1
|
Cai D, Wang Y, Zhang Z, Huang E, Yang N, Yang X, Zhang T, Wen H, Wang Y, Chen Z, Wu H, Liu D. Droplet pairing-merging enabled digital RPA-CRISPR/Cas12a (DIMERIC) assay for rapid and precise quantification of Hepatitis B Virus DNA. Biosens Bioelectron 2025; 276:117256. [PMID: 39970723 DOI: 10.1016/j.bios.2025.117256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Recombinase polymerase amplification (RPA)-CRISPR/Cas12a assays have demonstrated remarkable potential for point-of-care detection of pathogens in resource-limited settings. Nevertheless, these assays fall short in delivering direct quantitative results due to the incompatibility between the RPA and CRISPR/Cas12a systems. To overcome this limitation, we developed a droplet pairing-merging enabled digital RPA-CRISPR/Cas12a (DIMERIC) assay in this study. By leveraging a microfluidic chip with a calabash-shaped microwell array, large-volume RPA droplets and small-volume CRISPR/Cas12a droplets were sequentially and size-selectively trapped, generating one-to-one droplet pairs. This spatial separation of the droplets eliminates the inhibitory effects of the CRISPR/Cas12a chemistry on RPA. Upon the completion of RPA, the CRISPR/Cas12a system can be activated by merging the paired droplets. This temporal separation of the RPA and CRISPR/Cas reactions allows for the accumulation of sufficient amplicons to efficiently unleash the collateral cleavage activity. The DIMERIC assay offers rapid quantification of nucleic acids, with the entire procedure being accomplished within 20 min. This assay was employed for the quantitative detection of Hepatitis B virus DNA from batched clinical serum samples, demonstrating a good correlation with qPCR (R2 = 0.92033) and ddPCR (R2 = 0.97337) outcomes. Consequently, the developed DIMERIC assay provides a valuable tool for rapid and precise quantification of pathogenic nucleic acids.
Collapse
Affiliation(s)
- Dongyang Cai
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou, 510180, China
| | - Yifan Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Ziyi Zhang
- Department of Urology, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Enqi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Na Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Xiao Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Ting Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Hongting Wen
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Micro-Nano Tech Center, Bioland Laboratory, Guangzhou, 510005, China
| | - Zhenhua Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Hongkai Wu
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China
| | - Dayu Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou, 510180, China.
| |
Collapse
|
2
|
Liu Y, Wu Y, Liu Y, Zhang Q, Yuan H, Li S, Li Z, Wang B, Chang Y, Liu M. Arrest of CRISPR-Cas12a by Nonspecific Single-Stranded DNA for Biosensing. Anal Chem 2025; 97:9310-9315. [PMID: 40261268 DOI: 10.1021/acs.analchem.4c07081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
CRISPR-Cas technologies have emerged as powerful biosensing tools for the sensitive and specific detection of non-nucleic acid targets. However, existing biosensing strategies suffer from poor compatibility across diverse targets due to the complicated engineering of crRNA and DNA activator required for the CRISPR-Cas activity regulation. Herein, we report a novel and straightforward strategy for designing CRISPR-Cas12a-based biosensors that function by switching structures from single-stranded (ss)DNA/CRISPR-Cas12a assembly to DNA activator/CRISPR-Cas12a complex in the presence of target bacterium. The strategy begins with a ssDNA assembly made of a trans-acting RNA-cleaving DNAzyme (tRCD) and an RNA/DNA chimeric substrate (RCS). The ssDNA assembly has the ability to bind Cas12a nonspecifically, thus indeed blocking the CRISPR-Cas12a activity. By exploiting the specific recognition and cleavage capacities of tRCD for RCS in the presence of a target, the target-bound tRCD and the cleaved RCS are released from Cas12a, thus restoring the CRISPR-Cas12a activity. This method has been successfully applied for the sensitive (detection limit: 102 CFU/mL) detection of Escherichia coli (E. coli, EC) and Burkholderia gladioli (B. gladioli, BG). For the blind testing of 30 clinical urine samples, it exhibited 100% sensitivity and 100% specificity in identifying E. coli-associated urinary tract infections (UTIs).
Collapse
Affiliation(s)
- Yue Liu
- School of Environmental Science and Technology, Dalian POCT Laboratory, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Yunping Wu
- School of Environmental Science and Technology, Dalian POCT Laboratory, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Yi Liu
- The Affiliated Central Hospital, Dalian University of Technology, Dalian 116000, China
| | - Qiang Zhang
- School of Bioengineering, Key Laboratory of Bio-Intelligent Manufacturing (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Hong Yuan
- The Affiliated Central Hospital, Dalian University of Technology, Dalian 116000, China
| | - Shen Li
- The Affiliated Central Hospital, Dalian University of Technology, Dalian 116000, China
| | - Zhi Li
- Clinical Laboratory, Dalian Municipal Central Hospital, Dalian 116000, China
| | - Bo Wang
- Clinical Laboratory, Dalian Municipal Central Hospital, Dalian 116000, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Dalian POCT Laboratory, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Dalian POCT Laboratory, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Zhang D, Gao T, Guo Q, Ren Y, Zhu W, Zhuang H, Pan Z, Wang F, Chen Y, Guo M, Liu T, Wang C, Ji L, Qian W, Li J, Hou S, Sun Z, Wang X, Xu J, Guo H. Rapid and sensitive Mycoplasma detection in antibody bioprocessing via RPA-CRISPR/Cas12a. J Pharm Biomed Anal 2025; 263:116904. [PMID: 40267574 DOI: 10.1016/j.jpba.2025.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Mycoplasma species are prevalent microbial contaminants in the production of biological products, such as monoclonal antibodies, posing significant threats to the safety and efficacy of these products. Current regulatory guidelines as well as pharmacopoeias mandate the demonstration of the absence of Mycoplasma in the cell culture and further downstream processing to ensure product safety. Despite recent advancements in sensitive detection techniques for Mycoplasma in eucaryotic expression systems, these methods remain complex and time-consuming. There is a pressing need for a rapid, simple, and sensitive process analytical technology (PAT) for Mycoplasma detection. Here, we report the first development and application of a recombinase polymerase amplification (RPA)-assisted CRISPR-Cas12a (RPA-CRISPR/Cas12a) system spcifically tailored for Mycoplasma detection in biopharmaceutical production. This system combines the high-sensitivity isothermal nucleic acid amplification capabilities of RPA with the trans-cleavage activity of CRISPR-Cas12a reporter probes, enabling the rapid and accurate detection of Mycoplasma, accommodating various experimental requirements and application scenarios. By designing RPA universal primers and crRNA targeting the highly conserved sequences of Mycoplasma 16S rRNA and optimizing reaction conditions, we achieved dual-specific recognition with unprecedented efficiency in bioprocessing samples. All tested Mycoplasma specimens were detectable with limits between 10 and 0.1 copies/μL, with the whole process taking less than 1 hour. We further evaluated the feasibility of this method in detecting Mycoplasma in the cell culture of antibody products and further downstream processing samples. This method reduces the risk of false-positive signals due to non-specific amplification, enhancing detection sensitivity and specificity while significantly reducing analysis, representing the first PAT-compatible method for rapid Mycoplasma monitoring in antibody manufacturing, thereby providing robust assurance for the quality and safety of biological products.
Collapse
Affiliation(s)
- Dapeng Zhang
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianyu Gao
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Qingcheng Guo
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou, China
| | - Yule Ren
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Weifan Zhu
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Huangzhen Zhuang
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Zhiyuan Pan
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Fugui Wang
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou, China
| | - Yi Chen
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Menghui Guo
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Tao Liu
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai, China
| | - Chenguang Wang
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou, China
| | - Lusha Ji
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weizhu Qian
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou, China
| | - Jun Li
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; State key laboratory of macromolecular drugs and large-scale preparation, Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai, China
| | - Sheng Hou
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou, China
| | - Ziqiao Sun
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuekun Wang
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Jin Xu
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Huaizu Guo
- State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; State key laboratory of macromolecular drugs and large-scale preparation, Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai, China.
| |
Collapse
|
4
|
Yang F, Wu Q, Zeng X, Jiang Q, Zhang S, Wang J, Zhang Q, Li F, Xu D. The establishment and optimization of a Mycoplasma pneumoniae detection system based on ERA-CRISPR/Cas12a. Microbiol Spectr 2025; 13:e0323524. [PMID: 39998241 PMCID: PMC11960117 DOI: 10.1128/spectrum.03235-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Mycoplasma pneumoniae (MP) is a significant pathogen associated with community-acquired pneumonia, with considerable infectious risks posed, particularly to children and immunocompromised individuals. The current methods for detecting MP in research and clinical settings are recognized as time-consuming, instrument-dependent, and prone to non-specific cross-reactivity. Therefore, the creation of a rapid and sensitive detection method is urgently required. In this study, the MP-ERA-Cas12a system, integrating enzyme restriction amplification (ERA) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a technology, was introduced. Three detection methods were evaluated: the two-pot system, a modified one-pot system, and a lateral flow assay (LFA) strip-based system. In the one-pot system, the amplification and detection steps were consolidated within a single reaction vessel, effectively minimizing the risk of contamination and false positives that may arise from the handling of multiple tubes. It was observed that the one-pot system generated a fluorescent signal within 1 h and produced 1.6 times higher fluorescence signal intensity compared to the two-pot system, achieving a detection limit of 1 copy/μL. In contrast, the LFA system facilitated rapid on-site screening, with visible band results appearing on the strip within 5 min of the reaction, and a detection limit of 102 copies/μL was achieved. High specificity for MP was demonstrated by all methods. Significant advantages, including rapid processing, the absence of complex instrumentation, and ease of use are offered by this detection system, making it particularly suitable for resource-limited clinical settings. The system is seen as an efficient tool for the early diagnosis of MP, with substantial public health and clinical relevance. IMPORTANCE This study successfully combined enzyme restriction amplification (ERA) with the specific detection capabilities of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a. Based on the two-pot system established before, the one-pot system and lateral flow assay (LFA) system were developed for Mycoplasma pneumoniae (MP) detection. The MP-ERA-Cas12a system eliminates the need to open the lid during the reaction, reducing aerosol contamination, and minimizing the risk of false positives. The method does not require the use of advanced instruments or equipment and shows strong specificity while not being affected by other pathogens. As a new method of MP detection, the MP-ERA-Cas12a system has an important practical application prospect.
Collapse
Affiliation(s)
- Fo Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qianlin Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Xiaotong Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qiuyang Jiang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Shanshan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Jin Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
- Tolo Biotechnology Co., Ltd, Wuxi, Jiangsu, China
| | - Qi Zhang
- Huaibei People’s Hospital, Huaibei, Anhui, China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
5
|
Zeng X, Jiang Q, Yang F, Wu Q, lyu T, Zhang Q, Wang J, Li F, Xu D. Establishment and optimization of a system for the detection of Candida albicans based on enzymatic recombinase amplification and CRISPR/Cas12a system. Microbiol Spectr 2025; 13:e0026825. [PMID: 40162765 PMCID: PMC12054178 DOI: 10.1128/spectrum.00268-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Invasive candidiasis is a fungal infection caused by various pathogenic yeasts, with Candida albicans as the predominant pathogen. Traditional culturing and identification methods for C. albicans are slow, requiring several days to weeks to produce results, which hampers rapid diagnosis. In this study, we proposed three amplification methods to combine with CRISPR/Cas12a and selected the enzymatic recombinase amplification (ERA) and CRISPR/Cas12a two-step method for the detection of C. albicans in terms of sensitivity, and then the two-step method was optimized to a temperature-controlled one-step method for the detection of C. albicans by enzymatic recombinase amplification (ERA)-CRISPR/Cas12a. The temperature-controlled system employs a combination of liquid and solid paraffin wax to maintain the desired melting point, thus facilitating spatial separation of the ERA amplification system from the CRISPR/Cas12a detection system within a single tube. After a reaction at 37°C, the temperature is raised to 45°C, melting the wax and allowing the amplification system to merge with the detection system, initiating the reaction. This one-step detection platform simplifies and expedites the procedure, achieving a sensitivity level on par with that of two-step methods. The reaction completes in about 30 minutes, detecting as little as 100 ag/µL of genomic DNA from C. albicans pure cultures. It shows high specificity and resistance to clinical nucleic acid interference, without cross-reactivity. Additionally, the method eliminates the need to open the reaction tube, effectively preventing aerosol contamination and providing a stable, thus offering a new tool for the rapid clinical diagnosis of C. albicans. IMPORTANCE This study established a two-step method through optimization, compared its sensitivity, and then combined the specific detection capabilities of ERA and CRISPR/Cas12a. Furthermore, a one-step method was developed based on the two-step method, creating a one-step system for the detection of Candida albicans. This system does not require the lid to be opened during the reaction process, reducing aerosol contamination and minimizing the risk of false positives. This method does not require advanced instruments or equipment and shows strong specificity without being affected by other pathogens. It can serve as a new method for the detection of Candida albicans and has significant practical application prospects.
Collapse
Affiliation(s)
- Xiaotong Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qiuyang Jiang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Fo Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qianlin Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Tingyao lyu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Qi Zhang
- Huaibei People’s Hospital, Huaibei, Anhui, China
| | - Jin Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
- Department of Clinical Laboratory, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Tolo Biotech Co., Ltd, Wuxi, Jiangsu, China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui, China
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
6
|
Fan R, Luo S, He Y, Xiao Y, Liang Y, Zhang L, Li W, Zhang Y, Li L. Simple and sensitive SERS platform for Staphylococcus aureus one-pot determination by photoactivated CRISPR/Cas12a cascade system and core-shell DNA tetrahedron@AuNP@Fe 3O 4 reporter. Mikrochim Acta 2025; 192:240. [PMID: 40102313 DOI: 10.1007/s00604-025-07098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Staphylococcus aureus (S. aureus) is a widely prevalent Gram-positive bacteria that can cause serious infections and diseases in humans and other organisms. Timely detection and treatment in clinical settings is crucial for patient safety and public health. However, current methods for S. aureus detection still face some limitations, such as time-consuming operation, false positives, and labor-intensive available methodology with low sensitivity. Therefore, it is particularly important to develop a rapid, simple, sensitive, and cost-effective method for detecting S. aureus. We developed a SERS platform based on allosteric aptamer-triggered catalytic hairpin assembly (CHA) and photoactivated CRISPR/Cas12a reactions, combined with a multifunctional core-shell structure as the SERS reporter, enabling highly sensitive one-pot determination of S. aureus. Compared with traditional two-step and one-pot analysis methods, this strategy offers superior sensitivity and can successfully identify real samples contaminated with S. aureus. The platform utilizes light-controlled CHA and CRISPR/Cas12a reactions, effectively preventing interference between different reaction systems. Therefore, the photoactivated one-pot CHA/Cas12a strategy provides a simple, rapid, highly sensitive, specific, and cost-effective method for one-pot determination of S. aureus in clinical samples.
Collapse
Affiliation(s)
- Rui Fan
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Shihua Luo
- Center for Clinical Laboratory Diagnosis and Research, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yangfen He
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510515, China
| | - Yunju Xiao
- Laboratory Medicine, Guangdong Provincial People'S Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Yuxin Liang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lifeng Zhang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Wenbin Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ye Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Provincial Key Laboratory of Single-Cell and Extracellular Vesicles, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Ling Li
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Liu Y, Zhang L, Lei W, Liu Y, Zhang Y, Dou Q, Zhu Y, Zhang L, Guo P, Lu P, Mao G. Development of a rapid and sensitive RPA-CRISPR/Cas12a assay for non-invasive pre-implantation genetic testing. Anal Chim Acta 2025; 1343:343687. [PMID: 39947791 DOI: 10.1016/j.aca.2025.343687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Pre-implantation genetic testing (PGT) is served as the primary technology for diagnosing genetic disorders. However, invasive operation may affect embryonic development, which indicates non-invasive methods might have important clinical value. Free DNA in blastocoele fluid provides the possibility for non-invasive diagnosis. The combination of RPA and CRISPR/Cas12a technology is expected to achieve analysis of free DNA in blastocoele fluid and develop an instant diagnostic platform for non-invasive PGT. RESULTS In this study, we collected 65 samples of day 6/7 blastocysts formed through intracytoplasmic sperm injection, and blastocysts hatched from the zona pellucida, with the corresponding blastocoele fluid, from the Center of Reproductive Medicine at the Second Affiliated Hospital of Zhengzhou University. The TSPY1 and TBC1D3 genes were analyzed using the RPA-CRISPR/Cas12a system to investigate the diagnostic potential of free DNA in the blastocoele fluid. A single-tube dual-gene assay for blastocoele fluid was successfully constructed using the RPA-CRISPR/Cas12a technology achieving specific detection of the Y chromosome and fluorescence visualization. Interpretatable results could be completed within 1h. By detecting the TSPY1 and TBC1D3 genes in 65 pairs of blastocysts, the accuracy of the Y chromosome in the interpretable results reached 95.4 %. SIGNIFICANCE Free DNA in the blastocoele fluid could serve as a genetic information source for non-invasive PGT. We first established a single-tube dual-gene RPA-CRISPR/Cas12a assay to detect free DNA in blastocoele fluid and achieved rapid amplification and detection with the advantages of easy operation and fluorescence visualization, providing a rapid detection platform for the diagnosis of sex-linked disorders.
Collapse
Affiliation(s)
- Yuqin Liu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou, 450053, Henan Province, China
| | - Linghan Zhang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou, 450053, Henan Province, China
| | - Wenzhuo Lei
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou, 450053, Henan Province, China
| | - Yanxing Liu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou, 450053, Henan Province, China
| | - Yu Zhang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou, 450053, Henan Province, China
| | - Qian Dou
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou, 450053, Henan Province, China
| | - Ying Zhu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou, 450053, Henan Province, China
| | - Le Zhang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou, 450053, Henan Province, China
| | - Peipei Guo
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou, 450053, Henan Province, China
| | - Ping Lu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou, 450053, Henan Province, China; Department of Reproductive Medicine, Xinyang Central Hospital, 1st Siyi Road, Xinyang, 464000, Henan Province, China
| | - Genhong Mao
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou, 450053, Henan Province, China.
| |
Collapse
|
8
|
Yuan Z. From Origin to the Present: Establishment, Mechanism, Evolutions and Biomedical Applications of the CRISPR/Cas-Based Macromolecular System in Brief. Molecules 2025; 30:947. [PMID: 40005257 PMCID: PMC11858448 DOI: 10.3390/molecules30040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Advancements in biological and medical science are intricately linked to the biological central dogma. In recent years, gene editing techniques, especially CRISPR/Cas systems, have emerged as powerful tools for modifying genetic information, supplementing the central dogma and holding significant promise for disease diagnosis and treatment. Extensive research has been conducted on the continuously evolving CRISPR/Cas systems, particularly in relation to challenging diseases, such as cancer and HIV infection. Consequently, the integration of CRISPR/Cas-based techniques with contemporary medical approaches and therapies is anticipated to greatly enhance healthcare outcomes for humans. This review begins with a brief overview of the discovery of the CRISPR/Cas system. Subsequently, using CRISPR/Cas9 as an example, a clear description of the classical molecular mechanism underlying the CRISPR/Cas system was given. Additionally, the development of the CRISPR/Cas system and its applications in gene therapy and high-sensitivity disease diagnosis were discussed. Furthermore, we address the prospects for clinical applications of CRISPR/Cas-based gene therapy, highlighting the ethical considerations associated with altering genetic information. This brief review aims to enhance understanding of the CRISPR/Cas macromolecular system and provide insight into the potential of genetic macromolecular drugs for therapeutic purposes.
Collapse
Affiliation(s)
- Zheng Yuan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100022, China
| |
Collapse
|
9
|
Huang D, He Y, Xu C, Shen P, Li M, Fang M, Xu Z, Fang X. DNAzyme-Triggered Equilibrium Transfer with Self-Activated CRISPR-Cas12a Biosensor Enables One-Pot Diagnosis of Nucleic Acids. Anal Chem 2025; 97:3026-3035. [PMID: 39889213 DOI: 10.1021/acs.analchem.4c06066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Integrating recombinase-polymerase amplification (RPA) with CRISPR-Cas12a holds significant potential to simplify and improve nucleic acid diagnostic procedures. However, current strategies face limitations, such as complexity, reduced efficiency, and potential compromises in Cas12a activity. In response, we developed a DNAzyme-triggered equilibrium transfer with a self-activated CRISPR-Cas12a biosensor (DESCRIBER) for integrated nucleic acid detection. This platform features varying balance points to minimize interference between RPA and Cas12a in one pot and maximize their activity at different stages. Initially, the reaction focused on RPA, while Cas12a was silenced by circular-crRNA (C-crRNA). Then, DNAzyme, the activator, was generated during the RPA process, which linearizes C-crRNA to activate Cas12a and transfer the equilibrium toward signal readout. Meanwhile, activated Cas12a can further linearize C-crRNA to promote self-activation and accelerate equilibrium transfer. According to this principle, highly sensitive detection of the HIV-1 genome, as low as 500 CPs/mL, was achieved within 1 h while maintaining universality in detecting common subtypes and specificity against opportunistic infectious pathogens. Compared with qRT-PCR, it also exhibited good accuracy in detecting 35 spiked samples. Overall, we believe that the proposed strategy will enhance existing CRISPR systems to promote their practical applications in clinical diagnosis.
Collapse
Affiliation(s)
- Di Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
| | - Yichen He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
| | - Chutian Xu
- Department of Biomedical Engineering, Boston University, Boston 02215, United States
| | - Peijie Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
| | - Min Li
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| | - Mengjun Fang
- Innovation Centre for Child Health, Binjiang Institution of Zhejiang University, Hangzhou 310051, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
- Hangzhou FasTech Biotechnology Company Limited, Hangzhou 310005, China
| | - Xiangming Fang
- School of Medicine, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
10
|
Huang W, Wang J, Wang C, Liu Y, Li W, Chen Q, Zhai J, Xiang Z, Liu C. Expanding Cas12a Activity Control with an RNA G-Quadruplex at the 5' end of CRISPR RNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411305. [PMID: 39721016 PMCID: PMC11831528 DOI: 10.1002/advs.202411305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/24/2024] [Indexed: 12/28/2024]
Abstract
Precise control of Cas12a activity is essential for the improvement of the detection limit of clinical diagnostics and the minimization of errors. This study addresses the challenge of controlling Cas12a activity, especially in the context of nucleic acid detection where the inherent incompatibility between isothermal amplification and CRISPR reactions complicates accurate diagnostics. An RNA G-quadruplex (RG4) structure at the 5' end of crRNA is introduced to modulate Cas12a activity accurately without the need for chemical modifications. The results indicate that the presence of RG4 does not significantly impact Cas12a's cleavage activity but can be controlled by RG4 stabilizers, enabling the suppression and subsequent restoration of Cas12a activity with potential for precise activity control. Moreover, the use of RG4 is expanded by incorporating it into split crRNA, introducing RG4 directly at the 5' end of the direct repeat (DR) region, enabling tailored activity regulation for different targets by matching with various Spacer regions. Additionally, a light-controlled one-pot method for activating Cas12a is developed, thereby enhancing the accuracy and sensitivity of clinical samples. This study showcases the pioneering use of RG4 in manipulating Cas12a activity, streamlining diagnostics, and paving the way for advances in clinical nucleic acid testing.
Collapse
Affiliation(s)
- Wenjuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000P. R. China
| | - Jiaqi Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchDigestive Diseases CenterScientific Research CenterThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Cheng Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000P. R. China
| | - Yuanfang Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchDigestive Diseases CenterScientific Research CenterThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Wentao Li
- Department of Clinical LaboratoryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Qiaozhen Chen
- School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Junqiu Zhai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhou510006P. R. China
| | - Zhenyang Xiang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000P. R. China
| | - Chaoxing Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchDigestive Diseases CenterScientific Research CenterThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| |
Collapse
|
11
|
Cheng ZH, Luo XY, Yu SS, Min D, Zhang SX, Li XF, Chen JJ, Liu DF, Yu HQ. Tunable control of Cas12 activity promotes universal and fast one-pot nucleic acid detection. Nat Commun 2025; 16:1166. [PMID: 39885211 PMCID: PMC11782535 DOI: 10.1038/s41467-025-56516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
The CRISPR-based detection methods have been widely applied, yet they remain limited by the non-universal nature of one-pot diagnostic approaches. Here, we report a universal one-pot fluorescent method for the detection of epidemic pathogens, delivering results within 15-20 min. This method uses heparin sodium to precisely tunes the cis-cleavage capability of Cas12 via interference with the Cas12a-crRNA binding process, thereby generating significant fluorescence due to the accumulation of isothermal amplification products. Additionally, this universal assay accommodates both classic and suboptimal PAMs, as well as various Cas12a subtypes such as LbCas12a, AsCas12a, and AapCas12b. Such a robust method demonstrates sensitivity and specificity exceeding 95% in the detection of monkeypox pseudovirus, influenza A virus, and SARS-CoV-2 from saliva or wastewater samples, when compared with qPCR or RT-qPCR. Moreover, the cost of heparin sodium per thousand uses is $0.01 to $0.04 only. Collectively, this universal and fast one-pot approach based on heparin sodium offers potential possibilities for point-of-care testing.
Collapse
Affiliation(s)
- Zhou-Hua Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Xi-Yan Luo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Sheng-Song Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Shu-Xia Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 350001, Fujian, China
| | - Xiao-Fan Li
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, 350001, Fujian, China
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
12
|
Zhang W, Zhong Y, Wang J, Zou G, Chen Q, Liu C. Direct repeat region 3' end modifications regulate Cas12a activity and expand its applications. Nucleic Acids Res 2025; 53:gkaf040. [PMID: 39883010 PMCID: PMC11780881 DOI: 10.1093/nar/gkaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
CRISPR-Cas12a technology has transformative potential, but as its applications grow, enhancing its inherent functionalities is essential to meet diverse demands. Here, we reveal a regulatory mechanism for LbCas12a through direct repeat (DR) region 3' end modifications and de-modifications, which can regulate LbCas12a's cis- and trans-cleavage activities. We extensively explored the effects of introducing phosphorylation, DNA, photo-cleavable linker, DNA modifications at the DR 3' end on LbCas12a's functionality. We find that the temporary inhibitory function of Cas12a can be reactivated by DR 3' end modification corresponding substances, such as alkaline phosphatase (ALP), immunoglobulin G (IgG), alpha-fetoprotein (AFP), DNA exonucleases, ultraviolet radiation, and DNA glycosylases, which greatly expand the scope of application of Cas12a. Clinical applications demonstrated promising results in ALP, AFP, and trace Epstein-Barr virus detection compared to gold standard methods. Our research provides valuable insights into regulating LbCas12a activity through direct modification of DR and significantly expands its potential clinical detection targets, paving the way for future universal clustered regularly interspaced short palindromic repeats (CRISPR) diagnostic strategies.
Collapse
Affiliation(s)
- Wei Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Yinyin Zhong
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Jiaqi Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Guangrong Zou
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Qiaozhen Chen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Chaoxing Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
13
|
Chen W, Liu L, Cheng L. Conditionally Activated Cross-Linked crRNAs for CRISPR/Cas12a Based Nucleic Acid Detection. ACS Synth Biol 2025; 14:94-100. [PMID: 39670632 DOI: 10.1021/acssynbio.4c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
CRISPR/Cas systems, particularly CRISPR/Cas12a, have revolutionized nucleic acid detection due to their exceptional specificity and sensitivity. However, CRISPR/Cas12a's cleavage activity can interfere with amplification processes, such as reverse transcription (RT) and isothermal amplification (e.g., RPA), potentially compromising detection sensitivity and accuracy. While modified CRISPR/Cas12a systems employing caging and decaging strategies have been developed to address this, these approaches typically require extensive optimization of photolabile groups and complex assay configurations. Here, we present a universal, photochemically controlled strategy for CRISPR/Cas12a-based detection that overcomes these challenges. Our approach involves cross-linking a polymeric crRNA with a photoresponsive cross-linker, effectively inactivating it during amplification and enabling rapid activation through brief light exposure to cleave the cross-linker and release active crRNA. This method obviates the need for labor-intensive optimizations and modifications, making it highly versatile and suitable for rapid, on-site detection applications. Our strategy demonstrates enhanced versatility and applicability, particularly for the immediate detection of newly emerging or unexpected nucleic acid sequences, supporting applications in pathogen detection, genetic screening, and point-of-care diagnostics.
Collapse
Affiliation(s)
- Wei Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Chinese Academy of Sciences Key Laboratory of Molecular Recognition and Function, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Chinese Academy of Sciences Key Laboratory of Molecular Recognition and Function, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Chinese Academy of Sciences Key Laboratory of Molecular Recognition and Function, Chinese Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Zhao Z, Xiong Q, Zhu Y, Zhang C, Li Z, Chen Z, Zhang Y, Deng X, Tao Y, Xu S. CRISPR/Cas12a-Enabled Amplification-Free Colorimetric Visual Sensing Strategy for Point-of-Care Diagnostics of Biomarkers. Anal Chem 2025; 97:1019-1027. [PMID: 39701943 DOI: 10.1021/acs.analchem.4c06196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
CRISPR/Cas12a-based biosensors have garnered significant attention in the field of point-of-care testing (POCT), yet the majority of the CRISPR-based POCT methods employ fluorescent systems as report probes. Herein, we report a new CRISPR/Cas12a-enabled multicolor visual biosensing strategy for the rapid detection of disease biomarkers. The proposed assay provided vivid color responses to enhance the accuracy of visual detection. In the existence of the target, the trans-cleavage activity of CRISPR-Cas12a was activated. The report probe modified with magnetic beads (MBs) and horseradish peroxidase (HRP) was cleaved, and HRP was released in the supernatant. As a result, HRP mediated the etching of gold nanobipyramids (AuNBPs) under hydrogen peroxide and 3,3',5,5'-tetramethylbenzidine and generated a vivid color response. The proposed method has been verified by the detection of the breast cancer 1 gene (BRCA1) as a proof-of-principle target. According to the different colors of AuNBPs, our experimental results have demonstrated that as low as 30 pM BRCA1 can be detected with no more than 60 min. Additionally, the proposed sensor has been successfully applied in the analysis of BRCA1 in human serum samples with satisfactory results, which indicates great potential for the sensitive determination of biomarkers and the POCT area.
Collapse
Affiliation(s)
- Zhe Zhao
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
- College of Acupuncture and Tuina Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qing Xiong
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yan Zhu
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Cong Zhang
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Zhixin Li
- Institute for Advanced Study, Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Zhonghui Chen
- Central Laboratory, Affiliated Hospital of Putian University, Putian University, Putian 351100, China
| | - Ying Zhang
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaoyu Deng
- Ministry of Education Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yingzhou Tao
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Shaohua Xu
- Cancer Research Center & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine & Jiangxi Province Key Laboratory for Diagnosis, Treatment and Rehabilitation of Cancer in Chinese Medicine, Nanchang, Jiangxi 330004, China
| |
Collapse
|
15
|
Zhou H, Cai Y, He L, Li T, Wang Z, Li L, Hu T, Li X, Zhuang L, Huang X, Li Y. Phase Transition of Wax Enabling CRISPR Diagnostics for Automatic At-Home Testing of Multiple Sexually Transmitted Infection Pathogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407931. [PMID: 39498734 DOI: 10.1002/smll.202407931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Indexed: 11/07/2024]
Abstract
Sexually transmitted infections (STIs) significantly impact women's reproductive health. Rapid, sensitive, and affordable detection of these pathogens is essential, especially for home-based self-testing, which is crucial for individuals who prioritize privacy or live in areas with limited access to healthcare services. Herein, an automated diagnostic system called Wax-CRISPR has been designed specifically for at-home testing of multiple STIs. This system employs a unique strategy by using the solid-to-liquid phase transition of wax to sequentially isolate and mix recombinase polymerase amplification (RPA) and CRISPR assays in a microfluidic chip. By incorporating a home-built controlling system, Wax-CRISPR achieves true one-pot multiplexed detection. The system can simultaneously detect six common critical gynecological pathogens (CT, MG, UU, NG, HPV 16, and HPV 18) within 30 min, with a detection limit reaching 10-18 M. Clinical evaluation demonstrates that the system achieves a sensitivity of 96.8% and a specificity of 97.3% across 100 clinical samples. Importantly, eight randomly recruited untrained operators performe a double-blinded test and successfully identified the STI targets in 33 clinical samples. This wax-transition-based one-pot CRISPR assay offers advantages such as low-cost, high-stability, and user-friendliness, making it a useful platform for at-home or field-based testing of multiple pathogen infections.
Collapse
Affiliation(s)
- Hu Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yixuan Cai
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang He
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
- Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Zhijie Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang Zhuang
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyuan Huang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
- Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan, 430065, China
| |
Collapse
|
16
|
Chen L, Hu M, Zhou X. Trends in developing one-pot CRISPR diagnostics strategies. Trends Biotechnol 2025; 43:98-110. [PMID: 39095257 DOI: 10.1016/j.tibtech.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
The integration of nucleic acid amplification (NAA) with the CRISPR detection system has led to significant advancements and opportunities for development in molecular diagnostics. Nevertheless, the incompatibility between CRISPR cleavage and NAA has significantly impeded the commercialization of this technology. Currently, several one-pot detection strategies based on CRISPR systems have been devised to address concerns regarding aerosol contamination risk and operational complexity associated with step-by-step detection as well as the sensitivity limitation of conventional one-pot methods. In this review, we provide a comprehensive introduction and outlook of the various solutions of the one-pot CRISPR assay for practitioners who are committed to developing better CRISPR nucleic acid detection technologies to promote the progress of molecular diagnostics.
Collapse
Affiliation(s)
- Lin Chen
- School of Life sciences, South China Normal University, Guangzhou 510631, P. R. China
| | - Menglu Hu
- School of Life sciences, South China Normal University, Guangzhou 510631, P. R. China.
| | - Xiaoming Zhou
- School of Life sciences, South China Normal University, Guangzhou 510631, P. R. China; MOE Key laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
17
|
Wang S, Wang J, Li B, Zhang J. Photoactivable CRISPR for Biosensing and Cancer Therapy. Chembiochem 2024; 25:e202400685. [PMID: 39317648 DOI: 10.1002/cbic.202400685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Photoactivable CRISPR technology represents a transformative approach in the field of genome editing, offering unprecedented control over gene editing with high spatial and temporal precision. By harnessing the power of light to modulate the activity of CRISPR components, this innovative strategy enables precise regulation of Cas proteins, guide RNAs, and ribonucleoprotein complexes. Recent advancements in optical control methodologies, including the development of photoactivable nanocarriers, have significantly expanded the potential applications of CRISPR in biomedical fields. This Concept highlights the latest developments in designing photoactivable CRISPR systems and their promising applications in biosensing and cancer therapy. Additionally, the remaining challenges and future trends are also discussed. It is expected that the photoactivable CRISPR would facilitate translating more precise gene therapies into clinical use.
Collapse
Affiliation(s)
- Siyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Baijiang Li
- Institution Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institution Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, 210023, China
| |
Collapse
|
18
|
Wang X, Yang R, Tang T, Zhou Y, Chen H, Jiang Y, Zhang S, Qin S, Wang M, Wang C. One-pot MCDA-CRISPR-Cas-based detection platform for point-of-care testing of severe acute respiratory syndrome coronavirus 2. Front Microbiol 2024; 15:1503356. [PMID: 39712894 PMCID: PMC11659237 DOI: 10.3389/fmicb.2024.1503356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Compared to quantitative real-time PCR (q-PCR), CRISPR-Cas-mediated technology is more suitable for point-of-care testing (POCT) and has potential for wider application in the future. Generally, the operational procedure of CRISPR-Cas-mediated diagnostic method consists of two independent steps, the reaction of signal amplification and the CRISPR-Cas-mediated signal detection. Complex multi-step procedures can easily lead to cross-contamination. To develop a convenient and rapid method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection, we propose a MCTOP method (Multiple cross displacement amplification-CRISPR-Cas12b-based testing in one-pot), which targets the open reading frame 1ab (ORF1ab) and nucleocapsid protein (N) gene of SARS-CoV-2. This method combines MCDA isothermal amplification and CRISPR-Cas-mediated sequence-specific detection into a one-pot reaction. The optimal reaction was achieved with isothermal amplification of 40 min and CRISPR-Cas-based detection of 15 min, both at 64°C. Then, the results can be visualized by the real-time fluorescence instrument and also lateral flow biosensor. The lowest detection limit of the proposed method is 10 copies of each of target sequences, and it has no cross-reactivity with non-SARS-CoV-2 templates. In a clinical test of 70 pharyngeal swab samples, MCTOP assay showed a specificity of 100% and sensitivities of 98 and 96% for the real-time fluorescence instrument and lateral flow biosensor, respectively. The MCTOP developed in this study is a rapid, convenient, highly sensitive, and specific method for SARS-CoV-2 nucleic acid detection. It can be used as an effective point-of-care testing (POCT) tool for clinical diagnosis and epidemiologic surveillance of SARS-CoV-2 infections, especially suitable for the basic, field and clinical laboratory.
Collapse
Affiliation(s)
- Xiaoxia Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Central & Clinical Laboratory of Sanya People’s Hospital, Sanya, Hainan, China
| | - Rui Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuzhen Zhou
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Heng Chen
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yihao Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shirong Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihan Qin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meijuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Ye X, Wu H, Liu J, Xiang J, Feng Y, Liu Q. One-pot diagnostic methods based on CRISPR/Cas and Argonaute nucleases: strategies and perspectives. Trends Biotechnol 2024; 42:1410-1426. [PMID: 39034177 DOI: 10.1016/j.tibtech.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
CRISPR/Cas and Argonaute (Ago) proteins, which target specific nucleic acid sequences, can be applied as diagnostic tools. Despite high specificity and efficiency, achieving sensitive detection often necessitates a preamplification step that involves opening the lid and multistep operation, which may elevate the risk of contamination and prove inadequate for point-of-care testing. Hence, various one-pot detection strategies have been developed that enable preamplification and sensing in a single operation. We outline the challenges of one-pot detection with Cas and Ago proteins, present several main implementation strategies, and discuss future prospects. This review offers comprehensive insights into this vital field and explores potential improvements to detection methods that will be beneficial for human health.
Collapse
Affiliation(s)
- Xingyu Ye
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoyang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinghan Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayi Xiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
20
|
Li Y, Yang X, Dong Y, Wang J, Liu C. CRISPR-Cas12a detection of DNA glycosylases via DNA modification switching. Chem Commun (Camb) 2024; 60:12569-12572. [PMID: 39385597 DOI: 10.1039/d4cc04180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A programmable CRISPR-Cas12a system for selective detection of various DNA glycosylases is described. By temporarily inactivating Cas12a through the introduction of specific DNA modifications in the complementary DNA strand of Cas12a's crRNA, the system is able to detect the target DNA glycosylases. This approach addresses critical gaps in current CRISPR-Cas12a diagnostics for non-nucleic acid detection beyond the limitations of aptamers.
Collapse
Affiliation(s)
- Youxian Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China.
| | - Xiaoquan Yang
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Yi Dong
- School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China
| | - Jiaqi Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China.
| | - Chaoxing Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518107, P. R. China.
| |
Collapse
|
21
|
Qian X, Xu Q, Lyon CJ, Hu TY. CRISPR for companion diagnostics in low-resource settings. LAB ON A CHIP 2024; 24:4717-4740. [PMID: 39268697 PMCID: PMC11393808 DOI: 10.1039/d4lc00340c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
New point-of-care tests (POCTs), which are especially useful in low-resource settings, are needed to expand screening capacity for diseases that cause significant mortality: tuberculosis, multiple cancers, and emerging infectious diseases. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic (CRISPR-Dx) assays have emerged as powerful and versatile alternatives to traditional nucleic acid tests, revealing a strong potential to meet this need for new POCTs. In this review, we discuss CRISPR-Dx assay techniques that have been or could be applied to develop POCTs, including techniques for sample processing, target amplification, multiplex assay design, and signal readout. This review also describes current and potential applications for POCTs in disease diagnosis and includes future opportunities and challenges for such tests. These tests need to advance beyond initial assay development efforts to broadly meet criteria for use in low-resource settings.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Qiang Xu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
22
|
Paenkaew S, Poommouang A, Pradit W, Chomdej S, Nganvongpanit K, Siengdee P, Buddhachat K. Feasibility of implementing RPA coupled with CRISPR-Cas12a (RPA-Cas12a) for Hepatozoon canis detection in dogs. Vet Parasitol 2024; 331:110298. [PMID: 39217761 DOI: 10.1016/j.vetpar.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Hepatozoonosis, caused by the protozoan Hepatozoon canis, is a prevalent blood disease affecting owned and stray dogs and cats. The prevalence of these parasites among companion animals in Thailand remains poorly understood. Diagnosing the old-world form of the disease is challenging due to the wide range of nonspecific clinical signs and the reliance on finding low levels of Hepatozoon gamonts in blood smears for conventional diagnosis. PCR demonstrates high specificity and sensitivity but it requires sophisticated instrumentation. Therefore, we established recombinase polymerase amplification (RPA) coupled with Cas12a for H. canis detection based on 18S rRNA. Our findings showed that RPA-Cas12a using gRNA_H was highly specific to H. canis, without yielding positives for other pathogen species including Babesia species. Even in cases of co-infection, RPA-Cas12a only detected positives in samples containing H. canis. This approach detected minimal amounts of H. canis18S rRNA-harboring plasmid at 10 copies per reaction, whereas plasmid-spiked canine blood enabled detection at a minimal amount of 100 copies per reaction. The performance of RPA-Cas12a was validated by comparing it with quantitative PCR-high resolution melting analysis (qPCR-HRM) and sequencing based on 35 canine blood samples. RPA-Cas12a demonstrated precision and accuracy values of 94 % and 90 %, respectively comparable to qPCR-HRM. Overall, these results indicate that RPA-Cas12a serves as a promising tool for H. canis detection as indicated by comparable performance to qPCR-HRM and is suitable for implementation in small animal hospitals or clinics due to its minimal resource requirements, thereby contributing to effective diagnosis and treatment for infected dogs.
Collapse
Affiliation(s)
- Suphaporn Paenkaew
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Anocha Poommouang
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Waranee Pradit
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriwadee Chomdej
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korakot Nganvongpanit
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puntita Siengdee
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand; Center of Excellence for Innovation and Technology for Detection and Advanced Materials (ITDAM), Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
23
|
Gu A, Dong Y, Li L, Yu D, Zhang J, Chen Y. CRISPR/Cas12a and Hybridization Chain Reaction-Coregulated Magnetic Relaxation Switching Biosensor for Sensitive Detection of Viable Salmonella in Animal-Derived Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20130-20139. [PMID: 39192723 DOI: 10.1021/acs.jafc.4c05540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We combined a CRISPR/Cas12a system with a hybridization chain reaction (HCR) to develop an ultrasensitive magnetic relaxation switching (MRS) biosensor for detecting viable Salmonella typhimurium (S. typhimurium). Magnetic nanoparticles of two sizes (30 and 1000 nm: MNP30 and MNP1000, respectively) were coupled through HCR. The S. typhimurium gene-activated CRISPR/Cas12a system released MNP30 from the MNP1000-HCR-MNP30 complex through a trans-cleavage reaction. After magnetic separation, released MNP30 was collected from the supernatant and served as a transverse relaxation time (T2) signal probe. Quantitative detection of S. typhimurium is achieved by establishing a linear relationship between the change in T2 and the target gene. The biosensor's limit of detection was 77 CFU/mL (LOD = 3S/M, S = 22.30, M = 0.87), and the linear range was 102-108 CFU/mL. The accuracy for detecting S. typhimurium in real samples is comparable to that of qPCR. Thus, this is a promising method for the rapid and effective detection of foodborne pathogens.
Collapse
Affiliation(s)
- Aoting Gu
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Yongzhen Dong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Letian Li
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Deyang Yu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jiangjiang Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning 116034, China
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| |
Collapse
|
24
|
Hu R, Guo C, Liu C, Zhang Q, Zhang X, Chen Y, Liu Y. From Lab to Home: Ultrasensitive Rapid Detection of SARS-CoV-2 with a Cascade CRISPR/Cas13a-Cas12a System Based Lateral Flow Assay. Anal Chem 2024; 96:14197-14204. [PMID: 39161182 DOI: 10.1021/acs.analchem.4c02726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Currently, CRISPR/Cas-based molecular diagnostic techniques usually rely on the introduction of nucleic acid amplification to improve their sensitivity, which is usually more time-consuming, susceptible to aerosol contamination, and therefore not suitable for at-home molecular testing. In this research, we developed an advanced CRISPR/Cas13a-Cas12a-based lateral flow assay that facilitated the ultrasensitive and rapid detection of SARS-CoV-2 RNA directly from samples, without the need for nucleic acid amplification. This method was called CRISPR LFA enabling at-home RNA testing (CLEAR). CLEAR used a novel cascade mechanism with specially designed probes that fold into hairpin structures, enabling visual detection of SARS-CoV-2 sequences down to 1 aM sensitivity levels. More importantly, CLEAR had a positive coincidence rate of 100% and a negative coincidence rate of 100% for clinical nasopharyngeal swabs from 16 patients. CLEAR was particularly suitable for at-home molecular testing, providing a low-cost, user-friendly solution that can efficiently distinguish between different SARS-CoV-2 variants. CLEAR overcame the common limitations of high sensitivity and potential contamination associated with traditional PCR-based systems, making it a promising tool for widespread public health application, especially in environments with limited access to laboratory resources.
Collapse
Affiliation(s)
- Ronghuan Hu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, People's Republic of China
| | - Chuanghao Guo
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, People's Republic of China
| | - Conghui Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, People's Republic of China
| | - Qianling Zhang
- Environmental Engineering and Graphene Composite, Research Center, College of Chemistry and Environmental, Engineering, Shenzhen University, Shenzhen 518060, Guangdong, People's Republic of China
| | - Xueji Zhang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, People's Republic of China
| | - Yong Chen
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, People's Republic of China
- Environmental Engineering and Graphene Composite, Research Center, College of Chemistry and Environmental, Engineering, Shenzhen University, Shenzhen 518060, Guangdong, People's Republic of China
| | - Yizhen Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, People's Republic of China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, People's Republic of China
| |
Collapse
|
25
|
Ren N, Sui B, Liu C, Zhang S, Liu Z, Zhou W, Liu H. Specific detection of gut pathogens for one-pot chip based on RPA-CRISPR/Cas12a. Anal Chim Acta 2024; 1318:342886. [PMID: 39067906 DOI: 10.1016/j.aca.2024.342886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND There are billions of bacteria in the intestine, most of which are harmless and play important roles in humans. Although only a very small number of bacteria can cause diseases, once the pathogenic bacteria are ingested into the body and multiply in large quantities, it can lead to inflammatory diseases in the intestines and even other organs. Although polymerase chain reaction can specifically detect bacterial nucleic acid. However, the demand for temperature cycling limits its portability. Therefore, it is hoped to establish a high-throughput, highly specific and portable detection platform for directly detecting nucleic acid of intestinal pathogens. RESULTS Herein, a one-pot chip based on RPA-CRCISPR/Cas12a platform was developed. The chip is the same size as a glass slide and allows detection at the same temperature. Multiple samples could be detected simultaneously on the one chip, achieved high-throughput detection and improved the integration of detection. The specific recognition of CRISPR/Cas12a avoided the influence of non-specific amplification of RPA and enhanced the specificity of the analysis. At the same time, the one-pot chip avoided secondary contamination when the lid was opened during the analysis process. And the bacterial concentration showed good linearity at 102-108 cfu mL-1. The limit of detection could be as low as 0.43 cfu mL-1. This method has been successfully used to detect pollution samples. It can provide a reliable platform for early screening of gastrointestinal and other inflammatory diseases. SIGNIFICANCE The one-pot chip based on the RPA-CRISPR/Cas12a platform established can directly detect the nucleic acid of intestinal pathogens, with portability and specificity. It is worth noting that the platform has good programmability, can be used for other target detection by changing crRNA and RPA primers, it can achieve multi sample detection on the one chip.
Collapse
Affiliation(s)
- Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Boren Sui
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Chunhong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Shengmin Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Zhen Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Haiyun Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
26
|
He W, Li X, Li X, Guo M, Zhang M, Hu R, Li M, Ding S, Yan Y. Exploration of new ways for CRISPR/Cas12a activation: DNA hairpins without PAM and toehold and single strands containing DNA and RNA bases. J Biotechnol 2024; 391:99-105. [PMID: 38880387 DOI: 10.1016/j.jbiotec.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The CRISPR/Cas12a system is emerging as a promising candidate for next-generation diagnostic biosensing platforms, with the discovery of new activation modes greatly expanding its applications. Here, we have identified two novel CRISPR/Cas12a system activation modes: PAM- and toehold-free DNA hairpins, and DNA-RNA hybrid strands. Utilizing a well-established real-time fluorescence method, we have demonstrated a strong correlation between DNA hairpin structures and Cas12a activation. Compared with previously reported activation modes involving single-stranded DNA and PAM-contained double-stranded DNA, the DNA hairpin activation way exhibits similar specificity and generality. Moreover, our findings indicate that increasing the number of RNA bases in DNA-RNA hybrid strands can decelerate the kinetics of Cas12a-triggered trans-cleavage of reporter probes. These newly discovered CRISPR/Cas12a activation ways hold significant potential for the development of high-performance biosensing strategies.
Collapse
Affiliation(s)
- Wen He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinmin Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, PR China
| | - Minghui Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Mengxuan Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ruiwei Hu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Menghan Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
27
|
Kaur R, Gupta S, Chauhan A, Mishra V, Sharma MK, Singh J. Harnessing the power of clustered regularly interspaced short palindromic repeats (CRISPR) based microfluidics for next-generation molecular diagnostics. Mol Biol Rep 2024; 51:896. [PMID: 39115550 DOI: 10.1007/s11033-024-09840-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 02/06/2025]
Abstract
CRISPR-based (Clustered regularly interspaced short palindromic repeats-based) technologies have revolutionized molecular biology and diagnostics, offering unprecedented precision and versatility. However, challenges remain, such as high costs, demanding technical expertise, and limited quantification capabilities. To overcome these limitations, innovative microfluidic platforms are emerging as powerful tools for enhancing CRISPR diagnostics. This review explores the exciting intersection of CRISPR and microfluidics, highlighting their potential to revolutionize healthcare diagnostics. By integrating CRISPR's specificity with microfluidics' miniaturization and automation, researchers are developing more sensitive and portable diagnostic tools for a range of diseases. These microfluidic devices streamline sample processing, improve diagnostic performance, and enable point-of-care applications, allowing for rapid and accurate detection of pathogens, genetic disorders, and other health conditions. The review discusses various CRISPR/Cas systems, including Cas9, Cas12, and Cas13, and their integration with microfluidic platforms. It also examines the advantages and limitations of these systems, highlighting their potential for detecting DNA and RNA biomarkers. The review also explores the key challenges in developing and implementing CRISPR-driven microfluidic diagnostics, such as ensuring robustness, minimizing cross-contamination, and achieving robust quantification. Finally, it highlights potential future directions for this rapidly evolving field, emphasizing the transformative potential of these technologies for personalized medicine and global health.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, 281406, Mathura, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, 281406, Mathura, Uttar Pradesh, India.
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, 281406, Mathura, Uttar Pradesh, India
| | - Vidhi Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, 281406, Mathura, Uttar Pradesh, India
| | - Manish Kumar Sharma
- Department of Biotechnology, Dr. Rammanohar Lohia Avadh University, Ayodhya, 224001, Uttar Pradesh, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, 462020, Madhya Pradesh, India
| |
Collapse
|
28
|
Zhang X, Wang Y, Tang Y, Yang L, Zhao C, Yang G, Wang P, Gao S. A One-Step RPA-CRISPR Assay Using crRNA Based on Suboptimal Protospacer Adjacent Motif for Vibrio vulnificus Detection. Foodborne Pathog Dis 2024; 21:458-466. [PMID: 38551156 DOI: 10.1089/fpd.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Vibrio vulnificus is a hazardous foodborne pathogen responsible for approximately 95% of seafood-related deaths. This highlights the urgent requirement for specialized detection tools to be developed and used by food enterprises and food safety authorities. The DETECTR (DNA endonuclease targeted CRISPR trans reporter) system that combines CRISPR/Cas and recombinase polymerase amplification (RPA) has been utilized to develop a molecular detection assay for V. vulnificus. However, because the incompatibility between RPA and Cas12a cleavage has not been addressed, it is a two-step assay that lacks convenience and presents contamination risk. Here, we developed a one-step RPA-CRISPR assay for V. vulnificus using a special crRNA targeting a sequence with a suboptimal protospacer adjacent motif (PAM). The entire assay, conducted at 37°C, takes only 40-60 min, yields results visualized under blue light, and exhibits exceptional specificity and sensitivity (detecting 4 pathogen genome copies per reaction). This study offers a valuable tool for detecting V. vulnificus, aiding in foodborne infection prevention, and exemplifies one-step RPA-CRISPR assays managing Cas-cleavage activity through PAM adjustments.
Collapse
Affiliation(s)
- Xue Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yue Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yixin Tang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Lihong Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Chenjie Zhao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Pei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
29
|
Li W, Cai B, Chen R, Cui J, Wang H, Li Z. Application of recombinase polymerase amplification with CRISPR/Cas12a and multienzyme isothermal rapid amplification with lateral flow dipstick assay for Bactrocera correcta. PEST MANAGEMENT SCIENCE 2024; 80:3317-3325. [PMID: 38375936 DOI: 10.1002/ps.8035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Bactrocera correcta is a quarantine pest that negatively impacts the fruit and vegetable industry. Differentiating B. correcta from similar species, especially in non-adult stages, remains challenging. Rapid molecular identification techniques, such as recombinase polymerase amplification (RPA) combined with CRISPR/Cas12a and multienzyme isothermal rapid amplification with lateral flow dipstick (MIRA-LFD), play a crucial role in early monitoring and safeguarding agricultural production. Our study introduces two methods for the rapid visual identification of B. correcta. RESULTS Bactrocera correcta specific RPA primers, CRISPR RNA (crRNA), and the LFD probe were designed based on the cox1 genes. The RPA reaction conditions were optimized (at 37 °C for 8 min) for effective template DNA amplification. Two nucleic acid detection methods were established to visualize RPA. In the RPA-CRISPR/Cas12a system, the optimal LbCas12a/crRNA concentration ratio was 200:400 nmol L-1. Successful amplification was determined by the presence or absence of green fluorescence following 15 min incubation at 37 °C. The MIRA-LFD system achieved precise identification of the target species within 4 min at 37 °C. Both methods exhibited high specificity and sensitivity, allowing for detection from 1.0 × 10-1 ng μL-1 of DNA. Combined with rapid DNA extraction, rapid identification of individual B. correcta at different developmental stages was achieved, enhancing the practicality and convenience of the established methods. CONCLUSION Our research findings demonstrate that both the RPA-CRISPR/Cas12a and MIRA-LFD methods for B. correcta detection was accurate and rapid (within 30 min and 10 min, respectively), at 37 °C. Our methods do not rely on expensive equipment, thus possess high practical value, providing improved identification solutions for port quarantine pests and field applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weisong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of MARA, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
| | - Bo Cai
- Post-Entry Quarantine Station for Tropical Plant, Haikou Customs District, Haikou, P. R. China
| | - Ranran Chen
- National Agro-Tech Extension and Service Center, Beijing, P. R. China
| | - Jianchen Cui
- Beijing Plant Protection Station, Beijing, P. R. China
| | - Hui Wang
- Hainan Adminstration of Off-season Plant Breeding, Sanya, P. R. China
| | - Zhihong Li
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests of MARA, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Sanya Institute of China Agricultural University, Sanya, P. R. China
| |
Collapse
|
30
|
Cheng ZH, Luo XY, Liu DF, Han J, Wang HD, Min D, Yu HQ. Optimized Antibiotic Resistance Genes Monitoring Scenarios Promote Sustainability of Urban Water Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9636-9645. [PMID: 38770702 DOI: 10.1021/acs.est.4c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dissemination of antibiotic resistance genes (ARGs) in urban water bodies has become a significant environmental and health concern. Many approaches based on real-time quantitative PCR (qPCR) have been developed to offer rapid and highly specific detection of ARGs in water environments, but the complicated and time-consuming procedures have hindered their widespread use. Herein, we developed a facile one-step approach for rapid detection of ARGs by leveraging the trans-cleavage activity of Cas12a and recombinase polymerase amplification (RPA). This efficient method matches the sensitivity and specificity of qPCR and requires no complex equipment. The results show a strong correlation between the prevalence of four ARG markers (ARGs: sul1, qnrA-1, mcr-1, and class 1 integrons: intl1) in tap water, human urine, farm wastewater, hospital wastewater, municipal wastewater treatment plants (WWTPs), and proximate natural aquatic ecosystems, indicating the circulation of ARGs within the urban water cycle. Through monitoring the ARG markers in 18 WWTPs in 9 cities across China during both peak and declining stages of the COVID epidemic, we found an increased detection frequency of mcr-1 and qnrA-1 in wastewater during peak periods. The ARG detection method developed in this work may offer a useful tool for promoting a sustainable urban water cycle.
Collapse
Affiliation(s)
- Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xi-Yan Luo
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Jing Han
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Hao-Da Wang
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Di Min
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
31
|
Liu P, Lin Y, Zhuo X, Zeng J, Chen B, Zou Z, Liu G, Xiong E, Yang R. Universal crRNA Acylation Strategy for Robust Photo-Initiated One-Pot CRISPR-Cas12a Nucleic Acid Diagnostics. Angew Chem Int Ed Engl 2024; 63:e202401486. [PMID: 38563640 DOI: 10.1002/anie.202401486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Spatiotemporal regulation of clustered regularly interspaced short palindromic repeats (CRISPR) system is attractive for precise gene editing and accurate molecular diagnosis. Although many efforts have been made, versatile and efficient strategies to control CRISPR system are still desirable. Here, we proposed a universal and accessible acylation strategy to regulate the CRISPR-Cas12a system by efficient acylation of 2'-hydroxyls (2'-OH) on crRNA strand with photolabile agents (PLGs). The introduction of PLGs confers efficient suppression of crRNA function and rapid restoration of CRISPR-Cas12a reaction upon short light exposure regardless of crRNA sequences. Based on this strategy, we constructed a universal PhotO-Initiated CRISPR-Cas12a system for Robust One-pot Testing (POIROT) platform integrated with recombinase polymerase amplification (RPA), which showed two orders of magnitude more sensitive than the conventional one-step assay and comparable to the two-step assay. For clinical sample testing, POIROT achieved high-efficiency detection performance comparable to the gold-standard quantitative PCR (qPCR) in sensitivity and specificity, but faster than the qPCR method. Overall, we believe the proposed strategy will promote the development of many other universal photo-controlled CRISPR technologies for one-pot assay, and even expand applications in the fields of controllable CRISPR-based genomic editing, disease therapy, and cell imaging.
Collapse
Affiliation(s)
- Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Yating Lin
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Xiaohua Zhuo
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Jiayu Zeng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, P. R. China
| | - Zhen Zou
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| |
Collapse
|
32
|
Shi Y, Tan Z, Wu D, Wu Y, Li G. Pyrococcus furiosus argonaute based Alicyclobacillus acidoterrestrsis detection in fruit juice. Food Microbiol 2024; 120:104475. [PMID: 38431321 DOI: 10.1016/j.fm.2024.104475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
Alicyclobacillus acidoterrestris is the major threat to fruit juice for its off-odor producing characteristic. In this study, Pyrococcus furiosus Argonaute (PfAgo), a novel endonuclease with precise DNA cleavage activity, was used for A. acidoterrestrisdetection, termed as PAD. The partially amplified 16 S rRNA gene of A. acidoterrestris can be cleaved by PfAgo activated by a short 5'-phosphorylated single strand DNA, producing a new guide DNA (gDNA). Then, PfAgo was activated by the new gDNA to cut a molecular beacon (MB) with fluorophore-quencher reporter, resulting in the recovery of fluorescence. The fluorescent intensity is positively related with the concentration of A. acidoterrestris. The PAD assay showed excellent specificity and sensitivity as low as 101 CFU/mL, which can be a powerful tool for on-site detection of A. acidoterrestris in fruit juice industry in the future, reducing the economic loss.
Collapse
Affiliation(s)
- Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zishan Tan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
33
|
Zhao L, Wang H, Chen X, Wang L, Abulaizi W, Yang Y, Li B, Wang C, Bai X. Agarose Hydrogel-Boosted One-Tube RPA-CRISPR/Cas12a Assay for Robust Point-of-Care Detection of Zoonotic Nematode Anisakis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8257-8268. [PMID: 38530904 DOI: 10.1021/acs.jafc.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Rapid and accurate detection of the zoonotic nematode Anisakis is poised to control its epidemic. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-associated assay shows great potential in the detection of pathogenic microorganisms. The one-tube method integrated the CRISPR system with the recombinase polymerase amplification (RPA) system to avoid the risk of aerosol pollution; however, it suffers from low sensitivity due to the incompatibility of the two systems and additional manual operations. Therefore, in the present study, the agarose hydrogel boosted one-tube RPA-CRISPR/Cas12a assay was constructed by adding the CRISPR system to the agarose hydrogel, which avoided the initially low amplification efficiency of RPA caused by the cleavage of Cas12a and achieved reaction continuity. The sensitivity was 10-fold higher than that of the one-tube RPA-CRISPR/Cas12a system. This method was used for Anisakis detection within 80 min from the sample to result, achieving point-of-care testing (POCT) through a smartphone and a portable device. This study provided a novel toolbox for POCT with significant application value in preventing Anisakis infection.
Collapse
Affiliation(s)
- Lianjing Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haolu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiuqin Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Liping Wang
- Jiashi County Hospitalof Uygur Medicine, Xinjiang Uyghur Autonomous Region 830057, China
| | - Wulamujiang Abulaizi
- Jiashi County Hospitalof Uygur Medicine, Xinjiang Uyghur Autonomous Region 830057, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, Puer 665000, China
| | - Benfu Li
- Yunnan Institute of Parasitic Diseases, Puer 665000, China
| | - Cunzhou Wang
- Jiashi County Hospitalof Uygur Medicine, Xinjiang Uyghur Autonomous Region 830057, China
| | - Xue Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
34
|
Yang L, Chen G, Wu J, Wei W, Peng C, Ding L, Chen X, Xu X, Wang X, Xu J. A PAM-Free One-Step Asymmetric RPA and CRISPR/Cas12b Combined Assay (OAR-CRISPR) for Rapid and Ultrasensitive DNA Detection. Anal Chem 2024; 96:5471-5477. [PMID: 38551977 DOI: 10.1021/acs.analchem.3c05545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Current research endeavors have focused on the combination of various isothermal nucleic acid amplification methods with CRISPR/Cas systems, aiming to establish a more sensitive and reliable molecular diagnostic approach. Nevertheless, most assays adopt a two-step procedure, complicating manual operations and heightening the risk of contamination. Efforts to amalgamate both assays into a single-step procedure have faced challenges due to their inherent incompatibility. Furthermore, the presence of the protospacer adjacent motif (PAM) motif (e.g., TTN or TTTN) in the target double-strand DNA (dsDNA) is an essential prerequisite for the activation of the Cas12-based method. This requirement imposes constraints on crRNA selection. To overcome such limitations, we have developed a novel PAM-free one-step asymmetric recombinase polymerase amplification (RPA) coupled with a CRISPR/Cas12b assay (OAR-CRISPR). This method innovatively merges asymmetric RPA, generating single-stranded DNA (ssDNA) amenable to CRISPR RNA binding without the limitations of the PAM site. Importantly, the single-strand cleavage by PAM-free crRNA does not interfere with the RPA amplification process, significantly reducing the overall detection times. The OAR-CRISPR assay demonstrates sensitivity comparable to that of qPCR but achieves results in a quarter of the time required by the latter method. Additionally, our OAR-CRISPR assay allows the naked-eye detection of as few as 60 copies/μL DNA within 8 min. This innovation marks the first integration of an asymmetric RPA into one-step CRISPR-based assays. These advancements not only support the progression of one-step CRISPR/Cas12-based detection but also open new avenues for the development of detection methods capable of targeting a wide range of DNA targets.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R.China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guanwei Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R.China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R.China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R.China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lin Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R.China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R.China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R.China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R.China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, P.R.China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
35
|
Tan Q, Shi Y, Duan C, Li Q, Gong T, Li S, Duan X, Xie H, Li Y, Chen L. Simple, sensitive, and visual detection of 12 respiratory pathogens with one-pot-RPA-CRISPR/Cas12a assay. J Med Virol 2024; 96:e29624. [PMID: 38647075 DOI: 10.1002/jmv.29624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Respiratory infections pose a serious threat to global public health, underscoring the urgent need for rapid, accurate, and large-scale diagnostic tools. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, combined with isothermal amplification methods, has seen widespread application in nucleic acid testing (NAT). However, achieving a single-tube reaction system containing all necessary components is challenging due to the competitive effects between recombinase polymerase amplification (RPA) and CRISPR/Cas reagents. Furthermore, to enable precision medicine, distinguishing between bacterial and viral infections is essential. Here, we have developed a novel NAT method, termed one-pot-RPA-CRISPR/Cas12a, which combines RPA with CRISPR molecular diagnostic technology, enabling simultaneous detection of 12 common respiratory pathogens, including six bacteria and six viruses. RPA and CRISPR/Cas12a reactions are separated by paraffin, providing an independent platform for RPA reactions to generate sufficient target products before being mixed with the CRISPR/Cas12a system. Results can be visually observed under LED blue light. The sensitivity of the one-pot-RPA-CRISPR/Cas12a method is 2.5 × 100 copies/μL plasmids, with no cross-reaction with other bacteria or viruses. Additionally, the clinical utility was evaluated by testing clinical isolates of bacteria and virus throat swab samples, demonstrating favorable performance. Thus, our one-pot-RPA-CRISPR/Cas12a method shows immense potential for accurate and large-scale detection of 12 common respiratory pathogens in point-of-care testing.
Collapse
Affiliation(s)
- Qi Tan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Yaoqiang Shi
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Chenlu Duan
- Sichuan Provincial Judicial Police General Hospital, Chengdu, China
| | - Qingyuan Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tao Gong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - He Xie
- The Hospital of Xidian Group, Xi'an, China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
- The Hospital of Xidian Group, Xi'an, China
- The Joint-Laboratory on Transfusion-Transmitted Diseases (TTDs) between Institute of Blood Transfusion and Nanning Blood Center, Nanning Blood Center, Nanning, China
| |
Collapse
|
36
|
Sun Q, Lin H, Li Y, Yuan L, Li B, Ma Y, Wang H, Deng X, Chen H, Tang S. A photocontrolled one-pot isothermal amplification and CRISPR-Cas12a assay for rapid detection of SARS-CoV-2 Omicron variants. Microbiol Spectr 2024; 12:e0364523. [PMID: 38319081 PMCID: PMC10913417 DOI: 10.1128/spectrum.03645-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
CRISPR-Cas technology has widely been applied to detect single-nucleotide mutation and is considered as the next generation of molecular diagnostics. We previously reported the combination of nucleic acid amplification (NAA) and CRISPR-Cas12a system to distinguish major severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. However, the mixture of NAA and CRISPR-Cas12a reagents in one tube could interfere with the efficiency of NAA and CRISPR-Cas12a cleavage, which in turn affects the detection sensitivity. In the current study, we employed a novel photoactivated CRISPR-Cas12a strategy integrated with recombinase polymerase amplification (RPA) to develop one-pot RPA/CRISPR-Cas12a genotyping assay for detecting SARS-CoV-2 Omicron sub-lineages. The new system overcomes the potential inhibition of RPA due to early CRISPR-Cas12a activation and cleavage of the target template in traditional one-pot assay using photocleavable p-RNA, a complementary single-stranded RNA to specifically bind crRNA and precisely block Cas12a activation. The detection can be finished in one tube at 39℃ within 1 h and exhibits a low limit of detection of 30 copies per reaction. Our results demonstrated that the photocontrolled one-pot RPA/CRISPR-Cas12a assay could effectively identify three signature mutations in the spike gene of SARS-CoV-2 Omicron variant, namely, R346T, F486V, and 49X, and distinguish Omicron BA.1, BA.5.2, and BF.7 sub-lineages. Furthermore, the assay achieved a sensitivity of 97.3% and a specificity of 100.0% and showed a concordance of 98.3% with Sanger sequencing results.IMPORTANCEWe successfully developed one-pot recombinase polymerase amplification/CRISPR-Cas12a genotyping assay by adapting photocontrolled CRISPR-Cas technology to optimize the conditions of nucleic acid amplification and CRISPR-Cas12a-mediated detection. This innovative approach was able to quickly distinguish severe acute respiratory syndrome coronavirus 2 Omicron variants and can be readily modified for detecting any nucleic acid mutations. The assay system demonstrates excellent clinical performance, including rapid detection, user-friendly operations, and minimized risk of contamination, which highlights its promising potential as a point-of-care testing for wide applications in resource-limiting settings.
Collapse
Affiliation(s)
- Qian Sun
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongqing Lin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Liping Yuan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Baisheng Li
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Yunan Ma
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Haiying Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoling Deng
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Hongliang Chen
- Department of Clinical Microbiology Laboratory, Chenzhou No. 1 People’s Hospital, Chenzhou, China
| | - Shixing Tang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Li QN, Wang DX, Chen DY, Lyu JA, Wang YX, Wu SL, Jiang HX, Kong DM. Photoactivatable CRISPR/Cas12a Sensors for Biomarkers Imaging and Point-of-Care Diagnostics. Anal Chem 2024; 96:2692-2701. [PMID: 38305871 DOI: 10.1021/acs.analchem.3c05497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In recent years, the CRISPR/Cas12a-based sensing strategy has shown significant potential for specific target detection due to its rapid and sensitive characteristics. However, the "always active" biosensors are often insufficient to manipulate nucleic acid sensing with high spatiotemporal control. It remains crucial to develop nucleic acid sensing devices that can be activated at the desired time and space by a remotely applied stimulus. Here, we integrated photoactivation with the CRISPR/Cas12a system for DNA and RNA detection, aiming to provide high spatiotemporal control for nucleic acid sensing. By rationally designing the target recognition sequence, this photoactivation CRISPR/Cas12a system could recognize HPV16 and survivin, respectively. We combined the lateral flow assay strip test with the CRISPR/Cas12a system to realize the visualization of nucleic acid cleavage signals, displaying potential instant test application capabilities. Additionally, we also successfully realized the temporary control of its fluorescent sensing activity for survivin by photoactivation in vivo, allowing rapid detection of target nucleic acids and avoiding the risk of contamination from premature leaks during storage. Our strategy suggests that the CRISPR/Cas12a platform can be triggered by photoactivation to sense various targets, expanding the technical toolbox for precise biological and medical analysis. This study represents a significant advancement in nucleic acid sensing and has potential applications in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Qing-Nan Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dan-Ye Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jia-Ao Lyu
- Admiral Farragut Academy Tianjin, Yantai Road, Heping District, Tianjin 300042, P. R. China
| | - Ya-Xin Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Shun-Li Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hong-Xin Jiang
- Agro-Environmental Protection Institute, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Laboratory of Environmental Factors Risk Assessment of Agro-Product Quality Safety, Ministry of Agriculture, Tianjin 300191, P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
38
|
Wen J, Han M, Feng N, Chen G, Jiang F, Lin J, Chen Y. A digital platform for One-Pot signal enhanced foodborne pathogen detection based on mesophilic argonaute-driven polydisperse microdroplet reactors and machine learning. CHEMICAL ENGINEERING JOURNAL 2024; 482:148845. [DOI: 10.1016/j.cej.2024.148845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
|
39
|
Wang Y, Tang Y, Chen Y, Yu G, Zhang X, Yang L, Zhao C, Wang P, Gao S. Ultrasensitive one-pot detection of monkeypox virus with RPA and CRISPR in a sucrose-aided multiphase aqueous system. Microbiol Spectr 2024; 12:e0226723. [PMID: 38078721 PMCID: PMC10782985 DOI: 10.1128/spectrum.02267-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The monkeypox virus was declared as a Public Health Emergency of International Concern (PHEIC) by the World Health Organization (WHO) and continues to cause infection cases worldwide. Given the risk of virus evolution, it is essential to identify monkeypox virus infection in a timely manner to prevent outbreaks. This study establishes a novel one-pot recombinase polymerase amplification-Clustered Regularly Interspaced Short Palindromic Repeats (RPA-CRISPR) assay for monkeypox virus with an ultra-high sensitivity. The assay shows good specificity, accuracy, and the rapidness and convenience important for point-of-care testing. It provides an effective tool for the early diagnosis of monkeypox, which is useful for the prevention of an epidemic.
Collapse
Affiliation(s)
- Yue Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yixin Tang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yukang Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Guangxi Yu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Xue Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Lihong Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Chenjie Zhao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Pei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
40
|
Yang WG, Chen HR, Su ML, Yuan R, Liang WB, Li Y. Target-induced multipath-to-one-substrate approach for high-efficient bioanalysis of microRNA. Talanta 2024; 266:125099. [PMID: 37651911 DOI: 10.1016/j.talanta.2023.125099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Considering the significant potential of microRNA (miRNA) as an efficient biomarker and great challenge of accurate analysis of lowly abundant miRNA, herein, we proposed a target-induced multipath-to-one-substrate strategy to monitor miRNA in vivo and in vitro accurately with high-efficient performances. In presence of target miRNA, it could directly generate the catalytic hairpin assembly (CHA) amplification cycle based on hybridizing with hairpin 1 (H1) and H2 respectively to structure the H1-H2 duplex, then the H1-H2 duplex could activate the cleavage ability of CRISPR/Cas12a to cleavage H1 which represent miRNA indirectly consume H1, which achieve co-consumption of the same substrate H1 by multiple pathways. And thus, the quenched fluorescent signal on H1 could be recovered due to the enlarger distance between fluorescent probe and quencher by the formation of H1-H2 duplex or cleavage of H1, all of which were related directly with target miRNA or indirectly with H1-H2 duplex activated cleavage ability of CRISPR/Cas12a, generating ultrahigh sensitive analytical ability and high-efficient analytical performances, such as more simple, fast, efficient and so on, especially a linear correlation from 100 pM to 100 nM with a detection limit of 78 pM, opening a new door to monitor expression level of biomolecules for early diagnosis and prognosis evaluation of various diseases.
Collapse
Affiliation(s)
- Wei-Guo Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Hao-Ran Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ming-Li Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yan Li
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
41
|
Zhao R, Tang Y, Song D, Liu M, Li B. CRISPR/Cas12a-Responsive Hydrogels for Conjugation-Free and Universal Indicator Release in Colorimetric Detection. Anal Chem 2023; 95:18522-18529. [PMID: 38055961 DOI: 10.1021/acs.analchem.3c03900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Recent advances have demonstrated the significant potential and advantages to repurpose existing point-of-care reactions/devices to realize portable detection of nonoriginal targets, e.g., pathogen genes. However, pursuing this aim usually requires protein indicator-nucleic acid conjugation via a covalent bond, which may bring drawbacks such as high cost, complicated procedure, and annoying component rebuilding. Herein, we developed a conjugation-free, effective, and universal detection platform called CRIs-gel (CRISPR/Cas12a-Responsive Indicators@RCA hydrogels). Various protein indicators are pre-encapsulated into the hydrogels made of effective and high-yield rolling circle amplification (RCA). Upon a targeting sequence binding with its antisense crRNA, CRISPR/Cas12a starts its trans-cleavage activity to crush the hydrogel, which may directly release the indicator for downstream readout. Two proteins, amylase (GA) and human chorionic gonadotropin (hCG), are successfully used as model indicators to trigger the downstream amylum-I2 color change and pregnancy test strip response. After coupling with upstream isothermal nucleic acid amplification, both portable readouts may detect as few as 2 copies/μL genetic sequences of influenza A virus (FluA), human papilloma virus (HPV), SARS-CoV-2, and influenza B virus (FluB). This conjugation-free CRIs-gel platform is thus simple, sensitive, and universal and can provide innovative insights for portable point-of-care testing (POCT) development.
Collapse
Affiliation(s)
- Rujian Zhao
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yidan Tang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Defeng Song
- Department of Gastric Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, Liaoning 116024, China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
42
|
Wu X, Zhao Y, Guo C, Liu C, Zhang Q, Chen Y, Liu Y, Zhang X. RatioCRISPR: A ratiometric biochip based on CRISPR/Cas12a for automated and multiplexed detection of heteroplasmic SNPs in mitochondrial DNA. Biosens Bioelectron 2023; 241:115676. [PMID: 37714059 DOI: 10.1016/j.bios.2023.115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Mitochondrial genetic diseases are often characterized by heteroplasmic single nucleotide polymorphisms (SNPs) where both wild-type (WT) and mutant-type (MT) coexist, making detection of accurate SNP abundance critical for diagnosis. Here, we present RatioCRISPR, an automated ratiometric biochip sensor based on the CRISPR/Cas12a system for detecting multiple heteroplasmic SNPs in mitochondrial DNA (mtDNA). The ratiometric sensor output is only influenced by the relative abundance of WT and MT, with minimal impact from sample concentration. Biochips allow the simultaneous detection of multiple SNP sites for more accurate disease diagnosis. RatioCRISPR can accurately detect 8 samples simultaneously within 25 min with a limit of detection (LOD) of 15.7 aM. We successfully detected 13 simulated samples of three mtDNA point mutations (m.3460G>A, m.11778G>A, and m.14484T>C), which lead to Leber's hereditary optic neuropathy (LHON) and set a threshold (60%) of heteroplasmy to evaluate disease risk. This automated and accurate biosensor has broad applications in diagnosing multiple SNPs, especially those with heteroplasmic variations, making it an advanced and convenient tool for mtDNA disease diagnosis.
Collapse
Affiliation(s)
- Xiaolong Wu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China
| | - Yi Zhao
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China
| | - Chuanghao Guo
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China
| | - Conghui Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China
| | - Yong Chen
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China; Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China.
| | - Yizhen Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China; Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen, 518060, Guangdong, PR China.
| | - Xueji Zhang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, PR China
| |
Collapse
|
43
|
Yin W, Zhuang J, Li J, Xia L, Hu K, Yin J, Mu Y. Digital Recombinase Polymerase Amplification, Digital Loop-Mediated Isothermal Amplification, and Digital CRISPR-Cas Assisted Assay: Current Status, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303398. [PMID: 37612816 DOI: 10.1002/smll.202303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/29/2023] [Indexed: 08/25/2023]
Abstract
Digital nucleic acid detection based on microfluidics technology can quantify the initial amount of nucleic acid in the sample with low equipment requirements and simple operations, which can be widely used in clinical and in vitro diagnosis. Recently, isothermal amplification technologies such as recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats-CRISPR associated proteins (CRISPR-Cas) assisted technologies have become a hot spot of attention and state-of-the-art digital nucleic acid chips have provided a powerful tool for these technologies. Herein, isothermal amplification technologies including RPA, LAMP, and CRISPR-Cas assisted methods, based on digital nucleic acid microfluidics chips recently, have been reviewed. Moreover, the challenges of digital isothermal amplification and possible strategies to address them are discussed. Finally, future directions of digital isothermal amplification technology, such as microfluidic chip and device manufacturing, multiplex detection, and one-pot detection, are outlined.
Collapse
Affiliation(s)
- Weihong Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jianjian Zhuang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310006, P. R. China
| | - Jiale Li
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liping Xia
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kai Hu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
- School of information and Electrical Engineering, Hangzhou City University, Hangzhou, 310015, P. R. China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
44
|
Li T, Cheng N. Sensitive and Portable Signal Readout Strategies Boost Point-of-Care CRISPR/Cas12a Biosensors. ACS Sens 2023; 8:3988-4007. [PMID: 37870387 DOI: 10.1021/acssensors.3c01338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Point-of-care (POC) detection is getting more and more attention in many fields due to its accuracy and on-site test property. The CRISPR/Cas12a system is endowed with excellent sensitivity, target identification specificity, and signal amplification ability in biosensing because of its unique trans-cleavage ability. As a result, a lot of research has been made to develop CRISPR/Cas12a-based biosensors. In this review, we focused on signal readout strategies and summarized recent sensitivity-improving strategies in fluorescence, colorimetric, and electrochemical signaling. Then we introduced novel portability-improving strategies based on lateral flow assays (LFAs), microfluidic chips, simplified instruments, and one-pot design. In the end, we also provide our outlook for the future development of CRISPR/Cas12a biosensors.
Collapse
Affiliation(s)
- Tong Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
45
|
Zhao Z, Wang S, Dong Z, Fan Q, Lei R, Kuang R, Zhang Y. One-Step Reverse-Transcription Recombinase-Aided Amplification CRISPR/Cas12a-Based Lateral Flow Assay for Fast Field Screening and Accurate Differentiation of Four Major Tobamoviruses Infecting Tomato and Pepper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37916776 DOI: 10.1021/acs.jafc.3c05268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Several tobamoviruses cause substantial economic losses to tomato and pepper crops globally, especially the pepper mild mosaic virus (PMMoV), tomato brown rugose fruit virus (ToBRFV), tomato mosaic virus (ToMV), and tomato mottle mosaic virus (ToMMV). A fast and accurate detection method is essential for virus identification. An all-in-one reaction method combining a one-step reverse-transcription recombinase-aided amplification (RT-RAA) and CRISPR/Cas12a-based lateral flow assay in one mixture was developed to rapidly screen and accurately differentiate among these four tobamoviruses for field detection in tomato and pepper plants. With a generic RT-RAA primer set and a mix of four specific crRNAs, along with a portable metal incubator and the use of a crude extraction method, this method screened for PMMoV, ToBRFV, ToMV, and ToMMV concurrently in less than 1 h, enabling field workers to take action immediately. The accurate differentiation of these four viruses could be achieved by later adding a single specific crRNA.
Collapse
Affiliation(s)
- Zhenxing Zhao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Siyuan Wang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Zheng Dong
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qixuan Fan
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, 100193 Beijing, China
| | - Rong Lei
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ruirui Kuang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, 100193 Beijing, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
46
|
Lin C, Chen F, Huang D, Li W, He C, Tang Y, Li X, Liu C, Han L, Yang Y, Zhu Y, Chen R, Shi Y, Xia C, Yan Z, Du H, Huang L. A universal all-in-one RPA-Cas12a strategy with de novo autodesigner and its application in on-site ultrasensitive detection of DNA and RNA viruses. Biosens Bioelectron 2023; 239:115609. [PMID: 37611446 DOI: 10.1016/j.bios.2023.115609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Revolutionary all-in-one RPA-CRISPR assays are rapidly becoming the most sought-after tools for point-of-care testing (POCT) due to their high sensitivity and ease of use. Despite the availability of one-pot methods for specific targets, the development of more efficient methods for new targets remains a significant challenge. In this study, we present a rapid and universal approach to establishing an all-in-one RPA-Cas12a method CORDSv2 based on rational balancing amplification and Cas12a cleavage, which achieves ultrasensitive detection of several targets, including SARS-CoV-2, ASFV, HPV16, and HPV18. CORDSv2 demonstrates a limit of detection (LOD) of 0.6 cp/μL and 100% sensitivity for SARS-CoV-2, comparable to qPCR. Combining with our portable device(hippo-CORDS), it has a visual detection LOD of 6 cp/μL and a sensitivity up to 100% for SARS-CoV-2 and 97% for Ct<35 ASFV samples, surpassing most one-pot visual methods. To simplify and accelerate the process for new targets, we also develop a de novo autodesigner by which the optimal couples of primers and crRNA can be selected rapidly. As a universal all-in-one RPA-CRISPR method for on-site testing, CORDSv2 becomes an attractive choice for rapid and accurate diagnosis in resource-limited settings.
Collapse
Affiliation(s)
- Cailing Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Feng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Dongchao Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Wenyan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Changsheng He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingjun Tang
- WENS Foodstuff Group Co., Ltd., Yunfu, 527400, China
| | - Xueping Li
- Guangzhou Yoyoung Bio-tech Company, Guangzhou, 510300, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China
| | - Liya Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yunpeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yongchong Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ruikang Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yuanju Shi
- Guangzhou Yoyoung Bio-tech Company, Guangzhou, 510300, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China
| | - Zhibin Yan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Fangrui Institute of Innovative Drugs, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
47
|
Chen Y, Zhang Y, Luo S, Yang X, Liu C, Zhang Q, Liu Y, Zhang X. Foldback-crRNA-Enhanced CRISPR/Cas13a System (FCECas13a) Enables Direct Detection of Ultrashort sncRNA. Anal Chem 2023; 95:15606-15613. [PMID: 37824705 DOI: 10.1021/acs.analchem.3c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The CRISPR/Cas13a system has promising applications in clinical small noncoding RNA (sncRNA) detection because it is free from the interference of genomic DNA. However, detecting ultrashort sncRNAs (less than 20 nucleotides) has been challenging because the Cas13a nuclease requires longer crRNA-target RNA hybrids to be activated. Here, we report the development of a foldback-crRNA-enhanced CRISPR/Cas13a (FCECas13a) system that overcomes the limitations of the current CRISPR/Cas13a system in detecting ultrashort sncRNAs. The FCECas13a system employs a 3'-terminal foldback crRNA that hybridizes with the target ultrashort sncRNA, forming a double strand that "tricks" the Cas13a nuclease into activating the HEPN structural domain and generating trans-cleavage activity. The FCECas13a system can accurately detect miRNA720 (a sncRNA currently known as tRNA-derived small RNA), which is only 17 nucleotides long and has a concentration as low as 15 fM within 20 min. This FCECas13a system opens new avenues for ultrashort sncRNA detection with significant implications for basic biological research, disease prognosis, and molecular diagnosis.
Collapse
Affiliation(s)
- Yong Chen
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Yibin Zhang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Siyuan Luo
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Xinyao Yang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Conghui Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Qianling Zhang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Yizhen Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, P. R. China
| | - Xueji Zhang
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, P. R. China
| |
Collapse
|
48
|
Li X, Zhong J, Li H, Qiao Y, Mao X, Fan H, Zhong Y, Imani S, Zheng S, Li J. Advances in the application of CRISPR-Cas technology in rapid detection of pathogen nucleic acid. Front Mol Biosci 2023; 10:1260883. [PMID: 37808520 PMCID: PMC10552857 DOI: 10.3389/fmolb.2023.1260883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) are widely used as gene editing tools in biology, microbiology, and other fields. CRISPR is composed of highly conserved repetitive sequences and spacer sequences in tandem. The spacer sequence has homology with foreign nucleic acids such as viruses and plasmids; Cas effector proteins have endonucleases, and become a hotspot in the field of molecular diagnosis because they recognize and cut specific DNA or RNA sequences. Researchers have developed many diagnostic platforms with high sensitivity, high specificity, and low cost by using Cas proteins (Cas9, Cas12, Cas13, Cas14, etc.) in combination with signal amplification and transformation technologies (fluorescence method, lateral flow technology, etc.), providing a new way for rapid detection of pathogen nucleic acid. This paper introduces the biological mechanism and classification of CRISPR-Cas technology, summarizes the existing rapid detection technology for pathogen nucleic acid based on the trans cleavage activity of Cas, describes its characteristics, functions, and application scenarios, and prospects the future application of this technology.
Collapse
Affiliation(s)
- Xiaoping Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau, China
| | - Jiaye Zhong
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Haoyu Li
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yinbiao Qiao
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Xiaolei Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Huayan Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yiwu Zhong
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Saber Imani
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Jianhui Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- The Organ Repair and Regeneration Medicine Institute of Hangzhou, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
49
|
Wu K, Ma C, Wang Y. Functional Nucleic Acid Probes Based on Two-Photon for Biosensing. BIOSENSORS 2023; 13:836. [PMID: 37754070 PMCID: PMC10527542 DOI: 10.3390/bios13090836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Functional nucleic acid (FNA) probes have been widely used in environmental monitoring, food analysis, clinical diagnosis, and biological imaging because of their easy synthesis, functional modification, flexible design, and stable properties. However, most FNA probes are designed based on one-photon (OP) in the ultraviolet or visible regions, and the effectiveness of these OP-based FNA probes may be hindered by certain factors, such as their potential for photodamage and limited light tissue penetration. Two-photon (TP) is characterized by the nonlinear absorption of two relatively low-energy photons of near-infrared (NIR) light with the resulting emission of high-energy ultraviolet or visible light. TP-based FNA probes have excellent properties, including lower tissue self-absorption and autofluorescence, reduced photodamage and photobleaching, and higher spatial resolution, making them more advantageous than the conventional OP-based FNA probes in biomedical sensing. In this review, we summarize the recent advances of TP-excited and -activated FNA probes and detail their applications in biomolecular detection. In addition, we also share our views on the highlights and limitations of TP-based FNA probes. The ultimate goal is to provide design approaches for the development of high-performance TP-based FNA probes, thereby promoting their biological applications.
Collapse
Affiliation(s)
- Kefeng Wu
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yisen Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| |
Collapse
|
50
|
Fei X, Lei C, Ren W, Liu X, Liu C. Regulating the trans-Cleavage Activity of CRISPR/Cas12a by Using an Elongation-Caged Single-Stranded DNA Activator and the Biosensing Applications. Anal Chem 2023; 95:12169-12176. [PMID: 37531567 DOI: 10.1021/acs.analchem.3c02471] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The CRISPR/Cas12a system exhibits extraordinary capability in the field of biosensing and molecular diagnosis due to its trans-cleavage ability. However, it is still desirable for precise control and programmable regulation of Cas12a trans-cleavage activity to promote the in-depth studies and application expansion of Cas12a-based sensing platforms. In this work, we have developed a new and robust CRISPR/Cas12a regulation mechanism by endowing the activator with the function of caging crRNA ingeniously. Specifically, we constructed an integrated elongation-caged activator (EL-activator) by extending the ssDNA activator on the 3'-end. We found that appending only about 8 nt that is complementary to the crRNA repeat region is enough to cage the crRNA spacer/repeat region, thus effectively inhibiting Cas12a trans-cleavage activity. The inner inhibition mechanism was further uncovered after a thorough investigation, demonstrating that the EL-activator works by impeding the conformation of crRNA required for Cas12a recognition and destroying its affinity with Cas12a. By further switching on the elongated moiety on the EL-activator using target biomarkers, the blocked trans-cleavage activity of Cas12a can be rapidly recovered. Finally, a versatile sensing platform was established based on the EL-activator regulation mechanism, expanding the conventional Cas12a system that only directly recognizes DNA to the direct detection of enzymes and RNA biomarkers. This work has enriched the CRISPR/Cas12a regulation toolbox and expanded its sensing applications.
Collapse
Affiliation(s)
- Xinrui Fei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Chao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| | - Xiaoling Liu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi Province, P. R. China
| |
Collapse
|