1
|
Wong SS, Monteiro JM, Chang CC, Peng M, Mohamad N, Steinacker TL, Xiao B, Saurya S, Wainman A, Raff JW. Centrioles generate two scaffolds with distinct biophysical properties to build mitotic centrosomes. SCIENCE ADVANCES 2025; 11:eadq9549. [PMID: 39919171 PMCID: PMC11804907 DOI: 10.1126/sciadv.adq9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025]
Abstract
Mitotic centrosomes assemble when centrioles recruit large amounts of pericentriolar material (PCM) around themselves. The PCM comprises hundreds of proteins, and there is much debate about its physical nature. Here, we show that Drosophila Spd-2 (human CEP192) fluxes out from centrioles, recruiting Polo and Aurora A kinases to catalyze the assembly of two distinct mitotic-PCM scaffolds: a Polo-dependent Cnn scaffold, and an Aurora A-dependent TACC scaffold, which exhibit solid- and liquid-like behaviors, respectively. Both scaffolds can independently recruit PCM proteins, but both are required for proper centrosome assembly, with the Cnn scaffold providing mechanical strength, and the TACC scaffold concentrating centriole and centrosome proteins. Recruiting Spd-2 to synthetic beads injected into early embryos reconstitutes key aspects of mitotic centrosome assembly on the bead surface, and this depends on Spd-2's ability to recruit Polo and Aurora A. Thus, Spd-2 orchestrates the assembly of two scaffolds, with distinct biophysical properties, that cooperate to build mitotic centrosomes in flies.
Collapse
Affiliation(s)
- Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- The Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Joao M. Monteiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Chia-Chun Chang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Min Peng
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- Institute of Biotechnology, National Taiwan University, 106 Taipei, Taiwan
| | - Nada Mohamad
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Thomas L. Steinacker
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Bocheng Xiao
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
2
|
Li M, Huang W, Duan L, Sun F. Control Intracellular Protein Condensates with Light. ACS Synth Biol 2024; 13:3799-3811. [PMID: 39622001 DOI: 10.1021/acssynbio.4c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Protein phase transitions are gaining traction among biologists for their wide-ranging roles in biological regulation. However, achieving precise control over these phenomena in vivo remains a formidable task. Optogenetic techniques present us with a potential means to control protein phase behavior with spatiotemporal precision. This review delves into the design of optogenetic tools, particularly those aimed at manipulating protein phase transitions in complex biological systems. We begin by discussing the pivotal roles of subcellular phase transitions in physiological and pathological processes. Subsequently, we offer a thorough examination of the evolution of optogenetic tools and their applications in regulating these protein phase behaviors. Furthermore, we highlight the tailored design of optogenetic tools for controlling protein phase transitions and the construction of synthetic condensates using these innovative techniques. In the long run, the development of optogenetic tools not only holds the potential to elucidate the roles of protein phase transitions in various physiological processes but also to antagonize pathological ones to reinstate cellular homeostasis, thus bringing about novel therapeutic strategies. The integration of optogenetic techniques into the study of protein phase transitions represents a significant step forward in our understanding and manipulation of biology at the subcellular level.
Collapse
Affiliation(s)
- Manjia Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Weiqi Huang
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518036, China
- Research Institute of Tsinghua, Pearl River Delta, Guangzhou 510530, China
| |
Collapse
|
3
|
Yeh HW, Chen PP, Yeh TC, Lin SL, Chen YT, Lin WP, Chen T, Pang JM, Lin KT, Wang LHC, Lin YC, Shih O, Jeng US, Hsia KC, Cheng HC. Cep57 regulates human centrosomes through multivalent interactions. Proc Natl Acad Sci U S A 2024; 121:e2305260121. [PMID: 38857398 PMCID: PMC11194501 DOI: 10.1073/pnas.2305260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024] Open
Abstract
Human Cep57 is a coiled-coil scaffold at the pericentriolar matrix (PCM), controlling centriole duplication and centrosome maturation for faithful cell division. Genetic truncation mutations of Cep57 are associated with the mosaic-variegated aneuploidy (MVA) syndrome. During interphase, Cep57 forms a complex with Cep63 and Cep152, serving as regulators for centrosome maturation. However, the molecular interplay of Cep57 with these essential scaffolding proteins remains unclear. Here, we demonstrate that Cep57 undergoes liquid-liquid phase separation (LLPS) driven by three critical domains (NTD, CTD, and polybasic LMN). In vitro Cep57 condensates catalyze microtubule nucleation via the LMN motif-mediated tubulin concentration. In cells, the LMN motif is required for centrosomal microtubule aster formation. Moreover, Cep63 restricts Cep57 assembly, expansion, and microtubule polymerization activity. Overexpression of competitive constructs for multivalent interactions, including an MVA mutation, leads to excessive centrosome duplication. In Cep57-depleted cells, self-assembly mutants failed to rescue centriole disengagement and PCM disorganization. Thus, Cep57's multivalent interactions are pivotal for maintaining the accurate structural and functional integrity of human centrosomes.
Collapse
Affiliation(s)
- Hung-Wei Yeh
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Po-Pang Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Tzu-Chen Yeh
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Shiou-Lan Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Yue-Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Wan-Ping Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Jia Meng Pang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Kai-Ti Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei11529, Taiwan
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu30013, Taiwan
| |
Collapse
|
4
|
Zheng H, Zhang Q, Liu X, Shi F, Yang F, Xiang S, Jiang H. Aurora-A condensation mediated by BuGZ aids its mitotic centrosome functions. iScience 2024; 27:109785. [PMID: 38746663 PMCID: PMC11090908 DOI: 10.1016/j.isci.2024.109785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/30/2023] [Accepted: 04/16/2024] [Indexed: 03/17/2025] Open
Abstract
Centrosomes composed of centrioles and the pericentriolar material (PCM), serve as the platform for microtubule polymerization during mitosis. Despite some centriole and PCM proteins have been reported to utilize liquid-liquid phase separation (LLPS) to perform their mitotic functions, whether and how centrosomal kinases exert the coacervation in mitosis is still unknown. Here we reveal that Aurora-A, one key centrosomal kinase in regulating centrosome formation and functions, undergoes phase separation in vitro or in centrosomes from prophase, mediated by the conserved positive-charged residues inside its intrinsic disordered region (IDR) and the intramolecular interaction between its N- and C-terminus. Aurora-A condensation affects centrosome maturation, separation, initial spindle formation from the spindle pole and its kinase activity. Moreover, BuGZ interacts with Aurora-A to enhance its LLPS and centrosome functions. Thus, we propose that Aurora-A collaborates with BuGZ to exhibit the property of LLPS in centrosomes to control its centrosome-dependent functions from prophase.
Collapse
Affiliation(s)
- Hui Zheng
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Qiaoqiao Zhang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Fan Shi
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Shengqi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
5
|
Duan D, Lyu W, Chai P, Ma S, Wu K, Wu C, Xiong Y, Sestan N, Zhang K, Koleske AJ. Abl2 repairs microtubules and phase separates with tubulin to promote microtubule nucleation. Curr Biol 2023; 33:4582-4598.e10. [PMID: 37858340 PMCID: PMC10877310 DOI: 10.1016/j.cub.2023.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/07/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Abl family kinases are evolutionarily conserved regulators of cell migration and morphogenesis. Genetic experiments in Drosophila suggest that Abl family kinases interact functionally with microtubules to regulate axon guidance and neuronal morphogenesis. Vertebrate Abl2 binds to microtubules and promotes their plus-end elongation, both in vitro and in cells, but the molecular mechanisms by which Abl2 regulates microtubule (MT) dynamics are unclear. We report here that Abl2 regulates MT assembly via condensation and direct interactions with both the MT lattice and tubulin dimers. We find that Abl2 promotes MT nucleation, which is further facilitated by the ability of the Abl2 C-terminal half to undergo liquid-liquid phase separation (LLPS) and form co-condensates with tubulin. Abl2 binds to regions adjacent to MT damage, facilitates MT repair via fresh tubulin recruitment, and increases MT rescue frequency and lifetime. Cryo-EM analyses strongly support a model in which Abl2 engages tubulin C-terminal tails along an extended MT lattice conformation at damage sites to facilitate repair via fresh tubulin recruitment. Abl2Δ688-790, which closely mimics a naturally occurring splice isoform, retains binding to the MT lattice but does not bind tubulin, promote MT nucleation, or increase rescue frequency. In COS-7 cells, MT reassembly after nocodazole treatment is greatly slowed in Abl2 knockout COS-7 cells compared with wild-type cells, and these defects are rescued by re-expression of Abl2, but not Abl2Δ688-790. We propose that Abl2 locally concentrates tubulin to promote MT nucleation and recruits it to defects in the MT lattice to enable repair and rescue.
Collapse
Affiliation(s)
- Daisy Duan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Wanqing Lyu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Kuanlin Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
6
|
Cerulo L, Pezzella N, Caruso FP, Parente P, Remo A, Giordano G, Forte N, Busselez J, Boschi F, Galiè M, Franco B, Pancione M. Single-cell proteo-genomic reveals a comprehensive map of centrosome-associated spliceosome components. iScience 2023; 26:106602. [PMID: 37250316 PMCID: PMC10214398 DOI: 10.1016/j.isci.2023.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 01/16/2023] [Accepted: 03/29/2023] [Indexed: 05/31/2023] Open
Abstract
Ribonucleoprotein (RNP) condensates are crucial for controlling RNA metabolism and splicing events in animal cells. We used spatial proteomics and transcriptomic to elucidate RNP interaction networks at the centrosome, the main microtubule-organizing center in animal cells. We found a number of cell-type specific centrosome-associated spliceosome interactions localized in subcellular structures involved in nuclear division and ciliogenesis. A component of the nuclear spliceosome BUD31 was validated as an interactor of the centriolar satellite protein OFD1. Analysis of normal and disease cohorts identified the cholangiocarcinoma as target of centrosome-associated spliceosome alterations. Multiplexed single-cell fluorescent microscopy for the centriole linker CEP250 and spliceosome components including BCAS2, BUD31, SRSF2 and DHX35 recapitulated bioinformatic predictions on the centrosome-associated spliceosome components tissue-type specific composition. Collectively, centrosomes and cilia act as anchor for cell-type specific spliceosome components, and provide a helpful reference for explore cytoplasmic condensates functions in defining cell identity and in the origin of rare diseases.
Collapse
Affiliation(s)
- Luigi Cerulo
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, Naples, Italy
| | - Francesca Pia Caruso
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Andrea Remo
- Pathology Unit, Mater Salutis Hospital AULSS9, “Scaligera”, 37122 Verona, Italy
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy
| | - Nicola Forte
- Department of Clinical Pathology, Fatebenefratelli Hospital, 82100 Benevento, Italy
| | - Johan Busselez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 8, Verona, Italy
| | - Mirco Galiè
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, Naples, Italy
- Medical Genetics, Department of Translational Medicine, University of Naples “Federico II”, Via Sergio Pansini, 80131 Naples, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
7
|
Cheng H, Kao Y, Chen T, Sharma L, Yang W, Chuang Y, Huang S, Lin H, Huang Y, Kao C, Yang L, Bearon R, Cheng H, Hsia K, Lin Y. Actin filaments form a size-dependent diffusion barrier around centrosomes. EMBO Rep 2022; 24:e54935. [PMID: 36314725 PMCID: PMC9827556 DOI: 10.15252/embr.202254935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2023] Open
Abstract
The centrosome, a non-membranous organelle, constrains various soluble molecules locally to execute its functions. As the centrosome is surrounded by various dense components, we hypothesized that it may be bordered by a putative diffusion barrier. After quantitatively measuring the trapping kinetics of soluble proteins of varying size at centrosomes by a chemically inducible diffusion trapping assay, we find that centrosomes are highly accessible to soluble molecules with a Stokes radius of less than 5.8 nm, whereas larger molecules rarely reach centrosomes, indicating the existence of a size-dependent diffusion barrier at centrosomes. The permeability of this barrier is tightly regulated by branched actin filaments outside of centrosomes and it decreases during anaphase when branched actin temporally increases. The actin-based diffusion barrier gates microtubule nucleation by interfering with γ-tubulin ring complex recruitment. We propose that actin filaments spatiotemporally constrain protein complexes at centrosomes in a size-dependent manner.
Collapse
Affiliation(s)
- Hsuan Cheng
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Yu‐Lin Kao
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Lohitaksh Sharma
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Wen‐Ting Yang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Yi‐Chien Chuang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Shih‐Han Huang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Hong‐Rui Lin
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yao‐Shen Huang
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Chi‐Ling Kao
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan
| | - Lee‐Wei Yang
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan,Physics DivisionNational Center for Theoretical SciencesTaipeiTaiwan
| | - Rachel Bearon
- Department of Mathematical ScienceUniversity of LiverpoolLiverpoolUK
| | - Hui‐Chun Cheng
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | | | - Yu‐Chun Lin
- Institute of Molecular MedicineNational Tsing Hua UniversityHsinchuTaiwan,Department of Medical ScienceNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
8
|
Wu YFO, Bryant AT, Nelson NT, Madey AG, Fernandes GF, Goodson HV. Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate. PLoS One 2021; 16:e0260401. [PMID: 34890409 PMCID: PMC8664194 DOI: 10.1371/journal.pone.0260401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Proper regulation of microtubule (MT) dynamics is critical for cellular processes including cell division and intracellular transport. Plus-end tracking proteins (+TIPs) dynamically track growing MTs and play a key role in MT regulation. +TIPs participate in a complex web of intra- and inter- molecular interactions known as the +TIP network. Hypotheses addressing the purpose of +TIP:+TIP interactions include relieving +TIP autoinhibition and localizing MT regulators to growing MT ends. In addition, we have proposed that the web of +TIP:+TIP interactions has a physical purpose: creating a dynamic scaffold that constrains the structural fluctuations of the fragile MT tip and thus acts as a polymerization chaperone. Here we examine the possibility that this proposed scaffold is a biomolecular condensate (i.e., liquid droplet). Many animal +TIP network proteins are multivalent and have intrinsically disordered regions, features commonly found in biomolecular condensates. Moreover, previous studies have shown that overexpression of the +TIP CLIP-170 induces large “patch” structures containing CLIP-170 and other +TIPs; we hypothesized that these structures might be biomolecular condensates. To test this hypothesis, we used video microscopy, immunofluorescence staining, and Fluorescence Recovery After Photobleaching (FRAP). Our data show that the CLIP-170-induced patches have hallmarks indicative of a biomolecular condensate, one that contains +TIP proteins and excludes other known condensate markers. Moreover, bioinformatic studies demonstrate that the presence of intrinsically disordered regions is conserved in key +TIPs, implying that these regions are functionally significant. Together, these results indicate that the CLIP-170 induced patches in cells are phase-separated liquid condensates and raise the possibility that the endogenous +TIP network might form a liquid droplet at MT ends or other +TIP locations.
Collapse
Affiliation(s)
- Yueh-Fu O. Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN, United States of America
| | - Annamarie T. Bryant
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN, United States of America
| | - Nora T. Nelson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Alexander G. Madey
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Gail F. Fernandes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Holly V. Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- * E-mail:
| |
Collapse
|
9
|
Nabais C, Pessoa D, de-Carvalho J, van Zanten T, Duarte P, Mayor S, Carneiro J, Telley IA, Bettencourt-Dias M. Plk4 triggers autonomous de novo centriole biogenesis and maturation. J Cell Biol 2021; 220:211915. [PMID: 33760919 PMCID: PMC7995200 DOI: 10.1083/jcb.202008090] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Centrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally, and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell types, centrioles assemble de novo, yet by poorly understood mechanisms. Herein, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at a high Plk4 concentration, centrioles form de novo, mature, and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the temporal onset of centriole assembly. Moreover, our results suggest that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and found that proteins of the pericentriolar material (PCM), and in particular γ-tubulin, promote biogenesis, likely by locally concentrating critical components.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Satyajit Mayor
- National Centre for Biological Sciences, Bangalore, India
| | | | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
10
|
Abstract
As one of four filament types, microtubules are a core component of the cytoskeleton and are essential for cell function. Yet how microtubules are nucleated from their building blocks, the αβ-tubulin heterodimer, has remained a fundamental open question since the discovery of tubulin 50 years ago. Recent structural studies have shed light on how γ-tubulin and the γ-tubulin complex proteins (GCPs) GCP2 to GCP6 form the γ-tubulin ring complex (γ-TuRC). In parallel, functional and single-molecule studies have informed on how the γ-TuRC nucleates microtubules in real time, how this process is regulated in the cell and how it compares to other modes of nucleation. Another recent surprise has been the identification of a second essential nucleation factor, which turns out to be the well-characterized microtubule polymerase XMAP215 (also known as CKAP5, a homolog of chTOG, Stu2 and Alp14). This discovery helps to explain why the observed nucleation activity of the γ-TuRC in vitro is relatively low. Taken together, research in recent years has afforded important insight into how microtubules are made in the cell and provides a basis for an exciting era in the cytoskeleton field.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
11
|
Qi F, Zhou J. Multifaceted roles of centrosomes in development, health, and disease. J Mol Cell Biol 2021; 13:611-621. [PMID: 34264337 PMCID: PMC8648388 DOI: 10.1093/jmcb/mjab041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
The centrosome is a membrane-less organelle consisting of a pair of barrel-shaped centrioles and pericentriolar material and functions as the major microtubule-organizing center and signaling hub in animal cells. The past decades have witnessed the functional complexity and importance of centrosomes in various cellular processes such as cell shaping, division, and migration. In addition, centrosome abnormalities are linked to a wide range of human diseases and pathological states, such as cancer, reproductive disorder, brain disease, and ciliopathies. Herein, we discuss various functions of centrosomes in development and health, with an emphasis on their roles in germ cells, stem cells, and immune responses. We also discuss how centrosome dysfunctions are involved in diseases. A better understanding of the mechanisms regulating centrosome functions may lead the way to potential therapeutic targeting of this organelle in disease treatment.
Collapse
Affiliation(s)
- Feifei Qi
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence to: Feifei Qi, E-mail: ; Jun Zhou, E-mail:
| |
Collapse
|
12
|
Shinkai Y, Kuramochi M, Miyafusa T. New Family Members of FG Repeat Proteins and Their Unexplored Roles During Phase Separation. Front Cell Dev Biol 2021; 9:708702. [PMID: 34322491 PMCID: PMC8311347 DOI: 10.3389/fcell.2021.708702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
The condensation and compartmentalization of biomacromolecules in the cell are driven by the process of phase separation. The main effectors of phase separation are intrinsically disordered proteins, which include proteins with a phenylalanine-glycine (FG) repeat domain. Our understanding of the biological function of FG repeat proteins during phase separation has been mainly derived from recent research on a member of the nuclear pore complex proteins, nucleoporins containing FG repeat domain (FG-NUPs). FG-NUPs form meshwork structures by inter- and intra-molecular FG domain interactions, which confine the nucleo-cytoplasmic exchange. Whereas FG-NUPs localize in the nuclear membrane, other FG repeat proteins reside in the cytoplasm and the nucleoplasm, and the biological function of the FG repeat domain of these proteins is not well described. In the present review, we list the FG repeat proteins that are known to phase separate in the cell, and review their biological functions. We extract the unraveled features of FG repeat proteins as an activator of barrier formation and homotypic cell-cell interactions. Understanding the regulatory mechanisms of FG repeat proteins will provide a potential delivery tool for therapeutic reagents.
Collapse
Affiliation(s)
- Yoichi Shinkai
- Molecular Neurobiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masahiro Kuramochi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan
| | - Takamitsu Miyafusa
- Bio-System Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
13
|
Nlp promotes autophagy through facilitating the interaction of Rab7 and FYCO1. Signal Transduct Target Ther 2021; 6:152. [PMID: 33859171 PMCID: PMC8050283 DOI: 10.1038/s41392-021-00543-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 01/19/2023] Open
Abstract
Autophagy is the main degradation pathway to eliminate long-lived and aggregated proteins, aged or malfunctioning organelles, which is essential for the intracellular homeostasis and prevention of malignant transformation. Although the processes of autophagosome biogenesis have been well illuminated, the mechanism of autophagosome transport remains largely unclear. In this study, we demonstrated that the ninein-like protein (Nlp), a well-characterized centrosomal associated protein, was able to modulate autophagosome transport and facilitate autophagy. During autophagy, Nlp colocalized with autophagosomes and physically interacted with autophagosome marker LC3, autophagosome sorting protein Rab7 and its downstream effector FYCO1. Interestingly, Nlp enhanced the interaction between Rab7 and FYCO1, thus accelerated autophagic flux and the formation of autophagolysosomes. Furthermore, compared to the wild-type mice, NLP deficient mice treated with chemical agent DMBA were prone to increased incidence of hepatomegaly and liver cancer, which were tight associated with the hepatic autophagic defect. Taken together, our findings provide a new insight for the first time that the well-known centrosomal protein Nlp is also a new regulator of autophagy, which promotes the interaction of Rab7 and FYCO1 and facilitates the formation of autophagolysosome.
Collapse
|
14
|
Gungor S, Oktay Y, Hiz S, Aranguren-Ibáñez Á, Kalafatcilar I, Yaramis A, Karaca E, Yis U, Sonmezler E, Ekinci B, Aslan M, Yilmaz E, Özgör B, Balaraju S, Szabo N, Laurie S, Beltran S, MacArthur DG, Hathazi D, Töpf A, Roos A, Lochmuller H, Vernos I, Horvath R. Autosomal recessive variants in TUBGCP2 alter the γ-tubulin ring complex leading to neurodevelopmental disease. iScience 2021; 24:101948. [PMID: 33458610 PMCID: PMC7797523 DOI: 10.1016/j.isci.2020.101948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/20/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Microtubules help building the cytoskeleton of neurons and other cells. Several components of the gamma-tubulin (γ-tubulin) complex have been previously reported in human neurodevelopmental diseases. We describe two siblings from a consanguineous Turkish family with dysmorphic features, developmental delay, brain malformation, and epilepsy carrying a homozygous mutation (p.Glu311Lys) in TUBGCP2 encoding the γ-tubulin complex 2 (GCP2) protein. This variant is predicted to disrupt the electrostatic interaction of GCP2 with GCP3. In primary fibroblasts carrying the variant, we observed a faint delocalization of γ-tubulin during the cell cycle but normal GCP2 protein levels. Through mass spectrometry, we observed dysregulation of multiple proteins involved in the assembly and organization of the cytoskeleton and the extracellular matrix, controlling cellular adhesion and of proteins crucial for neuronal homeostasis including axon guidance. In summary, our functional and proteomic studies link TUBGCP2 and the γ-tubulin complex to the development of the central nervous system in humans.
Collapse
Affiliation(s)
- Serdal Gungor
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Paediatric Neurology, Malatya, Turkey
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University and Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Semra Hiz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Álvaro Aranguren-Ibáñez
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ipek Kalafatcilar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Ahmet Yaramis
- Pediatric Neurology Clinic, Private Office, Diyarbakir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University and Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Uluc Yis
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Ece Sonmezler
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Burcu Ekinci
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Mahmut Aslan
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Elmasnur Yilmaz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Bilge Özgör
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Paediatric Neurology, Malatya, Turkey
| | - Sunitha Balaraju
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
- Department of Clinical Neurosciences, John Van Geest Cambridge Centre for Brain Repair, University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge CB2 0PY, UK
| | - Nora Szabo
- Department of Clinical Neurosciences, John Van Geest Cambridge Centre for Brain Repair, University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge CB2 0PY, UK
- Budai Children Hospital, Észak-Közép-budai Centrum, Új Szent János Kórház és Szakrendelő, Budapest, Hungary
| | - Steven Laurie
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel G. MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Denisa Hathazi
- Department of Clinical Neurosciences, John Van Geest Cambridge Centre for Brain Repair, University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge CB2 0PY, UK
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- Leibniz Institut für Analytische Wissenschaften, ISAS, Dortmund, Germany & Pediatric Neurology, University Hospital, University of Duisburg-Essen, Faculty of Medicine, Essen, Germany
| | - Hanns Lochmuller
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, the Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain
| | - Rita Horvath
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Xie G, Zhou Y, Tu X, Ye X, Xu L, Xiao Z, Wang Q, Wang X, Du M, Chen Z, Chi X, Zhang X, Xia J, Zhang X, Zhou Y, Li Z, Xie C, Sheng L, Zeng Z, Zhou H, Yin Z, Su Y, Xu Y, Zhang XK. Centrosomal Localization of RXRα Promotes PLK1 Activation and Mitotic Progression and Constitutes a Tumor Vulnerability. Dev Cell 2020; 55:707-722.e9. [PMID: 33321102 DOI: 10.1016/j.devcel.2020.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Retinoid X receptor alpha (RXRα), a nuclear receptor of transcription factor, controls various physiological and pathological pathways including cellular growth, proliferation, differentiation, and apoptosis. Here, we report that RXRα is phosphorylated at its N-terminal A/B domain by cyclin-dependent kinase 1 (Cdk1) at the onset of mitosis, triggering its translocation to the centrosome, where phosphorylated-RXRα (p-RXRα) interacts with polo-like kinase 1 (PLK1) through its N-terminal A/B domain by a unique mechanism. The interaction promotes PLK1 activation, centrosome maturation, and mitotic progression. Levels of p-RXRα are abnormally elevated in cancer cell lines, during carcinogenesis in animals, and in clinical tumor tissues. An RXRα ligand XS060, which specifically inhibits p-RXRα/PLK1 interaction but not RXRα heterodimerization, promotes mitotic arrest and catastrophe in a tumor-specific manner. These findings unravel a transcription-independent action of RXRα at the centrosome during mitosis and identify p-RXRα as a tumor-specific vulnerability for developing mitotic drugs with improved therapeutic index.
Collapse
Affiliation(s)
- Guobin Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuqi Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xuhuang Tu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Lin Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhijian Xiao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Qiqiang Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Mingxuan Du
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Xiaoli Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ji Xia
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaowei Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yunxia Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zongxi Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Chengrong Xie
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Luoyan Sheng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Yang Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
16
|
Wang W, Chen Y, Xu A, Cai M, Cao J, Zhu H, Yang B, Shao X, Ying M, He Q. Protein phase separation: A novel therapy for cancer? Br J Pharmacol 2020; 177:5008-5030. [PMID: 32851637 DOI: 10.1111/bph.15242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, phase separation has been increasingly reported to play a pivotal role in a wide range of biological processes. Due to the close relationships between cancer and disorders in intracellular physiological function, the identification of new mechanisms involved in intracellular regulation has been regarded as a new direction for cancer therapy. Introducing the concept of phase separation into complex descriptions of disease mechanisms may provide many different insights. Here, we review the recent findings on the phase separation of cancer-related proteins, describing the possible relationships between phase separation and key proteins associated with cancer and indicate possible regulatory modalities, especially drug candidates for phase separation, which may provide more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqian Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aixiao Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minyi Cai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Arrabito G, Ferrara V, Bonasera A, Pignataro B. Artificial Biosystems by Printing Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907691. [PMID: 32511894 DOI: 10.1002/smll.201907691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/09/2020] [Indexed: 05/09/2023]
Abstract
The continuous progress of printing technologies over the past 20 years has fueled the development of a plethora of applications in materials sciences, flexible electronics, and biotechnologies. More recently, printing methodologies have started up to explore the world of Artificial Biology, offering new paradigms in the direct assembly of Artificial Biosystems (small condensates, compartments, networks, tissues, and organs) by mimicking the result of the evolution of living systems and also by redesigning natural biological systems, taking inspiration from them. This recent progress is reported in terms of a new field here defined as Printing Biology, resulting from the intersection between the field of printing and the bottom up Synthetic Biology. Printing Biology explores new approaches for the reconfigurable assembly of designed life-like or life-inspired structures. This work presents this emerging field, highlighting its main features, i.e., printing methodologies (from 2D to 3D), molecular ink properties, deposition mechanisms, and finally the applications and future challenges. Printing Biology is expected to show a growing impact on the development of biotechnology and life-inspired fabrication.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Vittorio Ferrara
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, Catania, 95125, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, Building 17, Palermo, 90128, Italy
| |
Collapse
|
18
|
Moonlighting in Mitosis: Analysis of the Mitotic Functions of Transcription and Splicing Factors. Cells 2020; 9:cells9061554. [PMID: 32604778 PMCID: PMC7348712 DOI: 10.3390/cells9061554] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Moonlighting proteins can perform one or more additional functions besides their primary role. It has been posited that a protein can acquire a moonlighting function through a gradual evolutionary process, which is favored when the primary and secondary functions are exerted in different cellular compartments. Transcription factors (TFs) and splicing factors (SFs) control processes that occur in interphase nuclei and are strongly reduced during cell division, and are therefore in a favorable situation to evolve moonlighting mitotic functions. However, recently published moonlighting protein databases, which comprise almost 400 proteins, do not include TFs and SFs with secondary mitotic functions. We searched the literature and found several TFs and SFs with bona fide moonlighting mitotic functions, namely they localize to specific mitotic structure(s), interact with proteins enriched in the same structure(s), and are required for proper morphology and functioning of the structure(s). In addition, we describe TFs and SFs that localize to mitotic structures but cannot be classified as moonlighting proteins due to insufficient data on their biochemical interactions and mitotic roles. Nevertheless, we hypothesize that most TFs and SFs with specific mitotic localizations have either minor or redundant moonlighting functions, or are evolving towards the acquisition of these functions.
Collapse
|
19
|
Remo A, Li X, Schiebel E, Pancione M. The Centrosome Linker and Its Role in Cancer and Genetic Disorders. Trends Mol Med 2020; 26:380-393. [PMID: 32277932 DOI: 10.1016/j.molmed.2020.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/26/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Centrosome cohesion, the joining of the two centrosomes of a cell, is increasingly appreciated as a major regulator of cell functions such as Golgi organization and cilia positioning. One major element of centrosome cohesion is the centrosome linker that consists of a growing number of proteins. The timely disassembly of the centrosome linker enables centrosomes to separate and assemble a functional bipolar mitotic spindle that is crucial for maintaining genomic integrity. Exciting new findings link centrosome linker defects to cell transformation and genetic disorders. We review recent data on the molecular mechanisms of the assembly and disassembly of the centrosome linker, and discuss how defects in the proper execution of these processes cause DNA damage and genomic instability leading to disease.
Collapse
Affiliation(s)
- Andrea Remo
- Pathology Unit, Mater Salutis Hospital, Azienda Unità Locale Socio Sanitaria (AULSS) 9 'Scaligera', Verona, Italy
| | - Xue Li
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Heidelberg, Germany.
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
20
|
Raff JW. Phase Separation and the Centrosome: A Fait Accompli? Trends Cell Biol 2019; 29:612-622. [PMID: 31076235 DOI: 10.1016/j.tcb.2019.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022]
Abstract
There is currently intense interest in the idea that many membraneless organelles might assemble through phase separation of their constituent molecules into biomolecular 'condensates' that have liquid-like properties. This idea is intuitively appealing, especially for complex organelles such as centrosomes, where a liquid-like structure would allow the many constituent molecules to diffuse and interact with one another efficiently. I discuss here recent studies that either support the concept of a liquid-like centrosome or suggest that centrosomes are assembled upon a more solid, stable scaffold. I suggest that it may be difficult to distinguish between these possibilities. I argue that the concept of biomolecular condensates is an important advance in cell biology, with potentially wide-ranging implications, but it seems premature to conclude that centrosomes, and perhaps other membraneless organelles, are necessarily best described as liquid-like phase-separated condensates.
Collapse
Affiliation(s)
- Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|