1
|
Rao H, An X, Qu X, Yu J, Xie J, Ke J, Liu Z, You L, Qiu Z, Tian L, Du W, Li W, Jia J, Liu D, Li S. SGLT2i delays c-Myc-induced HCC progression via targeting mTOR. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167805. [PMID: 40113049 DOI: 10.1016/j.bbadis.2025.167805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/23/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) stands as a primary malignant liver tumor characterized by metabolic reprogramming. The oncogene c-Myc exerts substantial influence by driving the transcription of numerous genes. Empagliflozin (EMPA), a sodium-glucose cotransporter-2 inhibitor (SGLT2i), is widely used in the treatment of type 2 diabetes and has recently attracted attention for its potential anti-cancer effects. This study aims to unravel the complex interplay among c-Myc, EMPA, and the mammalian target of rapamycin (mTOR) in HCC development and progression. METHODS HCC induction in mice utilized high-pressure hydrodynamic transfection of the c-Myc plasmid. QPCR and immunohistochemistry experiments were performed to detect the expression of SGLT2 in HCC tissues. In vivo experiments were conducted to corroborate the upregulation of SGLT2 following c-Myc transfection. In invo and vitro investigations were conducted to evaluate the anti-cancer effects of two SGLT2i: EMPA and canagliflozin (CANA). Network pharmacology, molecular docking analyses, CETSA experiments, and additional western blot experiments were used to reveal EMPA's interaction inhibition with mTOR. RESULTS The study identified an increase in SGLT2 expression in HCC tissues as a result of c-Myc overexpression. In vitro experiments confirmed the upregulation of SGLT2 following c-Myc transfection. Notably, the administration of SGLT2i effectively curtailed liver cancer progression, and reduced hepatic fat accumulation in mice. EMPA exhibited significant suppression of cell proliferation in c-Myc-transfected cells. In vitro experiments unveiled EMPA's interaction and with inhibition the activation of mTOR. CONCLUSION Our study highlights EMPA's potential as a therapeutic agent in delaying the development and progression of HCC.
Collapse
Affiliation(s)
- Huiling Rao
- School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, People's Republic of China; Department of Medical Engineering, The First Affiliated Hospital of Army Medical University, Chongqing 400000, People's Republic of China
| | - Xiaotong An
- School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Xinyang Qu
- School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Juan Yu
- School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, People's Republic of China; Department of Anesthesiology, People's Hospital of Yunxi County of Hubei Province, Yunxi 442600, People's Republic of China
| | - Jin Xie
- School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Jing Ke
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Zhixin Liu
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Lei You
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Lin Tian
- Department of Pathology, Renming Hospital, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Weixing Du
- Department of Pathology, Renming Hospital, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Wanrong Li
- School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Jie Jia
- School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, People's Republic of China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, People's Republic of China.
| | - Danwen Liu
- School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, People's Republic of China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, People's Republic of China.
| | - Shan Li
- School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, People's Republic of China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, People's Republic of China.
| |
Collapse
|
2
|
Yan Q, Sun X, Wang Y, Duan S, Wang B. The effect of continuous infusion chemotherapy through femoral artery catheterization on GP73, AFP-L3, and safety efficacy in liver cancer patients. Clin Exp Med 2025; 25:148. [PMID: 40347395 PMCID: PMC12065681 DOI: 10.1007/s10238-025-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/06/2025] [Indexed: 05/12/2025]
Abstract
This study examines the impact of continuous infusion chemotherapy via femoral artery catheterization on Golgi protein 73 (GP73) and alpha fetoprotein heterogeneity (AFP-L3) in liver cancer patients. A retrospective analysis was conducted on 108 liver cancer patients treated from January 2020 to December 2022, divided into two groups: transarterial chemoembolization (TACE) and continuous infusion regional arterial chemotherapy via femoral artery catheterization (CIFAC), with 54 patients in each group. Serum tumor markers, liver function, adverse reactions, quality of life, and 1-year survival rate were analyzed and compared between the two groups of patients. Prior to treatment, no significant differences were observed in tumor markers, liver function, and quality of life between groups (P > 0.05). After 60 and 90 days, the CIFAC group exhibited significantly lower levels of GP73, AFP, and AFP-L3 compared to TACE (P < 0.05). Additionally, CIFAC patients had lower levels of alanine aminotransferase (ALT), aspartate transaminase (AST), indocyanine green (ICG15) (P < 0.05), reduced adverse reactions (nausea, vomiting, etc.), and higher Karnofsky scores (P < 0.05). The one-year survival rate of the CIFAC group was significantly higher than that of the TACE group (P < 0.05). Continuous infusion chemotherapy through femoral artery catheterization can help reduce serum tumor marker levels, improve liver function, and reduce adverse reactions in liver cancer patients.
Collapse
Affiliation(s)
- Qiong Yan
- Interventional Catheterization Room, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China
| | - Xinguo Sun
- Interventional Catheterization Room, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China
| | - Yubo Wang
- Production Department, Guhan Traditional Chinese Medicine Co., Ltd, Hengyang, 421000, China
| | - Shijiao Duan
- Interventional Catheterization Room, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China
| | - Bo Wang
- Physical examination center, Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, China.
| |
Collapse
|
3
|
Wang Z, Lu J, Liu X, Liu J, Li J. Identification of key exosomes-related genes in hepatitis B virus-related hepatocellular carcinoma. Technol Health Care 2025; 33:1343-1357. [PMID: 40331539 DOI: 10.1177/09287329241296353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
One of the primary risk factors for hepatocellular carcinoma (HCC) is the hepatitis B virus (HBV). Exosomes have a significant impact on the dissemination of HBV-infected HCC. This study aimed to screen HBV exosome-related hub genes in HCC for a better understanding of the HCC pathogenic mechanism. First, multiple HBV-induced HCC datasets were collected from the Gene Expression Omnibus (GEO) database, and the exosome-related gene set was obtained from relevant literature. Nine HBV-related HCC exosome hub genes (HP, C9, APOA1, PON1, TTR, LPA, FCN2, FCN3, and MBL2) were selected through differential analysis and network analysis. An analysis of the receiver operation characteristic (ROC) revealed that these genes had good diagnostic value. These hub genes were primarily enriched in biological processes such as the citrate cycle tca cycle, phenylalanine metabolism, and fatty acid metabolism, according to gene set enrichment analysis (GSEA). Furthermore, this study predicted the miRNA (hsa-miR-590-5p) targeting LPA, as well as 12 lncRNAs (AL121655, SAP30-DT, LINC00472, etc.) targeting hsa-miR-590-5p. Finally, nelarabine, methylprednisolone, and methylprednisolone were predicted to be possible medications that target the hub gene based on the CellMiner database. To sum up, this work was crucial for discovering new biomarkers and comprehending the function of exosome-related genes in the growth of HBV-infected HCC.
Collapse
Affiliation(s)
- Zhuoyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Jianfang Lu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Xiangyan Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Jingfeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Jianhui Li
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
4
|
Zhang W, Xu Y, Fang Y, Li M, Li D, Guo H, Li H, He J, Miao L. Ubiquitination in lipid metabolism reprogramming: implications for pediatric solid tumors. Front Immunol 2025; 16:1554311. [PMID: 40370434 PMCID: PMC12075147 DOI: 10.3389/fimmu.2025.1554311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Pediatric solid tumors represent a significant subset of childhood cancers, accounting for approximately 60% of new diagnoses. Despite advancements in therapeutic strategies, survival rates remain markedly disparate between high-income and resource-limited settings, underscoring the urgent need for novel and effective treatments. Lipid metabolic reprogramming is a fundamental hallmark of cancer, driving tumor progression, therapeutic resistance, and immune evasion through enhanced fatty acid uptake, increased de novo lipid synthesis, and activated fatty acid β-oxidation (FAO). Ubiquitination, a dynamic post-translational modification mediated by the ubiquitin-proteasome system (UPS), plays a crucial role in regulating lipid metabolism by modulating the stability and activity of key metabolic enzymes and transporters involved in cholesterol and fatty acid pathways. This review comprehensively examines the complex interplay between ubiquitination and lipid metabolic reprogramming in pediatric solid tumors. It delineates the mechanisms by which ubiquitination influences cholesterol biosynthesis, uptake, efflux, and fatty acid synthesis and oxidation, thereby facilitating tumor growth and survival. Furthermore, the review identifies potential UPS-mediated therapeutic targets and explores the feasibility of integrating ubiquitination-based strategies with existing treatments. By targeting the UPS to disrupt lipid metabolism pathways, novel therapeutic avenues may emerge to enhance treatment efficacy and overcome resistance in pediatric oncology. This synthesis of current knowledge aims to provide a foundation for the development of innovative, precision medicine approaches to improve clinical outcomes for children afflicted with solid tumors.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yile Xu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yingjin Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hang Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Chen Q, Jin J, Li P, Wang X, Wang Q. Navigating Glioma Complexity: The Role of Abnormal Signaling Pathways in Shaping Future Therapies. Biomedicines 2025; 13:759. [PMID: 40149733 PMCID: PMC11940491 DOI: 10.3390/biomedicines13030759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Gliomas are a type of highly heterogeneous and invasive central nervous system tumor. Traditional treatment methods have limited efficacy, and the prognosis for patients remains poor. Recent studies have revealed the crucial roles of several abnormal signaling pathways in the pathogenesis of gliomas, including the Receptor Tyrosine Kinase/Rat Sarcoma Virus Oncogene/Phosphatidylinositol-3-Kinase (RTK/RAS/PI3K) pathway, the Wingless-Related Integration Site/β-Catenin (Wnt/β-Catenin) pathway, the Hippo/YAP (Hippo/Yes-associated protein) pathway, and the Slit/Robo (Slit Guidance Ligands/Roundabout) signaling pathway. These pathways play extremely vital roles in tumor proliferation, invasion, and treatment resistance. This article comprehensively and systematically reviews the molecular mechanisms of these signaling pathways, deeply summarizing the research progress of various treatment strategies, including targeted inhibitors, gene therapy, and nanomedicine against them. Moreover, the combination of targeted therapy and personalized treatment regimens is expected to overcome the current treatment bottleneck and provide a more favorable survival prognosis for glioblastoma patients.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China;
| | - Jin Jin
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China;
| | - Pian Li
- Liyuan Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China;
| | - Xiuping Wang
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China;
| | - Qianyan Wang
- Liyuan Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China;
| |
Collapse
|
6
|
Qian Y, Bu Z, Qin Y, Qian S, Qin L, Zhou S, Wang Q, Xian L, Hu L, Xiong Y, Zhang Y, Wang C. Exploring the role of adipokines in exercise-induced inhibition of tumor growth. SPORTS MEDICINE AND HEALTH SCIENCE 2025; 7:143-156. [PMID: 39811408 PMCID: PMC11726049 DOI: 10.1016/j.smhs.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 01/16/2025] Open
Abstract
The integration of exercise prescriptions into cancer adjuvant therapy presents challenges stemming from the ambiguity surrounding the precise mechanism through which exercise intervention mitigates the risk of hepatocellular carcinoma (HCC) mortality and recurrence. Elucidation of this specific mechanism has substantial social and clinical implications. In this study, tumor-bearing mice engaged in voluntary wheel running exhibited a notable decrease in tumor growth, exceeding 30%. Microarray analysis revealed an upregulation of cytokine-related pathways as a potential explanation for this effect. The inclusion of granulocyte-macrophage colony-stimulating factor (GM-CSF) was found to enhance tumor cell proliferation, while the absence of GM-CSF resulted in a marked inhibition of tumor cell growth. The findings suggest that exercise-induced serum from mice can impede the proliferation of mouse tumor cells, with the adipokine chemerin inhibiting the growth factor GM-CSF. Additionally, exercise was found to stimulate chemerin secretion by brown adipose tissue. Chemerin suppression led to a reduction in the inhibition of tumor cell proliferation. The results of this study suggest that exercise may stimulate the release of adipokines from brown adipose tissue, transport them through the blood to the distant tumor microenvironment, and downregulate GM-CSF expression, alleviating tumor immunosuppression in the tumor microenvironment, thereby inhibiting at HCC progression. These findings provide a theoretical basis for incorporating exercise prescription into cancer treatment.
Collapse
Affiliation(s)
- Yu Qian
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Zhenglong Bu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yang Qin
- School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, China
| | - Shiyuan Qian
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Lu Qin
- School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, China
| | - Siqi Zhou
- School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qingda Wang
- School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, China
| | - Longjun Xian
- School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lei Hu
- School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yimei Xiong
- School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingying Zhang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Chun Wang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| |
Collapse
|
7
|
Lou N, Gu X, Fu L, Li J, Xue C. Significant roles of RNA 5-methylcytosine methylation in cancer. Cell Signal 2025; 126:111529. [PMID: 39615772 DOI: 10.1016/j.cellsig.2024.111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/06/2024]
Abstract
Cancer stands as a leading cause of mortality and poses an escalating threat to global health. Epigenetic dysregulation is pivotal in the onset and advancement of cancer. Recent research on RNA 5-methylcytosine (m5C) methylation has underscored its significant role in cancer. RNA m5C methylation is a key component in gene expression regulation and is intricately linked to cancer development, offering valuable insights for cancer diagnosis, treatment, and prognosis. This review provides an in-depth examination of the three types of regulators associated with RNA m5C methylation and their biological functions. It further investigates the expression and impact of RNA m5C methylation and its regulators in cancer, focusing on their mechanisms in cancer progression and clinical relevance. The current research on inhibitors targeting RNA m5C methylation-related regulators remains underdeveloped, necessitating further exploration and discovery.
Collapse
Affiliation(s)
- Na Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Leiya Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
8
|
Yang Z, Chen Y, Miao Y, Yan H, Chen K, Xu Y, Su L, Zhang L, Yan Y, Chi H, Fu J, Wang L. Elucidating stearoyl metabolism and NCOA4-mediated ferroptosis in gastric cancer liver metastasis through multi-omics single-cell integrative mendelian analysis: advancing personalized immunotherapy strategies. Discov Oncol 2025; 16:46. [PMID: 39812999 PMCID: PMC11735723 DOI: 10.1007/s12672-025-01769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC. OBJECTIVE Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC). Following this, bulk transcriptome analyses and single-cell multiomics techniques to investigate the roles of stearoyl-GPE metabolism-related genes, particularly NCOA4, in regulating LMGC TME. RESULTS Our analysis highlights the crucial role of stearoyl metabolism in modulating the complex microenvironment of LMGC, particularly impacting monocyte cells. Through single-cell sequencing and spatial transcriptomics, we have identified key metabolic genes specific to stearoyl metabolism within the monocyte cell population, including NCOA4. Regarding the relationship between ferroptosis, stearoyl metabolism, and LMGC findings, it is plausible that stearoyl metabolism and LMGC pathways intersect with mechanisms involved in ferroptosis. Ferroptosis, characterized by iron-dependent lipid peroxidation, represents a regulated form of cell death. The activity of Stearoyl-CoA desaturase (SCD), a critical enzyme in stearoyl metabolism, has been associated with the modulation of lipid composition and susceptibility to ferroptosis. Furthermore, the LMGC is integral to cellular processes related to oxidative stress and lipid metabolism, both of which are significant factors in the context of ferroptosis. CONCLUSION This study enhances the understanding of the relationship between stearoyl metabolism and ferroptosis in promoting liver metastasis of gastric cancer and its role in the regulation of tumor heterogeneity. In addition, this study contributes to a deeper understanding of the dynamics of gastric cancer tumor microenvironment (TME) and provides a basis for the development of better interventions to combat cancer metastasis.
Collapse
Affiliation(s)
- Zhongqiu Yang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, 635000, China
| | - Yuquan Chen
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, 3004, Australia
| | - Yaping Miao
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Haisheng Yan
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Kexin Chen
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yaoqin Xu
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Lanqian Su
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lanyue Zhang
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yalan Yan
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hao Chi
- School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
| | - Jin Fu
- Department of Laboratory Medicine, Chonggang General Hospital, Chongqing, 400080, China.
| | - Lexin Wang
- Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
| |
Collapse
|
9
|
Li C, Wang F, Mao Y, Ma Y, Guo Y. Multi-omics reveals the mechanism of Trimethylamine N-oxide derived from gut microbiota inducing liver fatty of dairy cows. BMC Genomics 2025; 26:10. [PMID: 39762777 PMCID: PMC11702196 DOI: 10.1186/s12864-024-11067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a metabolite produced by gut microbiota, and its potential impact on lipid metabolism in mammals has garnered widespread attention in the scientific community. Bovine fatty liver disease, a metabolic disorder that severely affects the health and productivity of dairy cows, poses a significant economic burden on the global dairy industry. However, the specific role and pathogenesis of TMAO in bovine fatty liver disease remain unclear, limiting our understanding and treatment of the condition. This study aims to construct a bovine fatty liver cell model using an integrated approach that combines transcriptomic, proteomic, and metabolomic data. The objective is to investigate the impact of TMAO on lipid metabolism at the molecular level and explore its potential regulatory mechanisms. RESULTS We established an in vitro bovine fatty liver cell model and conducted a comprehensive analysis of cells treated with TMAO using high-throughput omics sequencing technologies. Bioinformatics methods were employed to delve into the regulatory effects on lipid metabolism, and several key genes were validated through RT-qPCR. Treatment with TMAO significantly affected 4790 genes, 397 proteins, and 137 metabolites. KEGG enrichment analysis revealed that the significantly altered molecules were primarily involved in pathways related to the pathology of fatty liver disease, such as metabolic pathways, insulin resistance, hepatitis B, and the AMPK signaling pathway. Moreover, through joint analysis, we further uncovered that the interaction between TMAO-mediated AMPK signaling and oxidative phosphorylation pathways might be a key mechanism promoting lipid accumulation in the liver. CONCLUSIONS Our study provides new insights into the role of TMAO in the pathogenesis of bovine fatty liver disease and offers a scientific basis for developing more effective treatment strategies.
Collapse
Affiliation(s)
- Chenlei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Feifei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yongxia Mao
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yansheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
10
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
11
|
Shen Y, Qiu A, Huang X, Wen X, Shehzadi S, He Y, Hu Q, Zhang J, Luo D, Yang S. AKR1B10 and digestive tumors development: a review. Front Immunol 2024; 15:1462174. [PMID: 39737179 PMCID: PMC11682995 DOI: 10.3389/fimmu.2024.1462174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Aldo-keto reductase family 1 member B10 (AKR1B10) is a member of the AKR1B subfamily. It is mainly found in cytoplasm, and it is typically expressed in the stomach and intestines. Given that its expression is low or absent in other tissues, AKR1B10 is a potential diagnostic and therapeutic biomarker for various digestive system diseases. Here, we review recent research progress on AKR1B10 in digestive system tumors such as hepatocellular carcinoma, gastric carcinoma, colorectal carcinoma, pancreatic carcinoma, oral squamous cell carcinoma, laryngeal squamous cell carcinoma, cholangiocarcinoma, and nasopharyngeal carcinoma, over the last 5 years. We also discuss the current trends and future research directions for AKR1B10 in both oncological and non-oncological diseases to provide a scientific reference for further exploration of this gene.
Collapse
Affiliation(s)
- Yao Shen
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ailin Qiu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin Huang
- Laboratory Medicine Center, Shenzhen Luohu Hospital Group, the Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaosha Wen
- Laboratory Medicine Center, Shenzhen Luohu Hospital Group, the Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
| | - Sundar Shehzadi
- Laboratory Medicine Center, Shenzhen Luohu Hospital Group, the Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
| | - Yan He
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jian Zhang
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dixian Luo
- Laboratory Medicine Center, Shenzhen Luohu Hospital Group, the Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
| | - Shenghui Yang
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Preventive Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
12
|
Chen G, Zhang Y, Zhou Y, Luo H, Guan H, An B. Targeting the mTOR Pathway in Hepatocellular Carcinoma: The Therapeutic Potential of Natural Products. J Inflamm Res 2024; 17:10421-10440. [PMID: 39659752 PMCID: PMC11630751 DOI: 10.2147/jir.s501270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024] Open
Abstract
Despite advancements in cancer treatment through surgery and drugs, hepatocellular carcinoma (HCC) remains a significant challenge, as reflected by its low survival rates. The mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in regulating the cell cycle, proliferation, apoptosis, and metabolism. Notably, dysregulation leading to the activation of the mTOR signaling pathway is common in HCC, making it a key focus for in-depth research and a target for current therapeutic strategies. This review focuses on the role of the mTOR signaling pathway and its downstream effectors in regulating HCC cell proliferation, apoptosis, autophagy, cell cycle, and metabolic reprogramming. Moreover, it emphasizes the potential of natural products as modulators of the mTOR signaling pathway. When incorporated into combination therapies, these natural products have been demonstrated to augment therapeutic efficacy and surmount drug resistance. These products target key signaling pathways such as mTOR signaling pathways. Examples include 11-epi-sinulariolide acetate, matrine, and asparagus polysaccharide. Their inhibitory effects on these processes suggest valuable directions for the development of more effective HCC therapeutic strategies. Various natural products have demonstrated the ability to inhibit mTOR signaling pathway and suppress HCC progression. These phytochemicals, functioning as mTOR signaling pathway inhibitors, hold great promise as potential anti-HCC agents, especially in the context of overcoming chemoresistance and enhancing the outcomes of combination therapies.
Collapse
Affiliation(s)
- Guo Chen
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Ya Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Yaqiao Zhou
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Hao Luo
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Hongzhi Guan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Baiping An
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
13
|
Ligi S, Ali A, Yang G. Cystathionine gamma-lyase deficiency exaggerates diethylnitrosamine-induced liver damage in mice. Nitric Oxide 2024; 151:1-9. [PMID: 39151724 DOI: 10.1016/j.niox.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Cystathionine gamma-lyase (CSE) is a key enzyme in reverse transsulfuration pathway and contributes to the majority of H2S generation in liver tissues via cysteine metabolism. Dysfunction of the CSE/H2S system is linked to both chronic and acute liver damage. This study investigated the regulatory role of CSE deficiency on diethylnitrosamine (DEN)-induced liver damage in mice. A single injection of DEN was administered into 4-week-old male CSE knockout (CSE-KO) mice and wild-type (WT) littermates, and the mice were sacrificed at 28 weeks of age. Compared to age-matched WT mice, CSE-KO mice spontaneously developed steatosis with increased oxidative stress and higher expressions of inflammation and fibrosis-related genes at 28-weeks of age. Following DEN injection, CSE-KO mice experienced more severe liver damage in comparison with the WT group as reflected by elevated levels of lipid accumulation, increased activities of alanine aminotransferase and aspartate aminotransferase, higher oxidative stress and fibrosis development, and increased expressions of inflammation and fibrosis-related genes. No visible tumors were observed in both types of mice with DEN treatment. In addition, the expression levels of the three H2S-generating proteins (CSE, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase) and the H2S production rate in liver tissues were unaffected by DEN. Taken together, our study demonstrates that CSE provides a significant hepatoprotective effect and deficiency of CSE exaggerates DEN-induced liver damage in mice. Based on these findings, it can be suggested that targeting the CSE/H2S signaling pathway could be a potential therapeutic target for the treatment of liver diseases.
Collapse
Affiliation(s)
- Samantha Ligi
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Arm Ali
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
14
|
Xu Q, Liu H, Ding Shiwen Fan X, Lv W, Jiang Y, Liang Y, Xu H, Dai J. PGC-1α regulates endoplasmic reticulum stress in IPF-derived fibroblasts. Int Immunopharmacol 2024; 138:112514. [PMID: 38943974 DOI: 10.1016/j.intimp.2024.112514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 07/01/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is considered to be associated with aging. Both ER stress and the unfolded protein response (UPR) have been associated with pulmonary fibrosis via key mechanisms including AEC apoptosis, EMT, altered myofibroblast differentiation, and M2 macrophage polarization. A relationship between ER stress and aging has also been demonstrated in vitro, with increased p16 and p21 levels seen in lung epithelial cells of older IPF patients. The mechanism underlying ER stress regulation of IPF fibroblasts is still unclear. In this study, we aimed to delineate ER stress regulation in IPF-derived fibroblasts. Here, we found that ER stress markers (p-eIF2α, p-IREα, ATF6) and fibrosis markers (α-SMA and Collagen-I) were significantly increased in lung tissues of IPF patients and bleomycin-induced mouse models. Notably, the expression of PGC-1α was decreased in fibroblasts. In vivo experiments were designed using an AAV-6 vector mediated conditional PGC-1α knockout driven by a specific α-SMA promoter. Ablation of PGC-1α expression in fibroblasts promoted ER stress and supported the development of pulmonary fibrosis in a bleomycin-induced mouse model. In another experimental group, mice with conditional knockout of PGC-1α in fibroblasts and injected intraperitoneally with 4-PBA (an endoplasmic reticulum stress inhibitor) were protected from lung fibrosis. We further constructed an AAV-6 vector mediated PGC-1α overexpression model driven by a specific Collagen-I promoter. Overexpression of PGC-1α in fibroblasts suppressed ER stress and attenuated development of pulmonary fibrosis in bleomycin-induced mouse models. Taken together, this study identified PGC-1α as a promising target for developing novel therapeutic options for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Qinghua Xu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Huarui Liu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiaorui Ding Shiwen Fan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Wenting Lv
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yuxian Jiang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yi Liang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hongyang Xu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
15
|
Wang M, Qu L, Du X, Song P, Ng JPL, Wong VKW, Law BYK, Fu X. Natural Products and Derivatives Targeting Metabolic Reprogramming in Colorectal Cancer: A Comprehensive Review. Metabolites 2024; 14:490. [PMID: 39330497 PMCID: PMC11433951 DOI: 10.3390/metabo14090490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Metabolic reprogramming is a critical pathogenesis of colorectal cancer (CRC), referring to metabolic disorders that cancer cells make in response to the stimulating pressure. Metabolic reprogramming induces changes in genetic material and promotes CRC progression and has been proven to be an efficient target of CRC. As natural products have garnered interest due to notable pharmacological effects and potential in counteracting chemoresistance, an increasing body of research is delving into the impact of these natural products on the metabolic reprogramming associated with CRC. In this review, we collected published data from the Web of Science and PubMed, covering the period from January 1980 to October 2023. This article focuses on five central facets of metabolic alterations in cancer cells, glucose metabolism, mitochondrial oxidative phosphorylation (OXPHOS), amino acid metabolism, fatty acid synthesis, and nucleotide metabolism, to provide an overview of recent advancements in natural product interventions targeting metabolic reprogramming in CRC. Our analysis underscores the potential of natural products in disrupting the metabolic pathways of CRC, suggesting promising therapeutic targets for CRC and expanding treatment options for metabolic-associated ailments.
Collapse
Affiliation(s)
- Mengyu Wang
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Liqun Qu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| | - Xinying Du
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| | - Peng Song
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jerome P. L. Ng
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Vincent Kam Wai Wong
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Betty Yuen Kwan Law
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Xianjun Fu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| |
Collapse
|
16
|
Moghadam SG, Ebrahimpour M, Alavizadeh SH, Kesharwani P, Sahebkar A. The association between oxidized low-density lipoprotein and cancer: An emerging targeted therapeutic approach? Bioorg Med Chem Lett 2024; 106:129762. [PMID: 38649117 DOI: 10.1016/j.bmcl.2024.129762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Lipids play an important role in varying vital cellular processes including cell growth and division. Elevated levels of low-density lipoprotein (LDL) and oxidized-LDL (ox-LDL), and overexpression of the corresponding receptors including LDL receptor (LDLR), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and cluster of differentiation 36 (CD36), have shown strong correlations with different facets of carcinogenesis including proliferation, invasion, and angiogenesis. Furthermore, a high serum level of LOX-1 is considered as a poor prognostic factor in many types of cancer including colorectal cancer. Ox-LDL could contribute to cancer progression and metastasis through endothelial-to-mesenchymal transition (EMT) and autophagy. Thus, many studies have shed light on the significant role of ox-LDL as a potential therapeutic target for cancer therapy. In various repurposing approaches, anti-dyslipidemia agents, phytochemicals, autophagy modulators as well as recently developed ldl-like nanoparticles have been investigated as potential tumor therapeutic agents by targeting oxidized-LDL/LOX-1 pathways. Herein, we reviewed the role of oxidized-LDL and LOX-1 in cancer progression, invasion, metastasis, and also cancer-associated angiogenesis. Moreover, we addressed therapeutic utility of several compounds that proved to be capable of targeting the metabolic moieties in cancer. This review provides insights on the potential impact of targeting LDL and ox-LDL in cancer therapy and their future biomedical implementations.
Collapse
Affiliation(s)
- Samin Ghorbani Moghadam
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrshad Ebrahimpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Feng D, Wang Z, Cao S, Xu H, Li S. Identification of lipid metabolism-related gene signature in the bone marrow microenvironment of multiple myelomas through deep analysis of transcriptomic data. Clin Exp Med 2024; 24:136. [PMID: 38916672 PMCID: PMC11199273 DOI: 10.1007/s10238-024-01398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Dysregulated lipid metabolism in the bone marrow microenvironment (BMM) plays a vital role in multiple myeloma (MM) development, progression, and drug resistance. However, the exact mechanism by which lipid metabolism impacts the BMM, promotes tumorigenesis, and triggers drug resistance remains to be fully elucidated.By analyzing the bulk sequencing and single-cell sequencing data of MM patients, we identified lipid metabolism-related genes differential expression significantly associated with MM prognosis, referred to as LMRPgenes. Using a cohort of ten machine learning algorithms and 117 combinations, LMRPgenes predictive models were constructed. Further exploration of the effects of the model risk score (RS) on the survival status, immune status of patients with BMM, and response to immunotherapy was conducted. The study also facilitated the identification of personalized therapeutic strategies targeting specified risk categories within patient cohorts.Analysis of the scRNA-seq data revealed increased lipid metabolism-related gene enrichment scores (LMESs) in erythroblasts and progenitor, malignant, and Tprolif cells but decreased LMESs in lymphocytes. LMESs were also strongly correlated with most of the 50 hallmark pathways within these cell populations. An elevated malignant cell ratio and reduced lymphocytes were observed in the high LMES group. Moreover, the LMRPgenes predictive model, consisting of 14 genes, showed great predictive power. The risk score emerged as an independent indicator of poor outcomes. Inverse relationships between the RS and immune status were noted, and a high RS was associated with impaired immunotherapy responses. Drug sensitivity assays indicated the effectiveness of bortezomib, buparlisib, dinaciclib, staurosporine, rapamycin, and MST-312 in the high-RS group, suggesting their potential for treating patients with high-RS values and poor response to immunotherapy. Ultimately, upon verification via qRT-PCR, we observed a significant upregulation of ACBD6 in NDMM group compared to the control group.Our research enhances the knowledge base regarding the association between lipid metabolism-related genes (LMRGs) and the BMM in MM patients, offering substantive insights into the mechanistic effects of the BMM mediated by LMRGs.
Collapse
Affiliation(s)
- Dan Feng
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, 116011, China
| | - Zhen Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, 116011, China
| | - Shengji Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, 116011, China
| | - Hui Xu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, 150000, Heilongjiang, China
| | - Shijun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, 116011, China.
- College of Laboratory Medicine, Dalian Medical University, Liaoning, Dalian, 116044, China.
| |
Collapse
|
18
|
Xu YY, Bai RX, Zhang QR, Zhang S, Zhang JH, Du SY. A comprehensive analysis of GAS2 family members identifies that GAS2L1 is a novel biomarker and promotes the proliferation of hepatocellular carcinoma. Discov Oncol 2024; 15:220. [PMID: 38858234 PMCID: PMC11164853 DOI: 10.1007/s12672-024-01083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common primary liver cancer with a high incidence and mortality. Members of the growth-arresting-specific 2 (GAS2) family are involved in various biological processes in human malignancies. To date, there is only a limited amount of information available about the expression profile and clinical importance of GAS2 family in HCC. In this study, we found that GAS2L1 and GAS2L3 were distinctly upregulated in HCC specimens compared to non-tumor specimens. Pan-cancer assays indicated that GAS2L1 and GAS2L3 were highly expressed in most cancers. The Pearson's correlation revealed that the expressions of GAS2, GAS2L1 and GAS2L2 were negatively associated with methylation levels. Survival assays indicated that GAS2L1 and GAS2L3 were independent prognostic factors for HCC patients. Immune cell infiltration analysis revealed that GAS2, GAS2L1 and GAS2L3 were associated with several immune cells. Finally, we confirmed that GAS2L1 was highly expressed in HCC cells and its knockdown suppressed the proliferation of HCC cells. Taken together, our findings suggested the expression patterns and prognostic values of GAS2 members in HCC, providing insights for further study of the GAS2 family as sensitive diagnostic and prognostic markers for HCC.
Collapse
Affiliation(s)
- Ying-Ying Xu
- Department of Gastroenterology, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Ru-Xue Bai
- Department of Gastroenterology, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Qing-Rui Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Shuang Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jun-Hai Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Shi-Yu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
19
|
Li A, Wang R, Zhao Y, Zhao P, Yang J. Crosstalk between Epigenetics and Metabolic Reprogramming in Metabolic Dysfunction-Associated Steatotic Liver Disease-Induced Hepatocellular Carcinoma: A New Sight. Metabolites 2024; 14:325. [PMID: 38921460 PMCID: PMC11205353 DOI: 10.3390/metabo14060325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Epigenetic and metabolic reprogramming alterations are two important features of tumors, and their reversible, spatial, and temporal regulation is a distinctive hallmark of carcinogenesis. Epigenetics, which focuses on gene regulatory mechanisms beyond the DNA sequence, is a new entry point for tumor therapy. Moreover, metabolic reprogramming drives hepatocellular carcinoma (HCC) initiation and progression, highlighting the significance of metabolism in this disease. Exploring the inter-regulatory relationship between tumor metabolic reprogramming and epigenetic modification has become one of the hot directions in current tumor metabolism research. As viral etiologies have given way to metabolic dysfunction-associated steatotic liver disease (MASLD)-induced HCC, it is urgent that complex molecular pathways linking them and hepatocarcinogenesis be explored. However, how aberrant crosstalk between epigenetic modifications and metabolic reprogramming affects MASLD-induced HCC lacks comprehensive understanding. A better understanding of their linkages is necessary and urgent to improve HCC treatment strategies. For this reason, this review examines the interwoven landscape of molecular carcinogenesis in the context of MASLD-induced HCC, focusing on mechanisms regulating aberrant epigenetic alterations and metabolic reprogramming in the development of MASLD-induced HCC and interactions between them while also updating the current advances in metabolism and epigenetic modification-based therapeutic drugs in HCC.
Collapse
Affiliation(s)
- Anqi Li
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Rui Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yuqiang Zhao
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Peiran Zhao
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| | - Jing Yang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (A.L.); (Y.Z.); (P.Z.)
| |
Collapse
|
20
|
Cheng Y, He J, Zuo B, He Y. Role of lipid metabolism in hepatocellular carcinoma. Discov Oncol 2024; 15:206. [PMID: 38833109 DOI: 10.1007/s12672-024-01069-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), an aggressive malignancy with a dismal prognosis, poses a significant public health challenge. Recent research has highlighted the crucial role of lipid metabolism in HCC development, with enhanced lipid synthesis and uptake contributing to the rapid proliferation and tumorigenesis of cancer cells. Lipids, primarily synthesized and utilized in the liver, play a critical role in the pathological progression of various cancers, particularly HCC. Cancer cells undergo metabolic reprogramming, an essential adaptation to the tumor microenvironment (TME), with fatty acid metabolism emerging as a key player in this process. This review delves into intricate interplay between HCC and lipid metabolism, focusing on four key areas: de novo lipogenesis, fatty acid oxidation, dysregulated lipid metabolism of immune cells in the TME, and therapeutic strategies targeting fatty acid metabolism for HCC treatment.
Collapse
Affiliation(s)
- Yulin Cheng
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Zuo
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China.
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
21
|
Ma K, Chu J, Liu Y, Sun L, Zhou S, Li X, Ji C, Zhang N, Guo X, Liang S, Cui T, Hu Q, Wang J, Liu Y, Liu L. Hepatocellular Carcinoma LINC01116 Outcompetes T Cells for Linoleic Acid and Accelerates Tumor Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400676. [PMID: 38460179 PMCID: PMC11151013 DOI: 10.1002/advs.202400676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Indexed: 03/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with a highly immunosuppressive tumor microenvironment and a typical pattern of disturbances in hepatic lipid metabolism. Long non-coding RNAs are shown to play an important role in the regulation of gene expression, but much remains unknown between tumor microenvironment and lipid metabolism as a bridging molecule. Here, long intergenic nonprotein coding RNA 01116 (LINC01116) acts as this molecular which is frequently upregulated in HCC patients and associated with HCC progression in vitro and in vivo is identified. Mechanistically, LINC01116 stabilizes EWS RNA-binding protein 1 (EWSR1) by preventing RAD18 E3 Ubiquitin Protein Ligase (RAD18) -mediated ubiquitination. The enhanced EWSR1 protein upregulates peroxisome proliferator activated receptor alpha (PPARA) and fatty acid binding protein1 (FABP1) expression, a long-chain fatty acid (LCFA) transporter, and thus cancer cells outcompete T cells for LCFAs, especially linoleic acid, for seeding their own growth, leading to T cell malfunction and HCC malignant progression. In a preclinical animal model, the blockade of LINC01116 leads to enhanced efficacy of anti-PD1 treatment accompanied by increased cytotoxic T cell and decreased exhausted T cell infiltration. Collectively, LINC01116 is an immunometabolic lncRNA and the LINC01116-EWSR1-PPARA-FABP1 axis may be targetable for cancer immunotherapy.
Collapse
Affiliation(s)
- Kun Ma
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Junhui Chu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Yufeng Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Linmao Sun
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Shuo Zhou
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Xianying Li
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Changyong Ji
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Ning Zhang
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Xinyu Guo
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Shuhang Liang
- Department of Gastrointestinal SurgeryAnhui Province Key Laboratory of Hepatopancreatobiliary SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Tianming Cui
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Qingsong Hu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Jiabei Wang
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Yao Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Anhui Province Key Laboratory of Hepatopancreatobiliary SurgeryHefeiAnhui230001China
- Anhui Provincial Clinical Research Center for Hepatobiliary DiseasesHefeiAnhui230001China
| | - Lianxin Liu
- Department of General SurgeryKey Laboratory of Hepatosplenic SurgeryMinistry of EducationThe First Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| |
Collapse
|
22
|
Zhu L, Shi Y, Feng Z, Yuan D, Guo S, Wang Y, Shen H, Li Y, Yan F, Wang Y. Fatostatin promotes anti-tumor immunity by reducing SREBP2 mediated cholesterol metabolism in tumor-infiltrating T lymphocytes. Eur J Pharmacol 2024; 971:176519. [PMID: 38522641 DOI: 10.1016/j.ejphar.2024.176519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Aberrant lipid metabolism impacts intratumoral T cell-mediated immune response and tumor growth. Fatostatin functions as an inhibitor of sterol regulatory element binding protein (SREBP) activation. However, the complex effects of fatostatin on cholesterol metabolism in the tumor microenvironment (TME) and its influence on T cell anti-tumor immunity remain unclear. In this study, fatostatin effectively suppressed B16 melanoma, MC38 colon cancer, and Lewis lung cancer (LLC) transplanted tumor growth in immunocompetent mice by reducing SREBPs-mediated lipid metabolism, especially cholesterol levels. Mechanistically, fatostatin decreased intracellular cholesterol accumulation and inhibited X-box binding protein 1 (XBP1)-mediated endoplasmic reticulum (ER) stress, reducing Treg cells and alleviating CD8+ T cell exhaustion in the TME, exerting anti-tumor activity. Nevertheless, this effect was impaired in immunodeficient nude mice, suggesting fatostatin's anti-tumor efficacy in transplanted tumors partly relies on T cell-mediated anti-tumor immunity. Our study highlights SREBP2-mediated cholesterol metabolism as a potential strategy for anti-tumor immunotherapy, and confirms fatostatin's promise in tumor immunotherapy.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yilin Shi
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhelong Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dingyi Yuan
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shiduo Guo
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxia Wang
- Department of Pharmaceutical Analysis, School of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Haowen Shen
- Department of Pharmaceutical Analysis, School of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Institute of Medical Device Testing, Nanjing, 210022, China
| | - Yan Li
- Integrated Service& Management Office, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China
| | - Fang Yan
- Department of Pharmaceutical Analysis, School of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yajing Wang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
23
|
Cheng L, Li Z, Zheng Q, Yao Q. Correlation study of serum lipid levels and lipid metabolism-related genes in cervical cancer. Front Oncol 2024; 14:1384778. [PMID: 38779100 PMCID: PMC11109420 DOI: 10.3389/fonc.2024.1384778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Objective Lipid metabolism plays an important role in cancer. The aim of this study was to investigate the relationship between lipid metabolism and the development of cervical cancer, and to explore the prognostic significance of lipid metabolism-related genes in patients with cervical cancer. Methods Initially, we retrospectively collected data from 1589 cervical cancer patients treated at the Affiliated Hospital of Qingdao University, with 1589 healthy individuals from the physical examination center serving as the control group. The correlation between their serum lipid levels and cervical cancer was analyzed. Subsequently, leveraging public databases, we conducted comprehensive studies on lipid metabolism-related genes. Additionally, we analyzed RNA expression profiling and clinical information sourced from TCGA and GTEx databases. Finally, we established a prognostic model integrating 9 genes associated with lipid metabolism and generated a nomogram model using R. GO and KEGG were performed to explore the functions and pathways of lipid metabolism-related genes. Results Our findings revealed that patients with cervical cancer exhibited dyslipidemia, characterized by elevated levels of TC, TG, and LDL-C, alongside reduced HDL-C levels compared to controls (P<0.05). Interestingly, compared with early-stage patients, advanced patients had lower HDL-C level and higher LDL-C level. Regression analysis further highlighted high TC, TG, and LDL-C as significant risk factors for cervical cancer. Then a total of 188 lipid metabolism-related genes were identified and a prognostic signature based on 9 genes was established and validated. The results of the GO and KEGG functional analysis indicated that the lipid metabolism-related genes are primarily concentrated on pathways associated with fatty acid metabolism. Conclusion Our study underscores the varying degrees of dyslipidemia observed in patients with cervical cancer, emphasizing the relevance of serum lipids in disease development. Our prognostic riskScore model predicted the overall survival time of patients based on 9 genes associated with lipid metabolism. These 9 genes may be tumor biomarkers and new targets for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhuo Li
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qingmei Zheng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qin Yao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Jia W, Wu Q, Li R, Hou S, Kang C. Role of CENPF and NDC80 in the rehabilitation nursing of hepatocellular carcinoma and cirrhosis: An observational study. Medicine (Baltimore) 2024; 103:e37984. [PMID: 38701255 PMCID: PMC11062706 DOI: 10.1097/md.0000000000037984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors globally and often develops on the foundation of chronic liver disease or cirrhosis. Cirrhosis is a clinically prevalent chronic progressive liver disease characterized by diffuse liver damage resulting from long-term or repeated actions of 1 or more etiological factors. However, the impact of CENPF and nuclear division cycle 80 (NDC80) genes on rehabilitation nursing of HCC and cirrhosis remains unclear. HCC and cirrhosis datasets GSE63898 and GSE89377 profile files were downloaded from the gene expression omnibus database generated on platforms GPL13667 and GPL6947, respectively. Differentially expressed genes (DEGs) screening, weighted gene co-expression network analysis (WGCNA), construction and analysis of protein-protein interaction (PPI) networks, functional enrichment analysis, gene set enrichment analysis (GSEA), survival analysis, immune infiltration analysis, and comparative toxicogenomics database (CTD) analysis were conducted. Gene expression heatmaps were plotted. miRNAs regulating central DEGs were selected through TargetScan. A total of 626 DEGs were identified. According to gene ontology (GO) analysis, they were primarily enriched in small molecule metabolic processes, drug metabolic processes, binding of identical proteins, and lipid metabolic processes. Kyoto Encyclopedia of Gene and Genome (KEGG) analysis results indicated that the target genes were mainly enriched in metabolic pathways, phagosomes, glycine, serine, and threonine metabolism. The construction and analysis of the PPI network revealed 3 core genes (NDC80, CENPF, RRM2). Gene expression heatmaps showed that core genes (CENPF, NDC80) were highly expressed in HCC and cirrhosis samples. CTD analysis found that 2 genes (CENPF and NDC80) were associated with liver, jaundice, ascites, fever, dyspepsia, and hepatic encephalopathy. CENPF and NDC80 are highly expressed in HCC and cirrhosis, and CENPF and NDC80 might be the biomarkers of rehabilitation nursing of HCC and cirrhosis.
Collapse
Affiliation(s)
- Wei Jia
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Shijingshan District, Beijing, P.R. China
| | - Qiaoling Wu
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Shijingshan District, Beijing, P.R. China
| | - Ruipu Li
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Shijingshan District, Beijing, P.R. China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Shijingshan District, Beijing, P.R. China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Shijingshan District, Beijing, P.R. China
| |
Collapse
|
25
|
Guo C, Zhao W, Wang W, Yao Z, Chen W, Feng X. Study on the Antitumor Mechanism of Tanshinone IIA In Vivo and In Vitro through the Regulation of PERK-ATF4-HSPA5 Pathway-Mediated Ferroptosis. Molecules 2024; 29:1557. [PMID: 38611836 PMCID: PMC11013603 DOI: 10.3390/molecules29071557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
As a traditional Chinese medicine, Salvia miltiorrhiza Bunge was first recorded in the Shennong Materia Medica Classic and is widely used to treat "the accumulation of symptoms and masses". The main active ingredient of Salvia miltiorrhiza Bunge, Tanshinone IIA (TIIA), has shown anti-inflammatory, antitumor, antifibrosis, antibacterial, and antioxidative activities, etc. In this study, the results showed that TIIA could inhibit the proliferation and migration of HepG2 cells and downregulate glutathione (GSH) and Glutathione Peroxidase 4 (GPX4) levels; besides, TIIA induced the production of Reactive Oxygen Species (ROS), and upregulated the total iron content. Based on network pharmacology analysis, the antitumor effect of TIIA was found to be focused on the endoplasmic reticulum (ER)-mediated ferroptosis signaling pathway, with protein kinase R (PKR)-like ER kinase (PERK)-activating transcription factor 4 (ATF4)-heat shock 70 kDa protein 5 (HSPA5) as the main pathway. Herein, TIIA showed typical ferroptosis characteristics, and a ferroptosis inhibitor (ferrostatin-1) was used to verify the effect. The antitumor effects of TIIA, occurring through the inhibition of the PERK-ATF4-HSPA5 pathway, were further observed in vivo as significantly inhibited tumor growth and the improved pathological morphology of tumor tissue in H22-bearing mice. In summary, the antitumor mechanism of TIIA might be related to the downregulation of the activation of PERK-ATF4-HSPA5 pathway-mediated ferroptosis.
Collapse
Affiliation(s)
- Chunxiang Guo
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (C.G.); (W.Z.); (W.W.); (Z.Y.)
| | - Wei Zhao
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (C.G.); (W.Z.); (W.W.); (Z.Y.)
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming 650500, China
| | - Wei Wang
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (C.G.); (W.Z.); (W.W.); (Z.Y.)
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming 650500, China
| | - Zheng Yao
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (C.G.); (W.Z.); (W.W.); (Z.Y.)
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming 650500, China
| | - Wenhui Chen
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (C.G.); (W.Z.); (W.W.); (Z.Y.)
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming 650500, China
| | - Xiaoyi Feng
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (C.G.); (W.Z.); (W.W.); (Z.Y.)
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Kunming 650500, China
| |
Collapse
|
26
|
Cui Y, Man S, Tao J, Liu Y, Ma L, Guo L, Huang L, Liu C, Gao W. The lipid droplet in cancer: From being a tumor-supporting hallmark to clinical therapy. Acta Physiol (Oxf) 2024; 240:e14087. [PMID: 38247395 DOI: 10.1111/apha.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/18/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Abnormal lipid metabolism, one of the hallmarks in cancer, has gradually emerged as a novel target for cancer treatment. As organelles that store and release excess lipids, lipid droplets (LDs) resemble "gears" and facilitate cancer development in the body. AIM This review discusses the life cycle of LDs, the relationship between abnormal LDs and cancer hallmarks, and the application of LDs in theragnostic and clinical contexts to provide a contemporary understanding of the role of LDs in cancer. METHODS A systematic literature search was conducted in PubMed and SPORTDiscus. Retrieve and summarize clinical trials of drugs that target proteins associated with LD formation using the Clinical Trials website. Create a schematic diagram of lipid droplets in the tumor microenvironment using Adobe Illustrator. CONCLUSION As one of the top ten hallmarks of cancer, abnormal lipid metabolism caused by excessive generation of LDs interrelates with other hallmarks. The crosstalk between excessive LDs and intracellular free fatty acids (FFAs) promotes an inflammatory environment that supports tumor growth. Moreover, LDs contribute to cancer metastasis and cell death resistance in vivo. Statins, as HMGCR inhibitors, are promising to be the pioneering commercially available anti-cancer drugs that target LD formation.
Collapse
Affiliation(s)
- Yingfang Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jiejing Tao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changxiao Liu
- State Key Laboratory of Drug Release Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co and Ltd., Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
27
|
Deng R, Zheng Z, Hu S, Wang M, Feng J, Mattjus P, Zhang Z, Zhang Y. Loss of Nrf1 rather than Nrf2 leads to inflammatory accumulation of lipids and reactive oxygen species in human hepatoma cells, which is alleviated by 2-bromopalmitate. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119644. [PMID: 37996059 DOI: 10.1016/j.bbamcr.2023.119644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Since Nrf1 and Nrf2 are essential for regulating the lipid metabolism pathways, their dysregulation has thus been shown to be critically involved in the non-controllable inflammatory transformation into cancer. Herein, we have explored the molecular mechanisms underlying their distinct regulation of lipid metabolism, by comparatively analyzing the changes in those lipid metabolism-related genes in Nrf1α-/- and/or Nrf2-/- cell lines relative to wild-type controls. The results revealed that loss of Nrf1α leads to lipid metabolism disorders. That is, its lipid synthesis pathway was up-regulated by the JNK-Nrf2-AP1 signaling, while its lipid decomposition pathway was down-regulated by the nuclear receptor PPAR-PGC1 signaling, thereby resulting in severe accumulation of lipids as deposited in lipid droplets. By contrast, knockout of Nrf2 gave rise to decreases in lipid synthesis and uptake capacity. These demonstrate that Nrf1 and Nrf2 contribute to significant differences in the cellular lipid metabolism profiles and relevant pathological responses. Further experimental evidence unraveled that lipid deposition in Nrf1α-/- cells resulted from CD36 up-regulation by activating the PI3K-AKT-mTOR pathway, leading to abnormal activation of the inflammatory response. This was also accompanied by a series of adverse consequences, e.g., accumulation of reactive oxygen species (ROS) in Nrf1α-/- cells. Interestingly, treatment of Nrf1α-/- cells with 2-bromopalmitate (2BP) enabled the yield of lipid droplets to be strikingly alleviated, as accompanied by substantial abolishment of CD36 and critical inflammatory cytokines. Such Nrf1α-/- -led inflammatory accumulation of lipids, as well as ROS, was significantly ameliorated by 2BP. Overall, this study provides a potential strategy for cancer prevention and treatment by precision targeting of Nrf1, Nrf2 alone or both.
Collapse
Affiliation(s)
- Rongzhen Deng
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Ze Zheng
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Shaofan Hu
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Meng Wang
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Jing Feng
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Peter Mattjus
- Department of biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, FI-20520 Turku, Finland
| | - Zhengwen Zhang
- Laboratory of Neuroscience, institute of Cognitive Neuroscience and School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, England, United Kingdom
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
28
|
Qian L, Wang G, Li B, Su H, Qin L. Regulation of lipid metabolism by APOE4 in intrahepatic cholangiocarcinoma via the enhancement of ABCA1 membrane expression. PeerJ 2024; 12:e16740. [PMID: 38274331 PMCID: PMC10809977 DOI: 10.7717/peerj.16740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a malignancy with a dismal prognosis, thus the discovery of promising diagnostic markers and treatment targets is still required. In this study, 1,852 differentially expressed genes (DEGs) were identified in the GSE45001 dataset for weighted gene co-expression network analysis (WGCNA), and the turquoise module was confirmed as the key module. Next, the subnetworks of the 1,009 genes in the turquoise module analyzed by MCODE, MCC, and BottleNeck algorithms identified nine overlapping genes (CAT, APOA1, APOC2, HSD17B4, EHHADH, APOA2, APOE4, ACOX1, AGXT), significantly associated with lipid metabolism pathways, such as peroxisome and cholesterol metabolism. Among them, APOE4 exhibited a potential tumor-suppressive role in ICC and high diagnostic value for ICC in both GSE45001 and GSE32879 datasets. In vitro experiments demonstrated Apolipoprotein E4 (APOE4) overexpression suppressed ICC cell proliferation, migration, and invasion, knockdown was the opposite trend. And in ICC modulated lipid metabolism, notably decreasing levels of TG, LDL-C, and HDL-C, while concurrently increasing the expressions of TC. Further, APOE4 also downregulated lipid metabolism-related genes, suggesting a key regulatory role in maintaining cellular homeostasis, and regulating the expression of the membrane protein ATP-binding cassette transporter A1 (ABCA1). These findings highlighted the coordinated regulation of lipid metabolism by APOE4 and ABCA1 in ICC progression, providing new insights into ICC mechanisms and potential therapeutic strategies.
Collapse
Affiliation(s)
- Liqiang Qian
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gang Wang
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Haoyuan Su
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
29
|
Li CP, Song YX, Lin ZJ, Ma ML, He LP. Essential Trace Elements in Patients with Dyslipidemia: A Meta-analysis. Curr Med Chem 2024; 31:3604-3623. [PMID: 37132140 PMCID: PMC11327741 DOI: 10.2174/0929867330666230428161653] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Lipid metabolism is a complex process that includes lipid uptake, transport, synthesis, and degradation. Trace elements are vital in maintaining normal lipid metabolism in the human body. This study explores the relationship between serum trace elements and lipid metabolism. METHODS In this study, we reviewed articles on the relationship between alterations in somatic levels of zinc, iron, calcium, copper, chrome, manganese, selenium, and lipid metabolism. In this systematic review and mate-analysis, databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI), Wanfang was searched for articles on the relationship published between January 1, 1900, and July 12, 2022. The meta-analysis was performed using Review Manager5.3 (Cochrane Collaboration). RESULTS No significant association was found between serum zinc and dyslipidemia, while other serum trace elements (iron, selenium, copper, chromium, and manganese) were associated with hyperlipidemia. CONCLUSION The present study suggested that the human body's zinc, copper, and calcium content may be related to lipid metabolism. However, findings on lipid metabolism and Iron, Manganese have not been conclusive. In addition, the relationship between lipid metabolism disorders and selenium levels still needs to be further studied. Further research is needed on treating lipid metabolism diseases by changing trace elements.
Collapse
Affiliation(s)
- Cui-Ping Li
- School of Medicine, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Yu-Xin Song
- School of Medicine, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Zi-Jun Lin
- School of Medicine, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Mei-Lin Ma
- School of Medicine, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| | - Lian-Ping He
- School of Medicine, Taizhou University, Jiaojiang, Zhejiang, 318000, China
| |
Collapse
|
30
|
Zhang Z, Sun J, Jin C, Zhang L, Wu L, Tian G. Identification and validation of a fatty acid metabolism gene signature for the promotion of metastasis in liver cancer. Oncol Lett 2023; 26:457. [PMID: 37736554 PMCID: PMC10509777 DOI: 10.3892/ol.2023.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023] Open
Abstract
Metastasis is a fatal status for liver cancer, and the identification of an effective prediction model and promising therapeutic target is essential. Given the known relationship between fatty acid (FA) metabolism and the liver, the present study aimed to investigate dysregulation of genes associated with FA metabolism in liver cancer. Bioinformatics analyses were performed on data from patients with hepatocellular carcinoma (HCC) obtained from The Cancer Genome Atlas database using R software packages. Online public tools such as the Human Protein Atlas, Tumor Immune Single-Cell Hub and the University of Alabama at Birmingham Cancer Data Analysis portal were also utilized. Some essential results were further verified using in vitro experiments using HepG2 liver cancer cells. A signature consisting of three genes associated with the progression and prognosis of HCC and FA metabolism was identified. When samples were scored based on the expression of these genes and divided according to the median value, the higher score group showed a worse outcome and repressive immune microenvironment than the lower score group. Downstream pathways such as hypoxia, IL6/JAK/STAT3 and epithelial-mesenchymal transition were found to be significantly activated in the higher score group. As the core factor in the signature, mitochondrial ribosomal protein L35 (MRPL35) was found to be upregulated in HCC and to have certain impacts on the dysregulation of effective immunity. Further investigations and in vitro experiments indicated that MRPL35 facilitates the migration and invasion abilities of liver cancer, and the resistance of HCC to treatment. These findings have important implications regarding the characteristics and mechanisms of metastasis in liver cancer, and provide a promising signature based on FA metabolism-related genes that may be used to predict outcomes and explored as a novel therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Zhenshan Zhang
- Department of Hepatobiliary Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai 201321, P.R. China
| | - Jun Sun
- Department of Hepatobiliary Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chao Jin
- Department of Ocean, Shandong University, Weihai, Shandong 264209, P.R. China
- Department of Pharmacy, Zhejiang Qianji Fang Pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang 311710, P.R. China
| | - Likun Zhang
- Department of Clinical Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161003, P.R. China
| | - Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Gendong Tian
- Department of Hepatobiliary Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
31
|
Liang Z, Zhang Z, Tan X, Zeng P. Lipids, cholesterols, statins and liver cancer: a Mendelian randomization study. Front Oncol 2023; 13:1251873. [PMID: 37746259 PMCID: PMC10516570 DOI: 10.3389/fonc.2023.1251873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Aim To investigate the causal relationship of serum lipid indicators and lipid-lowering drugs with the risk of liver cancer using Mendelian randomization study. Methods A two-sample Mendelian randomization (TSMR) study was performed to investigate the causal relationship between serum levels of lipid indicators and liver cancer, including low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), triglycerides (TG), total cholesterol (TC), Apolipoprotein B (ApoB), and Apolipoprotein A1 (ApoA1).Furthermore, instrumental variable weighted regression (IVW) and summary data-based MR (SMR) analyses were performed to investigate the causal effects of lipid-lowering drugs, including statins and PCSK9 inhibitors, on the risk of liver cancer. Results Serum LDL-c and serum TC levels showed negatively associated with liver cancer (n = 22 SNPs, OR = 0.363, 95% CI = 0.231 - 0.570; p = 1.070E-5) (n = 83 SNPs; OR = 0.627, 95% CI = 0.413-0.952; p = 0.028). However, serum levels of TG, HDL-c, and ApoA1 did not show any significant correlation with liver cancer. In the drug target MR (DMR) analyses, HMGCR-mediated level of LDL-c showed an inverse relationship with the risk of liver cancer in the IVW-MR analysis (n = 5 SNPs, OR = 0.201, 95% CI = 0.064 - 0.631; p = 5.95E-03) and SMR analysis (n = 20 SNPs, OR = 0.245, 95% CI = 0.065 - 0.926; p = 0.038) However, PCSK9 did not show any significant association with liver cancer based on both the IVW-MR and SMR analyses. Conclusion Our results demonstrated that reduced levels of LDL-c and TC were associated with an increased risk of liver cancer. Furthermore, lipid-lowering drugs targeting HMGCR such as statins were associated with increased risk of liver cancer.
Collapse
Affiliation(s)
- Zicheng Liang
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Xiaoning Tan
- Department of Oncology, Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| | - Puhua Zeng
- Department of Oncology, Affiliated Hospital of Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
32
|
Wu Z, Lv G, Xing F, Xiang W, Ma Y, Feng Q, Yang W, Wang H. Copper in hepatocellular carcinoma: A double-edged sword with therapeutic potentials. Cancer Lett 2023; 571:216348. [PMID: 37567461 DOI: 10.1016/j.canlet.2023.216348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Copper is a necessary cofactor vital for maintaining biological functions, as well as participating in the development of cancer. A plethora of studies have demonstrated that copper is a double-edged sword, presenting both benefits and detriments to tumors. The liver is a metabolically active organ, and an imbalance of copper homeostasis can result in deleterious consequences to the liver. Hepatocellular carcinoma (HCC), the most common primary liver cancer, is a highly aggressive malignancy with limited viable therapeutic options. As research advances, the focus has shifted towards the relationships between copper and HCC. Innovatively, cuproplasia and cuproptosis have been proposed to depict copper-related cellular growth and death, providing new insights for HCC treatment. By summarizing the constantly elucidated molecular connections, this review discusses the mechanisms of copper in the pathogenesis, progression, and potential therapeutics of HCC. Additionally, we aim to tentatively provide a theoretical foundation and gospel for HCC patients.
Collapse
Affiliation(s)
- Zixin Wu
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai, 201805, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai, 201805, China
| | - Fuxue Xing
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai, 201805, China
| | - Wei Xiang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai, 201805, China
| | - Yue Ma
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai, 201805, China
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai, 201805, China.
| | - Wen Yang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai, 201805, China.
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Second Military Medical University, Shanghai, 200438, China; National Center for Liver Cancer, Second Military Medical University, Shanghai, 201805, China.
| |
Collapse
|
33
|
Ye Y, Yu B, Wang H, Yi F. Glutamine metabolic reprogramming in hepatocellular carcinoma. Front Mol Biosci 2023; 10:1242059. [PMID: 37635935 PMCID: PMC10452011 DOI: 10.3389/fmolb.2023.1242059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal disease with limited management strategies and poor prognosis. Metabolism alternations have been frequently unveiled in HCC, including glutamine metabolic reprogramming. The components of glutamine metabolism, such as glutamine synthetase, glutamate dehydrogenase, glutaminase, metabolites, and metabolite transporters, are validated to be potential biomarkers of HCC. Increased glutamine consumption is confirmed in HCC, which fuels proliferation by elevated glutamate dehydrogenase or upstream signals. Glutamine metabolism also serves as a nitrogen source for amino acid or nucleotide anabolism. In addition, more glutamine converts to glutathione as an antioxidant in HCC to protect HCC cells from oxidative stress. Moreover, glutamine metabolic reprogramming activates the mTORC signaling pathway to support tumor cell proliferation. Glutamine metabolism targeting therapy includes glutamine deprivation, related enzyme inhibitors, and transporters inhibitors. Together, glutamine metabolic reprogramming plays a pivotal role in HCC identification, proliferation, and progression.
Collapse
Affiliation(s)
- Yanyan Ye
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bodong Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hua Wang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Fengming Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
34
|
Wu D, Liao G, Yao Y, Huang L, Dong B, Ma Y, Yang G. Downregulated Acetyl-CoA Acyltransferase 2 Promoted the Progression of Hepatocellular Carcinoma and Participated in the Formation of Immunosuppressive Microenvironment. J Hepatocell Carcinoma 2023; 10:1327-1339. [PMID: 37581093 PMCID: PMC10423610 DOI: 10.2147/jhc.s418429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
Background The aim of this study is to explore the role of acetyl-CoA acyltransferase 2 (ACAA2) in the progression of hepatocellular carcinoma (HCC). Methods Bulk RNA data and single-cell RNA data were acquired from The Cancer Genome Atlas and Gene Expression Omnibus. Both in vitro and in vivo studies were used to determine the effect of ACAA2 on the progression of HCC, and RNA sequencing analysis was performed to explore the mechanism. Results We found downregulation of ACAA2 was involved in the malignant progression of HCC. The patient with low ACAA2 level had an immunosuppressive microenvironment in the HCC and predicted to have a poor prognosis. Decreased ACAA2 facilitated HCC proliferation and metastasis by activating the nuclear factor-κB (NFκB) signaling pathway. And increased CXCL1 induced by NFκB signaling pathway might be responsible for low level of ACAA2 related immunosuppressive microenvironment. Furthermore, the expression of ACAA2 was also detected in immune cells. The expression of ACAA2 in CD4+TCF7+T, CD4+FOXP3+T, CD8+GZMK+T, and CD8+KLRD1+T cells was inversely correlated with the composition of CD8+PDCD1+T cells in HCC. This effect might be due to the CCL5-CCRs and HLA-E-KLRCs ligand-receptor networks. Conclusion In a conclusion, downregulated ACAA2 promoted the progression of hepatocellular carcinoma and might be participated in the formation of immunosuppressive microenvironment. ACAA2 could be served as a favorable indicator for the prognosis of HCC and an ideal biomarker for immunotherapy.
Collapse
Affiliation(s)
- Dehai Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Guanqun Liao
- Department of Hepatobiliary Surgery, Foshan Hospital Affiliated to Southern Medical University, Foshan, People’s Republic of China
| | - Yuanfei Yao
- Key Laboratory of Tumor Immunology in Heilongjiang, Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Lining Huang
- Department of Hepatobiliary Surgery, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Bowen Dong
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, People’s Republic of China
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Guangchao Yang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Hepatic Minimal Invasive Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
35
|
Wu JM, Zhaori G, Mei L, Ren XM, Laga AT, Deligen B. Plantamajoside modulates immune dysregulation and hepatic lipid metabolism in rats with nonalcoholic fatty liver disease via AMPK/Nrf2 elevation. Kaohsiung J Med Sci 2023; 39:801-810. [PMID: 37265208 DOI: 10.1002/kjm2.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a hepatic metabolic syndrome with a rapidly increasing prevalence globally. Plantamajoside (PMS), a phenylethanoid glycoside component extracted from Plantago asiatica, has various biological properties. However, its effect on NAFLD remains unknown. The study aimed to explore the effect and mechanism of PMS on NAFLD in the high-fat diet (HFD)-feeding rats. PMS induced a decrease in body and liver weight, and the amelioration in the blood lipid parameters and pathological symptoms in HFD-feeding rats. The increase in the serum concentrations and the relative protein expressions of proinflammatory factors was decreased by the PMS treatment in HFD-induced NAFLD rats. Additionally, PMS reduced the excessive lipid vacuoles, and modified the relative expressions of proteins involved in the fatty acid synthesis and uptake in HFD-feeding rats. Mechanically, the downregulation of AMPK/Nrf2 pathway in HFD-feeding rats was restored by the PMS treatment. Inhibition of AMPK pathway reversed the PMS-induced the increase in the level of inflammatory factors, pathological symptoms, excessive lipid vacuoles, and the relative expression of proteins involved in the fatty acid synthesis and uptake. Collectively, PMS ameliorated immune dysregulation and abnormal hepatic lipid metabolism by activating AMPK/Nrf2 pathway in rats with NAFLD.
Collapse
Affiliation(s)
- Ji-Mu Wu
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Getu Zhaori
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Li Mei
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Xiao-Man Ren
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Arong Tong Laga
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Batu Deligen
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
36
|
Foglia B, Beltrà M, Sutti S, Cannito S. Metabolic Reprogramming of HCC: A New Microenvironment for Immune Responses. Int J Mol Sci 2023; 24:7463. [PMID: 37108625 PMCID: PMC10138633 DOI: 10.3390/ijms24087463] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma is the most common primary liver cancer, ranking third among the leading causes of cancer-related mortality worldwide and whose incidence varies according to geographical area and ethnicity. Metabolic rewiring was recently introduced as an emerging hallmark able to affect tumor progression by modulating cancer cell behavior and immune responses. This review focuses on the recent studies examining HCC's metabolic traits, with particular reference to the alterations of glucose, fatty acid and amino acid metabolism, the three major metabolic changes that have gained attention in the field of HCC. After delivering a panoramic picture of the peculiar immune landscape of HCC, this review will also discuss how the metabolic reprogramming of liver cancer cells can affect, directly or indirectly, the microenvironment and the function of the different immune cell populations, eventually favoring the tumor escape from immunosurveillance.
Collapse
Affiliation(s)
- Beatrice Foglia
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Marc Beltrà
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Salvatore Sutti
- Department of Health Sciences, Interdisciplinary Research Center for Autoimmune Diseases, University of East Piedmont, 28100 Novara, Italy
| | - Stefania Cannito
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| |
Collapse
|
37
|
Hong J, Liu J, Zhang Y, Ding L, Ye Q. MiR-3180 inhibits hepatocellular carcinoma growth and metastasis by targeting lipid synthesis and uptake. Cancer Cell Int 2023; 23:66. [PMID: 37041584 PMCID: PMC10091558 DOI: 10.1186/s12935-023-02915-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
PURPOSE Reprogrammed lipid metabolism is a hallmark of cancer that provides energy, materials, and signaling molecules for rapid cancer cell growth. Cancer cells acquire fatty acids primarily through de novo synthesis and uptake. Targeting altered lipid metabolic pathways is a promising anticancer strategy. However, their regulators have not been fully investigated, especially those targeting both synthesis and uptake. METHODS Immunohistochemistry was performed on samples from patients with hepatocellular carcinoma (HCC) to establish the correlation between miR-3180, stearoyl-CoA desaturase-1 (SCD1), and CD36 expression, quantified via qRT-PCR and western blotting. The correlation was analyzed using a luciferase reporter assay. Cell proliferation, migration, and invasion were analyzed using CCK-8, wound healing, and transwell assays, respectively. Oil Red O staining and flow cytometry were used to detect lipids. Triglycerides and cholesterol levels were analyzed using a reagent test kit. CY3-labeled oleic acid transport was analyzed using an oleic acid transport assay. Tumor growth and metastasis were detected in vivo in a xenograft mouse model. RESULTS MiR-3180 suppressed de novo fatty acid synthesis and uptake by targeting the key lipid synthesis enzyme SCD1 and key lipid transporter CD36. MiR-3180 suppressed HCC cell proliferation, migration, and invasion in an SCD1- and CD36-dependent manner in vitro. The mouse model demonstrated that miR-3180 inhibits HCC tumor growth and metastasis by inhibiting SCD1- and CD36-mediated de novo fatty acid synthesis and uptake. MiR-3180 expression was downregulated in HCC tissues and negatively correlated with SCD1 and CD36 levels. Patients with high miR-3180 levels showed better prognosis than those with low levels. CONCLUSIONS Our investigation indicates that miR-3180 is a critical regulator involved in de novo fatty acid synthesis and uptake, which inhibits HCC tumor growth and metastasis by suppressing SCD1 and CD36. Therefore, miR-3180 is a novel therapeutic target and prognostic indicator for patients with HCC.
Collapse
Affiliation(s)
- Jie Hong
- Medical School of Guizhou University, Guiyang, China
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jie Liu
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yanan Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Ding
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Qinong Ye
- Medical School of Guizhou University, Guiyang, China.
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
38
|
Samec M, Mazurakova A, Lucansky V, Koklesova L, Pecova R, Pec M, Golubnitschaja O, Al-Ishaq RK, Caprnda M, Gaspar L, Prosecky R, Gazdikova K, Adamek M, Büsselberg D, Kruzliak P, Kubatka P. Flavonoids attenuate cancer metabolism by modulating Lipid metabolism, amino acids, ketone bodies and redox state mediated by Nrf2. Eur J Pharmacol 2023; 949:175655. [PMID: 36921709 DOI: 10.1016/j.ejphar.2023.175655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Metabolic reprogramming of cancer cells is a common hallmark of malignant transformation. The preference for aerobic glycolysis over oxidative phosphorylation in tumors is a well-studied phenomenon known as the Warburg effect. Importantly, metabolic transformation of cancer cells also involves alterations in signaling cascades contributing to lipid metabolism, amino acid flux and synthesis, and utilization of ketone bodies. Also, redox regulation interacts with metabolic reprogramming during malignant transformation. Flavonoids, widely distributed phytochemicals in plants, exert various beneficial effects on human health through modulating molecular cascades altered in the pathological cancer phenotype. Recent evidence has identified numerous flavonoids as modulators of critical components of cancer metabolism and associated pathways interacting with metabolic cascades such as redox balance. Flavonoids affect lipid metabolism by regulating fatty acid synthase, redox balance by modulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activity, or amino acid flux and synthesis by phosphoglycerate mutase 1. Here, we discuss recent preclinical evidence evaluating the impact of flavonoids on cancer metabolism, focusing on lipid and amino acid metabolic cascades, redox balance, and ketone bodies.
Collapse
Affiliation(s)
- Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Comenius University in Bratislava, Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Renata Pecova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Martin Caprnda
- 1(st) Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Ludovit Gaspar
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Robert Prosecky
- 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia; Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Mariusz Adamek
- Department of Thoracic Surgery, Medical University of Silesia, Katowice, Poland
| | | | - Peter Kruzliak
- 2(nd) Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
39
|
Gao Z, Wu X, Yang L, Liu C, Wang X, Wang H, Dong K. Role of CD5 molecular-like on hepatocellular carcinoma. Chin Med J (Engl) 2023; 136:556-564. [PMID: 36939243 PMCID: PMC10106147 DOI: 10.1097/cm9.0000000000002576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND CD5L (CD5 molecular-like) plays an important role in lipid metabolism and immune regulation. This study aimed to investigate the roles of CD5L on liver hepatocellular carcinoma (LIHC). METHODS We analyzed the CD5L mRNA expression and its potential prognostic value based on The Cancer Genome Atlas and Gene Expression Omnibus databases. Immunohistochemical analysis was used to investigate the CD5L levels in LIHC tissues. Serum CD5L levels in LIHC were detected by enzyme-linked immunosorbent assay. Cell Counting Kit-8 (CCK-8) assay was used to investigate the effect of CD5L treatment on HepG2 and QSG-7701 cell proliferation. CD5L expression correlated genes were exhumed based on the LinkedOmics. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses for CD5L associated genes were performed. The correlation between CD5L and tumor immune infiltration was analyzed by using Tumor Immune Estimation Resource (TIMER) 2.0. RESULTS CD5L mRNA and protein levels were significantly decreased in LIHC tumor tissue compared with non-tumor control tissues. Moreover, serum CD5L levels were significantly lower in LIHC patients than that in healthy subjects. Gene Expression Profiling Interactive Analysis 2 and Kaplan-Meier plotter analysis showed that a high-CD5L expression was correlated with favorable overall survival in LIHC patients, except the LIHC patients with hepatitis virus. CCK-8 results showed that CD5L treatment significantly decreased HepG2 cell proliferation in a concentration-dependent manner, and CD5L treatment had no effect on the proliferation of non-tumor hepatocyte line QSG-7701. CD5L associated genes were enriched in the immune response biological process, and CD5L expression levels were positively correlated with the immune infiltrates of CD8 + T cell and M1 macrophage cells but negatively correlated with CD4 + T cells and M0 macrophage cell infiltration. CONCLUSIONS Exogenous CD5L inhibits cell proliferation of hepatocellular carcinoma. CD5L may act as a role of prognostic marker.
Collapse
Affiliation(s)
- Zhaowei Gao
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Xianan Wu
- Department of Medical Laboratory, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi 710038, China
| | - Lan Yang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Chong Liu
- Department of Medical Laboratory, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi 710038, China
| | - Xi Wang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Huiping Wang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Ke Dong
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| |
Collapse
|
40
|
Tian Z, Wang X, Han T, Sun C. Selegiline ameliorated dyslipidemia and hepatic steatosis in high-fat diet mice. Int Immunopharmacol 2023; 117:109901. [PMID: 36822098 DOI: 10.1016/j.intimp.2023.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Certain monoamine oxidase (MAO) inhibitors exhibit beneficial effects, such as reducing adiposity and metabolic disorders; however, their effects on hepatic lipid metabolism have not been revealed. This study aimed to investigate the effects of a selective MAO-B inhibitor, selegiline, on dyslipidemia and hepatic steatosis in mice induced by a high-fat diet (HFD). Administration of selegiline (0.6 mg/kg body weight) by intraperitoneal injection was found to reduce HFD-induced body weight gain and increases in liver and adiposity coefficients, blood lipids and fatty acid levels. Furthermore, selegiline dramatically reduced the total triglyceride (TG) and cholesterol (TC) levels and lipid accumulation in the livers of HFD-fed mice and palmitic acid (PA)-treated AML-12 hepatocytes. In vivo and in vitro results indicated that selegiline protects against HFD- and PA-induced hepatic inflammation by reducing the expression of proinflammatory cytokines, namely IL-6, TNF-α, IL-1β, and IL-1α. Additionally, selegiline exhibited antioxidative effects on HFD and PA exposure in mouse liver and AML-12 cells by decreasing the levels of reactive oxygen species (ROS) and malonaldehyde (MDA) and increasing superoxide dismutase (SOD) activity. Further study showed that selegiline administration mitigated the expression of Srebf-1, Fasn, and Acaca and downregulated the expression of Cpt-1 and Pparα in HFD-fed mouse livers and PA-treated AML-12 cells. In conclusion, our findings suggest that selegiline exerts protective effects against HFD-induced dyslipidemia and hepatic steatosis, which may be related to an improved inflammatory response, oxidative stress, and hepatic lipid metabolism.
Collapse
Affiliation(s)
- Zhen Tian
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Xinyue Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China
| | - Tianshu Han
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China.
| | - Changhao Sun
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
41
|
Guo C, Zhang L, Zhao M, Ai Y, Liao W, Wan L, Liu Q, Li S, Zeng J, Ma X, Tang J. Targeting lipid metabolism with natural products: A novel strategy for gastrointestinal cancer therapy. Phytother Res 2023; 37:2036-2050. [PMID: 36748953 DOI: 10.1002/ptr.7735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/08/2023]
Abstract
Gastrointestinal cancer (GIC), including gastric cancer and colorectal cancer, is a common malignant tumor originating from gastrointestinal epithelial cells. Although the pathogenesis of GIC remains unclear, aberrant lipid metabolism has emerged as a hallmark of cancer. Several enzymes, proteins, and transcription factors are involved in lipid metabolism reprogramming in GIC, and their abnormal expression can promote lipid synthesis and accumulation of lipid droplets through numerous mechanisms, thereby affecting the growth, proliferation, and metastasis of GIC cells. Studies show that some natural compounds, including flavonoids, alkaloids, and saponins, can inhibit the de novo synthesis of lipids in GIC, reduce the level of lipid accumulation, and subsequently, inhibit the occurrence and development of GIC by regulating Sterol regulatory element-binding protein 1 (SREBP-1), adenosine monophosphate-activated protein kinase (AMPK), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), phosphatidylinositol-3-kinase/Akt and the mammalian target of rapamycin PI3K/Akt/mTOR, amongst other targets and pathways. Therefore, targeting tumor lipid metabolism is the focus of anti-gastrointestinal tumor therapy. Although most natural products require further high-quality studies to firmly establish their clinical efficacy, we review the potential of natural products in the treatment of GIC and summarize the application prospect of lipid metabolism as a new target for the treatment of GIC, hoping to provide a reference for drug development for gastrointestinal tumors.
Collapse
Affiliation(s)
- Cui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Ai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songtao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
42
|
ZHONG JIATENG, GUO JINGYU, ZHANG XINYU, FENG SHUANG, DI WENYU, WANG YANLING, ZHU HUIFANG. The remodeling roles of lipid metabolism in colorectal cancer cells and immune microenvironment. Oncol Res 2023; 30:231-242. [PMID: 37305350 PMCID: PMC10207963 DOI: 10.32604/or.2022.027900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Lipid is a key component of plasma membrane, which plays an important role in the regulation of various cell biological behaviors, including cell proliferation, growth, differentiation and intracellular signal transduction. Studies have shown that abnormal lipid metabolism is involved in many malignant processes, including colorectal cancer (CRC). Lipid metabolism in CRC cells can be regulated not only by intracellular signals, but also by various components in the tumor microenvironment, including various cells, cytokines, DNA, RNA, and nutrients including lipids. In contrast, abnormal lipid metabolism provides energy and nutrition support for abnormal malignant growth and distal metastasis of CRC cells. In this review, we highlight the remodeling roles of lipid metabolism crosstalk between the CRC cells and the components of tumor microenvironment.
Collapse
Affiliation(s)
- JIATENG ZHONG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - JINGYU GUO
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - XINYU ZHANG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - SHUANG FENG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - WENYU DI
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - YANLING WANG
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - HUIFANG ZHU
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
43
|
Li M, Zhang A, Qi X, Yu R, Li J. A novel inhibitor of PGK1 suppresses the aerobic glycolysis and proliferation of hepatocellular carcinoma. Biomed Pharmacother 2023; 158:114115. [PMID: 36516697 DOI: 10.1016/j.biopha.2022.114115] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Phosphoglycerate kinase 1(PGK1) is an important enzyme in the metabolic glycolysis pathway. Nowadays, PGK1 is an appealing therapeutic target for multiple cancers. However, no effective inhibitor of PGK1 has been reported. In this study, we demonstrate that Ilicicolin H a 5-(4-hydroxyphenyl)-pyridone with a decalin ring system and a non-ATP-competitive inhibitor of PGK1, inhibits the proliferation and promotes apoptosis of Hepatocellular carcinoma (HCC). Many cancer cells display enhanced glycolysis which is critical for tumor development. Here we identified that Ilicicolin H can target PGK1 in vitro to inhibit the lactate production and glucose uptake of HCC cells. These findings suggest that the PGK1 inhibitor- Ilicicolin H is a promising anticancer agent and may provide a better therapeutic strategy for HCC treatment in the future.
Collapse
Affiliation(s)
- Mingfeng Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Aotong Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237, People's Republic of China.
| |
Collapse
|
44
|
The Role of PI3K/AKT/mTOR Signaling in Hepatocellular Carcinoma Metabolism. Int J Mol Sci 2023; 24:ijms24032652. [PMID: 36768977 PMCID: PMC9916527 DOI: 10.3390/ijms24032652] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths in the world. Metabolic reprogramming is considered a new hallmark of cancer, but it remains unclearly described in HCC. The dysregulation of the PI3K/AKT/mTOR signaling pathway is common in HCC and is, therefore, a topic of further research and the concern of developing a novel target for liver cancer therapy. In this review, we illustrate mechanisms by which this signaling network is accountable for regulating HCC cellular metabolism, including glucose metabolism, lipid metabolism, amino acid metabolism, pyrimidine metabolism, and oxidative metabolism, and summarize the ongoing clinical trials based on the inhibition of the PI3K/AKT/mTOR pathway in HCC.
Collapse
|
45
|
Li G, Li X, Mahmud I, Ysaguirre J, Fekry B, Wang S, Wei B, Eckel-Mahan KL, Lorenzi PL, Lehner R, Sun K. Interfering with lipid metabolism through targeting CES1 sensitizes hepatocellular carcinoma for chemotherapy. JCI Insight 2023; 8:163624. [PMID: 36472914 PMCID: PMC9977307 DOI: 10.1172/jci.insight.163624] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common lethal form of liver cancer. Apart from surgical removal and transplantation, other treatments have not yet been well established for patients with HCC. In this study, we found that carboxylesterase 1 (CES1) is expressed at various levels in HCC. We further revealed that blockage of CES1 by pharmacological and genetical approaches leads to altered lipid profiles that are directly linked to impaired mitochondrial function. Mechanistically, lipidomic analyses indicated that lipid signaling molecules, including polyunsaturated fatty acids (PUFAs), which activate PPARα/γ, were dramatically reduced upon CES1 inhibition. As a result, the expression of SCD, a PPARα/γ target gene involved in tumor progression and chemoresistance, was significantly downregulated. Clinical analysis demonstrated a strong correlation between the protein levels of CES1 and SCD in HCC. Interference with lipid signaling by targeting the CES1-PPARα/γ-SCD axis sensitized HCC cells to cisplatin treatment. As a result, the growth of HCC xenograft tumors in NU/J mice was potently slowed by coadministration of cisplatin and CES1 inhibition. Our results, thus, suggest that CES1 is a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Gang Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Iqbal Mahmud
- Metabolomic Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jazmin Ysaguirre
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Baharan Fekry
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shuyue Wang
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Bo Wei
- Metabolomic Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kristin L. Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Program in Biochemistry and Cell Biology, MD Anderson Cancer Center-UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Philip L. Lorenzi
- Metabolomic Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, Department of Pediatrics, University of Alberta, Alberta, Canada
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Program in Biochemistry and Cell Biology, MD Anderson Cancer Center-UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
46
|
Akl MG, Widenmaier SB. Immunometabolic factors contributing to obesity-linked hepatocellular carcinoma. Front Cell Dev Biol 2023; 10:1089124. [PMID: 36712976 PMCID: PMC9877434 DOI: 10.3389/fcell.2022.1089124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major public health concern that is promoted by obesity and associated liver complications. Onset and progression of HCC in obesity is a multifactorial process involving complex interactions between the metabolic and immune system, in which chronic liver damage resulting from metabolic and inflammatory insults trigger carcinogenesis-promoting gene mutations and tumor metabolism. Moreover, cell growth and proliferation of the cancerous cell, after initiation, requires interactions between various immunological and metabolic pathways that provide stress defense of the cancer cell as well as strategic cell death escape mechanisms. The heterogenic nature of HCC in addition to the various metabolic risk factors underlying HCC development have led researchers to focus on examining metabolic pathways that may contribute to HCC development. In obesity-linked HCC, oncogene-induced modifications and metabolic pathways have been identified to support anabolic demands of the growing HCC cells and combat the concomitant cell stress, coinciding with altered utilization of signaling pathways and metabolic fuels involved in glucose metabolism, macromolecule synthesis, stress defense, and redox homeostasis. In this review, we discuss metabolic insults that can underlie the transition from steatosis to steatohepatitis and from steatohepatitis to HCC as well as aberrantly regulated immunometabolic pathways that enable cancer cells to survive and proliferate in the tumor microenvironment. We also discuss therapeutic modalities targeted at HCC prevention and regression. A full understanding of HCC-associated immunometabolic changes in obesity may contribute to clinical treatments that effectively target cancer metabolism.
Collapse
Affiliation(s)
- May G. Akl
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Physiology, University of Alexandria, Alexandria, Egypt
| | - Scott B. Widenmaier
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
47
|
Chen J, Jin H, Zhou H, Hei X, Liu K. Research into the characteristic molecules significantly affecting liver cancer immunotherapy. Front Immunol 2023; 14:1029427. [PMID: 36860864 PMCID: PMC9968832 DOI: 10.3389/fimmu.2023.1029427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Background The past decade has witnessed unprecedented scientific breakthroughs, including immunotherapy, which has great potential in clinical applications for liver cancer. Methods Public data were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases and analyzed with R software. Results The LASSO and SVM-RFE machine learning algorithms identified 16 differentially expressed genes (DEGs) related to immunotherapy, namely, GNG8, MYH1, CHRNA3, DPEP1, PRSS35, CKMT1B, CNKSR1, C14orf180, POU3F1, SAG, POU2AF1, IGFBPL1, CDCA7, ZNF492, ZDHHC22, and SFRP2. Moreover, a logistic model (CombinedScore) was established based on these DEGs, showing an excellent prediction performance for liver cancer immunotherapy. Patients with a low CombinedScore might respond better to immunotherapy. Gene Set Enrichment Analysis showed that many metabolism pathways were activated in patients with a high CombinedScore, including butanoate metabolism, bile acid metabolism, fatty acid metabolism, glycine serine and threonine metabolism, and propanoate metabolism. Our comprehensive analysis showed that the CombinedScore was negatively correlated with the levels of most tumor-infiltrating immune cells and the activities of key steps of cancer immunity cycles. Continually, the CombinedScore was negatively associated with the expression of most immune checkpoints and immunotherapy response-related pathways. Moreover, patients with a high and a low CombinedScore exhibited diverse genomic features. Furthermore, we found that CDCA7 was significantly correlated with patient survival. Further analysis showed that CDCA7 was positively associated with M0 macrophages and negatively associated with M2 macrophages, suggesting that CDCA7 could influence the progression of liver cancer cells by affecting macrophage polarization. Next, single-cell analysis showed that CDCA7 was mainly expressed in prolif T cells. Immunohistochemical results confirmed that the staining intensity of CDCA7 was prominently increased in the nucleus in primary liver cancer tissues compared to adjacent non-tumor tissues. Conclusions Our results provide novel insights into the DEGs and factors affecting liver cancer immunotherapy. Meanwhile, CDCA7 was identified as a potential therapeutic target in this patient population.
Collapse
Affiliation(s)
- Junhong Chen
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Hengwei Jin
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Zhou
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Xufei Hei
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Liu Y, Sun L, Guo H, Zhou S, Wang C, Ji C, Meng F, Liang S, Zhang B, Yuan Y, Ma K, Li X, Guo X, Cui T, Zhang N, Wang J, Liu Y, Liu L. Targeting SLP2-mediated lipid metabolism reprograming restricts proliferation and metastasis of hepatocellular carcinoma and promotes sensitivity to Lenvatinib. Oncogene 2023; 42:374-388. [PMID: 36473908 DOI: 10.1038/s41388-022-02551-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
SLP2, a protein located on mitochondrial, has been shown to be associated with mitochondrial biosynthesis. Here we explored the potential mechanisms by which SLP2 regulates the development of hepatocellular carcinoma. SLP2 could bind to the c-terminal of JNK2 to affect the ubiquitinated proteasomal degradation pathway of JNK2 and maintain the protein stability of JNK2. The increase of JNK2 markedly increases SREBP1 activity, promoting SREBP1 translocation into the nucleus to promote de novo lipogenesis. Alteration of the JNK2 C-terminal disables SLP2 from mediating SLP2-enhanced de novo lipogenesis. YTHDF1 interacts with SLP2 mRNA in a METTL3/m6A-dependent manner. In a spontaneous HCC animal model, SLP2/c-Myc/sgP53 increases the incidence rate of spontaneous HCC, tumor volume, and tumor number. Importantly, statistical analyses show that levels of SLP2 correlate with tumor sizes, tumor metastasis, overall survival, and disease-free survival of the patients. Targeting the SLP2/SREBP1 pathway effectively inhibits proliferation and metastasis of HCC tumors with high SLP2 expression in vivo combined with lenvatinib. These results illustrate a direct lipogenesis-promoting role of the pro-oncogenic SLP2, providing a mechanistic link between de novo lipogenesis and HCC.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Linmao Sun
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hongrui Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Shuo Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Chunxu Wang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Fanzheng Meng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yubin Yuan
- Department of Hepatobiliary Surgery, Heze City Hospital, Heze, 274000, China
| | - Kun Ma
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xianying Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Xinyu Guo
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China
| | - Ning Zhang
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, University of Science and Technology of China, Hefei, 230001, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
49
|
Gao Y, Gong Y, Liu Y, Xue Y, Zheng K, Guo Y, Hao L, Peng Q, Shi X. Integrated analysis of transcriptomics and metabolomics in human hepatocellular carcinoma HepG2215 cells after YAP1 knockdown. Acta Histochem 2023; 125:151987. [PMID: 36473310 DOI: 10.1016/j.acthis.2022.151987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Yes-associated protein 1 (YAP1) plays a critical role in hepatocellular carcinoma (HCC). Inhibition of YAP1 expression suppresses HCC progression, but the underlying mechanism is still unclear. In this study, we studied the effects and molecular mechanisms of YAP1 knockdown on the growth and metabolism in human HCC HepG2215 cells. Inhibition of YAP1 expression inhibits the proliferation and metastasis in HepG2215 cells, and differentially expressed genes (DEGs) and metabolites were identified in shYAP1-HepG2215 cells. Further, 805 DEGs, mainly associated with metabolism and particularly lipid metabolism, were identified by transcriptome sequencing analyses in shYAP1-HepG2215 cells. YAP1 knockdown increased albumin (ALB) levels by Protein-protein interaction (PPI) network analyses in HepG2215 cells. Metabolomic profiling identified 37 metabolites with significant differences in the shYAP1 group, and amino acid metabolism generally decreased in the shYAP1 group. Comprehensive analysis of transcriptomics and metabolomics revealed that the ATP-binding cassette (ABC) transporters play a central role after YAP1 knockdown in HepG2215 cells. Therefore, YAP1 knockdown inhibited HCC growth, which affected the metabolism of lipids and amino acids by regulating the expression of ALB and ABC transporters in HepG2215 cells.
Collapse
Affiliation(s)
- Yuting Gao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Yi Gong
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yiwei Liu
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yu Xue
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Kangning Zheng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yinglin Guo
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Liyuan Hao
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qing Peng
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| |
Collapse
|
50
|
Targeting PCSK9 in Liver Cancer Cells Triggers Metabolic Exhaustion and Cell Death by Ferroptosis. Cells 2022; 12:cells12010062. [PMID: 36611859 PMCID: PMC9818499 DOI: 10.3390/cells12010062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Deregulated lipid metabolism is a common feature of liver cancers needed to sustain tumor cell growth and survival. We aim at taking advantage of this vulnerability and rewiring the oncogenic metabolic hub by targeting the key metabolic player pro-protein convertase subtilisin/kexin type 9 (PCSK9). We assessed the effect of PCSK9 inhibition using the three hepatoma cell lines Huh6, Huh7 and HepG2 and validated the results using the zebrafish in vivo model. PCSK9 deficiency led to strong inhibition of cell proliferation in all cell lines. At the lipid metabolic level, PCSK9 inhibition was translated by an increase in intracellular neutral lipids, phospholipids and polyunsaturated fatty acids as well as a higher accumulation of lipid hydroperoxide. Molecular signaling analysis involved the disruption of the sequestome 1/Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (p62/Keap1/Nrf2) antioxidative axis, leading to ferroptosis, for which morphological features were confirmed by electron and confocal microscopies. The anti-tumoral effects of PCSK9 deficiency were validated using xenograft experiments in zebrafish. The inhibition of PCSK9 was effective in disrupting the oncometabolic process, inducing metabolic exhaustion and enhancing the vulnerability of cancer cells to iron-triggered lipid peroxidation. We provide strong evidence supporting the drug repositioning of anti-PCSK9 approaches to treat liver cancers.
Collapse
|