Among the various technologies for the purification of water, ultraviolet photolysis of chlorine (UV/chlorine), an emerging advanced oxidation process (AOP), has multiple functions for the control of contaminants via the production of hydroxyl radicals (HO·) and reactive chlorine species (RCS), such as Cl·, ClO·, and Cl2·-.This Account centers around the radical chemistry of RCS and HO· in different water matrices and their roles and mechanisms in the abatement of contaminants. The concentrations of Cl·, ClO·, and Cl2·- are comparable to or higher than those of HO· (10-14 to 10-13 M). The reactivities of RCS are more selective than HO· with a broader range of second-order rate constants (k). The k values of Cl· toward most aromatics are higher or similar as compared to those of HO·, while those of Cl2·- and ClO· are less reactive but more selective toward aromatics containing electron-donating functional groups. Their major reaction mechanisms with Cl· are electron transfer and addition, while those with ClO· and Cl2·- primarily involve electron transfer. As for aliphatics, their reactivities with both HO· and RCS are much lower than those of aromatics. The reaction mechanisms for most of them with Cl· and Cl2·- are hydrogen abstraction, except for olefins, which are addition. In addition, RCS greatly contribute to the inactivation of microbial contaminants.Toward future application, the UV/chlorine process has both pros and cons. Compared with the traditional HO·-based AOP of UV/H2O2, UV/chlorine is more efficient and energy-saving for oxidation and disinfection, and its efficiency is less affected by water matrix components. However, the formation of toxic byproducts in UV/chlorine limits its application scenarios. In dissolved organic matter (DOM)-rich water, the formation of halogenated byproducts is enhanced in UV/chlorine. In the presence of ammonia, reactive nitrogen species (RNS) (e.g., ·NO and ·NO2) are involved, and highly toxic nitro(so) products such as nitro(so)-phenolics and N-nitrosodimethylamine are generated. For a niche application, the UV/chlorine process is recommended to be utilized in water with low levels of DOM and ammonia.Strategies should be developed to make full use of highly reactive species (RCS and HO·) for the abatement of target contaminants and to reduce the formation of toxic byproducts. For example, the UV/chlorine process can be used in tandem with other treatments to create multiple barriers for the production of safe water. In addition, halogen radicals are very important in ecosystems as well as other areas such as medical therapy and organic synthesis. UV/chlorine is the most efficient homogeneous system to generate halogen radicals, and thus it provides a perfect system to investigate the fates of halogen radicals for interdisciplinary research.
Collapse
Affiliation(s)
- Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zihao Wu
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai Zhuhai 519087, P. R. China
| | - Chunyan Chen
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
45
|
Karges U, de Boer S, Vogel AL, Püttmann W. Implementation of initial emission mitigation measures for 1,4-dioxane in Germany: Are they taking effect? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150701. [PMID: 34634353 DOI: 10.1016/j.scitotenv.2021.150701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Since our comprehensive investigation of finished drinking water in Germany obtained from managed aquifer recharge systems in the period 2015-2016, which revealed widespread contamination with 1,4-dioxane, mitigation measures (integration of AOP units, shutdown or alteration of production processes) have been implemented at some sites. In this study, we conducted follow-up tests on surface water concentrations and associated finished drinking water concentrations in 2017/2018, to evaluate the effectiveness of these measures. Our findings demonstrate that the emission mitigation measures had considerably reducing effects on the average 1,4-dioxane drinking water concentrations for some of the previously severely affected areas (Lower Franconia: -54%, Passau: -88%). Conversely, at notoriously contaminated sites where neither monitoring nor mitigation measures were introduced, the drinking water concentrations stagnated or even increased. Drinking water concentrations determined via a modified US EPA method 522 ranged from below LOQ (0.034 μg/L) up to 1.68 μg/L in all drinking water samples investigated. In river water samples, the maximum concentration exceeded 10 μg/L. Effluents of wastewater treatments plants containing 1,4-dioxane (5 μg/L-1.75 mg/L) were also analyzed for other similar cyclic ethers by suspected target screening. Thus, 1,3-dioxolane and three other derivatives were tentatively identified in effluents from the polyester processing or manufacturing industry. 1,3-Dioxolane was present in concentrations >1.2 mg/L at one site, exceeding up to sevenfold the 1,4-dioxane concentration found there. At another site 2-methyl-1,3-dioxolane was still found 13 km downstream of the discharge point, indicating that ethers analogous to 1,4-dioxane should be further considered regarding their occurrence and fate in wastewater treatment and the aquatic environment.
Collapse
Affiliation(s)
- Ursula Karges
- Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany.
| | - Sabrina de Boer
- Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany; CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Alexander L Vogel
- Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Wilhelm Püttmann
- Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
46
|
Scholes RC, Stiegler AN, Anderson CM, Sedlak DL. Enabling Water Reuse by Treatment of Reverse Osmosis Concentrate: The Promise of Constructed Wetlands. ACS ENVIRONMENTAL AU 2021; 1:7-17. [PMID: 37101934 PMCID: PMC10114854 DOI: 10.1021/acsenvironau.1c00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As more cities experience water stress, the use of reverse osmosis (RO) membranes for wastewater treatment and reuse will expand. The concentrated waste stream resulting from RO treatment can pose chronic ecotoxicity risks if discharged to surface waters or shallow coastal ecosystems. Most existing RO concentrate treatment technologies are cost prohibitive, but constructed wetlands hold promise as a viable multibenefit solution because they have the potential to provide simultaneous treatment of nutrients, metals, and trace organic contaminants at a relatively low cost. They also are popular with the public. A handful of water-stressed cities have already begun experimenting with constructed wetlands for RO concentrate treatment. However, further research is needed to reduce the land area needed for treatment and increase the reliability of constructed wetland systems.
Collapse
Affiliation(s)
- Rachel C. Scholes
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- NSF Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Angela N. Stiegler
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- NSF Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Cayla M. Anderson
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- NSF Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - David L. Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- NSF Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| |
Collapse
|
47
|
Yang Z, Qian J, Shan C, Li H, Yin Y, Pan B. Toward Selective Oxidation of Contaminants in Aqueous Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14494-14514. [PMID: 34669394 DOI: 10.1021/acs.est.1c05862] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The presence of diverse pollutants in water has been threating human health and aquatic ecosystems on a global scale. For more than a century, chemical oxidation using strongly oxidizing species was one of the most effective technologies to destruct pollutants and to ensure a safe and clean water supply. However, the removal of increasing amount of pollutants with higher structural complexity, especially the emerging micropollutants with trace concentrations in the complicated water matrix, requires excessive dosage of oxidant and/or energy input, resulting in a low cost-effectiveness and possible secondary pollution. Consequently, it is of practical significance but scientifically challenging to achieve selective oxidation of pollutants of interest for water decontamination. Currently, there are a variety of examples concerning selective oxidation of pollutants in aqueous systems. However, a systematic understanding of the relationship between the origin of selectivity and its applicable water treatment scenarios, as well as the rational design of catalyst for selective catalytic oxidation, is still lacking. In this critical review, we summarize the state-of-the-art selective oxidation strategies in water decontamination and probe the origins of selectivity, that is, the selectivity resulting from the reactivity of either oxidants or target pollutants, the selectivity arising from the accessibility of pollutants to oxidants via adsorption and size exclusion, as well as the selectivity due to the interfacial electron transfer process and enzymatic oxidation. Finally, the challenges and perspectives are briefly outlined to stimulate future discussion and interest on selective oxidation for water decontamination, particularly toward application in real scenarios.
Collapse
Affiliation(s)
- Zhichao Yang
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chao Shan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuyang Yin
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment and State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023, China
| |
Collapse
|
48
|
Zhu Y, Wang X, Li Z, Fan Y, Zhang X, Chen J, Zhang Y, Dong C, Zhu Y. Husbandry waste derived coralline-like composite biomass material for efficient heavy metal ions removal. BIORESOURCE TECHNOLOGY 2021; 337:125408. [PMID: 34153864 DOI: 10.1016/j.biortech.2021.125408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
The resource utilization of biological solid waste is crucial for practical environmental remediation. By comprehensively utilizing LiBr treatment and dopamine chemistry, herein the cow dung waste was successfully converted into the composite biomass material for efficient heavy metal ions removal. A selective etching mechanism of cellulose was discovered in the LiBr treatment process, achieving the large-scale preparation of coralline-like porous biomass material with hundred times increased specific surface. Benefiting from the co-deposition of polyethyleneimine and Fe3O4, the fabricated material showed significantly higher adsorption capacity (183.82 and 231.48 mg·g-1 for Cu2+ and Cd2+) than that of raw cow dung (0.95 and 1.25 mg·g-1 for Cu2+ and Cd2+). Furthermore, this composite biomass adsorbent also exhibited rapid adsorption equilibrium, magnetic separation capability, monolayer chemisorption feature and feasible recycling use. Collectively, this work contributes to both the resource utilization of husbandry solid waste and the development of advanced biomass adsorbent.
Collapse
Affiliation(s)
- Yanchen Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; School of Light Industry and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Xin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; School of Light Industry and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China.
| | - Zilong Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; School of Light Industry and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Yunxiang Fan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; School of Light Industry and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Xujing Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; School of Light Industry and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Jian Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; School of Light Industry and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Yali Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; School of Light Industry and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Cuihua Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; School of Light Industry and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Ying Zhu
- Advanced Materials Institute, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, PR China
| |
Collapse
|
49
|
Mangalgiri K, Cheng Z, Cervantes S, Spencer S, Liu H. UV-based advanced oxidation of dissolved organic matter in reverse osmosis concentrate from a potable water reuse facility: A Parallel-Factor (PARAFAC) analysis approach. WATER RESEARCH 2021; 204:117585. [PMID: 34478993 DOI: 10.1016/j.watres.2021.117585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Disposal of reverse osmosis concentrate (ROC) from advanced water purification facilities is a challenge associated with the implementation of reverse osmosis-based treatment of municipal wastewater effluent for potable reuse. In particular, the dissolved organic matter (DOM) present in ROC diminishes the quality of the receiving water upon environmental disposal and affects the toxicity, fate, and transport of organic contaminants. This study investigates UV-based advanced oxidation processes (UV-AOPs) for treating DOM in ROC using a Parallel Factor Analysis (PARAFAC) approach. DOM composition and degradation were tested in UV-only and three UV-AOPs using hydrogen peroxide (H2O2), free chlorine (Cl2), and persulfate (S2O82-). The four-component PARAFAC model consisted of two terrestrial humic-like components (CUVH and CVisH), a wastewater/nutrient tracer component (CNuTr), and a protein-like (tyrosine-like) component (CPrTy). Based on the observed loss in the maximum fluorescence intensity of the components, DOM degradation was determined to be dependent on UV fluence, oxidant dose, and dilution factor of the ROC (i.e., bulk DOM concentration). CVisH was most the photolabile component in the UV-only system, followed by CNuTr, CPrTy, and CUVH, respectively. Furthermore, UV-H2O2 and UV-S2O82- displayed faster overall reaction kinetics compared to UV-Cl2. The degradation trends suggested that CNuTr and CPrTy consisted of chemical moieties that were susceptible to reactive oxygen species (HO•) but not reactive chlorine species; whereas, CVisH was sensitive to all reactive species generated in the three UV-AOPs. Compared to other components, CPrTy was recalcitrant in all treatment scenarios tested. Calculations using chemical probe-based analysis also confirmed these trends in the reactivity of DOM components. The outcomes of this study form a foundation for characterizing ROC reactivity in UV-AOP treatment technologies, to ultimately improve the sustainability of water reuse systems.
Collapse
Affiliation(s)
- Kiranmayi Mangalgiri
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Zhiwen Cheng
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States; School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Sheila Cervantes
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Samantha Spencer
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Haizhou Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States; Program of Environmental Toxicology, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
50
|
Guarin TC, Pagilla KR. Microbial community in biofilters for water reuse applications: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145655. [PMID: 33940748 DOI: 10.1016/j.scitotenv.2021.145655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The combination of ozonation (O3) and biofiltration processes has become practical and desirable in advanced water reclamation for water reuse applications. However, the role of microbial community and its characteristics (source, abundance, composition, viability, structure) on treatment performance has not received the same attention in water reclamation biofilters as in other applications, such as in drinking water biofilters. Microbial community characterization of biofilters used in water reuse applications will add evidence to better understand the potential microorganisms, consequent risks, and mechanisms that will populate drinking water sources and ultimately influence public health and the environment. This critical review provides insights into O3-biofiltration as a treatment barrier with a focus on development, structure, and composition of the microbial community characteristics involved in the process. The effect of microorganism seeding by the influent before and after the biofilter and ozone oxidation effects are explored to capture the microbial ecology interactions and environmental factors affecting the media ecosystem. The findings of reviewed studies concurred in identifying Proteobacteria as the most dominant phylum. However, Proteobacteria and other phyla relative abundance differ substantially depending upon environmental factors (e.g., pH, temperature, nutrients availability, among others) gradients. In general, we found significant gaps to relate and explain the biodegradation performance and metabolic processes within the biofilter, and hence deserve future attention. We highlighted and identified key challenges and future research ideas to assure O3-biofiltration reliability as a promising barrier in advanced water treatment applications.
Collapse
Affiliation(s)
- Tatiana C Guarin
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557-0258, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV 89557-0258, USA.
| |
Collapse
|