1
|
Phuong J, Salgado B, Labusch T, Hasse H, Münnemann K. Overhauser Dynamic Nuclear Polarization Enables Single Scan Benchtop 13C NMR Spectroscopy in Continuous-Flow. Anal Chem 2025; 97:4308-4317. [PMID: 39984167 PMCID: PMC11883742 DOI: 10.1021/acs.analchem.4c03985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 02/23/2025]
Abstract
Benchtop 13C NMR spectroscopy is highly attractive for reaction and process monitoring. However, insufficient premagnetization and low signal intensities largely prevent its application to flowing liquids. We show that hyperpolarization by Overhauser dynamic nuclear polarization (ODNP) can be used to overcome these problems, as ODNP operates on short time scales and results in strong 13C signal enhancements. Benchtop 13C NMR spectra with ODNP enhancement acquired in continuous-flow are reported here for the first time. We have investigated two ODNP approaches: direct ODNP, which transfers the polarization of unpaired electrons to 13C nuclei via direct hyperfine coupling, and indirect ODNP, in which the electron polarization is first transferred to 1H nuclei before a polarization transfer pulse sequence finally transfers the polarization to the 13C nuclei. Experiments were carried out for three pure solvents and a mixture for different flow rates. The results show significant 13C signal enhancements for both approaches. However, their performance varies for different substances, depending on the strength and type of the hyperfine interaction as well as on the relaxation properties, but by selecting a suitable approach, good single-scan 13C NMR spectra can be obtained with benchtop NMR, even at high flow rates.
Collapse
Affiliation(s)
- Johnnie Phuong
- Laboratory
of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße
44, 67663 Kaiserslautern, Germany
- Laboratory
of Advanced Spin Engineering—Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663 Kaiserslautern, Germany
| | - Billy Salgado
- Laboratory
of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße
44, 67663 Kaiserslautern, Germany
- Laboratory
of Advanced Spin Engineering—Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663 Kaiserslautern, Germany
| | - Tom Labusch
- Laboratory
of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße
44, 67663 Kaiserslautern, Germany
- Laboratory
of Advanced Spin Engineering—Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663 Kaiserslautern, Germany
| | - Hans Hasse
- Laboratory
of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße
44, 67663 Kaiserslautern, Germany
- Laboratory
of Advanced Spin Engineering—Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663 Kaiserslautern, Germany
| | - Kerstin Münnemann
- Laboratory
of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße
44, 67663 Kaiserslautern, Germany
- Laboratory
of Advanced Spin Engineering—Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663 Kaiserslautern, Germany
| |
Collapse
|
2
|
Min S, Jeong HJ, Kim S, Baek J, Kim J, Chung J, Namgoong SK, Jeong K. Temperature-Sensitive Magnetic Resonance Probes: Leveraging Hyperpolarized Pyridine-2-Carbaldehyde and SABRE for Real-Time Temperature Sensing. Anal Chem 2024; 96:18790-18796. [PMID: 39539136 DOI: 10.1021/acs.analchem.4c04226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this study, we developed a novel approach for real-time, temperature-sensitive nuclear magnetic resonance (NMR) measurements using signal amplification by reversible exchange (SABRE). We discovered that pyridine-2-carbaldehyde (A) exhibits different behavior depending on temperature, showing high hyperpolarization efficiency. In contrast, its reversible reaction product, the hemiacetal form (A'), is not affected by temperature. Exploiting this difference, we achieved a reliable polarization enhancement ratio without internal standard materials, even at low concentrations. Our method overcomes challenges associated with SABRE for 2-functionalized pyridines, enabling direct temperature monitoring in real-time NMR studies. We successfully applied it to monitor temperatures in solutions containing SABRE-inactive compounds like caffeine. Furthermore, we demonstrated its efficacy using a 60 MHz benchtop NMR spectrometer, validating its potential in challenging environments where conventional techniques may be limited. This technique shows promise for influencing the magnetic resonance field, potentially facilitating more accurate real-time analyses of molecular reactions and structures. Future research will focus on adapting this method for biological settings, aiming to stimulate advancements in NMR and magnetic resonance imaging (MRI) applications.
Collapse
Affiliation(s)
- Sein Min
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Hye Jin Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, South Korea
| | - Sarah Kim
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Juhee Baek
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Jisu Kim
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Jean Chung
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sung Keon Namgoong
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, South Korea
| |
Collapse
|
3
|
Silva Terra AI, Taylor DA, Halse ME. Hyperpolarised benchtop NMR spectroscopy for analytical applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:153-178. [PMID: 39645349 DOI: 10.1016/j.pnmrs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024]
Abstract
Benchtop NMR spectrometers, with moderate magnetic field strengths (B0=1-2.4T) and sub-ppm chemical shift resolution, are an affordable and portable alternative to standard laboratory NMR (B0≥7T). However, in moving to lower magnetic field instruments, sensitivity and chemical shift resolution are significantly reduced. The sensitivity limitation can be overcome by using hyperpolarisation to boost benchtop NMR signals by orders of magnitude. Of the wide range of hyperpolarisation methods currently available, dynamic nuclear polarisation (DNP), parahydrogen-induced polarisation (PHIP) and photochemically-induced dynamic nuclear polarisation (photo-CIDNP) have, to date, shown the most promise for integration with benchtop NMR for analytical applications. In this review we provide a summary of the theory of each of these techniques and discuss examples of how they have been integrated with benchtop NMR detection. Progress towards the use of hyperpolarised benchtop NMR for analytical applications, ranging from reaction monitoring to probing biomolecular interactions, is discussed, along with perspectives for the future.
Collapse
Affiliation(s)
| | - Daniel A Taylor
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Meghan E Halse
- Department of Chemistry, University of York, York, YO10 5DD, UK.
| |
Collapse
|
4
|
Czarnota M, Mames A, Pietrzak M, Jopa S, Theiß F, Buntkowsky G, Ratajczyk T. A Straightforward Method for the Generation of Hyperpolarized Orthohydrogen with a Partially Negative Line. Angew Chem Int Ed Engl 2024; 63:e202309188. [PMID: 37727926 DOI: 10.1002/anie.202309188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The hydrogen molecule, which exists in two spin isomers (ortho- and parahydrogen), is a highly studied system due to its fundamental properties and practical applications. Parahydrogen is used for Nuclear Magnetic Resonance signal enhancement, which is hyperpolarization of other molecules, including biorelevant ones. Hyperpolarization can be achieved by using Signal Amplification by Reversible Exchange (SABRE). SABRE can also convert parahydrogen into orthohydrogen, and surprisingly, in some cases, it has been discovered that orthohydrogen's resonance has the Partially Negative Line (PNL) pattern. Here, an approach for obtaining orthohydrogen with a PNL signal is presented for two catalysts: Ir-IMes, and Ir-IMesBn. The type of solvent in which SABRE is conducted is crucial for the observation of PNL. Specifically, a PNL signal can be easily generated in benzene using both catalysts, but it is more intense for Ir-IMesBn. In acetone, PNL is observed only for Ir-IMesBn. In methanol, no PNL is detected. The PNL effect is only detectable during the initial steps of pre-catalyst activation, and disappears as the activation process progresses. We have proposed a working hypothesis that explains our results. The presented data may facilitate the further investigation of PNL and its applications in material science and catalysis.
Collapse
Affiliation(s)
- Marek Czarnota
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Sylwia Jopa
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Franziska Theiß
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
5
|
Nantogma S, Chowdhury MRH, Kabir MSH, Adelabu I, Joshi SM, Samoilenko A, de Maissin H, Schmidt AB, Nikolaou P, Chekmenev YA, Salnikov OG, Chukanov NV, Koptyug IV, Goodson BM, Chekmenev EY. MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition. Anal Chem 2024; 96:4171-4179. [PMID: 38358916 PMCID: PMC10939749 DOI: 10.1021/acs.analchem.3c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll "Matryoshka") that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02-75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from -12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P13C = 17%), [1-13C]ketoisocaproate (P13C = 18%), [15N3]metronidazole (P15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of this design to other laboratories.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Mohammad S. H. Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Sameer M. Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Henri de Maissin
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Andreas B. Schmidt
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | | | | | - Oleg G. Salnikov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
6
|
Tickner BJ, Dennington M, Collins BG, Gater CA, Tanner TFN, Whitwood AC, Rayner PJ, Watts DP, Duckett SB. Metal-Mediated Catalytic Polarization Transfer from para Hydrogen to 3,5-Dihalogenated Pyridines. ACS Catal 2024; 14:994-1004. [PMID: 38269038 PMCID: PMC10804365 DOI: 10.1021/acscatal.3c05378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
The neutral catalysts [IrCl(H)2(NHC)(substrate)2] or [IrCl(H)2(NHC)(substrate)(sulfoxide)] are used to transfer polarization from para hydrogen (pH2) to 3,5-dichloropyridine and 3,5-dibromopyridine substrates. This is achieved in a rapid, reversible, and low-cost process that relies on ligand exchange within the active catalyst. Notably, the sulfoxide-containing catalyst systems produced NMR signal enhancements between 1 and 2 orders of magnitude larger than its unmodified counterpart. Consequently, this signal amplification by reversible exchange hyperpolarization method can boost the 1H, 13C, and 15N nuclear magnetic resonance (NMR) signal intensities by factors up to 4350, 1550, and 46,600, respectively (14.0, 1.3, and 15.4% polarization). In this paper, NMR and X-ray crystallography are used to map the evolution of catalytically important species and provide mechanistic rational for catalytic efficiency. Furthermore, applications in spontaneous radiofrequency amplification by stimulated emission and NMR reaction monitoring are also shown.
Collapse
Affiliation(s)
- Ben. J. Tickner
- Centre
for Hyperpolarisation in Magnetic Resonance, University of York, Heslington YO10 5NY, U.K.
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
| | - Marcus Dennington
- Centre
for Hyperpolarisation in Magnetic Resonance, University of York, Heslington YO10 5NY, U.K.
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
| | - Benjamin G. Collins
- Centre
for Hyperpolarisation in Magnetic Resonance, University of York, Heslington YO10 5NY, U.K.
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
- Department
of Physics, Engineering and Technology, University of York, Heslington YO10 5DD, U.K.
| | - Callum A. Gater
- Centre
for Hyperpolarisation in Magnetic Resonance, University of York, Heslington YO10 5NY, U.K.
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
| | - Theo F. N. Tanner
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
| | | | - Peter J. Rayner
- Centre
for Hyperpolarisation in Magnetic Resonance, University of York, Heslington YO10 5NY, U.K.
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
| | - Daniel P. Watts
- Department
of Physics, Engineering and Technology, University of York, Heslington YO10 5DD, U.K.
| | - Simon B. Duckett
- Centre
for Hyperpolarisation in Magnetic Resonance, University of York, Heslington YO10 5NY, U.K.
- Department
of Chemistry, University of York, Heslington YO10 5DD, U.K.
| |
Collapse
|
7
|
Peat G, Boaler PJ, Dickson CL, Lloyd-Jones GC, Uhrín D. SHARPER-DOSY: Sensitivity enhanced diffusion-ordered NMR spectroscopy. Nat Commun 2023; 14:4410. [PMID: 37479704 PMCID: PMC10361965 DOI: 10.1038/s41467-023-40130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
Since its discovery in mid-20th century, the sensitivity of Nuclear Magnetic Resonance (NMR) has increased steadily, in part due to the design of new, sophisticated NMR experiments. Here we report on a liquid-state NMR methodology that significantly increases the sensitivity of diffusion coefficient measurements of pure compounds, allowing to estimate their sizes using a much reduced amount of material. In this method, the diffusion coefficients are being measured by analysing narrow and intense singlets, which are invariant to magnetic field inhomogeneities. The singlets are obtained through signal acquisition embedded in short (<0.5 ms) spin-echo intervals separated by non-selective 180° or 90° pulses, suppressing the chemical shift evolution of resonances and their splitting due to J couplings. The achieved 10-100 sensitivity enhancement results in a 100-10000-fold time saving. Using high field cryoprobe NMR spectrometers, this makes it possible to measure a diffusion coefficient of a medium-size organic molecule in a matter of minutes with as little as a few hundred nanograms of material.
Collapse
Affiliation(s)
- George Peat
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| | - Patrick J Boaler
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| | - Claire L Dickson
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
- Oxford Instruments, Halifax Road, High Wycombe, HP12 3SE2, UK
| | - Guy C Lloyd-Jones
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK
| | - Dušan Uhrín
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
8
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
9
|
Silva Terra AI, Rossetto M, Dickson CL, Peat G, Uhrín D, Halse ME. Enhancing 19F Benchtop NMR Spectroscopy by Combining para-Hydrogen Hyperpolarization and Multiplet Refocusing. ACS MEASUREMENT SCIENCE AU 2023; 3:73-81. [PMID: 36817010 PMCID: PMC9936801 DOI: 10.1021/acsmeasuresciau.2c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/18/2023]
Abstract
Benchtop NMR spectrometers provide a promising alternative to high-field NMR for applications that are limited by instrument size and/or cost. 19F benchtop NMR is attractive due to the larger chemical shift range of 19F relative to 1H and the lack of background signal in most applications. However, practical applications of benchtop 19F NMR are limited by its low sensitivity due to the relatively weak field strengths of benchtop NMR spectrometers. Here we present a sensitivity-enhancement strategy that combines SABRE (Signal Amplification By Reversible Exchange) hyperpolarization with the multiplet refocusing method SHARPER (Sensitive, Homogeneous, And Resolved PEaks in Real time). When applied to a range of fluoropyridines, SABRE-SHARPER achieves overall signal enhancements of up to 5700-fold through the combined effects of hyperpolarization and line-narrowing. This approach can be generalized to the analysis of mixtures through the use of a selective variant of the SHARPER sequence, selSHARPER. The ability of SABRE-selSHARPER to simultaneously boost sensitivity and discriminate between two components of a mixture is demonstrated, where selectivity is achieved through a combination of selective excitation and the choice of polarization transfer field during the SABRE step.
Collapse
Affiliation(s)
| | | | - Claire L. Dickson
- EaStCHEM
School of Chemistry, University of Edinburgh, EdinburghEH9 3FJ, U.K.
| | - George Peat
- EaStCHEM
School of Chemistry, University of Edinburgh, EdinburghEH9 3FJ, U.K.
| | - Dušan Uhrín
- EaStCHEM
School of Chemistry, University of Edinburgh, EdinburghEH9 3FJ, U.K.
| | - Meghan E. Halse
- Department
of Chemistry, University of York, YorkYO10 5DD, U.K.
| |
Collapse
|
10
|
Picazo-Frutos R, Stern Q, Blanchard JW, Cala O, Ceillier M, Cousin SF, Eills J, Elliott SJ, Jannin S, Budker D. Zero- to Ultralow-Field Nuclear Magnetic Resonance Enhanced with Dissolution Dynamic Nuclear Polarization. Anal Chem 2023; 95:720-729. [PMID: 36563171 DOI: 10.1021/acs.analchem.2c02649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zero- to ultralow-field nuclear magnetic resonance is a modality of magnetic resonance experiment which does not require strong superconducting magnets. Contrary to conventional high-field nuclear magnetic resonance, it has the advantage of allowing high-resolution detection of nuclear magnetism through metal as well as within heterogeneous media. To achieve high sensitivity, it is common to couple zero-field nuclear magnetic resonance with hyperpolarization techniques. To date, the most common technique is parahydrogen-induced polarization, which is only compatible with a small number of compounds. In this article, we establish dissolution dynamic nuclear polarization as a versatile method to enhance signals in zero-field nuclear magnetic resonance experiments on sample mixtures of [13C]sodium formate, [1-13C]glycine, and [2-13C]sodium acetate, and our technique is immediately extendable to a broad range of molecules with >1 s relaxation times. We find signal enhancements of up to 11,000 compared with thermal prepolarization in a 2 T permanent magnet. To increase the signal in future experiments, we investigate the relaxation effects of the TEMPOL radicals used for the hyperpolarization process at zero- and ultralow-fields.
Collapse
Affiliation(s)
- Román Picazo-Frutos
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz55128, Germany
| | - Quentin Stern
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | - John W Blanchard
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany
| | - Olivier Cala
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | - Morgan Ceillier
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | | | - James Eills
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz55128, Germany.,Institute for Bioengineering of Catalonia, Baldiri Reixac 10-12, Barcelona08028, Spain
| | - Stuart J Elliott
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France.,Molecular Sciences Research Hub, Imperial College London, LondonW12 0BZ, U.K
| | - Sami Jannin
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | - Dmitry Budker
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz55128, Germany
| |
Collapse
|
11
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
12
|
Mames A, Jopa S, Pietrzak M, Ratajczyk T. Deactivation of catalysts in simultaneous reversible and irreversible parahydrogen NMR signal enhancement, and the role of co-ligands in the stabilization of the reversible method. RSC Adv 2022; 12:15986-15991. [PMID: 35733673 PMCID: PMC9136854 DOI: 10.1039/d2ra02872g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Signal Amplification by Reversible Exchange (SABRE) and hydrogeneable Parahydrogen Induced Polarization (hPHIP) can enhance weak NMR signals, and thus increase the range of NMR applications. Here, using an N-heterocyclic carbene Ir-based catalyst, simultaneous SABRE and hPHIP was achieved for the compound with an N-donor site and an acetylene triple bond. It was demonstrated that the interplay between SABRE and hPHIP can be manipulated. Specifically, it was found that the hPHIP effect could be almost completely suppressed, while stable SABRE was observed in subsequent consecutive experiments. The presented results have the potential to increase the numbers of parahydrogen hyperpolarizable molecules.
Collapse
Affiliation(s)
- Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| | - Sylwia Jopa
- Faculty of Chemistry, University of Warsaw Pasteura 1 Warsaw 02-093 Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| |
Collapse
|
13
|
Tickner BJ, Zhivonitko VV. Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications. Chem Sci 2022; 13:4670-4696. [PMID: 35655870 PMCID: PMC9067625 DOI: 10.1039/d2sc00737a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Parahydrogen-induced polarisation (PHIP) is a nuclear spin hyperpolarisation technique employed to enhance NMR signals for a wide range of molecules. This is achieved by exploiting the chemical reactions of parahydrogen (para-H2), the spin-0 isomer of H2. These reactions break the molecular symmetry of para-H2 in a way that can produce dramatically enhanced NMR signals for reaction products, and are usually catalysed by a transition metal complex. In this review, we discuss recent advances in novel homogeneous catalysts that can produce hyperpolarised products upon reaction with para-H2. We also discuss hyperpolarisation attained in reversible reactions (termed signal amplification by reversible exchange, SABRE) and focus on catalyst developments in recent years that have allowed hyperpolarisation of a wider range of target molecules. In particular, recent examples of novel ruthenium catalysts for trans and geminal hydrogenation, metal-free catalysts, iridium sulfoxide-containing SABRE systems, and cobalt complexes for PHIP and SABRE are reviewed. Advances in this catalysis have expanded the types of molecules amenable to hyperpolarisation using PHIP and SABRE, and their applications in NMR reaction monitoring, mechanistic elucidation, biomedical imaging, and many other areas, are increasing.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
| |
Collapse
|
14
|
Ben-Tal Y, Boaler PJ, Dale HJA, Dooley RE, Fohn NA, Gao Y, García-Domínguez A, Grant KM, Hall AMR, Hayes HLD, Kucharski MM, Wei R, Lloyd-Jones GC. Mechanistic analysis by NMR spectroscopy: A users guide. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:28-106. [PMID: 35292133 DOI: 10.1016/j.pnmrs.2022.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
A 'principles and practice' tutorial-style review of the application of solution-phase NMR in the analysis of the mechanisms of homogeneous organic and organometallic reactions and processes. This review of 345 references summarises why solution-phase NMR spectroscopy is uniquely effective in such studies, allowing non-destructive, quantitative analysis of a wide range of nuclei common to organic and organometallic reactions, providing exquisite structural detail, and using instrumentation that is routinely available in most chemistry research facilities. The review is in two parts. The first comprises an introduction to general techniques and equipment, and guidelines for their selection and application. Topics include practical aspects of the reaction itself, reaction monitoring techniques, NMR data acquisition and processing, analysis of temporal concentration data, NMR titrations, DOSY, and the use of isotopes. The second part comprises a series of 15 Case Studies, each selected to illustrate specific techniques and approaches discussed in the first part, including in situ NMR (1/2H, 10/11B, 13C, 15N, 19F, 29Si, 31P), kinetic and equilibrium isotope effects, isotope entrainment, isotope shifts, isotopes at natural abundance, scalar coupling, kinetic analysis (VTNA, RPKA, simulation, steady-state), stopped-flow NMR, flow NMR, rapid injection NMR, pure shift NMR, dynamic nuclear polarisation, 1H/19F DOSY NMR, and in situ illumination NMR.
Collapse
Affiliation(s)
- Yael Ben-Tal
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Patrick J Boaler
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Harvey J A Dale
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ruth E Dooley
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom; Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Nicole A Fohn
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Yuan Gao
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrés García-Domínguez
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Katie M Grant
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew M R Hall
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Hannah L D Hayes
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Maciej M Kucharski
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ran Wei
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom.
| |
Collapse
|
15
|
Norcott PL. Selective NMR detection of individual reaction components hyperpolarised by reversible exchange with para-hydrogen. Phys Chem Chem Phys 2022; 24:13527-13533. [DOI: 10.1039/d2cp01657e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR spectroscopy can sometimes be hampered by two inherent weaknesses: low sensitivity and overlap of signals in complex mixtures. Hyperpolarisation techniques using para-hydrogen (including the method known as SABRE) can...
Collapse
|
16
|
Pravdivtsev AN, Kempf N, Plaumann M, Bernarding J, Scheffler K, Hövener J, Buckenmaier K. Coherent Evolution of Signal Amplification by Reversible Exchange in Two Alternating Fields (alt-SABRE). Chemphyschem 2021; 22:2381-2386. [PMID: 34546634 PMCID: PMC9292956 DOI: 10.1002/cphc.202100543] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Indexed: 11/06/2022]
Abstract
Parahydrogen (pH2 ) is a convenient and cost-efficient source of spin order to enhance the magnetic resonance signal. Previous work showed that transient interaction of pH2 with a metal organic complex in a signal amplification by reversible exchange (SABRE) experiment enabled more than 10 % polarization for some 15 N molecules. Here, we analyzed a variant of SABRE, consisting of a magnetic field alternating between a low field of ∼1 μT, where polarization transfer is expected to take place, and a higher field >50 μT (alt-SABRE). These magnetic fields affected the amplitude and frequency of polarization transfer. Deviation of a lower magnetic field from a "perfect" condition of level anti-crossing increases the frequency of polarization transfer that can be exploited for polarization of short-lived transient SABRE complexes. Moreover, the coherences responsible for polarization transfer at a lower field persisted during magnetic field variation and continued their spin evolution at higher field with a frequency of 2.5 kHz at 54 μT. The latter should be taken into consideration for an efficient alt-SABRE. Theoretical and experimental findings were exemplified with Iridium N-heterocyclic carbene SABRE complex and 15 N-acetonitrole, where a 30 % higher 15 N polarization with alt-SABRE compared to common SABRE was reached.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Molecular Imaging North Competence Center (MOIN CC)Section Biomedical ImagingDepartment of Radiology and NeuroradiologyUniversity Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| | - Nicolas Kempf
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
| | - Markus Plaumann
- Institute for Biometrics and Medical InformaticsOtto-von-Guericke UniversityBuilding 02, Leipziger Str. 4439120MagdeburgGermany
| | - Johannes Bernarding
- Institute for Biometrics and Medical InformaticsOtto-von-Guericke UniversityBuilding 02, Leipziger Str. 4439120MagdeburgGermany
| | - Klaus Scheffler
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
| | - Jan‐Bernd Hövener
- Molecular Imaging North Competence Center (MOIN CC)Section Biomedical ImagingDepartment of Radiology and NeuroradiologyUniversity Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| | - Kai Buckenmaier
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
| |
Collapse
|
17
|
Lin K, TomHon P, Lehmkuhl S, Laasner R, Theis T, Blum V. Density Functional Theory Study of Reaction Equilibria in Signal Amplification by Reversible Exchange. Chemphyschem 2021; 22:1937-1938. [PMID: 34617650 PMCID: PMC8725239 DOI: 10.1002/cphc.202100678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The front cover artwork is provided by the groups of Prof. Thomas Theis (North Carolina State University) Prof. Volker Blum (Duke University). The image shows the reaction network of Signal Amplification by Reversible Exchange (SABRE), elucidated by density functional theory (DFT). Read the full text of the Review at 10.1002/cphc.202100204.
Collapse
Affiliation(s)
- Kailai Lin
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA
| | - Raul Laasner
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA
- Joint Department of Biomedical Engineering, UNC, Chapel Hill, and NC State University, Raleigh, NC 27606, USA
- Department of Physics, North Carolina State University, Raleigh, NC 27606, USA
| | - Volker Blum
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
18
|
Lin K, TomHon P, Lehmkuhl S, Laasner R, Theis T, Blum V. Density Functional Theory Study of Reaction Equilibria in Signal Amplification by Reversible Exchange. Chemphyschem 2021; 22:1947-1957. [PMID: 34549869 DOI: 10.1002/cphc.202100204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/19/2021] [Indexed: 11/07/2022]
Abstract
An in-depth theoretical analysis of key chemical equilibria in Signal Amplification by Reversible Exchange (SABRE) is provided, employing density functional theory calculations to characterize the likely reaction network. For all reactions in the network, the potential energy surface is probed to identify minimum energy pathways. Energy barriers and transition states are calculated, and harmonic transition state theory is applied to calculate exchange rates that approximate experimental values. The reaction network energy surface can be modulated by chemical potentials that account for the dependence on concentration, temperature, and partial pressure of molecular constituents (hydrogen, methanol, pyridine) supplied to the experiment under equilibrium conditions. We show that, under typical experimental conditions, the Gibbs free energies of the two key states involved in pyridine-hydrogen exchange at the common Ir-IMes catalyst system in methanol are essentially the same, i. e., nearly optimal for SABRE. We also show that a methanol-containing intermediate is plausible as a transient species in the process.
Collapse
Affiliation(s)
- Kailai Lin
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA
| | - Raul Laasner
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA.,Joint Department of Biomedical Engineering, UNC, Chapel Hill, and NC State University, Raleigh, NC 27606, USA.,Department of Physics, North Carolina State University, Raleigh, NC 27606, USA
| | - Volker Blum
- Department of Chemistry, Duke University, Durham, NC 27708, USA.,Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
19
|
Abstract
Benchtop nuclear magnetic resonance (NMR) spectroscopy uses small permanent magnets to generate magnetic fields and therefore offers the advantages of operational simplicity and reasonable cost, presenting a viable alternative to high-field NMR spectroscopy. In particular, the use of benchtop NMR spectroscopy for rapid in-field analysis, e.g., for quality control or forensic science purposes, has attracted considerable attention. As benchtop NMR spectrometers are sufficiently compact to be operated in a fume hood, they can be efficiently used for real-time reaction and process monitoring. This review introduces the recent applications of benchtop NMR spectroscopy in diverse fields, including food science, pharmaceuticals, process and reaction monitoring, metabolomics, and polymer materials.
Collapse
|
20
|
Tickner BJ, Zhivonitko VV, Telkki VV. Ultrafast Laplace NMR to study metal-ligand interactions in reversible polarisation transfer from parahydrogen. Phys Chem Chem Phys 2021; 23:16542-16550. [PMID: 34338685 PMCID: PMC8359933 DOI: 10.1039/d1cp02383g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Laplace Nuclear Magnetic Resonance (NMR) can determine relaxation parameters and diffusion constants, giving valuable information about molecular structure and dynamics. Information about relaxation times (T1 and T2) and the self-diffusion coefficient (D) can be extracted from exponentially decaying NMR signals by performing a Laplace transform, which is a different approach to traditional NMR involving Fourier transform of a free induction decay. Ultrafast Laplace NMR uses spatial encoding to collect the entire data set in just a single scan which provides orders of magnitude time savings. In this work we use ultrafast Laplace NMR D-T2 correlation sequences to measure key relaxation (T2) and diffusion (D) parameters of methanolic solutions containing pyridine. For the first time we combine this technique with the hyperpolarisation technique Signal Amplification By Reversible Exchange (SABRE), which employs an iridium catalyst to reversibly transfer polarisation from parahydrogen, to boost the 1H NMR signals of pyridine by up to 300-fold. We demonstrate use of ultrafast Laplace NMR to monitor changes in pyridine T2 and D associated with ligation to the iridium SABRE catalyst and kinetic isotope exchange reactions. The combined 1440-fold reduction in experiment time and 300-fold 1H NMR signal enhancement allow the determination of pyridine D coefficients and T2 values at 25 mM concentrations in just 3 seconds using SABRE hyperpolarised ultrafast Laplace NMR.
Collapse
Affiliation(s)
- Ben. J. Tickner
- NMR Research Unit, Faculty of Science, University of Oulu90014Finland
| | | | | |
Collapse
|
21
|
Chapman B, Joalland B, Meersman C, Ettedgui J, Swenson RE, Krishna MC, Nikolaou P, Kovtunov KV, Salnikov OG, Koptyug IV, Gemeinhardt ME, Goodson BM, Shchepin RV, Chekmenev EY. Low-Cost High-Pressure Clinical-Scale 50% Parahydrogen Generator Using Liquid Nitrogen at 77 K. Anal Chem 2021; 93:8476-8483. [PMID: 34102835 PMCID: PMC8262381 DOI: 10.1021/acs.analchem.1c00716] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report on a robust and low-cost parahydrogen generator design employing liquid nitrogen as a coolant. The core of the generator consists of catalyst-filled spiral copper tubing, which can be pressurized to 35 atm. Parahydrogen fraction >48% was obtained at 77 K with three nearly identical generators using paramagnetic hydrated iron oxide catalysts. Parahydrogen quantification was performed on the fly via benchtop NMR spectroscopy to monitor the signal from residual orthohydrogen-parahydrogen is NMR silent. This real-time quantification approach was also used to evaluate catalyst activation at up to 1.0 standard liter per minute flow rate. The reported inexpensive device can be employed for a wide range of studies employing parahydrogen as a source of nuclear spin hyperpolarization. To this end, we demonstrate the utility of this parahydrogen generator for hyperpolarization of concentrated sodium [1-13C]pyruvate, a metabolic contrast agent under investigation in numerous clinical trials. The reported pilot optimization of SABRE-SHEATH (signal amplification by reversible exchange-shield enables alignment transfer to heteronuclei) hyperpolarization yielded 13C signal enhancement of over 14,000-fold at a clinically relevant magnetic field of 1 T corresponding to approximately 1.2% 13C polarization-if near 100% parahydrogen would have been employed, the reported value would be tripled to 13C polarization of 3.5%.
Collapse
Affiliation(s)
- Benjamin Chapman
- Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, 501 E St. Joseph Street Rapid City, South Dakota 57701, United States
| | - Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Collier Meersman
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, 501 E St. Joseph Street Rapid City, South Dakota 57701, United States
| | - Jessica Ettedgui
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, 9800 Medical Center Drive, Building B, Room #2034, Bethesda, Maryland 20850, United States
| | - Murali C. Krishna
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 31 Center Drive Maryland 20814, United States
| | - Panayiotis Nikolaou
- XeUS Technologies LTD, Georgiou Karaiskaki 2A, Lakatamia 2312, Nicosia, Cyprus
| | - Kirill V. Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Oleg G. Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Max E. Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
- Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Roman V. Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology, 501 E St. Joseph Street Rapid City, South Dakota 57701, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Ave, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
22
|
Chukanov NV, Salnikov OG, Trofimov IA, Kabir MSH, Kovtunov KV, Koptyug IV, Chekmenev EY. Synthesis and 15 N NMR Signal Amplification by Reversible Exchange of [ 15 N]Dalfampridine at Microtesla Magnetic Fields. Chemphyschem 2021; 22:960-967. [PMID: 33738893 DOI: 10.1002/cphc.202100109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Indexed: 01/10/2023]
Abstract
Signal Amplification by Reversible Exchange (SABRE) technique enables nuclear spin hyperpolarization of wide range of compounds using parahydrogen. Here we present the synthetic approach to prepare 15 N-labeled [15 N]dalfampridine (4-amino[15 N]pyridine) utilized as a drug to reduce the symptoms of multiple sclerosis. The synthesized compound was hyperpolarized using SABRE at microtesla magnetic fields (SABRE-SHEATH technique) with up to 2.0 % 15 N polarization. The 7-hour-long activation of SABRE pre-catalyst [Ir(IMes)(COD)Cl] in the presence of [15 N]dalfampridine can be remedied by the use of pyridine co-ligand for catalyst activation while retaining the 15 N polarization levels of [15 N]dalfampridine. The effects of experimental conditions such as polarization transfer magnetic field, temperature, concentration, parahydrogen flow rate and pressure on 15 N polarization levels of free and equatorial catalyst-bound [15 N]dalfampridine were investigated. Moreover, we studied 15 N polarization build-up and decay at magnetic field of less than 0.04 μT as well as 15 N polarization decay at the Earth's magnetic field and at 1.4 T.
Collapse
Affiliation(s)
- Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States.,Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
23
|
Rudszuck T, Nirschl H, Guthausen G. Perspectives in process analytics using low field NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106897. [PMID: 33518174 DOI: 10.1016/j.jmr.2020.106897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Low field NMR is a powerful analytical tool which creates an enormous added value in process analytics. Based on specific applications in process analytics and perspectives for low field NMR in form of spectroscopy, relaxation, diffusion, and imaging in quality control, diverse applications and technical realizations like spectrometers, time domain NMR, mobile NMR sensors and MRI will be discussed.
Collapse
Affiliation(s)
- T Rudszuck
- Institute for Mechanical Engineering and Mechanics, KIT, 76131 Karlsruhe, Germany
| | - H Nirschl
- Institute for Mechanical Engineering and Mechanics, KIT, 76131 Karlsruhe, Germany
| | - G Guthausen
- Institute for Mechanical Engineering and Mechanics, KIT, 76131 Karlsruhe, Germany; Engler-Bunte Institut, Water Science and Technology, KIT, 76131 Karlsruhe, Germany
| |
Collapse
|
24
|
van Beek TA. Low-field benchtop NMR spectroscopy: status and prospects in natural product analysis †. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:24-37. [PMID: 31989704 DOI: 10.1002/pca.2921] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/14/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Since a couple of years, low-field (LF) nuclear magnetic resonance (NMR) spectrometers (40-100 MHz) have re-entered the market. They are used for various purposes including analyses of natural products. Similar to high-field instruments (300-1200 MHz), modern LF instruments can measure multiple nuclei and record two-dimensional (2D) NMR spectra. OBJECTIVE To review the commercial availability as well as applications, advantages, limitations, and prospects of LF-NMR spectrometers for the purpose of natural products analysis. METHOD Commercial LF instruments were compared. A literature search was performed for articles using and discussing modern LF-NMR. Next, the articles relevant to natural products were read and summarised. RESULTS Seventy articles were reviewed. Most appeared in 2018 and 2019. Low costs and ease of operation are most often mentioned as reasons for using LF-NMR. CONCLUSION As the spectral resolution of LF instruments is limited, they are not used for structure elucidation of new natural products but rather applied for quality control (QC), forensics, food and health research, process control and teaching. Chemometric data handling is valuable. LF-NMR is a rapidly developing niche and new instruments keep being introduced.
Collapse
Affiliation(s)
- Teris André van Beek
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, WE Wageningen, The Netherlands
| |
Collapse
|
25
|
Tennant T, Hulme MC, Robertson TBR, Sutcliffe OB, Mewis RE. Benchtop NMR analysis of piperazine-based drugs hyperpolarised by SABRE. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1151-1159. [PMID: 31945193 DOI: 10.1002/mrc.4999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Piperazine-based drugs, such as N-benzylpiperazine (BZP), became attractive in the 2000s due to possessing effects similar to amphetamines. Herein, BZP, in addition to its pyridyl analogues, 2-, 3-, and 4-pyridylmethylpiperidine (2-PMP, 3-PMP, and 4-PMP respectively) was subjected to the hyperpolarisation technique Signal Amplification By Reversible Exchange (SABRE) in order to demonstrate the use of this technique to detect these piperazine-based drugs. Although BZP was not hyperpolarised via SABRE, 2-PMP, 3-PMP, and 4-PMP were, with the ortho- and meta-pyridyl protons of 4-PMP showing the largest enhancement of 313-fold and 267-fold, respectively, in a 1.4-T detection field, following polarisation transfer at Earth's magnetic field. In addition to the freebase, 4-PMP.3HCl was also appraised by SABRE and was found not to polarise, however, the addition of increasing equivalents of triethylamine (TEA) produced the freebase, with a maximum enhancement observed upon the addition of 3 equivalents of TEA. Further addition of TEA led to a reduction in the observed enhancement. SABRE was also employed to polarise 4-PMP.3HCl (~20% w/w) in a simulated tablet to demonstrate the forensic application of the technique (138-fold enhancement for the ortho-pyridyl protons). The amount of 4-PMP.3HCl present in the simulated tablet was quantified via NMR using D2 O as a solvent and compared well to complimentary gas chromatography-mass spectrometry data. Exchanging D2 O for CD3 OD as the solvent utilised for analysis resulted in a significantly lower amount of 4-PMP.3HCl being determined, thus highlighting safeguarding issues linked to drug abuse in relation to determining the amount of active pharmaceutical ingredient present.
Collapse
Affiliation(s)
- Thomas Tennant
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Matthew C Hulme
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Thomas B R Robertson
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Ryan E Mewis
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
26
|
Jeong HJ, Min S, Jeong K. Analysis of 1-aminoisoquinoline using the signal amplification by reversible exchange hyperpolarization technique. Analyst 2020; 145:6478-6484. [PMID: 32744263 DOI: 10.1039/d0an00967a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Signal amplification by reversible exchange (SABRE), a parahydrogen-based hyperpolarization technique, is valuable in detecting low concentrations of chemical compounds, which facilitates the understanding of their functions at the molecular level as well as their applicability in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). SABRE of 1-aminoisoquinoline (1-AIQ) is significant because isoquinoline derivatives are the fundamental structures in compounds with notable biological activity and are basic organic building blocks. Through this study, we explain how SABRE is applied to hyperpolarize 1-AIQ for diverse solvent systems such as deuterated and non-deuterated solvents. We observed the amplification of individual protons of 1-AIQ at various magnetic fields. Further, we describe the polarization transfer mechanism of 1-AIQ compared to pyridine using density functional theory (DFT) calculations. This hyperpolarization technique, including the polarization transfer mechanism investigation on 1-AIQ, will provide a firm basis for the future application of the hyperpolarization study on various bio-friendly materials.
Collapse
Affiliation(s)
- Hye Jin Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, South Korea.
| | - Sein Min
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, South Korea.
| |
Collapse
|
27
|
Gouilleux B, Farjon J, Giraudeau P. Gradient-based pulse sequences for benchtop NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106810. [PMID: 33036709 DOI: 10.1016/j.jmr.2020.106810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benchtop NMR spectroscopy has been on the rise for the last decade, by bringing high-resolution NMR in environments that are not easily compatible with high-field NMR. Benchtop spectrometers are accessible, low cost and show an impressive performance in terms of sensitivity with respect to the relatively low associated magnetic field (40-100 MHz). However, their application is limited by the strong and ubiquitous peak overlaps arising from the complex mixtures which are often targeted, often characterized by a great diversity of concentrations and by strong signals from non-deuterated solvents. Such limitations can be addressed by pulse sequences making clever use of magnetic field gradient pulses, capable of performing efficient coherence selection or encoding chemical shift or diffusion information. Gradients pulses are well-known ingredients of high-field pulse sequence recipes, but were only recently made available on benchtop spectrometers, thanks to the introduction of gradient coils in 2015. This article reviews the recent methodological advances making use of gradient pulses on benchtop spectrometers and the applications stemming from these developments. Particular focus is made on solvent suppression schemes, diffusion-encoded, and spatially-encoded experiments, while discussing both methodological advances and subsequent applications. We eventually discuss the exciting development and application perspectives that result from such advances.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, France
| | - Jonathan Farjon
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Patrick Giraudeau
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| |
Collapse
|
28
|
Kim S, Min S, Chae H, Jeong HJ, Namgoong SK, Oh S, Jeong K. Hyperpolarization of Nitrile Compounds Using Signal Amplification by Reversible Exchange. Molecules 2020; 25:E3347. [PMID: 32717970 PMCID: PMC7435364 DOI: 10.3390/molecules25153347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Signal Amplification by Reversible Exchange (SABRE), a hyperpolarization technique, has been harnessed as a powerful tool to achieve useful hyperpolarized materials by polarization transfer from parahydrogen. In this study, we systemically applied SABRE to a series of nitrile compounds, which have been rarely investigated. By performing SABRE in various magnetic fields and concentrations on nitrile compounds, we unveiled its hyperpolarization properties to maximize the spin polarization and its transfer to the next spins. Through this sequential study, we obtained a ~130-fold enhancement for several nitrile compounds, which is the highest number ever reported for the nitrile compounds. Our study revealed that the spin polarization on hydrogens decreases with longer distances from the nitrile group, and its maximum polarization is found to be approximately 70 G with 5 μL of substrates in all structures. Interestingly, more branched structures in the ligand showed less effective polarization transfer mechanisms than the structural isomers of butyronitrile and isobutyronitrile. These first systematic SABRE studies on a series of nitrile compounds will provide new opportunities for further research on the hyperpolarization of various useful nitrile materials.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Chemistry, Seoul Women’s University, Seoul 01797, Korea; (S.K.); (S.M.); (H.C.); (S.K.N.)
| | - Sein Min
- Department of Chemistry, Seoul Women’s University, Seoul 01797, Korea; (S.K.); (S.M.); (H.C.); (S.K.N.)
| | - Heelim Chae
- Department of Chemistry, Seoul Women’s University, Seoul 01797, Korea; (S.K.); (S.M.); (H.C.); (S.K.N.)
| | - Hye Jin Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, Korea;
| | - Sung Keon Namgoong
- Department of Chemistry, Seoul Women’s University, Seoul 01797, Korea; (S.K.); (S.M.); (H.C.); (S.K.N.)
| | - Sangwon Oh
- Korea Research Institute of Standards and Science, Daejeon 34113, Korea
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, Korea;
| |
Collapse
|
29
|
Chae H, Min S, Jeong HJ, Namgoong SK, Oh S, Kim K, Jeong K. Organic Reaction Monitoring of a Glycine Derivative Using Signal Amplification by Reversible Exchange-Hyperpolarized Benchtop Nuclear Magnetic Resonance Spectroscopy. Anal Chem 2020; 92:10902-10907. [DOI: 10.1021/acs.analchem.0c01270] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Heelim Chae
- Department of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Sein Min
- Department of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Hye Jin Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, South Korea
| | - Sung Keon Namgoong
- Department of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Sangwon Oh
- Korea Research Institute of Standards and Science, Daejeon 34113, South Korea
| | - Kiwoong Kim
- Korea Research Institute of Standards and Science, Daejeon 34113, South Korea
- Deparment of Medical Physics, University of Science and Technology, Daejeon 34113, South Korea
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, South Korea
| |
Collapse
|
30
|
Tickner BJ, Rayner PJ, Duckett SB. Using SABRE Hyperpolarized 13C NMR Spectroscopy to Interrogate Organic Transformations of Pyruvate. Anal Chem 2020; 92:9095-9103. [DOI: 10.1021/acs.analchem.0c01334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ben. J. Tickner
- Center for Hyperpolarization in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5NY, United Kingdom
| | - Peter J. Rayner
- Center for Hyperpolarization in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5NY, United Kingdom
| | - Simon B. Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5NY, United Kingdom
| |
Collapse
|
31
|
Romero JA, Kazimierczuk K, Gołowicz D. Enhancing benchtop NMR spectroscopy by means of sample shifting. Analyst 2020; 145:7406-7411. [DOI: 10.1039/d0an01556c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benchtop NMR sensitivity enhancement by cyclic, mechanical shifting of a sample to preserve high nuclear spin polarization.
Collapse
Affiliation(s)
- Javier A. Romero
- Centre of New Technologies
- University of Warsaw
- 02-097 Warsaw
- Poland
| | | | - Dariusz Gołowicz
- Centre of New Technologies
- University of Warsaw
- 02-097 Warsaw
- Poland
- Faculty of Chemistry
| |
Collapse
|
32
|
Tickner BJ, Parker RR, Whitwood AC, Duckett SB. Probing the Hydrogenation of Vinyl Sulfoxides Using para-Hydrogen. Organometallics 2019; 38:4377-4382. [PMID: 31787798 PMCID: PMC6880776 DOI: 10.1021/acs.organomet.9b00610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 12/25/2022]
Abstract
Vinyl sulfoxides are an important functional group used in a wide range of organic transformations. Here, we use [IrCl(COD)(IMes)] where IMes = 1,3-bis(2,4,6-trimethyl-phenyl)imidazole-2-ylidene and COD = cis,cis-1,5-cyclooctadiene to rapidly hydrogenate phenylvinylsulfoxide. We use para-hydrogen-induced hyperpolarization (PHIP) to follow this reaction with [IrCl(H)2(IMes)(S(O)(Ph)(Et))2] dominating in the later stages. Decomposition to form the reduced C-S bond cleavage product [Ir2(H)3(κ2-H)(κ2-SPh)2(IMes)2(S(Et)(Ph)O)] limits turnover. The related product [Ir2(H)4(κ2-S)(IMes)2(S(O)(CH2Ph)2)2] is formed from dibenzylsulfoxide, demonstrating the wider utility of this transformation.
Collapse
Affiliation(s)
- Ben J. Tickner
- Center for Hyperpolarisation
in Magnetic Resonance (CHyM), University
of York, Heslington, York YO10 5NY, United
Kingdom
| | - Rachel R. Parker
- Department of Chemistry, University
of York, Heslington, York YO10 5DD, United Kingdom
| | - Adrian C. Whitwood
- Department of Chemistry, University
of York, Heslington, York YO10 5DD, United Kingdom
| | - Simon B. Duckett
- Center for Hyperpolarisation
in Magnetic Resonance (CHyM), University
of York, Heslington, York YO10 5NY, United
Kingdom
| |
Collapse
|
33
|
Tickner BJ, Lewis JS, John RO, Whitwood AC, Duckett SB. Mechanistic insight into novel sulfoxide containing SABRE polarisation transfer catalysts. Dalton Trans 2019; 48:15198-15206. [PMID: 31576870 DOI: 10.1039/c9dt02951f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signal Amplification By Reversible Exchange (SABRE) is a hyperpolarisation technique that commonly uses [Ir(H)2(carbene)(substrate)3]Cl complexes to catalytically transfer magnetisation from para-hydrogen derived hydride ligands to coordinated substrates. Here, we explore the reactivity of a novel class of such catalysts based on sulfoxide containing [IrCl(H)2(carbene)(DMSO)2], which are involved in the hyperpolarisation of pyruvate using SABRE. We probe the reactivity of this species by NMR and DFT and upon reaction with sodium pyruvate establish the formation of two isomers of [Ir(H)2(η2-pyruvate)(DMSO)(IMes)]. Studies with related disodium oxalate yield [Ir2(H)4(IMes)2(DMSO)2(η2-κ2-Oxalate)] that is characterised by NMR and X-ray diffraction.
Collapse
Affiliation(s)
- Ben J Tickner
- Center for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington, York YO10 5NY, UK.
| | | | | | | | | |
Collapse
|
34
|
Richardson PM, Iali W, Roy SS, Rayner PJ, Halse ME, Duckett SB. Rapid 13C NMR hyperpolarization delivered from para-hydrogen enables the low concentration detection and quantification of sugars. Chem Sci 2019; 10:10607-10619. [PMID: 32110347 PMCID: PMC7020793 DOI: 10.1039/c9sc03450a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
The monosaccharides glucose and fructose are rapidly detected and quantified by 13C NMR in conjunction with the hyperpolarisation method signal amplification by reversible exchange-relay.
Monosaccharides, such as glucose and fructose, are important to life. In this work we highlight how the rapid delivery of improved 13C detectability for sugars by nuclear magnetic resonance (NMR) can be achieved using the para-hydrogen based NMR hyperpolarization method SABRE-Relay (Signal Amplification by Reversible Exchange-Relay). The significant 13C signal enhancements of 250 at a high field of 9.4 T, and 3100 at a low field of 1 T, enable the detection of trace amounts of these materials as well as the quantification of their tautomeric makeup. Using studies on 13C and 2H isotopically labelled agents we demonstrate how hyperpolarization lifetime (T1) values can be extended, and how singlet states with long lifetimes can be created. The precise quantification of d-glucose-13C6-d7 at the millimolar concentration level is shown to be possible within minutes in conjunction with a linear hyperpolarized response as a function of concentration. In addition to the measurements using labelled materials, low concentration detection is also illustrated for millimolar samples with natural abundance 13C where isomeric form quantification can be achieved with a single transient.
Collapse
Affiliation(s)
- Peter M Richardson
- The Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , UK .
| | - Wissam Iali
- The Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , UK .
| | - Soumya S Roy
- The Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , UK .
| | - Peter J Rayner
- The Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , UK .
| | - Meghan E Halse
- The Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , UK .
| | - Simon B Duckett
- The Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , UK .
| |
Collapse
|
35
|
Stanbury EV, Richardson PM, Duckett SB. Understanding substrate substituent effects to improve catalytic efficiency in the SABRE hyperpolarisation process. Catal Sci Technol 2019; 9:3914-3922. [PMID: 31814960 PMCID: PMC6836623 DOI: 10.1039/c9cy00396g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/04/2019] [Indexed: 01/19/2023]
Abstract
The use of parahydrogen based hyperpolarisation in NMR is becoming more widespread due to the rapidly expanding range of suitable target molecules and low-cost of parahydrogen production. Hyperpolarisation via SABRE catalysis employs a metal complex to transfer polarisation from parahydrogen into a substrate whilst they are bound. In this paper we present a quantitative study of substrate-iridium ligation effects by reference to the substrates 4-chloropyridine (A), 4-pyridinecarboxaldehyde methyl hemiacetal (B), 4-methylpyridine (C) and 4-methoxypyridine (D), and evaluate the role they play in the SABRE catalysis. Substrates whose substituents enable stronger associations yield slower substrate dissociation rates (k d). A series of variable temperature studies link these exchange rates to optimal SABRE performance and reveal the critical impact of NMR relaxation times (T 1). Longer catalyst residence times are shown to result in shorter substrate T 1 values in solution as binding to iridium promotes relaxation thereby not only reducing SABRE efficiency but decreasing the overall level of achieved hyperpolarisation. Based on these data, a route to achieve more optimal SABRE performance is defined.
Collapse
Affiliation(s)
- Emma V Stanbury
- Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , York , YO10 5NY UK .
| | - Peter M Richardson
- Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , York , YO10 5NY UK .
| | - Simon B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , York , YO10 5NY UK .
| |
Collapse
|