1
|
Jiang Q, Chen R, Li M, Zhang T, Kong Z, Ma K, Ye C, Sun X, Shu W. Emerging fluorescent probes for bioimaging of drug-induced liver injury biomarkers: Recent advances. Bioorg Chem 2025; 159:108407. [PMID: 40157011 DOI: 10.1016/j.bioorg.2025.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/03/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Drug-induced liver injury (DILI) has emerged as a significant concern in clinical settings, being one of the leading causes of acute liver failure. However, the specific pathogenesis of DILI remains unclear, and there is currently a lack of effective targeted therapies. Numerous studies have demonstrated that the occurrence and progression of DILI involve complex pathological processes, closely linked with various cellular substrates and microenvironments. Thus, developing non-invasive, highly sensitive, specific, and reliable methods to detect changes in biomarkers and microenvironments in situ would greatly aid in the precise diagnosis of DILI and help guide therapeutic interventions. Fortunately, fluorescence imaging technology has shown great promise in detecting biological species, microenvironments, and diagnosing DILI due to its superior detection capabilities. In this context, this review described the design strategies, working principles, and practical applications of small molecule fluorescent probes for monitoring biological species and microenvironments in DILI. Importantly, this review highlighted current limitations and future development directions, which may help uncover the underlying relationships between biological species, microenvironments, and DILI. This understanding could lead to potential diagnostic protocols and establish a platform for evaluating treatments and drug efficacy in DILI.
Collapse
Affiliation(s)
- Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Ran Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Meng Li
- Huantai County Ecological Environment Management Service Center, Zibo 255000, PR China
| | - Tianyu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Ziyuzhu Kong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Kaifu Ma
- School of Medical Laboratory, Qilu Medical University, Zibo 255000, PR China.
| | - Chao Ye
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin, 132013, PR China
| | - Xiaohan Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
2
|
Bajad NG, T A G, Kothari M, Mukherjee R, Chowdhury A, Kumar A, Krishnamurthy S, Singh SK. Development of multifunctional fluorescence-emitting potential theranostic agents for Alzheimer's disease. Talanta 2025; 287:127574. [PMID: 39818048 DOI: 10.1016/j.talanta.2025.127574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The cholinergic deficits and amyloid beta (Aβ) aggregation are the mainstream simultaneously observed pathologies during the progression of Alzheimer's disease (AD). Deposited Aβ plaques are considered to be the primary pathological hallmarks of AD and are contemplated as promising diagnostic biomarker. Herein, a series of novel theranostic agents were designed, synthesised and evaluated against cholinesterase (ChEs) enzymes and detection of Aβ species, which are major targets for development of therapeutics for AD. Among all the tested compounds against ChEs enzymes, compound/probe 39 & 43 exhibited potent inhibitory activities. Its excellent BBB permeability was anticipated in PAMPA assay. Measurement of fluorescent properties showed emission maxima (λemm) in between 530 and 550 nm in distinct organic solvent except in the most polar solvent i.e., PBS (10 % DMSO), where broad absorption (λabs of 440 nm) and emission spectrum (λemm of 640 nm) was observed. The relative fluorescence quantum yield of probe 39 in methanol was found to be 0.17. The increase in fluorescence intensity displayed by the probe 39 upon binding with Aβ aggregates in the in vitro assay, and produced high apparent binding constant. Further, it's binding affinity towards Aβ1-42 aggregates was validated on the basis of colocalization with thioflavin T (ThT). A significant enhancement in the fluorescence lifetime of probe 39 on binding with Aβ aggregates was observed in time-correlated single-photon counting (TCSPC) analysis (10.00 ± 1.12 ns) and fluorescence lifetime imaging microscopy (FLIM) imaging (11.53 ± 0.01 ns). Furthermore, acute oral toxicity studies signified the safety profile of lead probe 39. The in-vivo behavioural studies demonstrated a substantial improvement of cognitive and special memory impairment in the scopolamine-induced cognitive deficit in mice model on the administration of compound 39 at a dose of 20 mg/kg. The AChE inhibitory potential and antioxidant property of lead probe 39 were further accessed with ex vivo biochemical analysis. Together, our findings suggest Probe 39 as a promising theranostic agent for the AD.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gajendra T A
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Mansi Kothari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Rajat Mukherjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, 400076, Mumbai, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
3
|
Han T, Lin L, Jiang H, Fan L, Zhang Y. Mechanistic study of tumor fluorescence response signals based on a near-infrared viscosity-sensitive probe. J Mater Chem B 2025; 13:3959-3966. [PMID: 40028911 DOI: 10.1039/d4tb02067g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Viscosity is an important physiological parameter closely associated with various cellular processes and diseases. Several fluorescence probes responsive to viscosity have been developed, demonstrating high sensitivity specifically towards tumor tissues. However, the underlying core mechanism of this highly potential responsive signal has been a subject of debate, as highly sensitive probes encounter excessive environmental interferences in complex tumor tissues. Therefore, we have developed a viscosity-responsive fluorescence probe based on the classical TICT mechanism (twisted intramolecular charge transfer) as a research tool. This probe features an ultra-wide emission range of 700-1200 nm in the near-infrared spectrum, strong photostability, and simultaneous targeting of mitochondria and lysosomes. Through in-depth analysis, we have revealed the intrinsic mechanisms underlying its functionality, demonstrating that the major contributor to the fluorescence change of responsive probes during imaging is the inherent state of cells rather than the tumor microenvironment or the cell type. Our findings provide a theoretical foundation for the continued exploration and application of viscosity-responsive probes.
Collapse
Affiliation(s)
- Tianyang Han
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun 130021, P. R. China.
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Lihao Lin
- Department of Emergency, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Huizhong Jiang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Li Fan
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Yuewei Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun 130021, P. R. China.
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| |
Collapse
|
4
|
Carravilla P, Andronico L, Schlegel J, Urem YB, Sjule E, Ragaller F, Weber F, Gurdap CO, Ascioglu Y, Sych T, Lorent J, Sezgin E. Measuring plasma membrane fluidity using confocal microscopy. Nat Protoc 2025:10.1038/s41596-024-01122-8. [PMID: 39972239 DOI: 10.1038/s41596-024-01122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/29/2024] [Indexed: 02/21/2025]
Abstract
Membrane fluidity is a crucial parameter for cellular physiology. Recent evidence suggests that fluidity varies between cell types and states and in diseases. As membrane fluidity has gradually become an important consideration in cell biology and biomedicine, it is essential to have reliable and quantitative ways to measure it in cells. In the past decade, there has been substantial progress both in chemical probes and in imaging tools to make membrane fluidity measurements easier and more reliable. We have recently established a robust pipeline, using confocal imaging and new environment-sensitive probes, that has been successfully used for several studies. Here we present our detailed protocol for membrane fluidity measurement, from labeling to imaging and image analysis. The protocol takes ~4 h and requires basic expertise in cell culture, wet lab and microscopy.
Collapse
Affiliation(s)
- Pablo Carravilla
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Luca Andronico
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yagmur B Urem
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ellen Sjule
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Franziska Ragaller
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Florian Weber
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Upper Austria University of Applied Sciences, Department Medical Engineering, Linz, Austria
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yavuz Ascioglu
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Joseph Lorent
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands
- Cellular and Molecular Pharmacology, Translational Research from Experimental and Clinical Pharmacology to Treatment Optimization, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
5
|
Sheehan A, Okkelman IA, Groslambert G, Bucher C, Dmitriev RI, Filatov MA. Optoelectronic Properties and Fluorescence Lifetime Imaging Application of Donor-Acceptor Dyads Derived From 2,6-DicarboxyBODIPY. Chemistry 2025; 31:e202404188. [PMID: 39740050 DOI: 10.1002/chem.202404188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/02/2025]
Abstract
Donor-acceptor BODIPY dyads, functionalized at the 2 and 6 positions with benzyl ester (BDP-DE) or carboxylic acid (BDP-DA) groups, were synthesized, and their optoelectronic properties were investigated. Carbonyl groups were found to increase the reduction potential of the BODIPY core by 0.15-0.4 eV compared to regular alkyl-substituted BODIPYs. These compounds exhibited efficient intramolecular charge separation and triplet state formation through the spin-orbit charge transfer intersystem crossing (SOCT-ISC) process, achieving singlet oxygen quantum yields of up to 92 %, depending on the solvent polarity. Notably, the fluorescence and singlet oxygen generation of BDP-DAs were found to depend on the ionization state of the carboxylic groups. Time-resolved fluorescence measurements revealed that complexation of BDP-DAs with bovine serum albumine (BSA) significantly extended their excited state lifetimes. Fluorescence lifetime imaging microscopy (FLIM) studies of human colorectal carcinoma (HCT116) cells and pig small intestinal organoids (enteroids) provided insights into subcellular localization. The diacid with 2,4-dimethoxyphenyl group at the meso-position (DA1) displayed longer lifetimes in lipid-droplet-like structures and shorter lifetimes in cytoplasmic regions. The diacid containing a meso-anthracenyl group (DA2) formed 'islands' in cell monolayers, exhibiting a distinct lifetime gradient from the periphery to the center. These results highlight the potential of donor-acceptor BODIPYs as fluorescent probes for biological imaging, particularly in revealing subtle differences in cellular environments.
Collapse
Affiliation(s)
- Aimee Sheehan
- School of Chemical and Biopharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Irina A Okkelman
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, The Core, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Geoffrey Groslambert
- CNRS, ENS de Lyon, LCH, UMR 5182, 46 Allée d'Italie, 69342, Lyon Cedex 07, France
| | - Christophe Bucher
- CNRS, ENS de Lyon, LCH, UMR 5182, 46 Allée d'Italie, 69342, Lyon Cedex 07, France
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, The Core, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Mikhail A Filatov
- School of Chemical and Biopharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| |
Collapse
|
6
|
Li XF, Wu FG. Aggregation-induced emission-based fluorescent probes for cellular microenvironment detection. Biosens Bioelectron 2025; 274:117130. [PMID: 39904094 DOI: 10.1016/j.bios.2025.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025]
Abstract
The cellular microenvironment exerts a pivotal regulatory influence on cell survival, function, and behavior. Dynamic analysis and detection of the cellular microenvironment can promptly elucidate changes in cellular microenvironmental information, uncover the pathogenesis of diseases associated with aberrant microenvironments, and aid in predicting disease risk and monitoring disease progression. Aggregation-induced emission (AIE) fluorescent molecules possess unique AIE characteristics and offer significant advantages in imaging and sensing cellular microenvironments. In this review, we present a profile of the remarkable progress achieved in utilizing AIE fluorescent molecules for detecting cellular microenvironments in recent years. We particularly focus on AIE fluorescent probes applied in imaging key parameters of the cellular microenvironment, including pH, viscosity, polarity, and temperature, as well as in analyzing critical biological components of the microenvironment, such as gas signal molecules, metal ions, redox state, and proteins. We underscore the design principles, detection mechanisms, sensing performance, and biological applications of these fluorescent probes. Furthermore, we address the current challenges confronting this field and provide prospects for the future development of AIE probes used for microenvironment detection. We trust that this review will inspire researchers to develop more precise and sensitive AIE fluorescent probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Xiang-Fei Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China.
| |
Collapse
|
7
|
Liu Y, Mathew L, Yu C, Fu L, Shu Z, Kapoor S, Duan M. The Molecular Mechanism of Fluorescence Lifetime of Fluorescent Probes in Cell Membranes. J Phys Chem Lett 2024; 15:12293-12300. [PMID: 39639705 DOI: 10.1021/acs.jpclett.4c02731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Fluorescence probes play crucial roles in unraveling the structure and dynamics of cell membranes including membrane fluidity, polarity, and lipid molecule ordering. The fluorescence lifetime of probes describes the average duration of time that a fluorescent molecule remains in an excited state before returning to the ground state, which is sensitive to environmental changes. However, the molecular mechanism and inherent properties to determine the fluorescence lifetimes remain unexplored and inadequately studied. Furthermore, the effects of the probe on the membrane are also unclear. In this study, we investigated the interactions between probes and lipids, as well as the structural properties of probes within the outer and inner membrane of Mycobacterium smegmatis (Msm) by combining molecular dynamics (MD) simulations, enhanced sampling methods, fluorescence lifetime imaging microscopy (FLIM), and time-correlated single photon counting (TCSPC). The results show that even though the probes have very little effect on the membrane lipids, different membrane environments significantly affect the fluorescence lifetime of the probes. The analysis based on the all-atom simulations shows a strong correlation between the probe's immersion depth within the membrane and its fluorescence lifetime. Specifically, probes buried in the membrane environment shielded from rapid water molecule collisions exhibit longer fluorescence lifetimes. The molecular basis of the fluorescence lifetime of probes in cell membranes revealed in this work would enhance the comprehension of fluorescence probes and facilitate the rational design of novel efficient probes.
Collapse
Affiliation(s)
- Yanqi Liu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
- NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lydia Mathew
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Chaofan Yu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Liang Fu
- NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhengyu Shu
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Mojie Duan
- NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
8
|
Pan X, Zhao Y, Wang JL, Feng S, Yu XQ, Wu MY. Mitochondrial membrane potential-independent near-infrared fluorescent probes for viscosity-exclusive imaging. J Mater Chem B 2024; 13:177-183. [PMID: 39513666 DOI: 10.1039/d4tb01785d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Elucidating the intrinsic relationship between disease and mitochondrial viscosity is crucial for early diagnosis. However, current mitochondrial viscosity fluorescent probes are highly dependent on mitochondrial membrane potential (MMP) and are sensitive to other mitochondrial microenvironment parameters. To address these issues, a mitochondria-targeting MMP-independent and viscosity exclusive near-infrared (NIR) fluorescent probe, ACR-DMA, was developed. ACR-DMA consists of thiophene acetonitrile as the skeleton and viscosity-sensitive unit, a pyridinium cation for the mitochondria-targeting group, and a benzyl bromide subunit for mitochondrial immobilization. It is very sensitive to viscosity and shows significant "turn-on" fluorescence behavior at 710 nm with a more than 150-fold fluorescence intensity increase. Furthermore, ACR-DMA can be firmly immobilized in mitochondria and can monitor viscosity changes induced by nystain, monensin, and lipopolysaccharide. Additionally, it was successfully used to visualize mitochondrial viscosity changes resulting from tumors, inflammation, and drug-induced acute kidney injury, revealing the relationship between viscosity and disease both in vitro and in vivo. ACR-DMA is expected to be a promising candidate for diagnosing mitochondrial viscosity-related diseases.
Collapse
Affiliation(s)
- Xiu Pan
- School of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yu Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jia-Li Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xiao-Qi Yu
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Ming-Yu Wu
- School of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
9
|
Chan C, Gao H, Wu J, Li J, Tian J, Xue Z. AIE-active large Stokes-shift BODIPY Functionalized with Carbazolyl for Lysosome-Targeted Imaging in Living Cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124933. [PMID: 39121677 DOI: 10.1016/j.saa.2024.124933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
A large number of studies have shown that lysosomal microcircumstances changes can affect many physiological and pathological processes at the cellular level. However, the visual detection of lysosomal microcircumstances is relatively difficult due to low pH (4.5-6.0) value in lysosomal that require the probe not only stable under acidic condition but also has a good localization effect to lysosomal. Obviously, novel fluorescent which possessed both acidic stability and lysosomal-target property together with lysosomal viscosity active is highly demanded. Herein, a novel BODIPY molecular CarBDP based on carbazole group was rationally designed and synthesized for the lysosomal imaging. CarBDP exhibited AIE feature with a large Stokes shift of up to 157 nm. More importantly, co-localization assay of the CarBDP-treated MCF-7 cells indicated that CarBDP has a good localization effect on lysosomal (Rr = 0.7109) due to the carbazole group while the normal BODIPY that without carbazole group (PhBDP) shows poor localization performance, this was the first time that a small molecule can locate lysosomes only based on carbazole group. CarBDP exhibits strong solid emission with long fluorescence decay lifetime (τ = 44.54 ns) and was stable under acid condition.The probe CarBDP assembled with carbazole group was successfully utilized for lysosomal localization and mapping lysosomal viscosity in live cells, which provides a novel candidate tool for the determination of lysosomal microcircumstances.
Collapse
Affiliation(s)
- Chenming Chan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Han Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jianwei Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jia Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
10
|
Li S, Dong W, Yang H, Sun P, Luo J, Kong F, Liu K. Xylan-based near-infrared fluorescent probes for monitoring viscosity abnormalities in living cells and zebrafish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8419-8426. [PMID: 39552364 DOI: 10.1039/d4ay01860e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Viscosity is a crucial indicator of the flow state of proteins, lipids, and polysaccharides in the cell microenvironment and plays a vital role in maintaining normal cellular activities. Abnormal viscosity in any part of the cell constituents can lead to various diseases in the organism. For instance, abnormal mitochondrial viscosity can lead to diseases, such as diabetes and Parkinson's disease. Therefore, real-time monitoring of changes in mitochondrial viscosity in both pathological and physiological environments is relevant. This study describes a water-soluble xylan-based near-infrared fluorescence probe that can detect changes in cellular viscosity. The designed mitochondria-targeting near-infrared fluorophores were introduced into modified xylan to form a viscosity-sensing fluorescent probe (NI-XylV). The fluorescence intensity of NI-XylV at 590 and 670 nm gradually increases with an increase in viscosity caused by environmental changes, enabling the sensitive detection of viscosity changes in mitochondria within living cells. NI-XylV exhibits good photostability, biocompatibility, excellent mitochondrial targeting, and broad application prospects as a bio-based fluorescence probe.
Collapse
Affiliation(s)
- Shen Li
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Wenchan Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - HongKun Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Pengfei Sun
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250109, China
| | - Jinlan Luo
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
11
|
Guo Y, Zhang X. Unveiling intracellular phase separation: advances in optical imaging of biomolecular condensates. Trends Biochem Sci 2024; 49:901-915. [PMID: 39034215 DOI: 10.1016/j.tibs.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Intracellular biomolecular condensates, which form via phase separation, display a highly organized ultrastructure and complex properties. Recent advances in optical imaging techniques, including super-resolution microscopy and innovative microscopic methods that leverage the intrinsic properties of the molecules observed, have transcended the limitations of conventional microscopies. These advances facilitate the exploration of condensates at finer scales and in greater detail. The deployment of these emerging but sophisticated imaging tools allows for precise observations of the multiphasic organization and physicochemical properties of these condensates, shedding light on their functions in cellular processes. In this review, we highlight recent progress in methodological innovations and their profound implications for understanding the organization and dynamics of intracellular biomolecular condensates.
Collapse
Affiliation(s)
- Yinfeng Guo
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, PR China
| | - Xin Zhang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, PR China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, PR China.
| |
Collapse
|
12
|
Zhang W, Zhang M, Li M, Wang X, Li P, Tang B. Glutathione and viscosity double-locked response fluorescent probe for imaging and surgical navigation of hepatocellular carcinoma. Chem Commun (Camb) 2024; 60:10021-10024. [PMID: 39188187 DOI: 10.1039/d4cc03582h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Early diagnosis and precise treatment of hepatocellular carcinoma (HCC) are crucial for human health. Therefore, addressing the potential markers of HCC, glutathione (GSH) and viscosity, we constructed a fluorescent probe (PG-V) activated cascadically by GSH/viscosity. PG-V possessed excellent photophysical properties and biocompatibility, and could specifically illuminate tumor tissue, achieving fluorescence imaging of HCC, and imaging-guided tumor resection.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
| | - Min Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
| | - Mengmei Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, Shandong, People's Republic of China.
- Laoshan Laboratory, Qingdao 266237, Shandong, People's Republic of China
| |
Collapse
|
13
|
Li K, Wang Y, Li Y, Shi W, Yan J. Development of BODIPY-based fluorescent probes for imaging Aβ aggregates and lipid droplet viscosity. Talanta 2024; 277:126362. [PMID: 38843773 DOI: 10.1016/j.talanta.2024.126362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 06/03/2024] [Indexed: 07/19/2024]
Abstract
Alzheimer's disease (AD), gradually recognized as an untreatable neurodegenerative disorder, has been considered to be closely associated with Aβ plaques, which consist of β-amyloid protein (Aβ) and is one of the crucial pathological features of AD. There are no obvious symptoms in the initial phase of AD, and thus the therapeutic interventions are important for early diagnosis of AD. Moreover, recent researches have indicated that lipid droplets might serve as a potential ancillary biomarker, and its viscosity changes are closely associated to the pathological process of AD. Herein, two newly fluorescent probes 5QSZ and BQSZ have been developed and synthesized for identifying Aβ aggregates and detecting the viscosity of lipid droplet. After selectively binding to Aβ aggregates, 5QSZ and BQSZ exhibited linear and obvious fluorescence enhancements (32.58 and 36.70 folds), moderate affinity (Kd = 268.0 and 148.6 nM) and low detection limits (30.11 and 65.37 nM) in aqueous solutions. Further fluorescence staining of 5QSZ on brain tissue sections of APP/PS1 transgenic mouse exhibited the higher selectivity of 5QSZ towards Aβ aggregates locating at the core of the plaques. Furthermore, 5QSZ and BQSZ displayed strong linear fluorescence emission enhancements towards viscosity changes and would be utilized to monitor variation in cellular viscosity induced by LPS or monensin. These two probes were non-cytotoxic and showed good localization in lipid droplets. Therefore, 5QSZ and BQSZ could serve as potential bi-functional fluorescent probes to image Aβ aggregates and monitor the viscosity of lipid droplets, which have significant implications for the early diagnosis and progression of AD.
Collapse
Affiliation(s)
- Kaibo Li
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yuxuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yanping Li
- School of Medicine, Foshan University, Foshan, 528225, PR China.
| | - Wenjing Shi
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
14
|
Tang YX, Cao Y, Shi WJ, Li JC, Lu WL, Fan T, Zheng L, Yan JW, Han D, Niu L. Construction of cationic meso-thiazolium-BODIPY AIE fluorescent probes for viscosity imaging in dual organelles. Chem Commun (Camb) 2024; 60:8864-8867. [PMID: 39081239 DOI: 10.1039/d4cc02977a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Two new cationic meso-thiazolium-BODIPY-based water-soluble and red-shifted fluorescent probes were constructed for the first time. They can monitor cellular viscosity in dual organelles and show aggregation-induced emission (AIE), which is ascribed to the efficient restricted rotation of meso-thiazolium in viscous or hindered systems. Probe 3 with an N-benzyl group shows better AIE as compared to probe 2 with an N-methyl group.
Collapse
Affiliation(s)
- Yu-Xin Tang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Yingmei Cao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Wen-Jing Shi
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Jin-Cheng Li
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Wei-Lin Lu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Ting Fan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Liyao Zheng
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| |
Collapse
|
15
|
Zhang Y, Jiang Q, Wang K, Fang Y, Zhang P, Wei L, Li D, Shu W, Xiao H. Dissecting lysosomal viscosity fluctuations in live cells and liver tissues with an ingenious NIR fluorescent probe. Talanta 2024; 272:125825. [PMID: 38417371 DOI: 10.1016/j.talanta.2024.125825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Viscosity is a pivotal component in the cell microenvironment, while lysosomal viscosity fluctuation is associated with various human diseases, such as tumors and liver diseases. Herein, a near-infrared fluorescent probe (BIMM) based on merocyanine dyes was designed and synthesized for detecting lysosomal viscosity in live cells and liver tissue. The increase in viscosity restricts the free rotation of single bonds, leading to enhanced fluorescence intensity. BIMM exhibits high sensitivity and good selectivity, and is applicable to a wide pH range. BIMM has near-infrared emission, and the fluorescent intensity shows an excellent linear relationship with viscosity. Furthermore, BIMM possessing excellent lysosomes-targeting ability, and can monitor viscosity changes in live cells stimulated by dexamethasone, lipopolysaccharide (LPS), and nigericin, and differentiate between cancer cells and normal cells. Noticeably, BIMM can accurately analyze viscosity changes in various liver disease models with HepG2 cells, and is successfully utilized to visualize variations in viscosity on APAP-induced liver injury. All the results demonstrated that BIMM is a powerful wash-free tool to monitor the viscosity fluctuations in living systems.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Kai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Yuqi Fang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Peng Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Liangchen Wei
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Dongpeng Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China.
| |
Collapse
|
16
|
Wan QH, Anwar G, Tang YX, Shi WJ, Chen XS, Xu C, He ZZ, Wang Q, Yan JW, Han D, Niu L. Exploration of Novel Meso-C═N-BODIPY-Based AIE Fluorescent Rotors with Large Stokes Shifts for Organelle-Viscosity Imaging. Anal Chem 2024; 96:5437-5445. [PMID: 38529794 DOI: 10.1021/acs.analchem.3c05361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The research on fluorescent rotors for viscosity has attracted extensive interest to better comprehend the close relationships of microviscosity variations with related diseases. Although scientists have made great efforts, fluorescent probes for cellular viscosity with both aggregation-induced emissions (AIEs) and large Stokes shifts to improve sensing properties have rarely been reported. Herein, we first report four new meso-C═N-substituted BODIPY-based rotors with large Stokes shifts, investigate their viscosity/AIE characteristics, and perform cellular imaging of the viscosity in subcellular organelles. Interestingly, the meso-C═N-phenyl group-substituted probe 6 showed an obvious 594 nm fluorescence enhancement in glycerol and a moderate 650 nm red AIE emission in water. Further, on attaching CF3 to the phenyl group, a similar phenomenon was observed for 7 with red-shifted emissions, attributed to the introduction of a phenyl group, which plays a key role in the red AIE emissions and large Stokes shifts. Comparatively, for phenyl-group-free probes, both the meso-C═N-trifluoroethyl group and thiazole-substituted probes (8 and 9) exhibited good viscosity-responsive properties, while no AIE was observed due to the absence of phenyl groups. For cellular experiments, 6 and 9 showed good lysosomal and mitochondrial targeting properties, respectively, and were further successfully used for imaging viscosity through the preincubation of monensin and lipopolysaccharide (LPS), indicating that C═N polar groups potentially work as rotatable moieties and organelle-targeting groups, and the targeting difference might be ascribed to increased charges of thiazole. Therefore, in this study, we investigated the structural relationships of four meso-C═N BODIPY-based rotors with respect to their viscosity/AIE characteristics, subcellular-targeting ability, and cellular imaging for viscosity, potentially serving as AIE fluorescent probes with large Stokes shifts for subcellular viscosity imaging.
Collapse
Affiliation(s)
- Qing-Hui Wan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Gulziba Anwar
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yu-Xin Tang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wen-Jing Shi
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiao-Shan Chen
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Chang Xu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhi-Zhou He
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Qingxiang Wang
- Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| |
Collapse
|
17
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
18
|
Paez‐Perez M, Kuimova MK. Molecular Rotors: Fluorescent Sensors for Microviscosity and Conformation of Biomolecules. Angew Chem Int Ed Engl 2024; 63:e202311233. [PMID: 37856157 PMCID: PMC10952837 DOI: 10.1002/anie.202311233] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
The viscosity and crowding of biological environment are considered vital for the correct cellular function, and alterations in these parameters are known to underly a number of pathologies including diabetes, malaria, cancer and neurodegenerative diseases, to name a few. Over the last decades, fluorescent molecular probes termed molecular rotors proved extremely useful for exploring viscosity, crowding, and underlying molecular interactions in biologically relevant settings. In this review, we will discuss the basic principles underpinning the functionality of these probes and will review advances in their use as sensors for lipid order, protein crowding and conformation, temperature and non-canonical nucleic acid structures in live cells and other relevant biological settings.
Collapse
Affiliation(s)
- Miguel Paez‐Perez
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| |
Collapse
|
19
|
Pivovarenko VG, Klymchenko AS. Fluorescent Probes Based on Charge and Proton Transfer for Probing Biomolecular Environment. CHEM REC 2024; 24:e202300321. [PMID: 38158338 DOI: 10.1002/tcr.202300321] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Fluorescent probes for sensing fundamental properties of biomolecular environment, such as polarity and hydration, help to study assembly of lipids into biomembranes, sensing interactions of biomolecules and imaging physiological state of the cells. Here, we summarize major efforts in the development of probes based on two photophysical mechanisms: (i) an excited-state intramolecular charge transfer (ICT), which is represented by fluorescent solvatochromic dyes that shift their emission band maximum as a function of environment polarity and hydration; (ii) excited-state intramolecular proton transfer (ESIPT), with particular focus on 5-membered cyclic systems, represented by 3-hydroxyflavones, because they exhibit dual emission sensitive to the environment. For both ICT and ESIPT dyes, the design of the probes and their biological applications are summarized. Thus, dyes bearing amphiphilic anchors target lipid membranes and report their lipid organization, while targeting ligands direct them to specific organelles for sensing their local environment. The labels, amino acid and nucleic acid analogues inserted into biomolecules enable monitoring their interactions with membranes, proteins and nucleic acids. While ICT probes are relatively simple and robust environment-sensitive probes, ESIPT probes feature high information content due their dual emission. They constitute a powerful toolbox for addressing multitude of biological questions.
Collapse
Affiliation(s)
- Vasyl G Pivovarenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033, Kyiv, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI SysChem, Université de Strasbourg, 67401, Illkirch, France
| |
Collapse
|
20
|
Cheng X, Luo T, Chu F, Feng B, Zhong S, Chen F, Dong J, Zeng W. Simultaneous detection and removal of mercury (II) using multifunctional fluorescent materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167070. [PMID: 37714350 DOI: 10.1016/j.scitotenv.2023.167070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Environmental problems caused by mercury ions are increasing due to growing industrialization, poor enforcement, and inefficient pollutant treatment. Therefore, detecting and removing mercury from the ecological chain is of utmost significance. Currently, a wide range of small molecules and nanomaterials have made remarkable progress in the detection, detoxification, adsorption, and removal of mercury. In this review, we summarized the recent advances in the design and construction of multifunctional materials, detailed their sensing and removing mechanisms, and discussed with emphasis the advantages and disadvantages of different types of sensors. Finally, we elucidated the problems and challenges of current multifunctional materials and further pointed out the direction for the future development of related materials. This review is expected to provide a guideline for researchers to establish a robust strategy for the detection and removal of mercury ionsin the environment.
Collapse
Affiliation(s)
- Xiang Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Ting Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Feiyi Chu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Bin Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Shibo Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China; The Molecular Imaging Research Center, Central South University, Changsha 410013, China.
| |
Collapse
|
21
|
Li G, Zhang L, Zheng H, Huang L, Li Z, Li W, Lin W. Visualization of Lysosomal Dynamics during Autophagy by Fluorescent Probe. Anal Chem 2023; 95:15795-15802. [PMID: 37815496 DOI: 10.1021/acs.analchem.3c03329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Lysosomes are one of the important organelles within cells, and their dynamic movement processes are associated with many biological events. Therefore, real-time monitoring of lysosomal dynamics processes has far-reaching implications. A lysosome-targeted fluorescent probe N(CH2)3-BD-PZ is proposed for real-time monitoring of lysosomal kinetic motility. Using this probe, the dynamic process of lysosomes under starvation induction was successfully explored through fluorescence imaging. Importantly, we observed a new pattern of lysosomal dynamic movement, in which an irregular lysosome was slowly cleaved into two different-sized touching lysosomes and then fused to form a new round lysosome. This research provides a powerful fluorescence tool to understand the dynamic motility of intracellular lysosomes under fluorescence imaging.
Collapse
Affiliation(s)
- Guofang Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Langdi Zhang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Hua Zheng
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ling Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zihong Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wenxiu Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
22
|
Huang Y, Li M, Zan Q, Wang R, Shuang S, Dong C. Mitochondria-Targeting Multifunctional Fluorescent Probe toward Polarity, Viscosity, and ONOO - and Cell Imaging. Anal Chem 2023. [PMID: 37376771 DOI: 10.1021/acs.analchem.2c05733] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Abnormal changes occurring in the mitochondrial microenvironment are important markers indicating mitochondrial and cell dysfunction. Herein, we designed and synthesized a multifunctional fluorescent probe DPB that responds to polarity, viscosity, and peroxynitrite (ONOO-). DPB is composed of an electron donor (diethylamine group) and electron acceptor (coumarin, pyridine cations, and phenylboronic acid esters), in which the pyridine group with a positive charge is responsible for targeting to mitochondria. D-π-A structure with strong intramolecular charge transfer (ICT) and twisted intramolecular charge transfer (TICT) properties give rise to respond to polarity and viscosity. The introduction of cyanogroup and phenylboronic acid esters increases the electrophilicity of the probe, which is prone to oxidation triggered by ONOO-. The integrated architecture satisfies the multiple response requirements. As the polarity increases, the fluorescence intensity of probe DPB at 470 nm is quenched by 97%. At 658 nm, the fluorescence intensity of DPB increases with viscosity and decreases with the concentration of ONOO-. Furthermore, the probe is not only successfully used to monitor mitochondrial polarity, viscosity, and endogenous/exogenous ONOO- level fluctuations but also to distinguish cancer cells from normal cells by multiple parameters. Therefore, as-prepared probe provides a reliable tool for better understanding of the mitochondrial microenvironment and also a potential approach for the diagnosis of disease.
Collapse
Affiliation(s)
- Yue Huang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Minglu Li
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Qi Zan
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, People's Republic of China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
23
|
Shi WJ, Yan XH, Yang J, Wei YF, Huo YT, Su CL, Yan JW, Han D, Niu L. Development of meso-Five-Membered Heterocycle BODIPY-Based AIE Fluorescent Probes for Dual-Organelle Viscosity Imaging. Anal Chem 2023. [PMID: 37311071 DOI: 10.1021/acs.analchem.3c01409] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorescent rotors with aggregation-induced emission (AIE) and organelle-targeting properties have attracted great attention for sensing subcellular viscosity changes, which could help understand the relationships of abnormal fluctuations with many associated diseases. Despite the numerous efforts spent, it remains rare and urgent to explore the dual-organelle targeting probes and their structural relationships with viscosity-responsive and AIE properties. Therefore, in this work, we reported four meso-five-membered heterocycle-substituted BODIPY-based fluorescent probes, explored their viscosity-responsive and AIE properties, and further investigated their subcellular localization and viscosity-sensing applications in living cells. Interestingly, the meso-thiazole probe 1 showed both good viscosity-responsive and AIE (in pure water) properties and could successfully target both mitochondria and lysosomes, further imaging cellular viscosity changes by treating lipopolysaccharide and nystatin, attributing to the free rotation and potential dual-organelle targeting ability of the meso-thiazole group. The meso-benzothiophene probe 3 with a saturated sulfur only showed good viscosity-responsive properties in living cells with the aggregation-caused quenching effect and no subcellular localization. The meso-imidazole probe 2 showed the AIE phenomenon without an obvious viscosity-responsive property with a C═N bond, while the meso-benzopyrrole probe 4 displayed fluorescence quenching in polar solvents. Therefore, for the first time, we investigated the structure-property relationships of four meso-five-membered heterocycle-substituted BODIPY-based fluorescent rotors with viscosity-responsive and AIE properties, and among these, 1 with a C═N bond and a saturated sulfur on the meso-thiazole, potentially contributing to their corresponding AIE and viscosity-responsive properties, served as a sensitive AIE fluorescent rotor for imaging dual-organelle viscosity in both mitochondria and lysosomes.
Collapse
Affiliation(s)
- Wen-Jing Shi
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xu-Hui Yan
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinrong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yong-Feng Wei
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yi-Tong Huo
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Cai-Ling Su
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, P. R. China
| |
Collapse
|
24
|
Jung KH, Sun J, Hsiung CH, Lance Lian X, Liu Y, Zhang X. Nuclear bodies protect phase separated proteins from degradation in stressed proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537522. [PMID: 37131610 PMCID: PMC10153235 DOI: 10.1101/2023.04.19.537522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA-binding proteins (RBPs) containing intrinsically disordered domains undergo liquid-liquid phase separation to form nuclear bodies under stress conditions. This process is also connected to the misfolding and aggregation of RBPs, which are associated with a series of neurodegenerative diseases. However, it remains elusive how folding states of RBPs changes upon the formation and maturation of nuclear bodies. Here, we describe SNAP-tag based imaging methods to visualize the folding states of RBPs in live cells via time-resolved quantitative microscopic analyses of their micropolarity and microviscosity. Using these imaging methods in conjunction with immunofluorescence imaging, we demonstrate that RBPs, represented by TDP-43, initially enters the PML nuclear bodies in its native state upon transient proteostasis stress, albeit it begins to misfolded during prolonged stress. Furthermore, we show that heat shock protein 70 co-enters the PML nuclear bodies to prevent the degradation of TDP-43 from the proteotoxic stress, thus revealing a previously unappreciated protective role of the PML nuclear bodies in the prevention of stress-induced degradation of TDP-43. In summary, our imaging methods described in the manuscript, for the first time, reveal the folding states of RBPs, which were previously challenging to study with conventional methods in nuclear bodies of live cells. This study uncovers the mechanistic correlations between the folding states of a protein and functions of nuclear bodies, in particular PML bodies. We envision that the imaging methods can be generally applied to elucidating the structural aspects of other proteins that exhibit granular structures under biological stimulus.
Collapse
Affiliation(s)
- Kwan Ho Jung
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Jiarui Sun
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Chia-Heng Hsiung
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
- Present address: Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Department of Biomedical Engineering, The Huck Institute of Life Sciences, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Huck Institute of Life Sciences, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Yu Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xin Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
- Present address: Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Department of Biomedical Engineering, The Huck Institute of Life Sciences, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| |
Collapse
|
25
|
Leng H, Yang J, Long L, Yan Y, Shi WJ, Zhang L, Yan JW. GFP-based red-emissive fluorescent probes for dual imaging of β-amyloid plaques and mitochondrial viscosity. Bioorg Chem 2023; 136:106540. [PMID: 37084586 DOI: 10.1016/j.bioorg.2023.106540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/26/2022] [Accepted: 04/09/2023] [Indexed: 04/23/2023]
Abstract
Alzheimer's disease (AD), with incurable neurodegenerative damage, has attracted growing interest in exploration of better AD biomarkers in its early diagnosis. Among various biomarkers, amyloid-β (Aβ) aggregates and mitochondrial viscosity are closely related to AD and their dual imaging might provide a potential and feasible strategy. In this work, five GFP-based red-emissive fluorescent probes were rationally designed and synthesized for selective detection of β-amyloid plaques and viscosity, among which C25e exhibited superior properties and could successfully image β-amyloid plaques and mitochondrial viscosity with different fluorescence wavelength signals "turn-on" at around 624 and 640 nm, respectively. Moreover, the staining of brain sections from a transgenic AD mouse showed that probe C25e showed higher selectivity and signal-to-noise ratio towards Aβ plaques than commercially-available Thio-S. In addition, the probe C25e was, for the first time, employed for monitoring amyloid-β induced mitochondrial viscosity changes. Therefore, this GFP-based red-emissive fluorescent probe C25e could serve as a dual-functional tool for imaging β-amyloid plaques and mitochondrial viscosity, which might provide a unique strategy for the early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Huaxiang Leng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jinrong Yang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Liansheng Long
- Department of General Surgery, General Hospital of Southern Theater Command, Guangzhou, 510010, P.R. China
| | - Yiyong Yan
- Shenzhen Bioeasy Biotechnology Co., Ltd, Shenzhen, Guangdong 510010, PR China
| | - Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Jin-Wu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
26
|
Liu M, Weng J, Huang S, Yin W, Zhang H, Jiang Y, Yang L, Sun H. Water-soluble fluorescent probes for differentiating cancer cells and normal cells by tracking lysosomal viscosity. Chem Commun (Camb) 2023; 59:3570-3573. [PMID: 36880332 DOI: 10.1039/d3cc00359k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Lysosomal viscosity is a significant parameter of lysosomes and closely related to various diseases. Herein, two fluorescent probes, Lyso-vis-A and Lyso-vis-B, were developed, which demonstrate diverse advantages, including great water solubility, lysosome targeting ability and viscosity sensitivity. In particular, Lyso-vis-A exclusively showed fluorescence response toward viscosity but was not influenced by pH changes, rendering it a selective lysosomal viscosity probe. Furthermore, Lyso-vis-A was successfully applied to monitor lysosomal viscosity variations in living cells and differentiate cancer cells and normal cells.
Collapse
Affiliation(s)
- Minghui Liu
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Jintao Weng
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Shumei Huang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Wenjin Yin
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Yin Jiang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Liu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China.
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
27
|
Adachi J, Oda H, Fukushima T, Lestari B, Kimura H, Sugai H, Shiraki K, Hamaguchi R, Sato K, Kinbara K. Dense and Acidic Organelle-Targeted Visualization in Living Cells: Application of Viscosity-Responsive Fluorescence Utilizing Restricted Access to Minimum Energy Conical Intersection. Anal Chem 2023; 95:5196-5204. [PMID: 36930819 PMCID: PMC10061370 DOI: 10.1021/acs.analchem.2c04133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Cell-imaging methods with functional fluorescent probes are an indispensable technique to evaluate physical parameters in cellular microenvironments. In particular, molecular rotors, which take advantage of the twisted intramolecular charge transfer (TICT) process, have helped evaluate microviscosity. However, the involvement of charge-separated species in the fluorescence process potentially limits the quantitative evaluation of viscosity. Herein, we developed viscosity-responsive fluorescent probes for cell imaging that are not dependent on the TICT process. We synthesized AnP2-H and AnP2-OEG, both of which contain 9,10-di(piperazinyl)anthracene, based on 9,10-bis(N,N-dialkylamino)anthracene that adopts a nonflat geometry at minimum energy conical intersection. AnP2-H and AnP2-OEG exhibited enhanced fluorescence as the viscosity increased, with sensitivities comparable to those of conventional molecular rotors. In living cell systems, AnP2-OEG showed low cytotoxicity and, reflecting its viscosity-responsive property, allowed specific visualization of dense and acidic organelles such as lysosomes, secretory granules, and melanosomes under washout-free conditions. These results provide a new direction for developing functional fluorescent probes targeting dense organelles.
Collapse
Affiliation(s)
- Junya Adachi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Haruka Oda
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Toshiaki Fukushima
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Beni Lestari
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Kimura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroka Sugai
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Rei Hamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.,Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
28
|
Bu Y, Wang H, Deng Y, Zhong F, Yu ZP, Zhu X, Zhou H. Photo-Activated Ratiometric Fluorescent Indicator for Real-Time and Visual Detection of Plasma Membrane Homeostasis. Anal Chem 2023; 95:1838-1846. [PMID: 36626816 DOI: 10.1021/acs.analchem.2c02793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Development of an activated ratiometric indicator that is specific to plasma membrane (PM) viscosity exhibits great application prospects in disease diagnosis and treatment but remains a great challenge. Herein, a photo-activated fluorescent probe (CQ-IC) was designed and prepared tactfully, which could analyze and real-time monitor the microenvironmental homeostasis of the PM based on a two-channel ratiometric imaging model. Interestingly, upon light irradiation, CQ-IC generates reactive oxygen species and thus increases the cellular viscosity, which increases two emission peaks at 480 and 610 nm. This work would propose a new strategy to sensor PM homeostasis and effectively guide the treatment of viscosity-related diseases among various physiological and pathological processes.
Collapse
Affiliation(s)
- Yingcui Bu
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Haoran Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yu Deng
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Feng Zhong
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zhi-Peng Yu
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Xiaojiao Zhu
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Hongping Zhou
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
29
|
Yu FT, Huang Z, Yang JX, Yang LM, Xu XY, Huang JY, Kong L. Two quinoline-based two-photon fluorescent probes for imaging of viscosity in subcellular organelles of living HeLa cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121769. [PMID: 36007347 DOI: 10.1016/j.saa.2022.121769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Two viscosity-sensitive two-photon fluorescent probes (QL and QLS) were designed and synthesized, which can be localized in lysosome and mitochondria in living HeLa cells, respectively. As the increases of viscosity from 2.55 to 1150 cP, the fluorescence quantum yield (Φ) of QL and QLS was increased by 28-fold and 37-fold, respectively. At the same time, its effective two-photon absorption cross section (ΦδTPA) was enhanced by 15-fold and 16-fold, respectively. Fluorescence lifetime imaging (FLIM) of living HeLa cells stained with QL and QLS, revealed that lysosomal viscosity ranged from 100.76 to 254.74 cP and mitochondrial viscosity ranged from 92.21 to 286.79 cP. This type of fluorescent probe is helpful in the design and application of materials for monitoring diseases associated with abnormal viscosity.
Collapse
Affiliation(s)
- Feng-Tao Yu
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Ze Huang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Jia-Xiang Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Long-Mei Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Xian-Yun Xu
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Jian-Yan Huang
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Lin Kong
- College of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Photoelectric conversion energy materials and devices Key Laboratory of Anhui Province, Anhui University, Hefei 230039, PR China.
| |
Collapse
|
30
|
Jo S, Kim S, Lee Y, Kim G, Kim S, Lee S, Seung Lee T. Synthesis of a dual-emissive pyrene-based fluorescent probe for imaging intracellular viscosity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Shi WJ, Chen R, Yang J, Wei YF, Guo Y, Wang ZZ, Yan JW, Niu L. Novel Meso-Benzothiazole-Substituted BODIPY-Based AIE Fluorescent Rotor for Imaging Lysosomal Viscosity and Monitoring Autophagy. Anal Chem 2022; 94:14707-14715. [PMID: 36222313 DOI: 10.1021/acs.analchem.2c03094] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Meso-substituted boron dipyrromethenes (BODIPYs) provide a potential and innovative strategy for the synergistic construction of aggregation-induced emission (AIE) probes and fluorescent rotors for monitoring cellular viscosity changes, which play critical roles in understanding the function of viscosity in its closely associated diseases. Therefore, for the first time, a BODIPY-based fluorescent probe (1) with a rotatable meso-benzothiazole group was rationally designed and synthesized, showing both good viscosity-responsive and AIE properties. Probe 1 through direct linkage with the thiazole group, showed nearly no emission in low viscous solvents; however, a strong emission at 534 nm appeared and increased gradually with the increase in viscosity, attributing to the efficient restriction of the rotatable meso-benzothiazole group. The intensity (log I534) displayed a good linear relationship with viscosity (log η) in the viscous range of 0.59-945 cP in methanol/glycerol mixtures. Interestingly, 1 showed enhanced emission at 534 nm in 70% water compared to pure acetonitrile due to the aggregation-induced inhibited rotations. Cellular imaging suggested that 1 could successfully sense lysosomal viscosity changes induced by lipopolysaccharide, nystatin, low temperature, and dexamethasone in living cells, which could be further applied in autophagy monitoring by tracing viscosity changes. As a comparison, its analogue 2 directly linking with the phenyl group showed no viscosity-responsive or AIE properties. Therefore, for the first time, we reported a meso-benzothiazole-BODIPY-based fluorescent rotor with AIE and lysosomal viscosity-responsive properties in nervous cells, which was further applied in monitoring autophagy, and this work thus could provide an innovative strategy for the design of potential AIE and viscosity-responsive probes.
Collapse
Affiliation(s)
- Wen-Jing Shi
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Ru Chen
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinrong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yong-Feng Wei
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yuhui Guo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zi-Zhou Wang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
32
|
Munan S, Ali M, Yadav R, Mapa K, Samanta A. PET- and ICT-Based Ratiometric Probe: An Unusual Phenomenon of Morpholine-Conjugated Fluorophore for Mitochondrial pH Mapping during Mitophagy. Anal Chem 2022; 94:11633-11642. [PMID: 35968673 DOI: 10.1021/acs.analchem.2c02177] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitochondrial functions are heavily influenced by acid-base homeostasis. Hence, elucidation of the mitochondrial pH is essential in living cells, and its alterations during pathologies is an interesting question to be addressed. Small molecular fluorescent probes are progressively applied to quantify the mitochondrial pH by fluorescence imaging. Herein, we designed a unique small molecular fluorescent probe, PM-Mor-OH, based on the lipophilic morpholine ligand-conjugated pyridinium derivative of "IndiFluors". The morpholine-conjugated fluorescent probe usually localized the lysosome. However, herein, we observed unusual phenomena of morpholine-tagged PM-Mor-OH that localized mitochondria explicitly. The morpholine ligand also plays a pivotal role in tuning optical properties via photoinduced electron transfer (PET) during internal pH alteration (ΔpHi). In the mitophagy process, lysosomes engulf damaged mitochondria, leading to ΔpHi, which can be monitored using our probe. It exhibited "ratiometric" emission at single wavelength excitation (ex. 488) and is suitable for monitoring and quantifying the ΔpHi using confocal microscope high-resolution image analysis during mitophagy. The bathochromic emission shifts due to intramolecular charge transfer (ICT) in basic pH were well explained by the time-dependent density functional theory (TD-DFT/PCM). Similarly, the change in the emission ratio (green/red) with pH variations was also validated by the PET process. In addition, PM-Mor-OH can quantify the pH change during oxidative stress induced by rapamycin, mutant A53T α-synuclein-mediated protein misfolding stress in mitochondria, and during starvation. Rapamycin-induced mitophagy was further elucidated by the translocation of mCherry Parkin to damaged mitochondria, which well correlates with our probe. Thus, PM-Mito-OH is a valuable probe for visualizing mitophagy and can act as a suitable tool for the diagnosis of mitochondrial diseases.
Collapse
Affiliation(s)
- Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Mudassar Ali
- Protein Homeostasis Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Rashmi Yadav
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Koyeli Mapa
- Protein Homeostasis Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
33
|
Zhan Z, Lei Q, Dai Y, Wang D, Yu Q, Lv Y, Li W. Simultaneous Monitoring of HOCl and Viscosity with Drug-Induced Pyroptosis in Live Cells and Acute Lung Injury. Anal Chem 2022; 94:12144-12151. [PMID: 35998356 DOI: 10.1021/acs.analchem.2c02235] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyroptosis is a newly identified form of cell death that is closely correlated with many diseases. Recent studies have indicated that the inflammation in pyroptosis would accelerate the generation of reactive oxygen species (ROS). In addition, intracellular viscosity is another key microenvironmental parameter that reflects many physiological and pathological states in the early stage, hypochlorous acid (HOCl), as an important ROS, also plays significant roles in a variety of pathologies. However, the fluctuation of viscosity and HOCl in the process of pyroptosis is still unknown. Herein, we present a dual-responsive fluorescent probe (Lyso-VH) for simultaneously detecting viscosity and HOCl. Lyso-VH was successfully used to image the fluctuation of HOCl and viscosity in the lysosome of three kinds of cells with dependent and independent channels. Moreover, Lyso-VH can be employed to investigate the changes of HOCl and viscosity during the process of pyroptosis in living cells and acute lung injury (ALI). Thus, this work can not only serve as a powerful tool to simultaneously visualize the fluctuation of HOCl and viscosity in lysosomes, but also provide a new insight into drug-induced pyroptosis in living cells and acute lung injury.
Collapse
Affiliation(s)
- Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongcheng Dai
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Denian Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Lv
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
34
|
Jia H, Liu Y, Hu JJ, Li G, Lou X, Xia F. Lifetime-Based Responsive Probes: Design and Applications in Biological Analysis. Chem Asian J 2022; 17:e202200563. [PMID: 35916038 DOI: 10.1002/asia.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Indexed: 11/10/2022]
Abstract
With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis. With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis.
Collapse
Affiliation(s)
- Hui Jia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Yiheng Liu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Jing-Jing Hu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Guogang Li
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Xiaoding Lou
- China University of Geosciences, Faculty of Materials Science and Chemistry, 388 Lumo Road, Wuhan 430074, P. R. China, 430074, wuhan, CHINA
| | - Fan Xia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| |
Collapse
|
35
|
Detecting inflammation in the diabetic mice with a fluorescence lifetime-based probe. Anal Chim Acta 2022; 1221:340104. [DOI: 10.1016/j.aca.2022.340104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022]
|
36
|
Dutta T, Pal K, Koner AL. Intracellular Physical Properties with Small Organic Fluorescent Probes: Recent Advances and Future Perspectives. CHEM REC 2022; 22:e202200035. [PMID: 35801859 DOI: 10.1002/tcr.202200035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Indexed: 11/09/2022]
Abstract
The intracellular physical parameters i. e., polarity, viscosity, fluidity, tension, potential, and temperature of a live cell are the hallmark of cellular health and have garnered immense interest over the past decade. In this context, small molecule organic fluorophores exhibit prominent useful properties including easy functionalizability, environmental sensitivity, biocompatibility, and fast yet efficient cellular uptakability which has made them a popular tool to understand intra-cellular micro-environmental properties. Throughout this discussion, we have outlined the basic design strategies of small molecules for specific organelle targeting and quantification of physical properties. The values of these parameters are indicative of cellular homeostasis and subtle alteration may be considered as the onset of disease. We believe this comprehensive review will facilitate the development of potential future probes for superior insight into the physical parameters that are yet to be quantified.
Collapse
Affiliation(s)
- Tanoy Dutta
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA (TD) (ALK
| | - Kaushik Pal
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA (TD) (ALK.,Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011, USA
| | - Apurba Lal Koner
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, INDIA (TD) (ALK
| |
Collapse
|
37
|
Liu J, Zhang W, Zhou C, Li M, Wang X, Zhang W, Liu Z, Wu L, James TD, Li P, Tang B. Precision Navigation of Hepatic Ischemia-Reperfusion Injury Guided by Lysosomal Viscosity-Activatable NIR-II Fluorescence. J Am Chem Soc 2022; 144:13586-13599. [PMID: 35793548 PMCID: PMC9354259 DOI: 10.1021/jacs.2c03832] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is responsible for postoperative liver dysfunction and liver failure. Precise and rapid navigation of HIRI lesions is critical for early warning and timely development of pretreatment plans. Available methods for assaying liver injury fail to provide the exact location of lesions in real time intraoperatively. HIRI is intimately associated with oxidative stress which impairs lysosomal degradative function, leading to significant changes in lysosomal viscosity. Therefore, lysosomal viscosity is a potential biomarker for the precise targeting of HIRI. Hence, we developed a viscosity-activatable second near-infrared window fluorescent probe (NP-V) for the detection of lysosomal viscosity in hepatocytes and mice during HIRI. A reactive oxygen species-malondialdehyde-cathepsin B signaling pathway during HIRI was established. We further conducted high signal-to-background ratio NIR-II fluorescence imaging of HIRI mice. The contour and boundary of liver lesions were delineated, and as such the precise intraoperative resection of the lesion area was implemented. This research demonstrates the potential of NP-V as a dual-functional probe for the elucidation of HIRI pathogenesis and the direct navigation of HIRI lesions in clinical applications.
Collapse
Affiliation(s)
- Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Chunmiao Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Mengmei Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhenzhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Luling Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Tony D James
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
38
|
Wang H, Sun Y, Lin X, Feng W, Li Z, Yu M. Multi-organelle-targeting pH-dependent NIR fluorescent probe for lysosomal viscosity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Zhang S, Sun Y, Liu W, Feng W, Zhang M, Li Z, Yu M. Coumarin-based fluorescent probes toward viscosity in mitochondrion/lysosome. Anal Biochem 2022; 652:114752. [PMID: 35654133 DOI: 10.1016/j.ab.2022.114752] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023]
Abstract
Viscosity is an important microenvironmental indicator that plays an important role in the process of information transmission in various regions. Herein, two coumarin-based viscosity-sensitive fluorescent probes (CHB, CHN) were synthesized and the photophysical properties of the two probes were studied. The fluorescence quantum yields of CHB and CHN in glycerol can be as high as 25.2% and 18.3% respectively. The two probes can linearly detect viscosity in the viscosity logarithm range of 0.83-2.07, which is not interfered with pH, metal ions, anions and biomolecules. Fluorescent confocal cell experiments show CHB and CHN have good targeting ability to mitochondrion, lysosome, Endoplasmic reticulum and Golgi apparatus, and can be used to detect viscosity in mitochondrion/lysosome.
Collapse
Affiliation(s)
- Shen Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yishuo Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Wenjie Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Feng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Meng Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhanxian Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Yu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
40
|
Gong Q, Chen L, Wang J, Yuan F, Ma Z, Chen G, Huang Y, Miao Y, Liu T, Zhang XX, Yang Q, Yu J. Coassembly of a New Insect Cuticular Protein and Chitosan via Liquid-Liquid Phase Separation. Biomacromolecules 2022; 23:2562-2571. [PMID: 35561014 DOI: 10.1021/acs.biomac.2c00261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insect cuticle is a fiber-reinforced composite material that consists of polysaccharide chitin fibers and a protein matrix. The molecular interactions between insect cuticle proteins and chitin that govern the assembly and evolution of cuticles are still not well understood. Herein, we report that Ostrinia furnacalis cuticular protein hypothetical-1 (OfCPH-1), a newly discovered and most abundant cuticular protein from Asian corn borer O. furnacalis, can form coacervates in the presence of chitosan. The OfCPH-1-chitosan coacervate microdroplets are initially liquid-like but become gel-like with increasing time or salt concentration. The liquid-to-gel transition is driven by hydrogen-bonding interactions, during which an induced β-sheet structure of OfCPH-1 is observed. Given the abundance of OfCPH-1 in the cuticle of O. furnacalis, this liquid-liquid phase separation process and its aging behavior could play critical roles in the formation of the cuticle.
Collapse
Affiliation(s)
- Qiuyu Gong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lei Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, P. R. China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.,School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jining Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Fenghou Yuan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guoxin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yinjuan Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xin-Xing Zhang
- School of Physics, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qing Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, P. R. China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
41
|
Pan X, Wang C, Zhao C, Cheng T, Zheng A, Cao Y, Xu K. Assessment of cancer cell migration using a viscosity-sensitive fluorescent probe. Chem Commun (Camb) 2022; 58:4663-4666. [PMID: 35319548 DOI: 10.1039/d1cc07235h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A novel viscosity probe (NV1) was developed for assessing cancer cell migration. NV1 can respond to changes of viscosity rapidly and exhibits high sensitivity in HepG2 cells treated with starvation, rotenone and nystatin. Importantly, NV1 was used for the first time to evaluate the relationship between intracellular viscosity changes and cancer cell migration and proved that increased intracellular viscosity inhibits cell migration while decreased intracellular viscosity promotes cell migration.
Collapse
Affiliation(s)
- Xiaohong Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China. .,School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Cheng Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Congcong Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China.
| | - Tingting Cheng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Aishan Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yuru Cao
- The 2nd Medical College of Binzhou Medical University, Yantai 264003, China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
42
|
Wang S, Lin Y, Zhang C, Zhu T, Tian X, Li D, Ma W, Zhang Q, Wu J, Tian Y. Fine Tuning of Multiphoton AIE Emission Behavior, Organelle Targeting, and Fluorescence Lifetime Imaging of Terpyridine Derivatives by Alkyl Chain Engineering. Anal Chem 2022; 94:4335-4342. [PMID: 35235305 DOI: 10.1021/acs.analchem.1c05052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, a series of multiphoton terpyridine agents (ZA, ZA-Mex, and ZA-Hex) for fluorescence lifetime imaging microscopy (FLIM) are designed and synthesized. The results from photophysical property research reveal that ZA-Hex, as an N-hexylated terpyridine salt, has stronger three-photon aggregation-induced emission (AIE) properties compared to ZA-Mex due to enhanced intramolecular charge transfer (ICT) performance. All three terpyridine derivatives possess suitable fluorescence intensities and stable fluorescence lifetimes under different pH conditions (pH = 4.0-8.0), thereby performing multiphoton fluorescence lifetime imaging. For biological imaging applications, it is found that ZA shows good lipid droplet (LD) turn-on fluorescence performance, and ZA-Hex could easily accumulate in mitochondria with high specificity. This is the first report of terpyridine salts as three-photon AIE probes used for multiphoton FLIM imaging.
Collapse
Affiliation(s)
- Shujing Wang
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, P. R. China
| | - Ying Lin
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Chengkai Zhang
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, P. R. China
| | - Tong Zhu
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Xiaohe Tian
- Huaxi MR Research Centre (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Dandan Li
- Institutes of Physics Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Wen Ma
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, P. R. China
| | - Qiong Zhang
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Jieying Wu
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Yupeng Tian
- Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
43
|
|
44
|
Liu C, Zhang D, Ye S, Chen T, Liu R. D-π-A structure fluorophore: NIR emission, response to viscosity, detection cyanide and bioimaging of lipid droplets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120593. [PMID: 34789405 DOI: 10.1016/j.saa.2021.120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Intracellular viscosity, an important microenvironment factor, is closely involved in various cell processes as well as diseases. On the other hand, cyanide is one of the most hazardous chemicals for human health and environments. However, a NIR fluorescent probe for both response to viscosity and detection of cyanide remains vacant. Herein, we reported a D-π-A structure fluorophore (named CTR) which exhibited NIR emission and fluorescent enhancement response to viscosity via the molecular rotor strategy. Furthermore, CTR displayed fluorescent and colorimetric response to cyanide. Notably, test strips stained with CTR were fabricated, which could serve as an efficient and suitable cyanide test kit. Moreover, CTR could selectively accumulate in lipid droplets and visualize the metabolism of lipid droplets in live cells. These findings would provide new avenue to design fluorescent probe for effective response to viscosity, detection of cyanide, and bioimaging of lipid droplets in live cells.
Collapse
Affiliation(s)
- Chuang Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Sheng Ye
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Tong Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
45
|
Shi WJ, Yang J, Wei YF, Li XT, Yan XH, Wang Y, Leng H, Zheng L, Yan JW. Novel cationic meso-CF 3 BODIPY-based AIE fluorescent rotors for imaging viscosity in mitochondria. Chem Commun (Camb) 2022; 58:1930-1933. [PMID: 35040863 DOI: 10.1039/d1cc06532g] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two novel meso-CF3 BODIPY-based fluorescent rotors have been rationally prepared and found to sensitively respond to viscosity in living cells with a fluorescence "turn-on" effect, attributed to the special restricted rotation of meso-CF3 group in viscous environments. Interestingly, a monostyryl probe with one cationic group exhibits good mitochondrial localization and AIE property.
Collapse
Affiliation(s)
- Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Jinrong Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Yong-Feng Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Xiao-Tong Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Xu-Hui Yan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Yuxuan Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Huaxiang Leng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Jin-Wu Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
46
|
Cai Y, Liu C, Lei Z, Wang Z, Bian Y, He S, Zeng X. Novel lysosome-targeted fluorescent molecular rotors based on a cyanine-like modular system and their application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120404. [PMID: 34562859 DOI: 10.1016/j.saa.2021.120404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Two novel fluorescence molecular rotors DpIn and NaIn were designed and synthesized involving of indolium units linked with meta-diphenol or ortha-naphthalenediol moiety, respectively. They underwent intramolecular charge transfer to form a cyanine-like modular system at a physiological pH. In glycerol aqueous solutions, the probe DpIn exhibited NIR strong emission (3-fold) at ca. 700 nm, while the probe NaIn displayed a turn-on emission (8-fold) with a larger Stokes shift (⊿λ ≈ 97 nm). The HeLa cell imaging experiments indicated probe DpIn and NaIn both exhibited excellent selectivity for staining intracellular lysosomes instead of mitochondria. 1H NMR spectra revealed that more electrons were accumulated around benzene ring of indolium groups, which could be the evidence for its basic character leading to the lysosomes targeted staining. Furthermore, the probe NaIn proved to be an ideal lysosome-targeting tracer for monitor the changes of viscosity caused by stimuli in living cells.
Collapse
Affiliation(s)
- Yiping Cai
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhaoxia Lei
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhiming Wang
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yaye Bian
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
47
|
Mu YL, Pan L, Lu Q, Xing S, Liu KY, Zhang X. A bifunctional sensitive fluorescence probe based on pyrene for the detection of pH and viscosity in lysosome. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120228. [PMID: 34388430 DOI: 10.1016/j.saa.2021.120228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Lysosome is one of the important organelles in intracellular transport. It plays a significant role in the physiological process. The lysosomal microenvironment affects the functions of lysosome. When the original acidic environment of lysozyme is destroyed or the fluid viscosity increases gradually, various diseases are easily induced. However, most fluorescent probes can only locate in cells. The fewer probes of subcellular organelles were found and their functions are often single. So, it is of great importance to design multifunctional fluorescent probes with the capable of localizing in lysosome. In this study, a novel lysosome probe, 4-(4-Pyren-1-yl-but-3-enyl)-morpholine (PIM), was synthesized using pyrene as a fluorescent group and morpholine as a target group. The introduction of morpholine group made PIM localize in lysosome with high selectivity. The fluorescence will be enhanced with the increased viscosity because of restricting the rotation of CC bond and CN in PIM, and the detecting linear range is from 4.05 cP to 393.48 cP, which qualified the requirement of the viscosity monitoring in body. Meanwhile, the fluorescence intensity of PIM declines with the decrease of pH because the Schiff base of PIM is hydrolyzed, which was affirmed by 1H NMR, LC-MS and fluorescence spectra. Moreover, cell imaging and MTT experiments confirmed that PIM as a novel bifunctional probe can be used to detect pH and endogenous viscosity in lysosome.
Collapse
Affiliation(s)
- Yi-Lin Mu
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Li Pan
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qian Lu
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Shu Xing
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ke-Yin Liu
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xian Zhang
- State Key Laboratory of Biobased Material and Green Papermaking and School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
48
|
Hou JT, Kwon N, Wang S, Wang B, He X, Yoon J, Shen J. Sulfur-based fluorescent probes for HOCl: Mechanisms, design, and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214232] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Wang L, Qiang T, Ren L, Cheng F, Hu W, Qu R. Observation of macrophage autophagy in the healing of diabetic ulcers via a lysosome-targeting polarity-specific two-photon probe. RSC Adv 2022; 12:3654-3661. [PMID: 35425343 PMCID: PMC8979232 DOI: 10.1039/d1ra08417h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022] Open
Abstract
As a disease with high incidence, mutilation, and fatality rates, diabetic ulcers (DUs) have become a difficult and complicated disease of widely concern in recent years due to the unclear healing mechanism. The main reason for the delayed healing in DU patients is the unduly long chronic inflammation window, and the polarization state of macrophages plays a key role in this process. Since autophagy is believed to be closely related to the polarization trend of macrophages, recent studies have shown that autophagy is closely related to the healing of DU. To this end, a lysosome-targeting polarity-sensitive probe, XZTU-VIS, was developed to monitor the changes in lysosomal polarity, thereby assessing the autophagy of macrophages in mice suffering from DU. The experimental results showed that under two-photon fluorescence microscopy, the green channel fluorescence signal of XZTU-VIS decreased significantly during autophagy. In the meantime, DU models established using BV-2 cells and mice showed a process that could cause inflammation and the release of ROS, thereby inducing autophagy. A polarity-dependent two-photon fluorescent probe for evaluation of autophagy in the process of diabetic mouse skin ulcer-induced inflammation was constructed.![]()
Collapse
Affiliation(s)
- Lina Wang
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Fei Cheng
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wei Hu
- College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Renyu Qu
- Jiangsu Sevencontinent Green Chemical Co., Ltd., Zhangjiagang, 215600, China
| |
Collapse
|
50
|
Grabarz AM, Ośmiałowski B. Benchmarking Density Functional Approximations for Excited-State Properties of Fluorescent Dyes. Molecules 2021; 26:7434. [PMID: 34946515 PMCID: PMC8703901 DOI: 10.3390/molecules26247434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 12/05/2022] Open
Abstract
This study presents an extensive analysis of the predictive power of time-dependent density functional theory in determining the excited-state properties of two groups of important fluorescent dyes, difluoroboranes and hydroxyphenylimidazo[1,2-a]pyridine derivatives. To ensure statistically meaningful results, the data set is comprised of 85 molecules manifesting diverse photophysical properties. The vertical excitation energies and dipole moments (in the electronic ground and excited states) of the aforementioned dyes were determined using the RI-CC2 method (reference) and with 18 density functional approximations (DFA). The set encompasses DFAs with varying amounts of exact exchange energy (EEX): from 0% (e.g., SVWN, BLYP), through a medium (e.g., TPSSh, B3LYP), up to a major contribution of EEX (e.g., BMK, MN15). It also includes range-separated hybrids (CAM-B3LYP, LC-BLYP). Similar error profiles of vertical energy were obtained for both dye groups, although the errors related to hydroxyphenylimidazopiridines are significantly larger. Overall, functionals including 40-55% of EEX (SOGGA11-X, BMK, M06-2X) ensure satisfactory agreement with the reference vertical excitation energies obtained using the RI-CC2 method; however, MN15 significantly outperforms them, providing a mean absolute error of merely 0.04 eV together with a very high correlation coefficient (R2 = 0.98). Within the investigated set of functionals, there is no single functional that would equally accurately determine ground- and excited-state dipole moments of difluoroboranes and hydroxyphenylimidazopiridine derivatives. Depending on the chosen set of dyes, the most accurate μGS predictions were delivered by MN15 incorporating a major EEX contribution (difluoroboranes) and by PBE0 containing a minor EEX fraction (hydroxyphenylimidazopiridines). Reverse trends are observed for μES, i.e., for difluoroboranes the best results were obtained with functionals including a minor fraction of EEX, specifically PBE0, while in the case of hydroxyphenylimidazopiridines, much more accurate predictions were provided by functionals incorporating a major EEX contribution (BMK, MN15).
Collapse
Affiliation(s)
- Anna M. Grabarz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, PL-87100 Toruń, Poland;
| |
Collapse
|