1
|
Lo YH, Miller AM, Brown G, Peaslee GF, Engle JW, Ellison PA. Measurement of the 70Ge(d,n) 71As cross section from 2.1 MeV to 10 MeV. Appl Radiat Isot 2025; 217:111654. [PMID: 39754961 DOI: 10.1016/j.apradiso.2024.111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
This work reports experimental 70Ge(d,n)71As cross sections producing Arsenic-71 (t1/2 = 65.3 h, 28% β+), a potentially useful diagnostic radionuclide. Target stacks containing two natGe foils, a natNi monitor foil, and an Al degrader were irradiated with 5.5-10 MeV deuterons using an FN Tandem Van de Graaff accelerator. 71As and 61Cu, 56Co, and 58Co (from natNi(d,x)) were quantified in the foils by high purity germanium gamma spectrometry. The measured cross sections are larger than previously reported and suitable for producing preclinical quantities of diagnostic radiopharmaceuticals.
Collapse
Affiliation(s)
- Yi-Hsuan Lo
- Department of Medical Physics University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Anthony M Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gunnar Brown
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Graham F Peaslee
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jonathan W Engle
- Department of Medical Physics University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Paul A Ellison
- Department of Medical Physics University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Firth G, Blower JE, Bartnicka JJ, Mishra A, Michaels AM, Rigby A, Darwesh A, Al-Salemee F, Blower PJ. Non-invasive radionuclide imaging of trace metal trafficking in health and disease: "PET metallomics". RSC Chem Biol 2022; 3:495-518. [PMID: 35656481 PMCID: PMC9092424 DOI: 10.1039/d2cb00033d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
Several specific metallic elements must be present in the human body to maintain health and function. Maintaining the correct quantity (from trace to bulk) and location at the cell and tissue level is essential. The study of the biological role of metals has become known as metallomics. While quantities of metals in cells and tissues can be readily measured in biopsy and autopsy samples by destructive analytical techniques, their trafficking and its role in health and disease are poorly understood. Molecular imaging with radionuclides - positron emission tomography (PET) and single photon emission computed tomography (SPECT) - is emerging as a means to non-invasively study the acute trafficking of essential metals between organs, non-invasively and in real time, in health and disease. PET scanners are increasingly widely available in hospitals, and methods for producing radionuclides of some of the key essential metals are developing fast. This review summarises recent developments in radionuclide imaging technology that permit such investigations, describes the radiological and physicochemical properties of key radioisotopes of essential trace metals and useful analogues, and introduces current and potential future applications in preclinical and clinical investigations to study the biology of essential trace metals in health and disease.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Julia E Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aishwarya Mishra
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aidan M Michaels
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Alex Rigby
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Afnan Darwesh
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| |
Collapse
|
3
|
Ma L, Grant C, Gallazzi F, Watkinson LD, Carmack TL, Embree MF, Smith CJ, Medvedev D, Cutler CS, Li Y, Wilbur DS, Hennkens HM, Jurisson SS. Development and biodistribution studies of 77As-labeled trithiol RM2 bioconjugates for prostate cancer: Comparison of [77As]As-trithiol-Ser-Ser-RM2 vs. [77As]As-trithiol-Glu-Ser-RM2. Nucl Med Biol 2022; 108-109:61-69. [DOI: 10.1016/j.nucmedbio.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
|
4
|
Choiński J, Łyczko M. Prospects for the production of radioisotopes and radiobioconjugates for theranostics. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
The development of diagnostic methods in medicine as well as the progress in the synthesis of biologically active compounds allows the use of selected radioisotopes for the simultaneous diagnosis and treatment of diseases, especially cancerous ones, in patients. This approach is called theranostic. This review article includes chemical and physical characterization of chosen theranostic radioisotopes and their compounds that are or could be useful in nuclear medicine.
Collapse
Affiliation(s)
| | - Monika Łyczko
- Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| |
Collapse
|
5
|
George KJH, Borjian S, Cross MC, Hicks JW, Schaffer P, Kovacs MS. Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons. RSC Adv 2021; 11:31098-31123. [PMID: 35498914 PMCID: PMC9041346 DOI: 10.1039/d1ra04480j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular imaging with medical radioisotopes enables the minimally-invasive monitoring of aberrant biochemical, cellular and tissue-level processes in living subjects. The approach requires the administration of radiotracers composed of radioisotopes attached to bioactive molecules, the pairing of which considers several aspects of the radioisotope in addition to the biological behavior of the targeting molecule to which it is attached. With the advent of modern cellular and biochemical techniques, there has been a virtual explosion in potential disease recognition antigens as well as targeting moieties, which has subsequently opened new applications for a host of emerging radioisotopes with well-matched properties. Additionally, the global radioisotope production landscape has changed rapidly, with reactor-based production and its long-defined, large-scale centralized manufacturing and distribution paradigm shifting to include the manufacture and distribution of many radioisotopes via a worldwide fleet of cyclotrons now in operation. Cyclotron-based radioisotope production has become more prevalent given the commercial availability of instruments, coupled with the introduction of new target hardware, process automation and target manufacturing methods. These advances enable sustained, higher-power irradiation of solid targets that allow hospital-based radiopharmacies to produce a suite of radioisotopes that drive research, clinical trials, and ultimately clinical care. Over the years, several different radioisotopes have been investigated and/or selected for radiolabeling due to favorable decay characteristics (i.e. a suitable half-life, high probability of positron decay, etc.), well-elucidated chemistry, and a feasible production framework. However, longer-lived radioisotopes have surged in popularity given recent regulatory approvals and incorporation of radiopharmaceuticals into patient management within the medical community. This review focuses on the applications, nuclear properties, and production and purification methods for some of the most frequently used/emerging positron-emitting, solid-target-produced radioisotopes that can be manufactured using small-to-medium size cyclotrons (≤24 MeV).
Collapse
Affiliation(s)
- K J H George
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| | - S Borjian
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
| | - M C Cross
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
| | - J W Hicks
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| | - P Schaffer
- Life Sciences, TRIUMF 4004 Wesbrook Mall Vancouver BC V6T 2A3 Canada
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
- Radiology, University of British Columbia 2775 Laurel St Vancouver BC V5Z 1M9 Canada
- Chemistry, Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - M S Kovacs
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
- Medical Imaging, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| |
Collapse
|
6
|
Najafi Khosroshahi F, Feng Y, Ma L, Manring S, Rold TL, Gallazzi FA, Kelley SP, Embree MF, Hennkens HM, Hoffman TJ, Jurisson SS. A New, Second Generation Trithiol Bifunctional Chelate for 72,77As: Trithiol(b)-(Ser) 2-RM2. Bioconjug Chem 2021; 32:1364-1373. [PMID: 33423467 DOI: 10.1021/acs.bioconjchem.0c00658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Trithiol chelates are suitable for labeling radioarsenic (72As: 2.49 MeV β+, 26 h; 77As: 0.683 MeV β-, 38.8 h) to form potential theranostic radiopharmaceuticals for positron emission tomography (PET) imaging and therapy. A trithiol(b)-(Ser)2-RM2 bioconjugate and its arsenic complex were synthesized and characterized. The trithiol(b)-(Ser)2-RM2 bioconjugate was radiolabeled with no-carrier-added 77As in over 95% radiochemical yield and was stable for over 48 h, and in vitro IC50 cell binding studies of [77As]As-trithiol(b)-(Ser)2-RM2 in PC-3 cells demonstrated high affinity for the gastrin-releasing peptide (GRP) receptor (low nanomolar range). Limited biodistribution studies in normal mice were performed with HPLC purified 77As-trithiol(b)-(Ser)2-RM2 demonstrating both pancreatic uptake and hepatobiliary clearance.
Collapse
Affiliation(s)
| | | | | | | | - Tammy L Rold
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201, United States
| | | | | | | | | | - Timothy J Hoffman
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201, United States
| | | |
Collapse
|
7
|
Naskar N, Lahiri S. Separation of no-carrier-added 71,72As from 46 MeV alpha particle irradiated gallium oxide target. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2020-0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
No-carrier-added (NCA) 71,72As radionuclides were produced by irradiating gallium oxide target by 46 MeV α-particles. NCA 71,72As was separated from the target matrix by liquid-liquid extraction (LLX) using trioctyl amine (TOA) and tricaprylmethylammonium chloride (aliquat-336) diluted in cyclohexane. The bulk gallium was quantitatively extracted into the organic phase leaving 71,72As in the aqueous phase. Complete separation was observed at 3 M HCl + 0.1 M TOA and 2 M HCl + 0.01 M aliquat-336.
Collapse
Affiliation(s)
- Nabanita Naskar
- Saha Institute of Nuclear Physics , 1/AF Bidhannagar , Kolkata , 700064 , India
| | - Susanta Lahiri
- Saha Institute of Nuclear Physics , 1/AF Bidhannagar , Kolkata , 700064 , India
| |
Collapse
|
8
|
Sanders VA, Cutler CS. Radioarsenic: A promising theragnostic candidate for nuclear medicine. Nucl Med Biol 2021; 92:184-201. [PMID: 32376084 DOI: 10.1016/j.nucmedbio.2020.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Molecular imaging is a non-invasive process that enables the visualization, characterization, and quantitation of biological processes at the molecular and cellular level. With the emergence of theragnostic agents to diagnose and treat disease for personalized medicine there is a growing need for matched pairs of isotopes. Matched pairs offer the unique opportunity to obtain patient specific information from SPECT or PET diagnostic studies to quantitate in vivo function or receptor density to inform and tailor therapeutic treatment. There are several isotopes of arsenic that have emissions suitable for either or both diagnostic imaging and radiotherapy. Their half-lives are long enough to pair them with peptides and antibodies which take longer to reach maximum uptake to facilitate improved patient pharmacokinetics and dosimetry then can be obtained with shorter lived radionuclides. Arsenic-72 even offers availability from a generator that can be shipped to remote sites and thus enhances availability. Arsenic has a long history as a diagnostic agent, but until recently has suffered from limited availability, lack of suitable chelators, and concerns about toxicity have inhibited its use in nuclear medicine. However, new production methods and novel chelators are coming online and the use of radioarsenic in the pico and nanomolar scale is well below the limits associated with toxicity. This manuscript will review the production routes, separation chemistry, radiolabeling techniques and in vitro/in vivo studies of three medically relevant isotopes of arsenic (arsenic-74, arsenic-72, and arsenic-77).
Collapse
Affiliation(s)
- Vanessa A Sanders
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
9
|
Ali W, Hussain M, Amjad N. Evaluation of the nuclear reaction cross sections via proton induced reactions on 72Ge and 76Se to produce 72As: A potential entrant for the theranostic pairs. Appl Radiat Isot 2020; 168:109507. [PMID: 33317890 DOI: 10.1016/j.apradiso.2020.109507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Theranostic applications of radiopharmaceuticals have revolutionized present era specially, dealing with cancer diseases. Increase in the uses of radionuclides in nuclear medicine has resulted in the demands of optimized new radionuclides to be produced focussing on the economy, simplicity and maximum yield. Two radionuclides of arsenic offer a well agreed theranostic systems namely 77As and 72As. Some arsenic radionuclides are capable of positron-emission, with range of hour to weeks half-lives and have potential to be used for nuclear medicine. Present work will elucidate the production of 72As on Germanium and Selenium via proton induced nuclear reactions. The experimental results obtained by several nuclear reactions were analyzed. The results of nuclear model codes namely ALICE-IPPE, EMPIRE-3.2.3 and TALYS-1.9 are compared with the experimental cross sections to generate recommended cross section data. Recommended excitation functions are used to compute the thick target yields (TTY) of 72As. Assessment of radionuclidic impurities are also studied and comparison of several radionuclidic impurities is done. To produce 72As,72Ge (p, n)72As, 73Ge (p, 2n)72As, 74Ge (p, 3n)72As and 76Se (p, x)72As reactions in different energy ranges are discussed. We have identified 72Ge (p, n)72As reaction; gives pre-eminent yield with least impurities mark it as feasible entrant to be applied in Positron Emission Tomography (PET) and theranostic applications.
Collapse
Affiliation(s)
- W Ali
- Department of Physics, Government College University Lahore, 54000, Pakistan; Department of Physics, Govt Islamia College Civil Lines (GICCL), St. Nagar Road Lahore, 54000, Pakistan.
| | - M Hussain
- Department of Physics, Government College University Lahore, 54000, Pakistan
| | - N Amjad
- Department of Physics, Division of Science and Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
10
|
Medici S, Carbonez P, Damet J, Bochud F, Pitzschke A. Use of portable gamma spectrometers for triage monitoring following the intake of conventional and novel radionuclides. RADIAT MEAS 2020. [DOI: 10.1016/j.radmeas.2020.106426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Dewulf J, Adhikari K, Vangestel C, Wyngaert TVD, Elvas F. Development of Antibody Immuno-PET/SPECT Radiopharmaceuticals for Imaging of Oncological Disorders-An Update. Cancers (Basel) 2020; 12:E1868. [PMID: 32664521 PMCID: PMC7408676 DOI: 10.3390/cancers12071868] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023] Open
Abstract
Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are molecular imaging strategies that typically use radioactively labeled ligands to selectively visualize molecular targets. The nanomolar sensitivity of PET and SPECT combined with the high specificity and affinity of monoclonal antibodies have shown great potential in oncology imaging. Over the past decades a wide range of radio-isotopes have been developed into immuno-SPECT/PET imaging agents, made possible by novel conjugation strategies (e.g., site-specific labeling, click chemistry) and optimization and development of novel radiochemistry procedures. In addition, new strategies such as pretargeting and the use of antibody fragments have entered the field of immuno-PET/SPECT expanding the range of imaging applications. Non-invasive imaging techniques revealing tumor antigen biodistribution, expression and heterogeneity have the potential to contribute to disease diagnosis, therapy selection, patient stratification and therapy response prediction achieving personalized treatments for each patient and therefore assisting in clinical decision making.
Collapse
Affiliation(s)
- Jonatan Dewulf
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Karuna Adhikari
- Faculty of Pharmaceutical Biomedical and Veterinary Sciences, Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Tim Van Den Wyngaert
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| |
Collapse
|
12
|
Sitarz M, Cussonneau JP, Matulewicz T, Haddad F. Radionuclide candidates for β+γ coincidence PET: An overview. Appl Radiat Isot 2020; 155:108898. [DOI: 10.1016/j.apradiso.2019.108898] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
|
13
|
1,2-Benzenedithiol and Toluene-3,4-dithiol Arsenic(III) Complexes-Synthesis, Structure, Spectroscopic Characterization and Toxicological Studies. Molecules 2019; 24:molecules24213865. [PMID: 31717768 PMCID: PMC6864545 DOI: 10.3390/molecules24213865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
A new group of arsenic(III) complexes with bidentate S,S-donor ligands, 1,2-benzenedithiol (Ph(SH)2) and toluene-3,4-dithiol (MePh(SH)2), were synthesized. The use of arsenic(III) iodide and bromide promoted the formation of neutral complexes (1-4) with the general formula AsX(LS2) (X = I or Br, L = MePh or Ph). The crystal structures of these compounds were determined using single-crystal X-ray diffraction (scXRD). Unlike other arsenic(III) complexes, AsBr(PhS2) complex (2) was found to crystallize with a rare 13 molecules in the asymmetric unit. The compounds were also characterized by conventional physico-chemical techniques (Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, nuclear magnetic resonance (NMR), high-performance liquid chromatography (HPLC), elemental analysis (EA) and electrospray ionization-mass spectrometry (ESI-MS)). The results from structural and spectroscopic studies were supported by DFT calculations using the B3LYP/LANL2DZ and (or) 6-31+G(d,p) approaches. The cytotoxicity of these complexes was estimated for human acute promyelocytic leukemia cell line (NB4). They exhibited remarkable cytotoxicities after 48 h of treatment with IC50 equal to about 10 µM and 40 µM for complexes with 1,2-benzenedithiolato and toluene-3,4-dithiolato ligand, respectively. Their toxicity was lower than that of commonly used chemotherapeutic As2O3 (IC50 = 1.4 µM).
Collapse
|
14
|
Okoye NC, Baumeister JE, Najafi Khosroshahi F, Hennkens HM, Jurisson SS. Chelators and metal complex stability for radiopharmaceutical applications. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Diagnostic and therapeutic nuclear medicine relies heavily on radiometal nuclides. The most widely used and well-known radionuclide is technetium-99m (99mTc), which has dominated diagnostic nuclear medicine since the advent of the 99Mo/99mTc generator in the 1960s. Since that time, many more radiometals have been developed and incorporated into potential radiopharmaceuticals. One critical aspect of radiometal-containing radiopharmaceuticals is their stability under in vivo conditions. The chelator that is coordinated to the radiometal is a key factor in determining radiometal complex stability. The chelators that have shown the most promise and are under investigation in the development of diagnostic and therapeutic radiopharmaceuticals over the last 5 years are discussed in this review.
Collapse
Affiliation(s)
| | | | | | - Heather M. Hennkens
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
- University of Missouri Research Reactor Center , Columbia, MO 65211 , USA
| | - Silvia S. Jurisson
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| |
Collapse
|
15
|
Chi X, Zhang R, Zhao T, Gong X, Wei R, Yin Z, Lin H, Li D, Shan H, Gao J. Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma. NANOTECHNOLOGY 2019; 30:175101. [PMID: 30654348 DOI: 10.1088/1361-6528/aaff9e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Arsenic trioxide (ATO), an FDA-approved drug for acute promyelocytic leukemia, also has great potential for treatment of solid tumors. Drug delivery powered by recent advances in nanotechnology has boosted the efficacy of many drugs, which is enlightening for applications of ATO in treating solid tumors. Herein, we reported arsenite-loaded multifunctional nanoparticles that are capable of pH-responsive ATO release for treating hepatocellular carcinoma (HCC) and real-time monitoring via magnetic resonance imaging. We fabricated these nanoparticles (designated as magnetic large-pore mesoporous silica nanoparticle (M-LPMSN)-NiAsO x ) by loading nanoparticulate ATO prodrugs (NiAsO x ) into the pores of large-pore mesoporous silica nanoparticles (LPMSNs) that contain magnetic iron oxide nanoparticles in the center. The surface of these nanodrugs was modified with a targeting ligand folic acid (FA) to further enhance the drug efficacy. Releasing profiles manifest the responsive discharging of arsenite in acidic environment. In vitro experiments with SMMC-7721 cells reveal that M-LPMSN-NiAsO x -FA nanodrugs have significantly higher cytotoxicity than traditional free ATO and induce more cell apoptosis. In vivo experiments with mice bearing H22 tumors further confirm the superior antitumor efficacy of M-LPMSN-NiAsO x -FA over traditional free ATO and demonstrate the outstanding imaging ability of M-LPMSN-NiAsO x -FA for real-time tumor monitoring. These targeted arsenite-loaded magnetic mesoporous silica nanoparticles integrating imaging and therapy hold great promise for treatment of HCC, indicating the auspicious potential of LPMSN-based nanoplatforms.
Collapse
Affiliation(s)
- Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Hepatobiliary and Pancreatic Tumor, Zhongshan Hospital, Xiamen University, Xiamen 361004, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Oláh Z, Vogg ATJ, Kremmer T, Szűcs Z, Varga Z, Dóczi R. Optimization of the reduction of 74As(V) to 74As(III) and of the labelling of dithiol dihydrolipoic acid. Appl Radiat Isot 2019; 149:75-82. [PMID: 31029937 DOI: 10.1016/j.apradiso.2019.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/15/2019] [Accepted: 04/03/2019] [Indexed: 01/19/2023]
Abstract
The radiochemical separation of n.c.a. arsenic on its own or for radio-labelling purposes usually involves the issue of reducing arsenic(V). Numerous approaches for reducing pentavalent arsenic have been examined. A novel HPLC method has also been presented for accessing the efficiency of the reduction in terms of *As(III)/*As(V). Labelling with trivalent radioarsenic seems to be a promising research field to access new radiopharmaceuticals, for example, using arsenic as a surrogate for phosphorus. Moreover, as a model system, the labelling reaction of *As(III) with dihydrolipoic acid has been systematically optimized.
Collapse
Affiliation(s)
- Zita Oláh
- National Food Chain Safety Office, Radioanalytical Reference Laboratory, Fogoly street 13-15, H-1182, Budapest, Hungary
| | - Andreas T J Vogg
- Department of Nuclear Medicine, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Tibor Kremmer
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Zoltán Szűcs
- Institute for Nuclear Research of the Hungarian Academy of Sciences, 4+Bem tér 18/c, H-4026, Debrecen, Hungary.
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Rita Dóczi
- Budapest University of Technology and Economics, Institute of Nuclear Techniques, 7-9 Műegyetem rkp, H-1111, Budapest, Hungary
| |
Collapse
|
17
|
Avram S, Udrea AM, Negrea A, Ciopec M, Duteanu N, Postolache C, Duda-Seiman C, Duda-Seiman D, Shaposhnikov S. Prevention of Deficit in Neuropsychiatric Disorders through Monitoring of Arsenic and Its Derivatives as Well as Through Bioinformatics and Cheminformatics. Int J Mol Sci 2019; 20:ijms20081804. [PMID: 31013686 PMCID: PMC6514589 DOI: 10.3390/ijms20081804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022] Open
Abstract
Neuropsychiatric disorders are induced by various risk factors, including direct exposure to environmental chemicals. Arsenic exposure induces neurodegeneration and severe psychiatric disorders, but the molecular mechanisms by which brain damage is induced are not yet elucidated. Our aim is to better understand the molecular mechanisms of arsenic toxicity in the brain and to elucidate possible ways to prevent arsenic neurotoxicity, by reviewing significant experimental, bioinformatics, and cheminformatics studies. Brain damage induced by arsenic exposure is discussed taking in account: the correlation between neuropsychiatric disorders and the presence of arsenic and its derivatives in the brain; possible molecular mechanisms by which arsenic induces disturbances of cognitive and behavioral human functions; and arsenic influence during psychiatric treatments. Additionally, we present bioinformatics and cheminformatics tools used for studying brain toxicity of arsenic and its derivatives, new nanoparticles used as arsenic delivery systems into the human body, and experimental ways to prevent arsenic contamination by its removal from water. The main aim of the present paper is to correlate bioinformatics, cheminformatics, and experimental information on the molecular mechanism of cerebral damage induced by exposure to arsenic, and to elucidate more efficient methods used to reduce its toxicity in real groundwater.
Collapse
Affiliation(s)
- Speranta Avram
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Ana Maria Udrea
- National Institute for Laser Plasma and Radiation Physics, Atomistilor Street 409, 077125 Magurele, Romania.
| | - Adina Negrea
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Piata Victoriei, 2, 300006 Timisoara, Romania.
| | - Mihaela Ciopec
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Piata Victoriei, 2, 300006 Timisoara, Romania.
| | - Narcis Duteanu
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Piata Victoriei, 2, 300006 Timisoara, Romania.
| | - Carmen Postolache
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Corina Duda-Seiman
- Faculty of Chemistry, Biology, Geography, West University of Timișoara, I.H.Pestalozzi 16, 300115 Timisoara, Romania.
| | - Daniel Duda-Seiman
- University of Medicine and Pharmacy "Victor Babes, Timişoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania.
| | | |
Collapse
|
18
|
DeGraffenreid AJ, Medvedev DG, Phelps TE, Gott MD, Smith SV, Jurisson SS, Cutler CS. Cross-section measurements and production of 72Se with medium to high energy protons using arsenic containing targets. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-2931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Experiments were performed to evaluate production of 72Se, parent radionuclide of the positron emitter 72As, at high energy at the Brookhaven Linac Isotope Producer (BLIP). Excitation functions for 75As(p, xn)72/75Se in the 52-105 MeV energy range were measured by irradiating thin gallium arsenide (GaAs) wafers. Maximum cross section value for the natAs(p, 4n)72Se reaction in the energy range was 103±9 mb at 52±1 MeV. Production size GaAs and arsenic metal (As°) targets were irradiated with 136 μA and 165 μA beam current possessing an initial Linac energy of 117 MeV. A total of 3.77±0.1 GBq (102±3 mCi) of 72Se was produced from a GaAs target at a calculated target entrance energy of 105.4 MeV, and 13.8±0.3 GBq (373±8 mCi) of 72Se from an As° target at a calculated incident energy of 49.5 MeV irradiated for 116.5 h and 68.9 h, respectively.
Collapse
Affiliation(s)
| | - Dmitri G. Medvedev
- Collider Accelerator Department , Brookhaven National Laboratory , Upton, NY 11973 , USA
| | - Timothy E. Phelps
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| | - Matthew D. Gott
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| | - Suzanne V. Smith
- Collider Accelerator Department , Brookhaven National Laboratory , Upton, NY 11973 , USA
| | - Silvia S. Jurisson
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| | - Cathy S. Cutler
- Collider Accelerator Department , Brookhaven National Laboratory , Upton, NY 11973 , USA
| |
Collapse
|
19
|
Feng Y, Phipps MD, Phelps TE, Okoye NC, Baumeister JE, Wycoff DE, Dorman EF, Wooten AL, Vlasenko V, Berendzen AF, Wilbur DS, Hoffman TJ, Cutler CS, Ketring AR, Jurisson SS. Evaluation of 72Se/ 72As generator and production of 72Se for supplying 72As as a potential PET imaging radionuclide. Appl Radiat Isot 2019; 143:113-122. [PMID: 30408634 DOI: 10.1016/j.apradiso.2018.10.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 11/23/2022]
Abstract
Positron-emitting 72As is the PET imaging counterpart for beta-emitting 77As. Its parent, no carrier added (n.c.a.) 72Se, was produced for a 72Se/72As generator by irradiating an enriched 7°Ge metal-graphite target via the 70Ge(α, 2 n)72Se reaction. Target dissolution used a fast, environmentally friendly method with 93% radioactivity recovery. Chromatographic parameters of the 72Se/72As generator were evaluated, the eluted n.c.a. 72As was characterized with a phantom imaging study, and the previously reported trithiol and aryl-dithiol ligand systems were radiolabeled with the separated n.c.a. 72As in high yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Alan R Ketring
- University of Missouri Research Reactor Center, Columbia, MO, USA
| | - Silvia S Jurisson
- University of Missouri, Columbia, MO, USA; University of Missouri Research Reactor Center, Columbia, MO, USA.
| |
Collapse
|
20
|
Aluicio-Sarduy E, Ellison PA, Barnhart TE, Cai W, Nickles RJ, Engle JW. PET radiometals for antibody labeling. J Labelled Comp Radiopharm 2018; 61:636-651. [PMID: 29341227 PMCID: PMC6050152 DOI: 10.1002/jlcr.3607] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Recent advances in molecular characterization of tumors have made possible the emergence of new types of cancer therapies where traditional cytotoxic drugs and nonspecific chemotherapy can be complemented with targeted molecular therapies. One of the main revolutionary treatments is the use of monoclonal antibodies (mAbs) that selectively target the disseminated tumor cells while sparing normal tissues. mAbs and related therapeutics can be efficiently radiolabeled with a wide range of radionuclides to facilitate preclinical and clinical studies. Non-invasive molecular imaging techniques, such as Positron Emission Tomography (PET), using radiolabeled mAbs provide useful information on the whole-body distribution of the biomolecules, which may enable patient stratification, diagnosis, selection of targeted therapies, evaluation of treatment response, and prediction of dose limiting tissue and adverse effects. In addition, when mAbs are labeled with therapeutic radionuclides, the combination of immunological and radiobiological cytotoxicity may result in enhanced treatment efficacy. The pharmacokinetic profile of antibodies demands the use of long half-life isotopes for longitudinal scrutiny of mAb biodistribution and precludes the use of well-stablished short half-life isotopes. Herein, we review the most promising PET radiometals with chemical and physical characteristics that make the appealing for mAb labeling, highlighting those with theranostic radioisotopes.
Collapse
Affiliation(s)
| | - Paul A. Ellison
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
| | - Todd E. Barnhart
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
| | - Weibo Cai
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
- University of Wisconsin-Madison, Department of Radiology, Madison, Wisconsin, USA
- University of Wisconsin-Madison Carbone Cancer Center, Carbon Cancer Center, Madison, Wisconsin, USA
| | - Robert Jerry Nickles
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
| | - Jonathan W. Engle
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
- University of Wisconsin-Madison, Department of Radiology, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Feng Y, DeGraffenreid AJ, Phipps MD, Rold TL, Okoye NC, Gallazzi FA, Barnes CL, Cutler CS, Ketring AR, Hoffman TJ, Jurisson SS. A trithiol bifunctional chelate for 72,77As: A matched pair theranostic complex with high in vivo stability. Nucl Med Biol 2018; 61:1-10. [DOI: 10.1016/j.nucmedbio.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 03/04/2018] [Indexed: 12/21/2022]
|
22
|
Tanaka J, Davis TP, Wilson P. Organic Arsenicals as Functional Motifs in Polymer and Biomaterials Science. Macromol Rapid Commun 2018; 39:e1800205. [PMID: 29806240 DOI: 10.1002/marc.201800205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/09/2018] [Indexed: 12/29/2022]
Abstract
Arsenic (As) exhibits diverse (bio)chemical reactivity and biological activity depending upon its oxidation state. However, this distinctive reactivity has been largely overlooked across many fields owing to concerns regarding the toxicity of arsenic. Recently, a clinical renaissance in the use of arsenicals, including organic arsenicals that are known to be less toxic than inorganic arsenicals, alludes to the possibility of broader acceptance and application in the field of polymer and biomaterials science. Here, current examples of polymeric/macromolecular arsenicals are reported to stimulate interest and highlight their potential as a novel platform for functional, responsive, and bioactive materials.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Thomas P Davis
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria, 3152, Australia
| | - Paul Wilson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria, 3152, Australia
| |
Collapse
|
23
|
Ni D, Jiang D, Ehlerding EB, Huang P, Cai W. Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications. Acc Chem Res 2018; 51:778-788. [PMID: 29489335 DOI: 10.1021/acs.accounts.7b00635] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As one of the most biocompatible and well-tolerated inorganic nanomaterials, silica-based nanoparticles (SiNPs) have received extensive attention over the last several decades. Recently, positron emission tomography (PET) imaging of radiolabeled SiNPs has provided a highly sensitive, noninvasive, and quantitative readout of the organ/tissue distribution, pharmacokinetics, and tumor targeting efficiency in vivo, which can greatly expedite the clinical translation of these promising NPs. Encouraged by the successful PET imaging of patients with metastatic melanoma using 124I-labeled ultrasmall SiNPs (known as Cornell dots or C dots) and their approval as an Investigational New Drug (IND) by the United States Food and Drug Administration, different radioisotopes (64Cu, 89Zr, 18F, 68Ga, 124I, etc.) have been reported to radiolabel a wide variety of SiNPs-based nanostructures, including dense silica (dSiO2), mesoporous silica (MSN), biodegradable mesoporous silica (bMSN), and hollow mesoporous silica nanoparticles (HMSN). With in-depth knowledge of coordination chemistry, abundant silanol groups (-Si-O-) on the silica surface or inside mesoporous channels not only can be directly used for chelator-free radiolabeling but also can be readily modified with the right chelators for chelator-based labeling. However, integrating these labeling strategies for constructing stably radiolabeled SiNPs with high efficiency has proven difficult because of the complexity of the involved key parameters, such as the choice of radioisotopes and chelators, nanostructures, and radiolabeling strategy. In this Account, we present an overview of recent progress in the development of radiolabeled SiNPs for cancer theranostics in the hope of speeding up their biomedical applications and potential translation into the clinic. We first introduce the basic principles and mechanisms for radiolabeling SiNPs via coordination chemistry, including general rules of selecting proper radioisotopes, engineering silica nanoplatforms (e.g., dSiO2, MSN, HMSN) accordingly, and chelation strategies for enhanced labeling efficiency and stability, on which our group has focused over the past decade. Generally, the medical applications guide the choice of specific SiNPs for radiolabeling by considering the inherent functionality of SiNPs. The radioisotopes can then be determined according to the amenability of the particular SiNPs for chelator-based or chelator-free radiolabeling to obtain high labeling stability in vivo, which is a prerequisite for PET to truly reflect the behavior of SiNPs since PET imaging detects the isotopes rather than nanoparticles. Next, we highlight several recent representative biomedical applications of radiolabeled SiNPs including molecular imaging to detect specific lesions, PET-guided drug delivery, SiNP-based theranostic cancer agents, and clinical studies. Finally, the challenges and prospects of radiolabeled SiNPs are briefly discussed toward clinical cancer research. We hope that this Account will clarify the recent progress on the radiolabeling of SiNPs for specific medical applications and generate broad interest in integrating nanotechnology and PET imaging. With several ongoing clinical trials, radiolabeled SiNPs offer great potential for future patient stratification and cancer management in clinical settings.
Collapse
Affiliation(s)
- Dalong Ni
- Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core), University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Dawei Jiang
- Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core), University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Emily B. Ehlerding
- Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core), University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Weibo Cai
- Departments of Radiology, Medical Physics, Biomedical Engineering, Materials Science & Engineering, and Pharmaceutical Sciences (Drug Delivery Core), University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
24
|
Labelling with positron emitters of pnicogens and chalcogens. J Labelled Comp Radiopharm 2017; 61:179-195. [DOI: 10.1002/jlcr.3574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/07/2017] [Accepted: 09/29/2017] [Indexed: 11/07/2022]
|
25
|
Feng Y, Phelps TE, Carroll V, Gallazzi F, Sieckman G, Hoffman TJ, Barnes CL, Ketring AR, Hennkens HM, Jurisson SS. Chemistry and radiochemistry of As, Re and Rh isotopes relevant to radiopharmaceutical applications: high specific activity radionuclides for imaging and treatment. Dalton Trans 2017; 46:14677-14690. [PMID: 28951905 DOI: 10.1039/c7dt02407j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The chemistry and radiochemistry of high specific activity radioisotopes of arsenic, rhenium and rhodium are reviewed with emphasis on University of Missouri activities over the past several decades, and includes recent results. The nuclear facilities at the University of Missouri (10 MW research reactor and 16.5 MeV GE PETtrace cyclotron) allow research and development into novel theranostic radionuclides. The production, separation, enriched target recovery, radiochemistry, and chelation chemistry of 72,77As, 186,188Re and 105Rh are discussed.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ellison PA, Chen F, Goel S, Barnhart TE, Nickles RJ, DeJesus OT, Cai W. Intrinsic and Stable Conjugation of Thiolated Mesoporous Silica Nanoparticles with Radioarsenic. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6772-6781. [PMID: 28165700 PMCID: PMC5597940 DOI: 10.1021/acsami.6b14049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The development of new image-guided drug delivery tools to improve the therapeutic efficacy of chemotherapeutics remains an important goal in nanomedicine. Using labeling strategies that involve radioelements that have theranostic pairs of diagnostic positron-emitting isotopes and therapeutic electron-emitting isotopes has promise in achieving this goal and further enhancing drug performance through radiotherapeutic effects. The isotopes of radioarsenic offer such theranostic potential and would allow for the use of positron emission tomography (PET) for image-guided drug delivery studies of the arsenic-based chemotherapeutic arsenic trioxide (ATO). Thiolated mesoporous silica nanoparticles (MSN) are shown to effectively and stably bind cyclotron-produced radioarsenic. Labeling studies elucidate that this affinity is a result of specific binding between trivalent arsenic and nanoparticle thiol surface modification. Serial PET imaging of the in vivo murine biodistribution of radiolabeled silica nanoparticles shows very good stability toward dearsenylation that is directly proportional to silica porosity. Thiolated MSNs are found to have a macroscopic arsenic loading capacity of 20 mg of ATO per gram of MSN, sufficient for delivery of chemotherapeutic quantities of the drug. These results show the great potential of radioarsenic-labeled thiolated MSN for the preparation of theranostic radiopharmaceuticals and image-guided drug delivery of ATO-based chemotherapeutics.
Collapse
Affiliation(s)
- Paul A. Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Feng Chen
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Shreya Goel
- Materials Science Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Todd E. Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Robert J. Nickles
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Onofre T. DeJesus
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
- Materials Science Program, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Shaffer TM, Harmsen S, Khwaja E, Kircher MF, Drain CM, Grimm J. Stable Radiolabeling of Sulfur-Functionalized Silica Nanoparticles with Copper-64. NANO LETTERS 2016; 16:5601-4. [PMID: 27464258 PMCID: PMC5066563 DOI: 10.1021/acs.nanolett.6b02161] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoparticles labeled with radiometals enable whole-body nuclear imaging and therapy. Though chelating agents are commonly used to radiolabel biomolecules, nanoparticles offer the advantage of attaching a radiometal directly to the nanoparticle itself without the need of such agents. We previously demonstrated that direct radiolabeling of silica nanoparticles with hard, oxophilic ions, such as the positron emitters zirconium-89 and gallium-68, is remarkably efficient. However, softer radiometals, such as the widely employed copper-64, do not stably bind to the silica matrix and quickly dissociate under physiological conditions. Here, we overcome this limitation through the use of silica nanoparticles functionalized with a soft electron-donating thiol group to allow stable attachment of copper-64. This approach significantly improves the stability of copper-64 labeled thiol-functionalized silica nanoparticles relative to native silica nanoparticles, thereby enabling in vivo PET imaging, and may be translated to other softer radiometals with affinity for sulfur. The presented approach expands the application of silica nanoparticles as a platform for facile radiolabeling with both hard and soft radiometal ions.
Collapse
Affiliation(s)
- Travis M. Shaffer
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Chemistry, Hunter College of the City University of New York, New York, New York 10065, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Stefan Harmsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Emaad Khwaja
- Department of Chemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Moritz F. Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
- Center for Molecular Imaging & Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Charles Michael Drain
- Department of Chemistry, Hunter College of the City University of New York, New York, New York 10065, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
- Center for Molecular Imaging & Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|
28
|
DeGraffenreid AJ, Feng Y, Wycoff DE, Morrow R, Phipps MD, Cutler CS, Ketring AR, Barnes CL, Jurisson SS. Dithiol Aryl Arsenic Compounds as Potential Diagnostic and Therapeutic Radiopharmaceuticals. Inorg Chem 2016; 55:8091-8. [DOI: 10.1021/acs.inorgchem.6b01175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Anthony J. DeGraffenreid
- Department of Chemistry and ‡Research Reactor
Center (MURR), University of Missouri, Columbia, Missouri 65211, United States
| | - Yutian Feng
- Department of Chemistry and ‡Research Reactor
Center (MURR), University of Missouri, Columbia, Missouri 65211, United States
| | - Donald E. Wycoff
- Department of Chemistry and ‡Research Reactor
Center (MURR), University of Missouri, Columbia, Missouri 65211, United States
| | - Ryan Morrow
- Department of Chemistry and ‡Research Reactor
Center (MURR), University of Missouri, Columbia, Missouri 65211, United States
| | - Michael D. Phipps
- Department of Chemistry and ‡Research Reactor
Center (MURR), University of Missouri, Columbia, Missouri 65211, United States
| | - Cathy S. Cutler
- Department of Chemistry and ‡Research Reactor
Center (MURR), University of Missouri, Columbia, Missouri 65211, United States
| | - Alan R. Ketring
- Department of Chemistry and ‡Research Reactor
Center (MURR), University of Missouri, Columbia, Missouri 65211, United States
| | - Charles L. Barnes
- Department of Chemistry and ‡Research Reactor
Center (MURR), University of Missouri, Columbia, Missouri 65211, United States
| | - Silvia S. Jurisson
- Department of Chemistry and ‡Research Reactor
Center (MURR), University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
29
|
Lu W, Hong H, Cai W. Radio-nanomaterials for biomedical applications: state of the art. EUROPEAN JOURNAL OF NANOMEDICINE 2016; 8:151-170. [PMID: 27482194 PMCID: PMC4963156 DOI: 10.1515/ejnm-2016-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The incorporation of radioactive isotope(s) into conventional nanomaterials can bring extra properties which are not possessed by original materials. The resulting radioactive nanomaterials (radio-nanomaterials), with added physical/chemical properties, can be used as important tools for different biomedical applications. In this review, our goal is to provide an up-to-date overview on these applications using radio-nanomaterials. The first section illustrates the utilization of radionanomaterials for understanding of in vivo kinetics of their parent nano-materials. In the second section, we focus on two primary applications of radio-nanomaterials: imaging and therapeutic delivery. With various methods being used to form radio-nanomaterials, they can be used for positron emission tomography (PET), single-photon emission computed tomography (SPECT), and multimodal imaging. Therapeutic isotopes-loading radio-nanomaterials can possess selective killing efficacy of diseased cells (e.g. tumor cells) and can provide promises for certain isotopes which are not able to be used in a conventional manner. The successful and versatile biomedical applications of radio-nanomaterials warrants further investigations of those materials and their optimizations can pave the way to future imaging guidable, personalized treatments in patients.
Collapse
Affiliation(s)
- Weifei Lu
- Department of Radiology, University of Michigan - Ann Arbor, MI 48109-2200, USA; and College of Animal Sciences and Veterinary Medicine, Henan Agriculture University, Zhengzhou, Henan 450002, China
| | - Hao Hong
- Department of Radiology, University of Michigan - Ann Arbor, MI 48109-2200, USA, , ,
| | - Weibo Cai
- Department of Radiology and Medical Physics, University of Wisconsin - Madison, WI 53705-2275, USA; and University of Wisconsin Carbone Cancer Center, Madison, WI 53705-2275, USA, , ,
| |
Collapse
|
30
|
Abstract
Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases.
Collapse
Affiliation(s)
- Daiqin Chen
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and
| | - Casey A. Dougherty
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and
| | - Dongzhi Yang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and
| | - Hongwei Wu
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and
| | - Hao Hong
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
- Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|