1
|
Zhou J, Xu Z, Cui K, Yin JA, Chen HC, Wang Y, Liu F, Wang T, Hao F, Xiong Y, Wang C, Ma Y, Lu P, Yin J, Guo L, Meng X, Ye C, Ming Chen H, Zhu Y, Lu J, Fan Z. Theory-Guided Design of Unconventional Phase Metal Heteronanostructures for Higher-Rate Stable Li-CO 2 and Li-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202416947. [PMID: 39343739 DOI: 10.1002/anie.202416947] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/01/2024]
Abstract
Lithium-carbon dioxide (Li-CO2) and Li-air batteries hold great potential in achieving carbon neutral given their ultrahigh theoretical energy density and eco-friendly features. However, these Li-gas batteries still suffer from low discharging-charging rate and poor cycling life due to sluggish decomposition kinetics of discharge products especially Li2CO3. Here we report the theory-guided design and preparation of unconventional phase metal heteronanostructures as cathode catalysts for high-performance Li-CO2/air batteries. The assembled Li-CO2 cells with unconventional phase 4H/face-centered cubic (fcc) ruthenium-nickel heteronanostructures deliver a narrow discharge-charge gap of 0.65 V, excellent rate capability and long-term cycling stability over 200 cycles at 250 mA g-1. The constructed Li-air batteries can steadily run for above 150 cycles in ambient air. Electrochemical mechanism studies reveal that 4H/fcc Ru-Ni with high-electroactivity facets can boost redox reaction kinetics and tune discharge reactions towards Li2C2O4 path, alleviating electrolyte/catalyst failures induced by the aggressive singlet oxygen from solo decomposition of Li2CO3.
Collapse
Affiliation(s)
- Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China
| | - Kai Cui
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
| | - Jian-An Yin
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Tianshuai Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Cheng Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Liang Guo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China
| | - Jian Lu
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Kment Š, Bakandritsos A, Tantis I, Kmentová H, Zuo Y, Henrotte O, Naldoni A, Otyepka M, Varma RS, Zbořil R. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem Rev 2024; 124:11767-11847. [PMID: 38967551 PMCID: PMC11565580 DOI: 10.1021/acs.chemrev.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.
Collapse
Affiliation(s)
- Štĕpán Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Iosif Tantis
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Hana Kmentová
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Yunpeng Zuo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Olivier Henrotte
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Alberto Naldoni
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Department
of Chemistry and NIS Centre, University
of Turin, Turin, Italy 10125
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- IT4Innovations, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
3
|
Wang N, Mei R, Zhang G, Chen L, Yang T, Chen Z, Lin X, Liu Q. Hierachical Aerogel-Supported Cu-Sn-O x Solid Solutions for Highly Selective CO 2 Electroreduction and Zn-CO 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42128-42137. [PMID: 39081020 DOI: 10.1021/acsami.4c06157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) into high-value carbon compounds such as CO and HCOOH is a promising strategy for the utilization and conversion of emitted CO2. However, the selectivity of the CO2RR for HCOOH is typically less than 90% and operates within a narrow voltage range, which limits its practical application. Herein, we propose a novel heterostructural aerogel as a highly efficient electrocatalyst for CO2RR to HCOOH. This catalyst consists of Cu-Sn-Ox solid solutions embedded in a reduced graphene oxide matrix (Cu-Sn-Ox/rGO). The incorporation of Cu2+ into the SnO2 matrix enhances HCOOH production by improving the adsorption of the *OCHO intermediate and inhibiting H2 evolution, as confirmed by in situ measurements and computational studies. As a result, Cu-Sn-Ox/rGO achieves a remarkable Faradaic efficiency (FE) of up to 91.4% for HCOOH and maintains high selectivity over a broad operating voltage range (-0.8 to -1.1 V). Additionally, the assembled Zn-CO2 batteries demonstrated an excellent power density of 1.14 mW/cm2 and exceptional stability for over 25 h.
Collapse
Affiliation(s)
- Nan Wang
- College of Applied Sciences, Shenzhen University, Shenzhen 518060, P. R. China
- Future Technology School, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Riguo Mei
- Future Technology School, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Guobin Zhang
- Future Technology School, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Liqiong Chen
- Future Technology School, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Tao Yang
- Future Technology School, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Zhongwei Chen
- Future Technology School, Shenzhen Technology University, Shenzhen 518118, P. R. China
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Xidong Lin
- Future Technology School, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Qingxia Liu
- College of Applied Sciences, Shenzhen University, Shenzhen 518060, P. R. China
- Future Technology School, Shenzhen Technology University, Shenzhen 518118, P. R. China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6R 1H9, Canada
| |
Collapse
|
4
|
Gupta D, Mao J, Guo Z. Bifunctional Catalysts for CO 2 Reduction and O 2 Evolution: A Pivotal for Aqueous Rechargeable Zn-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407099. [PMID: 38924576 DOI: 10.1002/adma.202407099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/16/2024] [Indexed: 06/28/2024]
Abstract
The quest for the advancement of green energy storage technologies and reduction of carbon footprint is determinedly rising toward carbon neutrality. Aqueous rechargeable Zn-CO2 batteries (ARZCBs) hold the great potential to encounter both the targets simultaneously, i.e., green energy storage and CO2 conversion to value-added chemicals/fuels. The major descriptor of ARZCBs efficiency is allied with the reactions occurring at cathode during discharging (CO2 reduction) and charging (O2 evolution) which own different fundamental mechanisms and hence mandate the employment of two different catalysts. This presents an overall complex and expensive battery system which requires a concrete solution, while the development and application of a bifunctional cathode catalyst toward both reactions could reduce the complexity and cost and thus can be a pivotal for ARZCBs. However, despite the increasing research interest and ongoing research, a systematic evaluation of bifunctional catalysts is rarely reported. In this review, the need of bifunctional cathode catalysts for ARZCBs and associated challenges with strategies have been critically assessed. A detailed progress examination and understanding toward designing of bifunctional catalyst for ARZCBs have been provided. This review will enlighten the future research approaching boosted performance of ARZCBs through the development of efficient bifunctional cathode catalysts.
Collapse
Affiliation(s)
- Divyani Gupta
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jianfeng Mao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
5
|
Yi J, Deng Q, Cheng H, Zhu D, Zhang K, Yang Y. Unique Hierarchically Structured High-Entropy Alloys with Multiple Adsorption Sites for Rechargeable Li-CO 2 Batteries with High Capacity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401146. [PMID: 38618939 DOI: 10.1002/smll.202401146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Lithium-carbon dioxide (Li-CO2) batteries offer the possibility of synchronous implementation of carbon neutrality and the development of advanced energy storage devices. The exploration of low-cost and efficient cathode catalysts is key to the improvement of Li-CO2 batteries. Herein, high-entropy alloys (HEAs)@C hierarchical nanosheet is synthesized from the simulation of the recycling solution of waste batteries to construct a cathode for the first time. Owing to the excellent electrical conductivity of the carbon material, the unique high-entropy effect of the HEAs, and the large number of catalytically active sites exposed by the hierarchical structure, the FeCoNiMnCuAl@C-based battery exhibits a superior discharge capability of 27664 mAh g-1 and outstanding durability of 134 cycles as well as low overpotential with 1.05 V at a discharge/recharge rate of 100 mA g-1. The adsorption capacity of different sites on the HEAs is deeply understood through density functional theory calculations combined with experiments. This work opens up the application of HEAs in Li-CO2 batteries catalytic cathodes and provides unique insights into the study of adsorption active sites in HEAs.
Collapse
Affiliation(s)
- Jiacheng Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qinghua Deng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hui Cheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dandan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kan Zhang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yong Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
6
|
Wang K, Liu L, Liu D, Wei Y, Liu Y, Wang X, Vasenko AS, Li M, Ding S, Xiao C, Pan H. MOF-Derived CoSe 2 Nanoparticles/Carbonized Melamine Foam as Catalytic Cathode Enabling Flexible Li-CO 2 Batteries with High Energy Efficiency and Stable Cycling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310530. [PMID: 38317526 DOI: 10.1002/smll.202310530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Indexed: 02/07/2024]
Abstract
Rechargeable aprotic Li-CO2 batteries have aroused worldwide interest owing to their environmentally friendly CO2 fixation ability and ultra-high specific energy density. However, its practical applications are impeded by the sluggish reaction kinetics and discharge product accumulation during cycling. Herein, a flexible composite electrode comprising CoSe2 nanoparticles embedded in 3D carbonized melamine foam (CoSe2/CMF) for Li-CO2 batteries is reported. The abundant CoSe2 clusters can not only facilitate CO2 reduction/evolution kinetics but also serve as Li2CO3 nucleation sites for homogeneous discharge product growth. The CoSe2/CMF-based Li-CO2 battery exhibits a large initial discharge capacity as high as 5.62 mAh cm-2 at 0.05 mA cm-2, a remarkably small voltage gap of 0.72 V, and an ultrahigh energy efficiency of 85.9% at 0.01 mA cm-2, surpassing most of the noble metal-based catalysts. Meanwhile, the battery demonstrates excellent cycling stability of 1620 h (162 cycles) at 0.02 mA cm-2 with an average overpotential of 0.98 V and energy efficiency of 85.4%. Theoretical investigations suggest that this outstanding performance is attributed to the suitable CO2/Li adsorption and low Li2CO3 decomposition energy. Moreover, flexible Li-CO2 pouch cell with CoSe2/CMF cathode displays stable power output under different bending deformations, showing promising potential in wearable electronic devices.
Collapse
Affiliation(s)
- Ke Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, 2 Xuefuzhonglu Road, Xi'an, Shaanxi, 710021, China
| | - Limin Liu
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Dongyu Liu
- HSE University, 20 Myasnitskaya Street, Moscow, 101000, Russia
| | - Yuantao Wei
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Yanxia Liu
- Institute of Science and Technology for New Energy, Xi'an Technological University, 2 Xuefuzhonglu Road, Xi'an, Shaanxi, 710021, China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, 2 Xuefuzhonglu Road, Xi'an, Shaanxi, 710021, China
| | | | - Mingtao Li
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Shujiang Ding
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Chunhui Xiao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, 2 Xuefuzhonglu Road, Xi'an, Shaanxi, 710021, China
| |
Collapse
|
7
|
Wu Y, Ju J, Shen B, Wei J, Jiang H, Li C, Hu Y. Rich-Carbonyl Carbon Catalysis Facilitating the Li 2CO 3 Decomposition for Cathode Lithium Compensation Agent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311891. [PMID: 38178190 DOI: 10.1002/smll.202311891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 01/06/2024]
Abstract
The active lithium loss of lithium-ion batteries can be well addressed by adding a cathode lithium compensation agent. Due to the poor conductivity and electrochemical activity, lithium carbonate (Li2CO3) is not considered as a candidate. Herein, an effective cathode lithium compensation agent, the recrystallized Li2CO3 combined with large specific surface area disordered porous carbon (R-LCO@SPC) is prepared. The screened SPC makes it easier for nano-sized Li2CO3 to adsorb and decompose on carbon substrate, meantime, exposing plenty of catalytic active sites of C═O, which can significantly improve the electrochemical activity and conductivity of Li2CO3, thus greatly reducing the decomposition potential of Li2CO3 (4.0 V) and releasing high irreversible capacity (580 mAh g-1) compared to the unmodified Li2CO3 (nearly no capacity above 4.6 V). Meantime, the Li2CO3 can disappear completely without any by-product after the initial cycle accompanied by partially dissolved in electrolyte, optimizing the composition of SEI. The resultant lithium compensation agent applied to LMFP//graphite full cell exhibits a 19.1% increase in energy density, enhancing the rate and cycling performance, demonstrating great practical applications potential in high energy density lithium-ion batteries.
Collapse
Affiliation(s)
- Yingjie Wu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Ju
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bolei Shen
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Wei
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanjie Hu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Sun L, Yuwono JA, Zhang S, Chen B, Li G, Jin H, Johannessen B, Mao J, Zhang C, Zubair M, Bedford N, Guo Z. High Entropy Alloys Enable Durable and Efficient Lithium-Mediated CO 2 Redox Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401288. [PMID: 38558119 DOI: 10.1002/adma.202401288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Designing electrocatalysts with high activity and durability for multistep reduction and oxidation reactions is challenging. High-entropy alloys (HEAs) are intriguing due to their tunable geometric and electronic structure through entropy effects. However, understanding the origin of their exceptional performance and identifying active centers is hindered by the diverse microenvironment in HEAs. Herein, NiFeCoCuRu HEAs designed with an average diameter of 2.17 nm, featuring different adsorption capacities for various reactants and intermediates in Li-mediated CO2 redox reactions, are introduced. The electronegativity-dependent nature of NiFeCoCuRu HEAs induces significant charge redistribution, shifting the d-band center closer to Fermi level and forming highly active clusters of Ru, Co, and Ni for Li-based compounds adsorptions. This lowers energy barriers and simultaneously stabilizes *LiCO2 and LiCO3+CO intermediates, enhancing the efficiency of both CO2 reduction and Li2CO3 decomposition over extended periods. This work provides insights into specific active site interactions with intermediates, highlighting the potential of HEAs as promising catalysts for intricate CO2 redox reactions.
Collapse
Affiliation(s)
- Liang Sun
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| | - Jodie A Yuwono
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| | - Shilin Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| | - Biao Chen
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Guanjie Li
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| | - Huanyu Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| | - Bernt Johannessen
- Australian Synchrotron, Clayton, 3168, Australia
- Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Jianfeng Mao
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Muhammad Zubair
- School of Chemical Engineering, UNSW Sydney, Sydney, 2052, Australia
| | - Nicholas Bedford
- School of Chemical Engineering, UNSW Sydney, Sydney, 2052, Australia
| | - Zaiping Guo
- School of Chemical Engineering, The University of Adelaide, Adelaide, 5000, Australia
| |
Collapse
|
9
|
Sun J, Liu Z, Zhou H, Cao M, Cai W, Xu C, Xu J, Huang Z. Ionic Liquids Modulating Local Microenvironment of Ni-Fe Binary Single Atom Catalyst for Efficient Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308522. [PMID: 38161261 DOI: 10.1002/smll.202308522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Indexed: 01/03/2024]
Abstract
The Ni and Fe dual-atom catalysts still undergo strikingly attenuation under high current density and high overpotential. To ameliorate the issue, the ionic liquids with different cations or anions are used in this work to regulate the micro-surface of nitrogen-doped carbon supported Ni and Fe dual-atom sites catalyst (NiFe-N-C) by an impregnation method. The experimental data reveals the dual function of ionic liquids, which enhances CO2 adsorption ability and modulates electronic structure, facilitating CO2 anion radical (CO2 •¯) stabilization and decreasing onset potential. The theoretical calculation results prove that the attachment of ionic liquids modulates electronic structure, reduces energy barrier of CO2 •¯ formation, and enhances overall ECR performance. Based on these merits, BMImPF6 modified NiFe-N-C (NiFe-N-C/BMImPF6) achieves the high CO faradaic efficiency of 91.9% with a CO partial current density of -120 mA cm-2 at -1.0 V. When the NiFe-N-C/BMImPF6 is assembled as cathode of Zn-CO2 battery, it delivers the highest power density of 2.61 mW cm-2 at 2.57 mA cm-2 and superior cycling stability. This work will afford a direction to modify the microenvironment of other dual-atom catalysts for high-performance CO2 electroreduction.
Collapse
Affiliation(s)
- Jiale Sun
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhen Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Haihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengxue Cao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Weiming Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chenxi Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Junwei Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 510000, P. R. China
| |
Collapse
|
10
|
Tang L, Peng H, Kang J, Chen H, Zhang M, Liu Y, Kim DH, Liu Y, Lin Z. Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem Soc Rev 2024; 53:4877-4925. [PMID: 38595056 DOI: 10.1039/d3cs00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Batteries play a pivotal role in various electrochemical energy storage systems, functioning as essential components to enhance energy utilization efficiency and expedite the realization of energy and environmental sustainability. Zn-based batteries have attracted increasing attention as a promising alternative to lithium-ion batteries owing to their cost effectiveness, enhanced intrinsic safety, and favorable electrochemical performance. In this context, substantial endeavors have been dedicated to crafting and advancing high-performance Zn-based batteries. However, some challenges, including limited discharging capacity, low operating voltage, low energy density, short cycle life, and complicated energy storage mechanism, need to be addressed in order to render large-scale practical applications. In this review, we comprehensively present recent advances in designing high-performance Zn-based batteries and in elucidating energy storage mechanisms. First, various redox mechanisms in Zn-based batteries are systematically summarized, including insertion-type, conversion-type, coordination-type, and catalysis-type mechanisms. Subsequently, the design strategies aiming at enhancing the electrochemical performance of Zn-based batteries are underscored, focusing on several aspects, including output voltage, capacity, energy density, and cycle life. Finally, challenges and future prospects of Zn-based batteries are discussed.
Collapse
Affiliation(s)
- Lei Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Haojia Peng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Jiarui Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Yijiang Liu
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
11
|
Wang J, Wang G, Wu H, Liu F, Ren X, Wang Y, Cao Y, Lu Q, Zheng X, Han X, Deng Y, Hu W. Correlating the crystal structure and facet of indium oxides with their activities for CO 2 electroreduction. FUNDAMENTAL RESEARCH 2024; 4:635-641. [PMID: 38933190 PMCID: PMC11197480 DOI: 10.1016/j.fmre.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Constructing structure-function relationships is critical for the rational design and development of efficient catalysts for CO2 electroreduction reaction (CO2RR). In2O3 is well-known for its specific ability to produce formic acid. However, how the crystal phase and surface affect the CO2RR activity is still unclear, making it difficult to further improve the intrinsic activity and screen for the most active structure. In this work, cubic and hexagonal In2O3 with different stable surfaces ((111) and (110) for cubic, (120) and (104) for hexagonal) are investigated for CO2RR. Theoretical results demonstrate that the adsorption of reactants on cubic In2O3 is stronger than that on hexagonal In2O3, with the cubic (111) surface being the most active for CO2RR. In experiments, synthesized cubic In2O3 nanosheets with predominantly exposed (111) surfaces exhibited a high HCOO- Faradaic efficiency (87.5%) and HCOO- current density (-16.7 mA cm-2) at -0.9 V vs RHE. In addition, an aqueous Zn-CO2 battery based on a cubic In2O3 cathode was assembled. Our work correlates the phases and surfaces with the CO2RR activity, and provides a fundamental understanding of the structure-function relationship of In2O3, thereby contributing to further improvements in its CO2RR activity. Moreover, the results provide a principle for the directional preparation of materials with optimal phases and surfaces for efficient electrocatalysis.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Guangjin Wang
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
| | - Han Wu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Fei Liu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Xixi Ren
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yidu Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yanhui Cao
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Qi Lu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Xuerong Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Wenbin Hu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
12
|
El-Sayed A, Abdelsamie M, Elrouby M. Tracing the impact of CO 2 on the electrochemical and charge-discharge behavior for Al-Mg alloy in KOH and LiOH electrolytes for battery applications. Sci Rep 2024; 14:7714. [PMID: 38565635 PMCID: PMC10987513 DOI: 10.1038/s41598-024-57638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
For the first time, it has been found that the electrochemical performance of the Al-Mg alloy as an anode in alkaline batteries has been markedly enhanced in the presence of CO2 and LiOH as an electrolyte. This work compares the electrochemical performance of an Al-Mg alloy used as an anode in Al-air batteries in KOH and LiOH solutions, both with and without CO2. Potentiodynamic polarization (Tafel), charging-discharging (galvanostatic) experiments, and electrochemical impedance spectroscopy (EIS) are used. X-ray diffraction spectroscopy (XRD) and a scanning electron microscope (SEM) outfitted with an energetic-dispersive X-ray spectroscope (EDX) were utilized for the investigation of the products on the corroded surface of the electrode. Findings revealed that the examined electrode's density of corrosion current (icorr.) density in pure LiOH is significantly lower than in pure KOH (1 M). Nevertheless, in the two CO2-containing solutions investigated, icorr. significantly decreased. The corrosion rate of the examined alloy in the two studied basic solutions with and without CO2 drops in the following order: KOH > LiOH > KOH + CO2 > LiOH + CO2. The obtained results from galvanostatic charge-discharge measurements showed excellent performance of the battery in both LiOH and KOH containing CO2. The electrochemical findings and the XRD, SEM, and EDX results illustrations are in good accordance.
Collapse
Affiliation(s)
- Abdelrahman El-Sayed
- Chemistry Department, Faculty of Science, Sohag University, Sohâg, 82524, Egypt.
| | - Mohamed Abdelsamie
- Chemistry Department, Faculty of Science, Sohag University, Sohâg, 82524, Egypt
| | - Mahmoud Elrouby
- Chemistry Department, Faculty of Science, Sohag University, Sohâg, 82524, Egypt.
- Faculty of Science, King Salman International University, Ras Sedr, Sinai, 46612, Egypt.
| |
Collapse
|
13
|
Liu Y, An Y, Zhu J, Zhu L, Li X, Gao P, He G, Pang Q. Integrated energy storage and CO 2 conversion using an aqueous battery with tamed asymmetric reactions. Nat Commun 2024; 15:977. [PMID: 38302458 PMCID: PMC10834454 DOI: 10.1038/s41467-023-44283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024] Open
Abstract
Developing a CO2-utilization and energy-storage integrated system possesses great advantages for carbon- and energy-intensive industries. Efforts have been made to developing the Zn-CO2 batteries, but access to long cycling life and low charging voltage remains a grand challenge. Here we unambiguously show such inefficiencies originate from the high-barrier oxygen evolution reaction on charge, and by recharging the battery via oxidation of reducing molecules, Faradaic efficiency-enhanced CO2 reduction and low-overpotential battery regeneration can be simultaneously achieved. Showcased by using hydrazine oxidation, our battery demonstrates a long life over 1000 hours with a charging voltage as low as 1.2 V. The low charging voltage and formation of gaseous product upon hydrazine oxidation are the key to stabilize the catalyst over cycling. Our findings suggest that by fundamentally taming the asymmetric reactions, aqueous batteries are viable tools to achieve integrated energy storage and CO2 conversion that is economical, highly energy efficient, and scalable.
Collapse
Affiliation(s)
- Yumei Liu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Yun An
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Jiexin Zhu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Lujun Zhu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Xiaomei Li
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
| | - Peng Gao
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Quanquan Pang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China.
| |
Collapse
|
14
|
Shen ZZ, Lang SY, Liu RZ, Zhou C, Zhang YZ, Liu B, Wen R. Revealing the CO 2 Conversion at Electrode/Electrolyte Interfaces in Li-CO 2 Batteries via Nanoscale Visualization Methods. Angew Chem Int Ed Engl 2024; 63:e202316781. [PMID: 37955211 DOI: 10.1002/anie.202316781] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Lithium-carbon dioxide (Li-CO2 ) battery technology presents a promising opportunity for carbon capture and energy storage. Despite tremendous efforts in Li-CO2 batteries, the complex electrode/electrolyte/CO2 triple-phase interfacial processes remain poorly understood, in particular at the nanoscale. Here, using in situ atomic force microscopy and laser confocal microscopy-differential interference contrast microscopy, we directly observed the CO2 conversion processes in Li-CO2 batteries at the nanoscale, and further revealed a laser-tuned reaction pathway based on the real-time observations. During discharge, a bi-component composite, Li2 CO3 /C, deposits as micron-sized clusters through a 3D progressive growth model, followed by a 3D decomposition pathway during the subsequent recharge. When the cell operates under laser (λ=405 nm) irradiation, densely packed Li2 CO3 /C flakes deposit rapidly during discharge. Upon the recharge, they predominantly decompose at the interfaces of the flake and electrode, detaching themselves from the electrode and causing irreversible capacity degradation. In situ Raman shows that the laser promotes the formation of poorly soluble intermediates, Li2 C2 O4 , which in turn affects growth/decomposition pathways of Li2 CO3 /C and the cell performance. Our findings provide mechanistic insights into interfacial evolution in Li-CO2 batteries and the laser-tuned CO2 conversion reactions, which can inspire strategies of monitoring and controlling the multistep and multiphase interfacial reactions in advanced electrochemical devices.
Collapse
Affiliation(s)
- Zhen-Zhen Shen
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuang-Yan Lang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY-14853, USA
| | - Rui-Zhi Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chi Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yao-Zu Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bing Liu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui Wen
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/ Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Islam J, Shareef M, Anwar R, Akter S, Ullah MH, Osman H, Rahman IM, Khandaker MU, Chowdhury FI. A brief insight on electrochemical energy storage toward the production of value-added chemicals and electricity generation. JOURNAL OF ENERGY STORAGE 2024; 77:109944. [DOI: 10.1016/j.est.2023.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
|
16
|
Xiao Y, Hu S, Miao Y, Gong F, Chen J, Wu M, Liu W, Chen S. Recent Progress in Hot Spot Regulated Strategies for Catalysts Applied in Li-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305009. [PMID: 37641184 DOI: 10.1002/smll.202305009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Indexed: 08/31/2023]
Abstract
As a high energy density power system, lithium-carbon dioxide (Li-CO2 ) batteries play an important role in addressing the fossil fuel crisis issues and alleviating the greenhouse effect. However, the sluggish transformation kinetic of CO2 and the difficult decomposition of discharge products impede the achievement of large capacity, small overpotential, and long life span of the batteries, which require exploring efficient catalysts to resolve these problems. In this review, the main focus is on the hot spot regulation strategies of the catalysts, which include the modulation of the active sites, the designing of microstructure, and the construction of composition. The recent progress of promising catalysis with hot spot regulated strategies is systematically addressed. Critical challenges are also presented and perspectives to provide useful guidance for the rational design of highly efficient catalysts for practical advanced Li-CO2 batteries are proposed.
Collapse
Affiliation(s)
- Ying Xiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shilin Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yue Miao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fenglian Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mingxuan Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shimou Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
17
|
Bharti A, Achutharao G, Bhattacharyya AJ. Efficient Rechargeable Li-CO 2 Battery with a Liquid Electrolyte-Soluble CuCl 2 Electrocatalyst. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53342-53350. [PMID: 37939266 DOI: 10.1021/acsami.3c09625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
We demonstrate here a simple liquid electrolyte soluble Cu-compound, viz., cupric chloride (CuCl2) as an alternative electrocatalyst for nonaqueous Li-CO2 batteries. The key point behind the selection of CuCl2 is that the theoretical potential of Li-CO2 batteries (≈2.8 V; Li+|Li) lies within the Cu1+|Cu0 redox couple (2.3-3.3 V; Li+|Li). The presence of CuCl2 in the liquid electrolyte near to the carbon nanotubes (≡ coelectrocatalyst)-loaded porous-CO2 cathode led to efficient electrocatalysis of CO2 and superior Li-CO2 battery performance. The cell overpotential in the presence of CuCl2 is 0.65 V, which is less than half compared to the one without it (≈1.7 V). Extensive investigations precisely elucidate the electrocatalytic mediation of CuCl2 with the redox characteristics of CO2. Additionally, only in the presence of CuCl2, the existence of Li-oxalate (Li2C2O4) is detected, which is a seldomly reported intermediate preceding the formation of Li2CO3.
Collapse
Affiliation(s)
- Abhishek Bharti
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Govindaraj Achutharao
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Aninda J Bhattacharyya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
18
|
Zhang K, Wang L, Ma C, Yuan Z, Wu C, Ye J, Wu Y. A Comprehensive Evaluation of Battery Technologies for High-Energy Aqueous Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309154. [PMID: 37967335 DOI: 10.1002/smll.202309154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/21/2023] [Indexed: 11/17/2023]
Abstract
Aqueous batteries have garnered significant attention in recent years as a viable alternative to lithium-ion batteries for energy storage, owing to their inherent safety, cost-effectiveness, and environmental sustainability. This study offers a comprehensive review of recent advancements, persistent challenges, and the prospects of aqueous batteries, with a primary focus on energy density compensation of various battery engineering technologies. Additionally, cutting-edge high-energy aqueous battery designs are emphasized as a reference for future endeavors in the pursuit of high-energy storage solutions. Finally, a dual-compatibility battery configuration perspective aimed at concurrently optimizing cycle stability, redox potential, capacity utilization for both anode and cathode materials, as well as the selection of potential electrode candidates, is proposed with the ultimate goal of achieving cell-level energy densities exceeding 400 Wh kg-1 .
Collapse
Affiliation(s)
- Kaiqiang Zhang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Luoya Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Changlong Ma
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Zijie Yuan
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Chao Wu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Jilei Ye
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yuping Wu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| |
Collapse
|
19
|
Yan S, Feng Y, Lin J, Wang Y. Metal-Redox Bicatalysis Batteries for Energy Storage and Chemical Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212078. [PMID: 36841953 DOI: 10.1002/adma.202212078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
New types of electrochemical energy conversion and storage devices based on redox electrocatalytic reactions possess great potential in renewable energy to maximize energy utilization and balance environmental issues. The typical device is the metal-redox bicatalysis battery, where the cathode is redox bifunctional catalyst (named as redox bicatalyst) with gas, solid, liquid as active reactants while anode is metal, driven by cathodic redox electrocatalytic reactions during charge/discharge processes, which promotes the energy storage and chemical production. In this system, the metal anode, redox-bicatalyst cathode, electrolytes, and the redox electrochemical reactions can be modified and adjusted to achieve the optimal energy conversion and utilization. Therefore, the deep understanding of the electrochemical system is conducive to designing new devices to meet the demand among various applications, including energy storage and conversion. In this review, the authors clarify the fundamentals and design principles of the rechargeable/reversible metal-redox bicatalysis batteries and how each part affects the devices in energy conversion and chemical production. The authors summarize the electrocatalytic reduction/oxidation reactions, the reported systems relied on redox reactions, and the corresponding redox bicatalysts. Finally, a perspective of the key challenges and the possible new types of metal-redox bicatalysis batteries for efficient energy utilization and chemical production are given.
Collapse
Affiliation(s)
- Shichen Yan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian, 350002, P. R. China
| | - Yangyang Feng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian, 350002, P. R. China
| | - Jing Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian, 350002, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
20
|
Luo Y, Chen S, Zhang J, Ding X, Pan B, Wang L, Lu J, Cao M, Li Y. Perovskite-Derived Bismuth with I - and Cs + Dual Modification for High-Efficiency CO 2 -to-Formate Electrosynthesis and Al-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303297. [PMID: 37272677 DOI: 10.1002/adma.202303297] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Bi-based materials are one of the most promising candidates for electrochemical CO2 reduction reaction (CO2 RR) to formate; however, the majority of them still suffer from low current density and stability that essentially constrain their potential applications at the industrial scale. Surface modification represents an effective approach to modulate the electrode microenvironment and the relative binding strength of key intermediates. Herein, it is demonstrated that the surface comodification with halides and alkali metal ions from the conversion of Bi-based halide perovskite nanocrystals is a viable strategy to boost the CO2 RR performance of Bi for formate electrosynthesis. Cs3 Bi2 I9 nanocrystals are prepared by a hot-injection method. The as-prepared products feature well-defined hexagonal shape and uniform size distribution. When used as the precatalyst, Cs3 Bi2 I9 nanocrystals are converted to Cs+ and I- comodified Bi. The resultant catalyst exhibits high formate Faradaic efficiency close to 100%, and remarkable partial current density up to 44 mA cm-2 in an H-cell and up to 276 mA cm-2 in a flow cell. Moreover, Cs3 Bi2 I9 is used as the cathode catalyst and paired with an Al anode in an Al-CO2 battery for simultaneous CO2 valorization and power generation.
Collapse
Affiliation(s)
- Yuqing Luo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Shuhua Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jie Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Xue Ding
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Binbin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| |
Collapse
|
21
|
Sarkar A, Dharmaraj VR, Yi CH, Iputera K, Huang SY, Chung RJ, Hu SF, Liu RS. Recent Advances in Rechargeable Metal-CO 2 Batteries with Nonaqueous Electrolytes. Chem Rev 2023; 123:9497-9564. [PMID: 37436918 DOI: 10.1021/acs.chemrev.3c00167] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.
Collapse
Affiliation(s)
- Ayan Sarkar
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | - Chia-Hui Yi
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kevin Iputera
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shang-Yang Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
22
|
Zhu T, Wang S, Yu Z, Song H, Xu J, Chen K. High-Performance Li-CO 2 Battery Based on Carbon-Free Porous Ru@QNFs Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301498. [PMID: 37093201 DOI: 10.1002/smll.202301498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Lithium-carbon dioxide (Li-CO2 ) batteries have attracted much attention due to their high theoretical energy density. However, due to the existance of lithium carbonate and amorphous carbon in the discharge products that are difficult to decompose, the battery shows low coulombic efficiency and poor cycle performance. Here, by adjusting the adsorption of carbon dioxide (CO2 ) on ruthenium (Ru) catalysts surface, this work reports an ultralow charge overpotential and long cycle life Li-CO2 battery that consists of typical lithium metal, ternary molten salt electrolyte (TMSE), and Ru-based cathode. Experimental results show that the Ru catalysts deposited on quartz nanofiber (QF) can suppress the four-electron conversion of CO2 to lithium carbonate (Li2 CO3 ). As a result, the battery shows a long-cycle-life of over 457 cycles at 1.0 A g-1 with a limited capacity of 500 mAh g-1 Ru . Remarkably, a recorded low discharge potential of ≈3.0 V has been achieved after 35 cycles at 0.5 A g-1 , with a charge potential retention of over 99%. Moreover, the battery can operate over 25 A g-1 and recover 96% potential. This battery technology paves the way for designing high-performance rechargeable Li-CO2 batteries with carbon neutrality.
Collapse
Affiliation(s)
- Ting Zhu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Sheng Wang
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Zhiqian Yu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Hucheng Song
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
23
|
Liu T, Zhao S, Xiong Q, Yu J, Wang J, Huang G, Ni M, Zhang X. Reversible Discharge Products in Li-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208925. [PMID: 36502282 DOI: 10.1002/adma.202208925] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/06/2022] [Indexed: 05/19/2023]
Abstract
Lithium-air (Li-air) batteries stand out among the post-Li-ion batteries due to their high energy density, which has rapidly progressed in the past years. Regarding the fundamental mechanism of Li-air batteries that discharge products produced and decomposed during charging and recharging progress, the reversibility of products closely affects the battery performance. Along with the upsurge of the mainstream discharge products lithium peroxide, with devoted efforts to screening electrolytes, constructing high-efficiency cathodes, and optimizing anodes, much progress is made in the fundamental understanding and performance. However, the limited advancement is insufficient. In this case, the investigations of other discharge products, including lithium hydroxide, lithium superoxide, lithium oxide, and lithium carbonate, emerge and bring breakthroughs for the Li-air battery technologies. To deepen the understanding of the electrochemical reactions and conversions of discharge products in the battery, recent advances in the various discharge products, mainly focusing on the growth and decomposition mechanisms and the determining factors are systematically reviewed. The perspectives for Li-air batteries on the fundamental development of discharge products and future applications are also provided.
Collapse
Affiliation(s)
- Tong Liu
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, P. R. China
| | - Siyuan Zhao
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Qi Xiong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jie Yu
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Jian Wang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Meng Ni
- Building Energy Research Group, Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
24
|
Cheng Z, Wu Z, Chen J, Fang Y, Lin S, Zhang J, Xiang S, Zhou Y, Zhang Z. Mo 2 N-ZrO 2 Heterostructure Engineering in Freestanding Carbon Nanofibers for Upgrading Cycling Stability and Energy Efficiency of Li-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301685. [PMID: 37010021 DOI: 10.1002/smll.202301685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Li-CO2 batteries have attracted considerable attention for their advantages of CO2 fixation and high energy density. However, the sluggish dynamics of CO2 reduction/evolution reactions restrict the practical application of Li-CO2 batteries. Herein, a dual-functional Mo2 N-ZrO2 heterostructure engineering in conductive freestanding carbon nanofibers (Mo2 N-ZrO2 @NCNF) is reported. The integration of Mo2 N-ZrO2 heterostructure in porous carbons provides the opportunity to simultaneously accelerate electron transport, boost CO2 conversion, and stabilize intermediate discharge product Li2 C2 O4 . Benefiting from the synchronous advantages, the Mo2 N-ZrO2 @NCNF catalyst endows the Li-CO2 batteries with excellent cycle stability, good rate capability, and high energy efficiency even under high current densities. The designed cathodes exhibit an ultrahigh energy efficiency of 89.8% and a low charging voltage below 3.3 V with a potential gap of 0.32 V. Remarkably, stable operation over 400 cycles can be achieved even at high current densities of 50 µA cm-2 . This work provides valuable guidance for developing multifunctional heterostructured catalysts to upgrade longevity and energy efficiency of Li-CO2 batteries.
Collapse
Affiliation(s)
- Zhibin Cheng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Ziyuan Wu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jiazhen Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yanlong Fang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Si Lin
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jindan Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Shengchang Xiang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yao Zhou
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhangjing Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
25
|
Xu C, Dong Y, Shen Y, Zhao H, Li L, Shao G, Lei Y. Fundamental Understanding of Nonaqueous and Hybrid Na-CO 2 Batteries: Challenges and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206445. [PMID: 36609796 DOI: 10.1002/smll.202206445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Alkali metal-CO2 batteries, which combine CO2 recycling with energy conversion and storage, are a promising way to address the energy crisis and global warming. Unfortunately, the limited cycle life, poor reversibility, and low energy efficiency of these batteries have hindered their commercialization. Li-CO2 battery systems have been intensively researched in these aspects over the past few years, however, the exploration of Na-CO2 batteries is still in its infancy. To improve the development of Na-CO2 batteries, one must have a full picture of the chemistry and electrochemistry controlling the operation of Na-CO2 batteries and a full understanding of the correlation between cell configurations and functionality therein. Here, recent advances in CO2 chemical and electrochemical mechanisms on nonaqueous Na-CO2 batteries and hybrid Na-CO2 batteries (including O2 -involved Na-O2 /CO2 batteries) are reviewed in-depth and comprehensively. Following this, the primary issues and challenges in various battery components are identified, and the design strategies for the interfacial structure of Na anodes, electrolyte properties, and cathode materials are explored, along with the correlations between cell configurations, functional materials, and comprehensive performances are established. Finally, the prospects and directions for rationally constructing Na-CO2 battery materials are foreseen.
Collapse
Affiliation(s)
- Changfan Xu
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Yulian Dong
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Yonglong Shen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Guosheng Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| |
Collapse
|
26
|
Cao Q, Wan L, Xu Z, Kuang W, Liu H, Zhang X, Zhang W, Lu Y, Yao Y, Wang B, Liu K. A Fluorinated Covalent Organic Framework with Accelerated Oxygen Transfer Nanochannels for High-Performance Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210550. [PMID: 36745936 DOI: 10.1002/adma.202210550] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/08/2023] [Indexed: 05/17/2023]
Abstract
The establishment of abundant three-phase interfaces with accelerated mass transfer in air cathodes is highly desirable for the development of high-rate and long-cycling rechargeable zinc-air batteries (ZABs). Covalent organic frameworks (COFs) exhibit tailored nanopore structures, facilitating the rational tuning of their specific properties. Here, by finely tuning the fluorinated nanopores of a COF, a novel air cathode for rechargeable ZABs is unprecedentedly designed and synthesized. COF nanosheets are decorated with fluorinated alkyl chains, which shows high affinity to oxygen (O2 ), in its nanopores (fluorinated COF). The fluorinated COF nanosheets are stacked into well-defined O2 -transport channels, which are then assembled into aerophilic "nano-islands" on the hydrophilic FeNi layered-double-hydroxide (FeNi LDH) electrocatalyst surface. Therefore, the mass-transport "highway" for O2 and water is segregated on the nanoscale, which significantly enlarges the area of three-phase boundaries and greatly promotes the mass-transfer therein. ZABs based on the COF-modified air cathode deliver a small charge/discharge voltage gap (0.64 V at 5 mA cm-2 ), a peak power density (118 mW cm-2 ), and a stable cyclability. This work provides a feasible approach for the design of the air cathodes for high-performance ZABs, and will expand the new application of COFs.
Collapse
Affiliation(s)
- Qingbin Cao
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lei Wan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziang Xu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Wenmin Kuang
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Hao Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xin Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Weili Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yujian Yao
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Baoguo Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
Wang F, Wang G, Deng P, Chen Y, Li J, Wu D, Wang Z, Wang C, Hua Y, Tian X. Ultrathin Nitrogen-Doped Carbon Encapsulated Ni Nanoparticles for Highly Efficient Electrochemical CO 2 Reduction and Aqueous Zn-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301128. [PMID: 36919799 DOI: 10.1002/smll.202301128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR), powered by renewable electricity, has attracted great attention for producing high value-added fuels and chemicals, as well as feasibly mitigating CO2 emission problem. Here, this work reports a facile hard template strategy to prepare the Ni@N-C catalyst with core-shell structure, where nickel nanoparticles (Ni NPs) are encapsulated by thin nitrogen-doped carbon shells (N-C shells). The Ni@N-C catalyst has demonstrated a promising industrial current density of 236.7 mA cm-2 with the superb FECO of 97% at -1.1 V versus RHE. Moreover, Ni@N-C can drive the reversible Zn-CO2 battery with the largest power density of 1.64 mW cm-2 , and endure a tough cycling durability. These excellent performances are ascribed to the synergistic effect of Ni@N-C that Ni NPs can regulate the electronic microenvironment of N-doped carbon shells, which favor to enhance the CO2 adsorption capacity and the electron transfer capacity. Density functional theory calculations prove that the binding configuration of N-C located on the top of Ni slabs (Top-Ni@N-C) is the most thermodynamically stable and possess a lowest thermodynamic barrier for the formation of COOH* and the desorption of CO. This work may pioneer a new method on seeking high-efficiency and worthwhile electrocatalysts for CO2 RR and Zn-CO2 battery.
Collapse
Affiliation(s)
- Fangyuan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Guan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Peilin Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Yao Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Jing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Daoxiong Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Zhitong Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Chongtai Wang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Provinc, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Yingjie Hua
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Provinc, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
28
|
Zhang L, Wang Y. Decoupled Artificial Photosynthesis. Angew Chem Int Ed Engl 2023; 62:e202219076. [PMID: 36847210 DOI: 10.1002/anie.202219076] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Natural photosynthesis (NP) generates oxygen and carbohydrates from water and CO2 utilizing solar energy to nourish lives and balance CO2 levels. Following nature, artificial photosynthesis (AP), typically, overall water or CO2 splitting, produces fuels and chemicals from renewable energy. However, hydrogen evolution or CO2 reduction is inherently coupled with kinetically sluggish water oxidation, lowering efficiencies and raising safety concerns. Decoupled systems have thus emerged. In this review, we elaborate how decoupled artificial photosynthesis (DAP) evolves from NP and AP and unveil their distinct photoelectrochemical mechanisms in energy capture, transduction and conversion. Advances of AP and DAP are summarized in terms of photochemical (PC), photoelectrochemical (PEC), and photovoltaic-electrochemical (PV-EC) catalysis based on material and device design. The energy transduction process of DAP is emphasized. Challenges and perspectives on future researches are also presented.
Collapse
Affiliation(s)
- Linlin Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
29
|
Kong Y, Jiang X, Li X, Sun J, Hu Q, Chai X, Yang H, He C. Boosting electrocatalytic CO2 reduction to formate via carbon nanofiber encapsulated bismuth nanoparticles with ultrahigh mass activity. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64177-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Liu X, Liu X, Li C, Yang B, Wang L. Defect engineering of electrocatalysts for metal-based battery. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Cao C, Zhou S, Zuo S, Zhang H, Chen B, Huang J, Wu XT, Xu Q, Zhu QL. Si Doping-Induced Electronic Structure Regulation of Single-Atom Fe Sites for Boosted CO 2 Electroreduction at Low Overpotentials. RESEARCH (WASHINGTON, D.C.) 2023; 6:0079. [PMID: 36939451 PMCID: PMC10017332 DOI: 10.34133/research.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Transition metal-based single-atom catalysts (TM-SACs) are promising alternatives to Au- and Ag-based electrocatalysts for CO production through CO2 reduction reaction. However, developing TM-SACs with high activity and selectivity at low overpotentials is challenging. Herein, a novel Fe-based SAC with Si doping (Fe-N-C-Si) was prepared, which shows a record-high electrocatalytic performance toward the CO2-to-CO conversion with exceptional current density (>350.0 mA cm-2) and ~100% Faradaic efficiency (FE) at the overpotential of <400 mV, far superior to the reported Fe-based SACs. Further assembling Fe-N-C-Si as the cathode in a rechargeable Zn-CO2 battery delivers an outstanding performance with a maximal power density of 2.44 mW cm-2 at an output voltage of 0.30 V, as well as high cycling stability and FE (>90%) for CO production. Experimental combined with theoretical analysis unraveled that the nearby Si dopants in the form of Si-C/N bonds modulate the electronic structure of the atomic Fe sites in Fe-N-C-Si to markedly accelerate the key pathway involving *CO intermediate desorption, inhibiting the poisoning of the Fe sites under high CO coverage and thus boosting the CO2RR performance. This work provides an efficient strategy to tune the adsorption/desorption behaviors of intermediates on single-atom sites to improve their electrocatalytic performance.
Collapse
Affiliation(s)
- Changsheng Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Shenghua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Shouwei Zuo
- KAUST Catalysis Center (KCC),
King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huabin Zhang
- KAUST Catalysis Center (KCC),
King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bo Chen
- Department of Chemistry,
City University of Hong Kong, Hong Kong, 999077, China
| | - Junheng Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, FujianInstitute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Qiang Xu
- Institute for Integrated Cell-Material Sciences (iCeMS),
Kyoto University, Kyoto 606-8501, Japan
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), and Department of Materials Science and Engineering,
Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
- Address correspondence to:
| |
Collapse
|
32
|
Lv J, Xie J, Mohamed AGA, Zhang X, Feng Y, Jiao L, Zhou E, Yuan D, Wang Y. Solar utilization beyond photosynthesis. Nat Rev Chem 2022; 7:91-105. [PMID: 37117911 DOI: 10.1038/s41570-022-00448-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Natural photosynthesis is an efficient biochemical process which converts solar energy into energy-rich carbohydrates. By understanding the key photoelectrochemical processes and mechanisms that underpin natural photosynthesis, advanced solar utilization technologies have been developed that may be used to provide sustainable energy to help address climate change. The processes of light harvesting, catalysis and energy storage in natural photosynthesis have inspired photovoltaics, photoelectrocatalysis and photo-rechargeable battery technologies. In this Review, we describe how advanced solar utilization technologies have drawn inspiration from natural photosynthesis, to find sustainable solutions to the challenges faced by modern society. We summarize the uses of advanced solar utilization technologies, such as converting solar energy to electrical and chemical energy, electrochemical storage and conversion, and associated thermal tandem technologies. Both the foundational mechanisms and typical materials and devices are reported. Finally, potential future solar utilization technologies are presented that may mimic, and even outperform, natural photosynthesis.
Collapse
|
33
|
Chourasia AK, Pathak AD, Bongu C, Manikandan K, Praneeth S, Naik KM, Sharma CS. In Situ/Operando Characterization Techniques: The Guiding Tool for the Development of Li-CO 2 Battery. SMALL METHODS 2022; 6:e2200930. [PMID: 36333232 DOI: 10.1002/smtd.202200930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In recent times, the Li-CO2 battery has gained significant importance arising from its higher gravimetric energy density (1876 Wh kg-1 ) compared to the conventional Li-ion batteries. Also, its ability to utilize the greenhouse gas CO2 to operate an energy storage system and the prospective utilization on extraterrestrial planets such as Mars motivate to practicalize it. However, it suffers from numerous challenges such as (i) the reluctant CO2 reduction/evolution; (ii) solid/liquid/gas interface blockage arising from the deposition of Li2 CO3 discharge product on the cathode; (iii) high overpotential to decompose the stable discharge product Li2 CO3 ; and (iv) instability of the electrolytes. Numerous efforts have been undertaken to tackle these challenges by developing catalysts, improving the stability of electrolytes, protecting the anode, etc. Despite these efforts, due to the lack of a decisive confirmation of the reaction mechanisms of the discharging/charging reactions occurring in the system, the progress of the Li-CO2 battery system has been slow. In situ characterization techniques help overcome ex-situ techniques' limitations by monitoring the processes with the progress of a reaction. The current review focuses on bridging the gap in the understanding of the Li-CO2 batteries by exploring the various in situ/operando characterization techniques that have been employed.
Collapse
Affiliation(s)
- Ankit K Chourasia
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Anil D Pathak
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Chandrasekhar Bongu
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - K Manikandan
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Sai Praneeth
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Keerti M Naik
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Chandra S Sharma
- Creative and Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| |
Collapse
|
34
|
Yuan Z, Mao H, Yu D, Chen X. Photo-Assisted Metal-Air Batteries: Recent Progress, Challenges and Opportunities. Chemistry 2022; 29:e202202920. [PMID: 36437508 DOI: 10.1002/chem.202202920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
To meet the need of high energy density, long durability, safe and cost-efficient energy conversion and storage devices, metal-air batteries like Li-O2 and Zn-O2 batteries have received enormous attention and were subject to exciting development in the past decade. Photo-assisted strategies that enable the effective combination of photo/electric energy conversion/storage render a new dimension for the conventional metal-air batteries techniques with mere electric energy utilization. Therefore, tremendous research is ongoing in search of more efficient and durable devices with photo-assisted strategies. This review provides an overview of photo-assisted Li-O2 batteries, Zn-O2 batteries, and batteries with various metal/air components. The working mechanism, the basic device architecture and practical performances of various photo-assisted systems are summarized and discussed. Furthermore, certain technical challenges and future opportunities for the photo-assisted metal air batteries are emphasized and discussed in the hope of stimulating further research.
Collapse
Affiliation(s)
- Zhongke Yuan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.,Jieyang Branch of Chemistry, and Chemical Engineering Guangdong Laboratory, Jieyang, 515200, P. R. China
| | - Houzai Mao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.,Jieyang Branch of Chemistry, and Chemical Engineering Guangdong Laboratory, Jieyang, 515200, P. R. China
| | - Xudong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.,Jieyang Branch of Chemistry, and Chemical Engineering Guangdong Laboratory, Jieyang, 515200, P. R. China
| |
Collapse
|
35
|
Peng L, Yin H, Zou L, Yu F. The Influence of Current Density Dependent Li2CO3 Properties on the Discharge and Charge Reactions of Li-CO2/O2 Battery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Liu H, Yu F, Wu K, Xu G, Wu C, Liu HK, Dou SX. Recent Progress on Fe-Based Single/Dual-Atom Catalysts for Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106635. [PMID: 35218294 DOI: 10.1002/smll.202106635] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
As one of the most competitive candidates for large-scale energy storage, zinc-air batteries (ZABs) have attracted great attention due to their high theoretical specific energy density, low toxicity, high abundance, and high safety. It is highly desirable but still remains a huge challenge, however, to achieve cheap and efficient electrocatalysts to promote their commercialization. Recently, Fe-based single-atom and dual-atom catalysts (SACs and DACs, respectively) have emerged as powerful candidates for ZABs derived from their maximum utilization of atoms, excellent catalytic performance, and low price. In this review, some fundamental concepts in the field of ZABs are presented and the recent progress on the reported Fe-based SACs and DACs is summarized, mainly focusing on the relationship between structure and performance at the atomic level, with the aim of providing helpful guidelines for future rational designs of efficient electrocatalysts with atomically dispersed active sites. Finally, the great advantages and future challenges in this field of ZABs are also discussed.
Collapse
Affiliation(s)
- Haoxuan Liu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Fangfang Yu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Kuan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chao Wu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hua-Kun Liu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shi-Xue Dou
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
38
|
Ling LL, Jiao L, Liu X, Dong Y, Yang W, Zhang H, Ye B, Chen J, Jiang HL. Potassium-Assisted Fabrication of Intrinsic Defects in Porous Carbons for Electrocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205933. [PMID: 35948462 DOI: 10.1002/adma.202205933] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The fabrication of intrinsic carbon defects is usually tangled with doping effects, and the identification of their unique roles in catalysis remains a tough task. Herein, a K+ -assisted synthetic strategy is developed to afford porous carbon (K-defect-C) with abundant intrinsic defects and complete elimination of heteroatom via direct pyrolysis of K+ -confined metal-organic frameworks (MOFs). Positron-annihilation lifetime spectroscopy, X-ray absorption fine structure measurement, and scanning transmission electron microscopy jointly illustrate the existence of abundant 12-vacancy-type carbon defects (V12 ) in K-defect-C. Remarkably, the K-defect-C achieves ultrahigh CO Faradaic efficiency (99%) at -0.45 V in CO2 electroreduction, far surpassing MOF-derived carbon without K+ etching. Theoretical calculations reveal that the V12 defects in K-defect-C favor CO2 adsorption and significantly accelerate the formation of the rate-determining COOH* intermediate, thereby promoting CO2 reduction. This work develops a novel strategy to generate intrinsic carbon defects and provides new insights into their critical role in catalysis.
Collapse
Affiliation(s)
- Li-Li Ling
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Long Jiao
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaoshuo Liu
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P. R. China
| | - Yun Dong
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Chen
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Innovation Campus, Wollongong, NSW, 2522, Australia
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
39
|
|
40
|
Lv H, Xiao Z, Zhai S, Hao J, Tong Y, Wang G, An Q. Construction of nickel ferrite nanoparticle-loaded on carboxymethyl cellulose-derived porous carbon for efficient pseudocapacitive energy storage. J Colloid Interface Sci 2022; 622:327-335. [PMID: 35525136 DOI: 10.1016/j.jcis.2022.04.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 12/14/2022]
Abstract
The preparation of biomass-derived carbon electrode materials with abundant active sites is suitable for development of energy-storage systems with high energy and power densities. Herein, a hybrid material consisting of highly-dispersed nickel ferrite nanoparticle on 3D hierarchical carboxymethyl cellulose-derived porous carbon (NiFe2O4/CPC) was prepared by simple annealing treatment. The synergistic effects of NiFe2O4 species with multiple oxidation states and 3D porous carbon with a large specific surface area offered abundant active centers, fast electron/ion transport, and robust structural stability, thereby showing the excellent performance of the electrochemical capacitor. The best performing sample (NiFe2O4/CPC-800) exhibited a superior capacitance of 2894F g-1 at a current density of 0.5 A g-1. Encouragingly, an asymmetric supercapacitor with NiFe2O4/CPC-800 as a positive electrode and activated carbon as a negative electrode delivered a high energy density of 135.2 W h kg-1 along with an improved power density of 10.04 kW kg-1. Meanwhile, the superior cycling stability of 90.2% over 10,000 cycles at 5 A g-1 was achieved. Overall, the presented work offers a guideline for the design and preparation of advanced electrode materials for energy-storage systems.
Collapse
Affiliation(s)
- Hui Lv
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zuoyi Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Shangru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jingai Hao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Tong
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guoxiang Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
41
|
Lu M, Zhang M, Liu J, Chen Y, Liao JP, Yang MY, Cai YP, Li SL, Lan YQ. Covalent Organic Framework Based Functional Materials: Important Catalysts for Efficient CO 2 Utilization. Angew Chem Int Ed Engl 2022; 61:e202200003. [PMID: 35060268 DOI: 10.1002/anie.202200003] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 01/13/2023]
Abstract
As hot topics in the chemical conversion of CO2 , the photo-/electrocatalytic reduction of CO2 and use of CO2 as a supporter for energy storage have shown great potential for the utilization of CO2 . However, many obstacles still exist on the road to realizing highly efficient chemical CO2 conversion, such as inefficient uptake/activation of CO2 and mass transport in catalysts. Covalent organic frameworks (COFs), as a kind of porous material, have been widely explored as catalysts for the chemical conversion of CO2 owing to their unique features. In particular, COF-based functional materials containing diverse active sites (such as single metal sites, metal nanoparticles, and metal oxides) offer great potential for realizing CO2 conversion and energy storage. This Minireview discusses recent breakthroughs in the basic knowledge, mechanisms, and pathways of chemical CO2 conversion strategies that use COF-based functional catalysts. In addition, the challenges and prospects of COF-based functional catalysts for the efficient utilization of CO2 are also introduced.
Collapse
Affiliation(s)
- Meng Lu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Mi Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.,Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.,Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jia-Peng Liao
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ming-Yi Yang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Yue-Peng Cai
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
42
|
Wang Y, Huang Z, Lei Y, Wu J, Bai Y, Zhao X, Liu M, Zhan L, Tang S, Zhang X, Luo F, Xiong X. Bismuth with abundant defects for electrocatalytic CO 2 reduction and Zn-CO 2 batteries. Chem Commun (Camb) 2022; 58:3621-3624. [PMID: 35199814 DOI: 10.1039/d2cc00114d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To regulate the electronic structure of Bi sites and enhance their intrinsic activity, metal Bi with abundant defects was constructed. The optimized sample displayed a higher selectivity (93.9% at -0.9 V) and a larger current density (-10 mA cm-2 at -1.0 V) towards electrocatalytic CO2 reduction to formate, which can be mainly attributed to abundant defect sites and the optimized electronic structure. The assembled Zn-CO2 batteries displayed a power density of 1.16 mW cm-2 and a cycling stability up to 22 h. This work deepens the research of Bi-based catalysts towards CO2 transformation and related energy devices.
Collapse
Affiliation(s)
- Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Zisheng Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Jiao Wu
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yu Bai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Xin Zhao
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Mengjie Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Longsheng Zhan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Shuaihao Tang
- Energy Materials Computing Center, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Xiaobin Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Fenghua Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Xiang Xiong
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| |
Collapse
|
43
|
Liu S, Wang L, Yang H, Gao S, Liu Y, Zhang S, Chen Y, Liu X, Luo J. Nitrogen-Doped Carbon Polyhedrons Confined Fe-P Nanocrystals as High-Efficiency Bifunctional Catalysts for Aqueous Zn-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104965. [PMID: 35032144 DOI: 10.1002/smll.202104965] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Emerging Fe bonded with heteroatom P in carbon matrix (FePC) holds great promise for electrochemical catalysis, but the design of highly active and cost-efficient FePC structure for the electrocatalytic CO2 reduction reaction (CO2 RR) and aqueous ZnCO2 batteries (ZCBs) is still challenging. Herein, polyhedron-shaped bifunctional electrocatalysts, FeP nanocrystals anchored in N-doped carbon polyhedrons (Fe-P@NCPs), toward a reversible aqueous ZnCO2 battery, are reported. The Fe-P@NCPs are synthesized through a facile strategy by using self-templated zeolitic imidazolate frameworks (ZIFs), followed by an in situ high-temperature calcination. The resultant catalysts exhibit aqueous CO2 RR activity with a CO Faradaic efficiency up to 95% at -0.55 V versus reversible hydrogen electrode (RHE), comparable to the previously best-reported values of FeNC structure. The as-constructed ZCBs with designed Fe-P@NCPs cathode, show the peak power density of 0.85 mW cm-2 and energy density of 231.8 Wh kg-1 with a cycling durability over 500 cycles, and outstanding stability in terms of discharge voltage for 7 days. The high selectivity and efficiency of the battery are attributed to the presence of highly catalytic FeP nanocrystals in N-doped carbon matrix, which can effectively increase the number of catalytically active sites and interfacial charge-transfer conductivity, thereby improving the CO2 RR activity.
Collapse
Affiliation(s)
- Shuai Liu
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hui Yang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Sanshuang Gao
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yifan Liu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Yu Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xijun Liu
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| | - Jun Luo
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin Key Lab for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
44
|
Lu M, Zhang M, Liu J, Chen Y, Liao J, Yang M, Cai Y, Li S, Lan Y. Covalent Organic Framework Based Functional Materials: Important Catalysts for Efficient CO
2
Utilization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meng Lu
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Mi Zhang
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Jiang Liu
- School of Chemistry South China Normal University Guangzhou 510006 China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yifa Chen
- School of Chemistry South China Normal University Guangzhou 510006 China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jia‐Peng Liao
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Ming‐Yi Yang
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Yue‐Peng Cai
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Shun‐Li Li
- School of Chemistry South China Normal University Guangzhou 510006 China
| | - Ya‐Qian Lan
- School of Chemistry South China Normal University Guangzhou 510006 China
| |
Collapse
|
45
|
Gong H, Yu X, Xu Y, Gao B, Xue H, Fan X, Guo H, Wang T, He J. Long-life reversible Li-CO2 batteries with optimized Li2CO3 flakes as discharge products on palladium-copper nanoparticles. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01583d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A long-life Li-CO2 battery was achieved with bimetallic PdCu alloys on CNFs as a cathode.
Collapse
Affiliation(s)
- Hao Gong
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xingyu Yu
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Yunyun Xu
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Bin Gao
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Hairong Xue
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Xiaoli Fan
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, P. R. China
| | - Hu Guo
- School of New Energy, Nanjing University of Science and Technology, Jiangyin 214400, China
| | - Tao Wang
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Jianping He
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| |
Collapse
|
46
|
Shah SSA, Najam T, Javed MS, Bashir MS, Nazir MA, Khan NA, Rehman AU, Subhan MA, Rahman MM. Recent Advances in Synthesis and Applications of Single-Atom Catalysts for Rechargeable Batteries. CHEM REC 2021; 22:e202100280. [PMID: 34921492 DOI: 10.1002/tcr.202100280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/28/2021] [Indexed: 11/12/2022]
Abstract
The rapid development of flexible and wearable optoelectronic devices, demanding the superior, reliable, and ultra-long cycling energy storage systems. But poor performances of electrode materials used in energy devices are main obstacles. Recently, single-atom catalysts (SACs) are considered as emerging and potential candidates as electrode materials for battery devices. Herein, we have discussed the recent methods for the fabrication of SACs for rechargeable metal-air batteries, metal-CO2 batteries, metal-sulfur batteries, and other batteries, following the recent advances in assembling and performance of these batteries by using SACs as electrode materials. The role of SACs to solve the bottle-neck problems of these energy storage devices and future perspectives are also discussed.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.,Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tayyaba Najam
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Sohail Bashir
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Naseem Ahmad Khan
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Md Abdus Subhan
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammed Muzibur Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
47
|
Li J, Dai A, Amine K, Lu J. Correlating Catalyst Design and Discharged Product to Reduce Overpotential in Li-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007760. [PMID: 33739573 DOI: 10.1002/smll.202007760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Li-CO2 batteries with dual efficacy for greenhouse gas CO2 sequestration and high energy output have been regarded as a promising electrochemical energy storage technology. However, battery feasibility has been hampered by inferior electrochemical performance due to large overpotentials and low cyclability primarily caused by the difficult decomposition of ultra-stable Li2 CO3 during charge. The use of cathode catalysts has been highlighted as a promising solution and catalyst properties, as well as the nature of discharge products, are closely correlated with electrochemical performance. Here, the catalyst design strategies that include active site enrichment, electrical transport enhancement, and mass transfer improvement are summarized. Catalyst effects on product decomposition are then subsequently introduced, while product geometry and chemical composition will be explored, with an emphasis on the formation/decomposition of Li2 C2 O4 instead of Li2 CO3 . Building on previous research, future directions that facilitate improvements in catalyst design are put forward to reinforce the fundamental development of Li-CO2 batteries.
Collapse
Affiliation(s)
- Jiantao Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| | - Alvin Dai
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
- Department of Material Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam, 34212, Saudi Arabia
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
| |
Collapse
|
48
|
Jiao L, Zhu J, Zhang Y, Yang W, Zhou S, Li A, Xie C, Zheng X, Zhou W, Yu SH, Jiang HL. Non-Bonding Interaction of Neighboring Fe and Ni Single-Atom Pairs on MOF-Derived N-Doped Carbon for Enhanced CO 2 Electroreduction. J Am Chem Soc 2021; 143:19417-19424. [PMID: 34779627 DOI: 10.1021/jacs.1c08050] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-atom catalysts (SACs), featuring high atom utilization, have captured widespread interests in diverse applications. However, the single-atom sites in SACs are generally recognized as independent units and the interplay of adjacent sites is largely overlooked. Herein, by the direct pyrolysis of MOFs assembled with Fe and Ni-doped ZnO nanoparticles, a novel Fe1-Ni1-N-C catalyst, with neighboring Fe and Ni single-atom pairs decorated on nitrogen-doped carbon support, has been precisely constructed. Thanks to the synergism of neighboring Fe and Ni single-atom pairs, Fe1-Ni1-N-C presents significantly boosted performances for electrocatalytic reduction of CO2, far surpassing Fe1-N-C and Ni1-N-C with separate Fe or Ni single atoms. Additionally, the Fe1-Ni1-N-C also exhibits superior performance with excellent CO selectivity and durability in Zn-CO2 battery. Theoretical simulations reveal that, in Fe1-Ni1-N-C, single Fe atoms can be highly activated by adjacent single-atom Ni via non-bonding interaction, significantly facilitating the formation of COOH* intermediate and thereby accelerating the overall CO2 reduction. This work supplies a general strategy to construct single-atom catalysts containing multiple metal species and reveals the vital importance of the communitive effect between adjacent single atoms toward improved catalysis.
Collapse
Affiliation(s)
- Long Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Juntong Zhu
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Weijie Yang
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei 071003, P. R. China
| | - Siyuan Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Aowen Li
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenfan Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
49
|
Liang F, Zhang K, Zhang L, Zhang Y, Lei Y, Sun X. Recent Development of Electrocatalytic CO 2 Reduction Application to Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100323. [PMID: 34151517 DOI: 10.1002/smll.202100323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Carbon dioxide (CO2 ) emission has caused greenhouse gas pollution worldwide. Hence, strengthening CO2 recycling is necessary. CO2 electroreduction reaction (CRR) is recognized as a promising approach to utilize waste CO2 . Electrocatalysts in the CRR process play a critical role in determining the selectivity and activity of CRR. Different types of electrocatalysts are introduced in this review: noble metals and their derived compounds, transition metals and their derived compounds, organic polymer, and carbon-based materials, as well as their major products, Faradaic efficiency, current density, and onset potential. Furthermore, this paper overviews the recent progress of the following two major applications of CRR according to the different energy conversion methods: electricity generation and formation of valuable carbonaceous products. Considering electricity generation devices, the electrochemical properties of metal-CO2 batteries, including Li-CO2 , Na-CO2 , Al-CO2 , and Zn-CO2 batteries, are mainly summarized. Finally, different pathways of CO2 electroreduction to carbon-based fuels is presented, and their reaction mechanisms are illustrated. This review provides a clear and innovative insight into the entire reaction process of CRR, guiding the new electrocatalysts design, state-of-the-art analysis technique application, and reaction system innovation.
Collapse
Affiliation(s)
- Feng Liang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Kaiwen Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Lei Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yong Lei
- Institute of Physics & IMN MacroNano (ZIK), Technical University of Ilmenau, 98693, Ilmenau, Germany
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
50
|
Zeng Z, Gan LY, Bin Yang H, Su X, Gao J, Liu W, Matsumoto H, Gong J, Zhang J, Cai W, Zhang Z, Yan Y, Liu B, Chen P. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO 2 reduction and oxygen evolution. Nat Commun 2021; 12:4088. [PMID: 34215728 PMCID: PMC8253796 DOI: 10.1038/s41467-021-24052-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/21/2021] [Indexed: 11/05/2022] Open
Abstract
While inheriting the exceptional merits of single atom catalysts, diatomic site catalysts (DASCs) utilize two adjacent atomic metal species for their complementary functionalities and synergistic actions. Herein, a DASC consisting of nickel-iron hetero-diatomic pairs anchored on nitrogen-doped graphene is synthesized. It exhibits extraordinary electrocatalytic activities and stability for both CO2 reduction reaction (CO2RR) and oxygen evolution reaction (OER). Furthermore, the rechargeable Zn-CO2 battery equipped with such bifunctional catalyst shows high Faradaic efficiency and outstanding rechargeability. The in-depth experimental and theoretical analyses reveal the orbital coupling between the catalytic iron center and the adjacent nickel atom, which leads to alteration in orbital energy level, unique electronic states, higher oxidation state of iron, and weakened binding strength to the reaction intermediates, thus boosted CO2RR and OER performance. This work provides critical insights to rational design, working mechanism, and application of hetero-DASCs.
Collapse
Affiliation(s)
- Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Li Yong Gan
- Institute for Structure and Function, Department of Physics, Chongqing University, Chongqing, China
| | - Hong Bin Yang
- Institute for Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, China.
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai, China
| | - Jiajian Gao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hiroaki Matsumoto
- Hitachi High-Technologies (Shanghai) Co. Ltd., Shanghai, People's Republic of China
| | - Jun Gong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Weizhen Cai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zheye Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yibo Yan
- Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|