1
|
Takei Y, Yang Y, White J, Goronzy IN, Yun J, Prasad M, Ombelets LJ, Schindler S, Bhat P, Guttman M, Cai L. Spatial multi-omics reveals cell-type-specific nuclear compartments. Nature 2025; 641:1037-1047. [PMID: 40205045 DOI: 10.1038/s41586-025-08838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
The mammalian nucleus is compartmentalized by diverse subnuclear structures. These subnuclear structures, marked by nuclear bodies and histone modifications, are often cell-type specific and affect gene regulation and 3D genome organization1-3. Understanding their relationships rests on identifying the molecular constituents of subnuclear structures and mapping their associations with specific genomic loci and transcriptional levels in individual cells, all in complex tissues. Here, we introduce two-layer DNA seqFISH+, which enables simultaneous mapping of 100,049 genomic loci, together with the nascent transcriptome for 17,856 genes and subnuclear structures in single cells. These data enable imaging-based chromatin profiling of diverse subnuclear markers and can capture their changes at genomic scales ranging from 100-200 kilobases to approximately 1 megabase, depending on the marker and DNA locus. By using multi-omics datasets in the adult mouse cerebellum, we showed that repressive chromatin regions are more variable by cell type than are active regions across the genome. We also discovered that RNA polymerase II-enriched foci were locally associated with long, cell-type-specific genes (bigger than 200 kilobases) in a manner distinct from that of nuclear speckles. Furthermore, our analysis revealed that cell-type-specific regions of heterochromatin marked by histone H3 trimethylated at lysine 27 (H3K27me3) and histone H4 trimethylated at lysine 20 (H4K20me3) are enriched at specific genes and gene clusters, respectively, and shape radial chromosomal positioning and inter-chromosomal interactions in neurons and glial cells. Together, our results provide a single-cell high-resolution multi-omics view of subnuclear structures, associated genomic loci and their effects on gene regulation, directly within complex tissues.
Collapse
Affiliation(s)
- Yodai Takei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Yujing Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan White
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Isabel N Goronzy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Meera Prasad
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
2
|
Mellody M, Nakagawa Y, James R, Di Carlo D. Multi-reactive hydrogel nanovials for temporal control of secretion capture from antibody-secreting cells. LAB ON A CHIP 2025; 25:1565-1574. [PMID: 39905875 DOI: 10.1039/d4lc01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Antibody discovery can benefit from techniques to screen antibody-secreting cells (ASCs) at scale for the binding and functionality of a diverse set of secreted antibodies. Previously, we demonstrated the use of cavity-containing hydrogel microparticles (nanovials) coated with a single affinity agent, biotin, to capture and identify ASCs secreting antibodies against a recombinant antigen bound to the nanovial through biotin-streptavidin linkages. However, rapidly secreted antibodies from unbound cells or cells in adjacent nanovials can cause crosstalk leading to background signal. Earlier efforts address this by localizing capture sites to the nanovial cavity, emulsifying nanovials, or short secretion times to limit secreted antibodies from binding to neighboring nanovials. Here, we demonstrate a method to functionalize nanovials with moieties that impart orthogonal reactivity, enabling conjugation of cell capture antibodies and antigens at different times. We show that by using a strained alkyne moiety to attach cell-capture antibodies via click chemistry to nanovials, we can capture cells and subsequently quantify secretions via biotin-streptavidin linkages. By delaying the loading of antigens onto the nanovials until after cell capture, we were able to ensure high purity (>95%) isolation of hybridoma secreting an antigen-specific antibody in a background of other hybridoma. This approach allows tight temporal control of the secretion measurement, which is independent of the cell loading time and requires less convective transfer steps. Click chemistry-based coupling further improved cell loading into nanovials by 58% compared to biotin-streptavidin-biotin coupling and caused no reduction in cell viability. We demonstrate an implementation of this system to improve antigen-specific hybridoma screening, yielding an 8-fold improvement in hybridoma enrichment while maintaining similar workflow complexity. Hybridomas on nanovials sorted into well plates regrew into colonies following sorting using standard fluorescence-activated cell sorting and maintained secretion of antigen-specific antibodies with high purity (∼90%), as validated via standard enzyme-linked immunosorbent assays. This lab-on-a-particle approach can be applied more generally to decouple cell loading, treatment, or activation, from secretion measurements for single-cell functional assays.
Collapse
Affiliation(s)
- Michael Mellody
- Department of Bioengineering, University of California, Los Angeles, USA.
| | - Yuta Nakagawa
- Department of Bioengineering, University of California, Los Angeles, USA.
| | - Richard James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, USA
- Department of Pediatrics and Pharmacology, University of Washington, Seattle, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, USA.
- California Nanosystems Institute, University of California, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| |
Collapse
|
3
|
Xu X, Zhang Y, Liu J, Wei S, Li N, Yao X, Wang M, Su X, Jing G, Xu J, Liu Y, Lu Y, Cheng J, Xu Y. Concurrent Detection of Protein and miRNA at the Single Extracellular Vesicle Level Using a Digital Dual CRISPR-Cas Assay. ACS NANO 2025; 19:1271-1285. [PMID: 39688838 DOI: 10.1021/acsnano.4c13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The simultaneous detection of proteins and microRNA (miRNA) at the single extracellular vesicle (EV) level shows great promise for precise disease profiling, owing to the heterogeneity and scarcity of tumor-derived EVs. However, a highly reliable method for multiple-target analysis of single EVs remains to be developed. In this study, a digital dual CRISPR-Cas-powered Single EV Evaluation (ddSEE) system was proposed to enable the concurrent detection of surface protein and inner miRNA of EVs at the single-molecule level. By optimizing simultaneous reaction conditions of CRISPR-Cas12a and CRISPR-Cas13a, the surface protein of EVs was detected by Cas12a using antibody-DNA conjugates to transfer the signal of the protein to DNA, while the inner miRNA was analyzed by Cas13a through EV-liposome fusion. A microfluidic chip containing 188,000 microwells was used to convert the CRISPR-Cas system into a digital assay format to enable the absolute quantification of miRNA/protein-positive EVs without bias through fluorescence imaging, which can detect as few as 214 EVs/μL. Finally, a total of 31 blood samples, 21 from breast cancer patients and 10 from healthy donors, were collected and tested, achieving a diagnostic accuracy of 92% in distinguishing patients with breast cancer from healthy donors. With its absolute quantification, ease of use, and multiplexed detection capability, the ddSEE system demonstrates its great potential for both EV research and clinical applications.
Collapse
Affiliation(s)
- Xun Xu
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuanyue Zhang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiajia Liu
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- CapitalBio Technology, Beijing 101111, China
| | - Shujin Wei
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Nan Li
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Xintong Yao
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Muxue Wang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaohan Su
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Gaoshan Jing
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Junquan Xu
- Iomics Biosciences, Beijing 101318, China
| | - Yan Liu
- Iomics Biosciences, Beijing 101318, China
| | - Ying Lu
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102200, China
| | - Jing Cheng
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102200, China
| | - Youchun Xu
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102200, China
| |
Collapse
|
4
|
Wang T, Wang X, Luo S, Zhang P, Li N, Chen C, Li J, Shi H, Dong H, Huang RP. Constructions, Purifications and Applications of DNA-Antibody Conjugates: A Review. ACS OMEGA 2024; 9:47951-47963. [PMID: 39676968 PMCID: PMC11635685 DOI: 10.1021/acsomega.4c07714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024]
Abstract
A DNA-antibody conjugate is a synthetic molecule that combines the unique functions of both an antibody and DNA. With the increased accessibility of commercialized kits, the procedure for constructing conjugates is simplified and the requirement for chemistry background is reduced. As a result, the difficulty of preparing a DNA-antibody conjugate has been significantly lowered. Therefore, the application of DNA-antibody conjugates has attracted more interest in recent years. The most common application of DNA-antibody conjugates is based on the amplifiable property of DNA through PCR. This includes single-conjugate-based immuno-PCR, paired-conjugates-based proximity ligation assay, and proximity extension assay. These methods achieve highly sensitive or specific detection of target proteins. The conjugated single stranded DNA molecules can also specifically hybridize with another strand containing its complementary sequence. This property can be used to selectively bind fluorophore labeled DNA strands, which plays an important role in tissue imaging and spatial omics. All these factors make DNA-antibody conjugates have a broad range of applications in research, diagnosis, and potentially therapy.
Collapse
Affiliation(s)
- Tao Wang
- RayBiotech
Guangzhou Co., Ltd., 79 Ruihe Road, Huangpu District, Guangzhou, Guangdong 510535, China
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Xuelin Wang
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Shuhong Luo
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Peng Zhang
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Na Li
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| | - Can Chen
- College
of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianwen Li
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Hao Shi
- School
of
Life Science and Food Engineering, Huaiyin
Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hua Dong
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National
Engineering Research Center for Tissue Restoration and Reconstruction
(NERC-TRR), Guangzhou 510006, China
| | - Ruo-Pan Huang
- RayBiotech
Guangzhou Co., Ltd., 79 Ruihe Road, Huangpu District, Guangzhou, Guangdong 510535, China
- RayBiotech
Life Inc., Peachtree
Corners, Georgia 30092, United States
| |
Collapse
|
5
|
Vistain L, Keisham B, Xia J, Phan HV, Tay S. Proximity sequencing for the detection of mRNA, extracellular proteins and extracellular protein complexes in single cells. Nat Protoc 2024; 19:3568-3589. [PMID: 39147984 PMCID: PMC11715295 DOI: 10.1038/s41596-024-01030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/24/2024] [Indexed: 08/17/2024]
Abstract
Complex cellular functions occur via the coordinated formation and dissociation of protein complexes. Functions such as the response to a signaling ligand can incorporate dozens of proteins and hundreds of complexes. Until recently, it has been difficult to measure multiple protein complexes at the single-cell level. Here, we present a step-by-step procedure for proximity sequencing, which enables the simultaneous measurement of proteins, mRNA and hundreds of protein complexes located on the outer membrane of cells. We guide the user through probe creation, sample preparation, staining, sequencing and computational quantification of protein complexes. This protocol empowers researchers to study, for example, the interplay between transcriptional states and cellular functions by coupling measurements of transcription to measurements of linked effector molecules, yet could be generalizable to other paired events. The protocol requires roughly 16 h spread over several days to complete by users with expertise in basic molecular biology and single-cell sequencing.
Collapse
Affiliation(s)
- Luke Vistain
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Junjie Xia
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Hoang Van Phan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
- Division of Infectious Disease, University of California, San Francisco, San Francisco, CA, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Peschke F, Taladriz-Sender A, Watson AJ, Burley GA. Reactivity Profiling for High-Yielding Ynamine-Tagged Oligonucleotide Click Chemistry Bioconjugations. Bioconjug Chem 2024; 35:1788-1796. [PMID: 39385696 PMCID: PMC11583209 DOI: 10.1021/acs.bioconjchem.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is a key ligation tool used to prepare bioconjugates. Despite the widespread utility of CuAAC to produce discrete 1,4-triazole products, the requirement of a Cu catalyst can result in oxidative damage to these products. Ynamines are superior reactive groups in CuAAC reactions and require lower Cu loadings to produce 1,4-triazole products. This study discloses a strategy to identify optimal reaction conditions for the formation of oligodeoxyribonucleotide (ODN) bioconjugates. First, the surveying of reaction conditions identified that the ratio of Cu to the choice of reductant (i.e., either sodium ascorbate or glutathione) influences the reaction kinetics and the rate of degradation of bioconjugate products. Second, optimized conditions were used to prepare a variety of ODN-tagged products and ODN-protein conjugates and compared to conventional CuAAC and Cu-free azide-alkyne (3 + 2)cycloadditions (SPAAC), with ynamine-based examples being faster in all cases. The reaction optimization platform established in this study provides the basis for its wider utility to prepare CuAAC-based bioconjugates with lower Cu loadings while maintaining fast reaction kinetics.
Collapse
Affiliation(s)
- Frederik Peschke
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
- Strathclyde
Centre for Molecular Bioscience, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Andrea Taladriz-Sender
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
- Strathclyde
Centre for Molecular Bioscience, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Allan J.B. Watson
- EaStCHEM,
School of Chemistry, University of Saint
Andrews, North Haugh,
Fife, St Andrews KY16 9ST, United Kingdom
| | - Glenn A. Burley
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
- Strathclyde
Centre for Molecular Bioscience, University
of Strathclyde, Glasgow G1 1XL, U.K.
| |
Collapse
|
7
|
Soxpollard N, Strauss S, Jungmann R, MacPherson IS. Selection of antibody-binding covalent aptamers. Commun Chem 2024; 7:174. [PMID: 39117896 PMCID: PMC11310417 DOI: 10.1038/s42004-024-01255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Aptamers are oligonucleotides with antibody-like binding function, selected from large combinatorial libraries. In this study, we modified a DNA aptamer library with N-hydroxysuccinimide esters, enabling covalent conjugation with cognate proteins. We selected for the ability to bind to mouse monoclonal antibodies, resulting in the isolation of two distinct covalent binding motifs. The covalent aptamers are specific for the Fc region of mouse monoclonal IgG1 and are cross-reactive with mouse IgG2a and other IgGs. Investigation into the covalent conjugation of the aptamers revealed a dependence on micromolar concentrations of Cu2+ ions which can be explained by residual catalyst remaining after modification of the aptamer library. The aptamers were successfully used as adapters in the formation of antibody-oligonucleotide conjugates (AOCs) for use in detection of HIV protein p24 and super-resolution imaging of actin. This work introduces a new method for the site-specific modification of native monoclonal antibodies and may be useful in applications requiring AOCs or other antibody conjugates.
Collapse
Affiliation(s)
- Noah Soxpollard
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii, Honolulu, HI, 96813, USA
| | - Sebastian Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Iain S MacPherson
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
8
|
Zhang YP, Lobanova E, Dworkin A, Furlepa M, Yang WS, Burke M, Meng JX, Potter N, Sala RL, Kahanawita L, Layburn F, Scherman OA, Williams-Gray CH, Klenerman D. Improved Imaging Surface for Quantitative Single-Molecule Microscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37255-37264. [PMID: 38979642 PMCID: PMC11261557 DOI: 10.1021/acsami.4c06512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Preventing nonspecific binding is essential for sensitive surface-based quantitative single-molecule microscopy. Here we report a much-simplified RainX-F127 (RF-127) surface with improved passivation. This surface achieves up to 100-fold less nonspecific binding from protein aggregates compared to commonly used polyethylene glycol (PEG) surfaces. The method is compatible with common single-molecule techniques including single-molecule pull-down (SiMPull), super-resolution imaging, antibody-binding screening and single exosome visualization. This method is also able to specifically detect alpha-synuclein (α-syn) and tau aggregates from a wide range of biofluids including human serum, brain extracts, cerebrospinal fluid (CSF) and saliva. The simplicity of this method further allows the functionalization of microplates for robot-assisted high-throughput single-molecule experiments. Overall, this simple but improved surface offers a versatile platform for quantitative single-molecule microscopy without the need for specialized equipment or personnel.
Collapse
Affiliation(s)
- Yu P. Zhang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Evgeniia Lobanova
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Asher Dworkin
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Martin Furlepa
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Department
of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0PY, U.K.
| | - Woo Suk Yang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Melanie Burke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Jonathan X. Meng
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Natalie Potter
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Renata Lang Sala
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Lakmini Kahanawita
- Department
of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0PY, U.K.
| | - Florence Layburn
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Oren A. Scherman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | | | - David Klenerman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| |
Collapse
|
9
|
McCarthy M, Lu X, Ogunleye O, Latham DR, Abravanel M, Pritko D, Huggins JR, Haskell CV, Patel ND, Pittman ZA, Sanabria H, Birtwistle MR. Increasing Signal Intensity of Fluorescent Oligo-Labeled Antibodies to Enable Combination Multiplexing. Bioconjug Chem 2024; 35:1053-1063. [PMID: 38889324 PMCID: PMC11262307 DOI: 10.1021/acs.bioconjchem.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Full-spectrum flow cytometry has increased antibody-based multiplexing, yet further increases remain potentially impactful. We recently proposed how fluorescence multiplexing using spectral imaging and combinatorics (MuSIC) could do so using tandem dyes and an oligo-based antibody labeling method. In this work, we found that such labeled antibodies had significantly lower signal intensities than conventionally labeled antibodies in human cell experiments. To improve signal intensity, we tested moving the fluorophores from the original external (ext.) 5' or 3' end-labeled orientation to internal (int.) fluorophore modifications. Cell-free spectrophotometer measurements showed a ∼6-fold signal intensity increase of the new int. configuration compared to the previous ext. configuration. Time-resolved fluorescence and fluorescence correlation spectroscopy showed that the ∼3-fold brightness difference is due to static quenching most likely by the oligo or solution in the ext. configuration. Spectral flow cytometry experiments using peripheral blood mononuclear cells show int. MuSIC probe-labeled antibodies (i) retained increased signal intensity while having no significant difference in the estimated % of CD8+ lymphocytes and (ii) labeled with Atto488, Atto647, and Atto488/647 combinations can be demultiplexed in triple-stained samples. The antibody labeling approach is general and can be broadly applied to many biological and diagnostic applications where spectral detection is available.
Collapse
Affiliation(s)
- Madeline
E. McCarthy
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0002, United States
| | - Xiaoming Lu
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0002, United States
| | - Oluwaferanmi Ogunleye
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634-0002, United
States
| | - Danielle R. Latham
- Department
of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634-0002, United
States
| | - Megan Abravanel
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0002, United States
| | - Daniel Pritko
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0002, United States
| | - Jonah R. Huggins
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0002, United States
| | - Charlotte V. Haskell
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0002, United States
| | - Nishi D. Patel
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0002, United States
| | - Zachariah A. Pittman
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0002, United States
| | - Hugo Sanabria
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634-0002, United
States
| | - Marc R. Birtwistle
- Department
of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634-0002, United States
- Department
of Bioengineering, Clemson University, Clemson, South Carolina 29634-0002, United
States
| |
Collapse
|
10
|
Karlsson F, Kallas T, Thiagarajan D, Karlsson M, Schweitzer M, Navarro JF, Leijonancker L, Geny S, Pettersson E, Rhomberg-Kauert J, Larsson L, van Ooijen H, Petkov S, González-Granillo M, Bunz J, Dahlberg J, Simonetti M, Sathe P, Brodin P, Barrio AM, Fredriksson S. Molecular pixelation: spatial proteomics of single cells by sequencing. Nat Methods 2024; 21:1044-1052. [PMID: 38720062 PMCID: PMC11166577 DOI: 10.1038/s41592-024-02268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/02/2024] [Indexed: 06/13/2024]
Abstract
The spatial distribution of cell surface proteins governs vital processes of the immune system such as intercellular communication and mobility. However, fluorescence microscopy has limited scalability in the multiplexing and throughput needed to drive spatial proteomics discoveries at subcellular level. We present Molecular Pixelation (MPX), an optics-free, DNA sequence-based method for spatial proteomics of single cells using antibody-oligonucleotide conjugates (AOCs) and DNA-based, nanometer-sized molecular pixels. The relative locations of AOCs are inferred by sequentially associating them into local neighborhoods using the sequence-unique DNA pixels, forming >1,000 spatially connected zones per cell in 3D. For each single cell, DNA-sequencing reads are computationally arranged into spatial proteomics networks for 76 proteins. By studying immune cell dynamics using spatial statistics on graph representations of the data, we identify known and new patterns of spatial organization of proteins on chemokine-stimulated T cells, highlighting the potential of MPX in defining cell states by the spatial arrangement of proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Medical Research Council London Institute of Medical Sciences (LMS), Imperial College Hammersmith Campus, London, UK
| | | | - Simon Fredriksson
- Pixelgen Technologies AB, Stockholm, Sweden.
- Royal Institute of Technology, Department of Protein Science, Stockholm, Sweden.
| |
Collapse
|
11
|
Tanriver M, Müller M, Levasseur MD, Richards D, Majima S, DeMello A, Yamauchi Y, Bode JW. Peptide-Directed Attachment of Hydroxylamines to Specific Lysines of IgG Antibodies for Bioconjugations with Acylboronates. Angew Chem Int Ed Engl 2024; 63:e202401080. [PMID: 38421342 DOI: 10.1002/anie.202401080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
The role of monoclonal antibodies as vehicles to deliver payloads has evolved as a powerful tool in cancer therapy in recent years. The clinical development of therapeutic antibody conjugates with precise payloads holds great promise for targeted therapeutic interventions. The use of affinity-peptide mediated functionalization of native off-the-shelf antibodies offers an effective approach to selectively modify IgG antibodies with a drug-antibody ratio (DAR) of 2. Here, we report the traceless, peptide-directed attachment of two hydroxylamines to native IgGs followed by chemoselective potassium acyltrifluoroborate (KAT) ligation with quinolinium acyltrifluoroborates (QATs), which provide enhanced ligation rates with hydroxylamines under physiological conditions. By applying KAT ligation to the modified antibodies, conjugation of small molecules, proteins, and oligonucleotides to off-the-shelf IgGs proceeds efficiently, in good yields, and with simultaneous cleavage of the affinity peptide-directing moiety.
Collapse
Affiliation(s)
- Matthias Tanriver
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Marco Müller
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Mikail D Levasseur
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Daniel Richards
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Sohei Majima
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Andrew DeMello
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Yohei Yamauchi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jeffrey W Bode
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
12
|
Song T, Cooper L, Galván Achi J, Wang X, Dwivedy A, Rong L, Wang X. Polyvalent Nanobody Structure Designed for Boosting SARS-CoV-2 Inhibition. J Am Chem Soc 2024; 146:5894-5900. [PMID: 38408177 PMCID: PMC10965196 DOI: 10.1021/jacs.3c11760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Coronavirus transmission and mutations have brought intensive challenges on pandemic control and disease treatment. Developing robust and versatile antiviral drugs for viral neutralization is highly desired. Here, we created a new polyvalent nanobody (Nb) structure that shows the effective inhibition of SARS-CoV-2 infections. Our polyvalent Nb structure, called "PNS", is achieved by first conjugating single-stranded DNA (ssDNA) and the receptor-binding domain (RBD)-targeting Nb with retained binding ability to SARS-CoV-2 spike protein and then coalescing the ssDNA-Nb conjugates around a gold nanoparticle (AuNP) via DNA hybridization with a desired Nb density that offers spatial pattern-matching with that of the Nb binding sites on the trimeric spike. The surface plasmon resonance (SPR) assays show that the PNS binds the SARS-CoV-2 trimeric spike proteins with a ∼1000-fold improvement in affinity than that of monomeric Nbs. Furthermore, our viral entry inhibition assays using the PNS against SARS-CoV-2 WA/2020 and two recent variants of interest (BQ1.1 and XBB) show an over 400-fold enhancement in viral inhibition compared to free Nbs. Our PNS strategy built on a new DNA-protein conjugation chemistry provides a facile approach to developing robust virus inhibitors by using a corresponding virus-targeting Nb with a desired Nb density.
Collapse
Affiliation(s)
- Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jazmin Galván Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xiaojing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Tejwani L, Ravindra NG, Lee C, Cheng Y, Nguyen B, Luttik K, Ni L, Zhang S, Morrison LM, Gionco J, Xiang Y, Yoon J, Ro H, Haidery F, Grijalva RM, Bae E, Kim K, Martuscello RT, Orr HT, Zoghbi HY, McLoughlin HS, Ranum LPW, Shakkottai VG, Faust PL, Wang S, van Dijk D, Lim J. Longitudinal single-cell transcriptional dynamics throughout neurodegeneration in SCA1. Neuron 2024; 112:362-383.e15. [PMID: 38016472 PMCID: PMC10922326 DOI: 10.1016/j.neuron.2023.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/10/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
Neurodegeneration is a protracted process involving progressive changes in myriad cell types that ultimately results in the death of vulnerable neuronal populations. To dissect how individual cell types within a heterogeneous tissue contribute to the pathogenesis and progression of a neurodegenerative disorder, we performed longitudinal single-nucleus RNA sequencing of mouse and human spinocerebellar ataxia type 1 (SCA1) cerebellar tissue, establishing continuous dynamic trajectories of each cell population. Importantly, we defined the precise transcriptional changes that precede loss of Purkinje cells and, for the first time, identified robust early transcriptional dysregulation in unipolar brush cells and oligodendroglia. Finally, we applied a deep learning method to predict disease state accurately and identified specific features that enable accurate distinction of wild-type and SCA1 cells. Together, this work reveals new roles for diverse cerebellar cell types in SCA1 and provides a generalizable analysis framework for studying neurodegeneration.
Collapse
Affiliation(s)
- Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Neal G Ravindra
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University, New Haven, CT 06510, USA
| | - Changwoo Lee
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yubao Cheng
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Billy Nguyen
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shupei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Logan M Morrison
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Gionco
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Yangfei Xiang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Hannah Ro
- Yale College, New Haven, CT 06510, USA
| | | | - Rosalie M Grijalva
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Kristen Kim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Laura P W Ranum
- Department of Molecular Genetics and Microbiology, Center for Neurogenetics, College of Medicine, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA.
| | - David van Dijk
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University, New Haven, CT 06510, USA.
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
14
|
Mangla P, Vicentini Q, Biscans A. Therapeutic Oligonucleotides: An Outlook on Chemical Strategies to Improve Endosomal Trafficking. Cells 2023; 12:2253. [PMID: 37759475 PMCID: PMC10527716 DOI: 10.3390/cells12182253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| | - Quentin Vicentini
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
- Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institute, 141 57 Stockholm, Sweden
| | - Annabelle Biscans
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| |
Collapse
|
15
|
Ang YS, Yung LYL. Protein-DNA Conjugates with a Discrete Number of Oligonucleotide Strands for Highly Reproducible Protein Quantification by the DNA Proximity Assay. Anal Chem 2023; 95:12071-12079. [PMID: 37523447 DOI: 10.1021/acs.analchem.3c02033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Protein-oligonucleotide conjugates are increasingly used as detection probes in biological applications such as proximity sensing and spatial biology. The preparation of high-quality conjugate probes as starting reagents is critical for achieving good and consistent performance, which we demonstrate via the DNA proximity assay (DPA) for the one-pot quantification of protein targets. We first established a complete conjugation and anion-exchange chromatography purification workflow to reproducibly obtain pure subpopulations of protein probes carrying a discrete number of oligonucleotide strands. A systematic study using the purified conjugate sub-populations confirmed that the order of conjugate (number of oligonucleotides per protein) and its purity (the absence of the unconjugated antibody) were important for ensuring optimal and reproducible assay performance. The streamlined workflow was then successfully used to conjugate a pair of universal DPA initiator oligonucleotides onto a wide range of binders including antibodies, nanobodies, and antigens which enabled the versatile detection of different types of proteins such as cytokines, total antibodies, and specific antibody isotypes. The good assay robustness (the inter-assay coefficient of variation lower than 5%) and linear calibration curve was achieved across all targets with just a single mix-and-incubate reaction step and a short reaction time of 30 min. We anticipate the streamlined protein-oligonucleotide probe preparation workflow developed in this work to have broad utility across applications leveraging the specificity of protein bio-recognition with the programmability of DNA hybridization.
Collapse
Affiliation(s)
- Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
16
|
Takei Y, Yang Y, White J, Yun J, Prasad M, Ombelets LJ, Schindler S, Cai L. High-resolution spatial multi-omics reveals cell-type specific nuclear compartments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539762. [PMID: 37214923 PMCID: PMC10197539 DOI: 10.1101/2023.05.07.539762] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mammalian nucleus is compartmentalized by diverse subnuclear structures. These subnuclear structures, marked by nuclear bodies and histone modifications, are often cell-type specific and affect gene regulation and 3D genome organization1-3. Understanding nuclear organization requires identifying the molecular constituents of subnuclear structures and mapping their associations with specific genomic loci in individual cells, within complex tissues. Here, we introduce two-layer DNA seqFISH+, which allows simultaneous mapping of 100,049 genomic loci, together with nascent transcriptome for 17,856 genes and a diverse set of immunofluorescently labeled subnuclear structures all in single cells in cell lines and adult mouse cerebellum. Using these multi-omics datasets, we showed that repressive chromatin compartments are more variable by cell type than active compartments. We also discovered a single exception to this rule: an RNA polymerase II (RNAPII)-enriched compartment was associated with long, cell-type specific genes (> 200kb), in a manner distinct from nuclear speckles. Further, our analysis revealed that cell-type specific facultative and constitutive heterochromatin compartments marked by H3K27me3 and H4K20me3 are enriched at specific genes and gene clusters, respectively, and shape radial chromosomal positioning and inter-chromosomal interactions in neurons and glial cells. Together, our results provide a single-cell high-resolution multi-omics view of subnuclear compartments, associated genomic loci, and their impacts on gene regulation, directly within complex tissues.
Collapse
Affiliation(s)
- Yodai Takei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yujing Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan White
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Meera Prasad
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
17
|
Freitag JS, Möser C, Belay R, Altattan B, Grasse N, Pothineni BK, Schnauß J, Smith DM. Integration of functional peptides into nucleic acid-based nanostructures. NANOSCALE 2023; 15:7608-7624. [PMID: 37042085 DOI: 10.1039/d2nr05429a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In many applications such as diagnostics and therapy development, small peptide fragments consisting of only a few amino acids are often attractive alternatives to bulky proteins. This is due to factors such as the ease of scalable chemical synthesis and numerous methods for their discovery. One drawback of using peptides is that their activity can often be negatively impacted by the lack of a rigid, 3D stabilizing structure provided by the rest of the protein. In many cases, this can be alleviated by different methods of rational templating onto nanomaterials, which provides additional possibilities to use concepts of multivalence or rational nano-engineering to enhance or even create new types of function or structure. In recent years, nanostructures made from the self-assembly of DNA strands have been used as scaffolds to create functional arrangements of peptides, often leading to greatly enhanced biological activity or new material properties. This review will give an overview of nano-templating approaches based on the combination of DNA nanotechnology and peptides. This will include both bioengineering strategies to control interactions with cells or other biological systems, as well as examples where the combination of DNA and peptides has been leveraged for the rational design of new functional materials.
Collapse
Affiliation(s)
- Jessica S Freitag
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
| | - Christin Möser
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
| | - Robel Belay
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
| | - Basma Altattan
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
| | - Nico Grasse
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
| | | | - Jörg Schnauß
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
- Unconventional Computing Lab, UWE, Bristol, BS16 1QY, UK
| | - David M Smith
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
- Institute of Clinical Immunology, University of Leipzig Medical Faculty, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Beneyto-Calabuig S, Merbach AK, Kniffka JA, Antes M, Szu-Tu C, Rohde C, Waclawiczek A, Stelmach P, Gräßle S, Pervan P, Janssen M, Landry JJM, Benes V, Jauch A, Brough M, Bauer M, Besenbeck B, Felden J, Bäumer S, Hundemer M, Sauer T, Pabst C, Wickenhauser C, Angenendt L, Schliemann C, Trumpp A, Haas S, Scherer M, Raffel S, Müller-Tidow C, Velten L. Clonally resolved single-cell multi-omics identifies routes of cellular differentiation in acute myeloid leukemia. Cell Stem Cell 2023; 30:706-721.e8. [PMID: 37098346 DOI: 10.1016/j.stem.2023.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/05/2023] [Accepted: 03/30/2023] [Indexed: 04/27/2023]
Abstract
Inter-patient variability and the similarity of healthy and leukemic stem cells (LSCs) have impeded the characterization of LSCs in acute myeloid leukemia (AML) and their differentiation landscape. Here, we introduce CloneTracer, a novel method that adds clonal resolution to single-cell RNA-seq datasets. Applied to samples from 19 AML patients, CloneTracer revealed routes of leukemic differentiation. Although residual healthy and preleukemic cells dominated the dormant stem cell compartment, active LSCs resembled their healthy counterpart and retained erythroid capacity. By contrast, downstream myeloid progenitors constituted a highly aberrant, disease-defining compartment: their gene expression and differentiation state affected both the chemotherapy response and leukemia's ability to differentiate into transcriptomically normal monocytes. Finally, we demonstrated the potential of CloneTracer to identify surface markers misregulated specifically in leukemic cells. Taken together, CloneTracer reveals a differentiation landscape that mimics its healthy counterpart and may determine biology and therapy response in AML.
Collapse
Affiliation(s)
- Sergi Beneyto-Calabuig
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Anne Kathrin Merbach
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, 69117 Heidelberg, Germany
| | - Jonas-Alexander Kniffka
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Magdalena Antes
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Chelsea Szu-Tu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Christian Rohde
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, 69117 Heidelberg, Germany
| | - Alexander Waclawiczek
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Patrick Stelmach
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Sarah Gräßle
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Philip Pervan
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Maike Janssen
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, 69117 Heidelberg, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michaela Brough
- Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Marcus Bauer
- Institute of Pathology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany
| | - Birgit Besenbeck
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Julia Felden
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sebastian Bäumer
- Department of Medicine A, Hematology and Oncology, University Hospital, Muenster, Germany
| | - Michael Hundemer
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tim Sauer
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Caroline Pabst
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, 69117 Heidelberg, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany
| | - Linus Angenendt
- Department of Medicine A, Hematology and Oncology, University Hospital, Muenster, Germany; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Christoph Schliemann
- Department of Medicine A, Hematology and Oncology, University Hospital, Muenster, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Michael Scherer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Simon Raffel
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, 69117 Heidelberg, Germany.
| | - Lars Velten
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
19
|
Liu FX, Cui JQ, Wu Z, Yao S. Recent progress in nucleic acid detection with CRISPR. LAB ON A CHIP 2023; 23:1467-1492. [PMID: 36723235 DOI: 10.1039/d2lc00928e] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advances in CRISPR-based biotechnologies have greatly expanded our capabilities to repurpose CRISPR for the development of molecular diagnostic systems. The key attribute that allows CRISPR to be widely utilized is its programmable and highly specific nature. In this review, we first illustrate the principle of the class 2 CRISPR nucleases for molecular diagnostics which originates from their immunologic defence systems. Next, we present the CRISPR-based schemes in the application of diagnostics with amplification-assisted or amplification-free strategies. By highlighting some of the recent advances we interpret how general bioengineering methodologies can be integrated with CRISPR. Finally, we discuss the challenges and exciting prospects for future CRISPR-based biosensing development. We hope that this review will guide the reader to systematically learn the start-of-the-art development of CRISPR-mediated nucleic acid detection and understand how to apply the CRISPR nucleases with different design concepts to more general applications in diagnostics and beyond.
Collapse
Affiliation(s)
- Frank X Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Johnson Q Cui
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Zhihao Wu
- IIP-Advanced Materials, Interdisciplinary Program Office (IPO), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
20
|
Vistain L, Van Phan H, Keisham B, Jordi C, Chen M, Reddy ST, Tay S. Quantification of extracellular proteins, protein complexes and mRNAs in single cells by proximity sequencing. Nat Methods 2022; 19:1578-1589. [PMID: 36456784 PMCID: PMC11289786 DOI: 10.1038/s41592-022-01684-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022]
Abstract
We present proximity sequencing (Prox-seq) for simultaneous measurement of proteins, protein complexes and mRNAs in thousands of single cells. Prox-seq combines proximity ligation assay with single-cell sequencing to measure proteins and their complexes from all pairwise combinations of targeted proteins, providing quadratically scaled multiplexing. We validate Prox-seq and analyze a mixture of T cells and B cells to show that it accurately identifies these cell types and detects well-known protein complexes. Next, by studying human peripheral blood mononuclear cells, we discover that naïve CD8+ T cells display the protein complex CD8-CD9. Finally, we study protein interactions during Toll-like receptor (TLR) signaling in human macrophages. We observe the formation of signal-specific protein complexes, find CD36 co-receptor activity and additive signal integration under lipopolysaccharide (TLR4) and Pam2CSK4 (TLR2) stimulation, and show that quantification of protein complexes identifies signaling inputs received by macrophages. Prox-seq provides access to an untapped measurement modality for single-cell phenotyping and can discover uncharacterized protein interactions in different cell types.
Collapse
Affiliation(s)
- Luke Vistain
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Hoang Van Phan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Christian Jordi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Mengjie Chen
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Savaş Tay
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
Chen Z, Yin G, Wei J, Qi T, Qian Z, Wang Z, Zong S, Cui Y. Quantitative analysis of multiple breast cancer biomarkers using DNA-PAINT. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3671-3679. [PMID: 36063064 DOI: 10.1039/d2ay00670g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Immunotherapy has become an efficient treatment method of breast cancer. Detection of proteins such as PD-L1 and CTLA-4, which are important immune checkpoint molecules, is attracting more and more attention as they play key roles in immunotherapy. Here, by combining the high resolution of DNA-PAINT (DNA points accumulation for imaging in nanoscale topography) with the qPAINT quantitative analysis method, accurate spatial localization and absolute quantification of PD-L1 and CTLA-4 on the membrane of breast cancer cells could be achieved. Meanwhile, exchange-PAINT was also conducted to count three other biomarkers (EpCAM, EGFR, and HER2). Simultaneous analysis of these biomarkers can greatly facilitate the differentiation of different kinds of breast cancer. Such a simple quantitative analysis method holds great potential in diagnosis and immunotherapy of cancers.
Collapse
Affiliation(s)
- Zengwei Chen
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Gaoqiang Yin
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Jinxiu Wei
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Tongsheng Qi
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Ziting Qian
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China.
| |
Collapse
|
22
|
Kleino I, Nowlan K, Kotimaa J, Kekäläinen E. Optimising protein detection with fixable custom oligo-labelled antibodies for single-cell multi-omics approaches. Biotechnol J 2022; 17:e2100213. [PMID: 35174641 DOI: 10.1002/biot.202100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND AIM Single-cell RNA sequencing (scRNA-seq) is a powerful method utilising transcriptomic data for detailed characterisation of heterogeneous cell populations. The use of oligonucleotide-labelled antibodies for targeted proteomics addresses the shortcomings of the scRNA-seq-only based approach by improving detection of low expressing targets. However, optimisation of large antibody panels is challenging and depends on the availability of co-functioning oligonucleotide-labelled antibodies. MAIN METHODS AND RESULTS We present here a simple adjustable oligonucleotide-antibody conjugation method which enables desired level of oligo-conjugation per antibody. The mean labelling in the produced antibody batches varied from 1 to 6 oligos per antibody. In the scRNA-seq multimodal experiment, the highest sensitivity was seen with moderate antibody labelling as the high activation and/or labelling was detrimental to antibody performance. The conjugates were also tested for compatibility with the fixation and freeze storage protocols. The oligo-antibody signal was stable in fixed cells indicating feasibility of the stain, fix, store, and analyse later type of workflow for multimodal scRNA-seq. CONCLUSIONS AND IMPLICATIONS Optimised oligo-labelling will improve detection of weak protein targets in scRNA-seq multimodal experiments and reduce sequencing costs due to a more balanced amplification of different antibody signals in CITE-seq libraries. Furthermore, the use of a pre-stain, fix, run later protocol will allow for flexibility, facilitate sample pooling, and ease logistics in scRNA-seq multimodal experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Iivari Kleino
- Translational Immunology Research Program, University of Helsinki
| | - Kirsten Nowlan
- Doctoral Programme in Biomedicine, University of Helsinki
| | - Juha Kotimaa
- Complement Group, University of Helsinki, Department of Bacteriology and Immunology
| | - Eliisa Kekäläinen
- Dept. of Bacteriology and Immunology, University of Helsinki, and Helsinki University Hospital
| |
Collapse
|
23
|
Lee DP, Ray WJ, Mei TP, Hoon S, Scolnick J, Yeo GW. Antibody-Oligonucleotide Conjugation Using a SPAAC Copper-Free Method Compatible with 10× Genomics' Single-Cell RNA-Seq. Methods Mol Biol 2022; 2463:67-80. [PMID: 35344168 DOI: 10.1007/978-1-0716-2160-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in multimodal approaches toward single-cell analyses present valuable data points that can complement standard flow cytometry data. In particular, the overlay of cell-surface proteome data with gene expression analysis presents a necessary advancement, particularly in the field of immunology. Here we describe a copper-free click chemistry method for the generation of antibody-oligonucleotide complexes and present the steps for its employment in the context of the 10× genomics droplet-based single-cell RNA-seq workflow, providing a method for coupling proteomic and transcriptomic analyses in an efficient and cost-effect manner.
Collapse
Affiliation(s)
- Dominic Paul Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wang Jiehao Ray
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tan Pee Mei
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
| | - Jonathan Scolnick
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gene W Yeo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Zhao H, Wang X, Zhang W, Wang L, Zhu C, Huang Y, Chen R, Chen X, Wang M, Pan G, Shi Q, Zhou X. Bioclickable Mussel-Derived Peptides With Immunoregulation for Osseointegration of PEEK. Front Bioeng Biotechnol 2021; 9:780609. [PMID: 34900969 PMCID: PMC8652040 DOI: 10.3389/fbioe.2021.780609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023] Open
Abstract
Polyether ether ketone (PEEK)–based biomaterials have been widely used in the field of spine and joint surgery. However, lack of biological activity limits their further clinical application. In this study, we synthesized a bioclickable mussel-derived peptide Azide-DOPA4 as a PEEK surface coating modifier and further combined bone morphogenetic protein 2 functional peptides (BMP2p) with a dibenzylcyclooctyne (DBCO) motif through bio-orthogonal reactions to obtain DOPA4@BMP2p-PEEK. As expected, more BMP2p can be conjugated on PEEK after Azide-DOPA4 coating. The surface roughness and hydrophilicity of DOPA4@BMP2p-PEEK were obviously increased. Then, we optimized the osteogenic capacity of PEEK substrates. In vitro, compared with the BMP2p-coating PEEK material, DOPA4@BMP2p-PEEK showed significantly higher osteogenic induction capability of rat bone marrow mesenchymal stem cells. In vivo, we constructed a rat calvarial bone defect model and implanted PEEK materials with a differently modified surface. Micro-computed tomography scanning displayed that the DOPA4@BMP2p-PEEK implant group had significantly higher new bone volume and bone mineral density than the BMP2p-PEEK group. Histological staining of hard tissue further confirmed that the DOPA4@BMP2p-PEEK group revealed a better osseointegrative effect than the BMP2p-PEEK group. More importantly, we also found that DOPA4@BMP2p coating has a synergistic effect with induced Foxp3+ regulatory T (iTreg) cells to promote osteogenesis. In summary, with an easy-to-perform, two-step surface bioengineering approach, the DOPA4@BMP2p-PEEK material reported here displayed excellent biocompatibility and osteogenic functions. It will, moreover, offer insights to engineering surfaces of orthopedic implants.
Collapse
Affiliation(s)
- Huan Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Xiaokang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China.,Department of Orthopaedics, The Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, China
| | - Wen Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Lin Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Can Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Yingkang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Rongrong Chen
- Department of Pediatrics, The Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, China
| | - Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Xichao Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Oligonucleotide conjugated antibody strategies for cyclic immunostaining. Sci Rep 2021; 11:23844. [PMID: 34903759 PMCID: PMC8668956 DOI: 10.1038/s41598-021-03135-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022] Open
Abstract
A number of highly multiplexed immunostaining and imaging methods have advanced spatial proteomics of cancer for improved treatment strategies. While a variety of methods have been developed, the most widely used methods are limited by harmful signal removal techniques, difficulties with reagent production and antigen sensitivity. Multiplexed immunostaining employing oligonucleotide (oligos)-barcoded antibodies is an alternative approach that is growing in popularity. However, challenges remain in consistent conjugation of oligos to antibodies with maintained antigenicity as well as non-destructive, robust and cost-effective signal removal methods. Herein, a variety of oligo conjugation and signal removal methods were evaluated in the development of a robust oligo conjugated antibody cyclic immunofluorescence (Ab-oligo cyCIF) methodology. Both non- and site-specific conjugation strategies were assessed to label antibodies, where site-specific conjugation resulted in higher retained binding affinity and antigen-specific staining. A variety of fluorescence signal removal methods were also evaluated, where incorporation of a photocleavable link (PCL) resulted in full fluorescence signal removal with minimal tissue disruption. In summary, this work resulted in an optimized Ab-oligo cyCIF platform capable of generating high dimensional images to characterize the spatial proteomics of the hallmarks of cancer.
Collapse
|
26
|
Konč J, Brown L, Whiten DR, Zuo Y, Ravn P, Klenerman D, Bernardes GJL. A Platform for Site‐Specific DNA‐Antibody Bioconjugation by Using Benzoylacrylic‐Labelled Oligonucleotides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juraj Konč
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Libby Brown
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Daniel R. Whiten
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Yukun Zuo
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Peter Ravn
- AstraZeneca R&D BioPharmaceuticals Unit
- Antibody Discovery & Protein Engineering (ADPE) Milstein Building, Granta Park Cambridge CB21 6GH UK
- Current address: Department of Biotherapeutic Discovery H. Lundbeck A/S Ottiliavej 9, 2500 Valby Denmark
| | - David Klenerman
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- UK Dementia Research Institute University of Cambridge Cambridge CB2 0XY UK
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Instituto de Medicina Molecular João Lobo Antunes Faculdade de Medicina Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
27
|
Konč J, Brown L, Whiten DR, Zuo Y, Ravn P, Klenerman D, Bernardes GJL. A Platform for Site-Specific DNA-Antibody Bioconjugation by Using Benzoylacrylic-Labelled Oligonucleotides. Angew Chem Int Ed Engl 2021; 60:25905-25913. [PMID: 34555238 PMCID: PMC9297960 DOI: 10.1002/anie.202109713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Many bioconjugation strategies for DNA oligonucleotides and antibodies suffer limitations, such as site-specificity, stoichiometry and hydrolytic instability of the conjugates, which makes them unsuitable for biological applications. Here, we report a new platform for the preparation of DNA-antibody bioconjugates with a simple benzoylacrylic acid pentafluorophenyl ester reagent. Benzoylacrylic-labelled oligonucleotides prepared with this reagent can be site-specifically conjugated to a range of proteins and antibodies through accessible cysteine residues. The homogeneity of the prepared DNA-antibody bioconjugates was confirmed by a new LC-MS protocol and the bioconjugate probes were used in fluorescence or super-resolution microscopy cell imaging experiments. This work demonstrates the versatility and robustness of our bioconjugation protocol that gives site-specific, well-defined and plasma-stable DNA-antibody bioconjugates for biological applications.
Collapse
Affiliation(s)
- Juraj Konč
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Libby Brown
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Daniel R. Whiten
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Yukun Zuo
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Peter Ravn
- AstraZenecaR&D BioPharmaceuticals Unit|Antibody Discovery & Protein Engineering (ADPE)Milstein Building, Granta ParkCambridgeCB21 6GHUK
- Current address: Department of Biotherapeutic DiscoveryH. Lundbeck A/SOttiliavej 9, 2500ValbyDenmark
| | - David Klenerman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0XYUK
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| |
Collapse
|
28
|
Lu Y, Liu M, Yang J, Weissman SM, Pan X, Katz SG, Wang S. Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture. Cell Discov 2021; 7:47. [PMID: 34183665 PMCID: PMC8238952 DOI: 10.1038/s41421-021-00266-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
The hematopoietic stem cell (HSC) niche has been extensively studied in bone marrow, yet a more systematic investigation into the microenvironment regulation of hematopoiesis in fetal liver is necessary. Here we investigate the spatial organization and transcriptional profile of individual cells in both wild type (WT) and Tet2−/− fetal livers, by multiplexed error robust fluorescence in situ hybridization. We find that specific pairs of fetal liver cell types are preferentially positioned next to each other. Ligand-receptor signaling molecule pairs such as Kitl and Kit are enriched in neighboring cell types. The majority of HSCs are in direct contact with endothelial cells (ECs) in both WT and Tet2−/− fetal livers. Loss of Tet2 increases the number of HSCs, and upregulates Wnt and Notch signaling genes in the HSC niche. Two subtypes of ECs, arterial ECs and sinusoidal ECs, and other cell types contribute distinct signaling molecules to the HSC niche. Collectively, this study provides a comprehensive picture and bioinformatic foundation for HSC spatial regulation in fetal liver.
Collapse
Affiliation(s)
- Yanfang Lu
- Department of Genetics, Yale School of Medicine, New Haven, USA.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China
| | - Miao Liu
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Jennifer Yang
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | | | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China.
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, USA.
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, New Haven, USA. .,Department of Cell Biology, Yale School of Medicine, New Haven, USA.
| |
Collapse
|
29
|
Rajagopalan A, Venkatesh I, Aslam R, Kirchenbuechler D, Khanna S, Cimbaluk D, Kordower JH, Gupta V. SeqStain is an efficient method for multiplexed, spatialomic profiling of human and murine tissues. CELL REPORTS METHODS 2021; 1:100006. [PMID: 34766102 PMCID: PMC8579778 DOI: 10.1016/j.crmeth.2021.100006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 01/16/2023]
Abstract
Spatial organization of molecules and cells in complex tissue microenvironments provides essential organizational cues in health and disease. A significant need exists for improved visualization of these spatial relationships. Here, we describe a multiplex immunofluorescence imaging method, termed SeqStain, that uses fluorescent-DNA-labeled antibodies for immunofluorescent staining and nuclease treatment for de-staining that allows selective enzymatic removal of the fluorescent signal. SeqStain can be used with primary antibodies, secondary antibodies, and antibody fragments to efficiently analyze complex cells and tissues. Additionally, incorporation of specific endonuclease restriction sites in antibody labels allows for selective removal of fluorescent signals while retaining other signals that can serve as marks for subsequent analyses. The application of SeqStain on human kidney tissue provided a spatialomic profile of the organization of >25 markers in the kidney, highlighting it as a versatile, easy-to-use, and gentle new technique for spatialomic analyses of complex microenvironments.
Collapse
Affiliation(s)
- Anugraha Rajagopalan
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ishwarya Venkatesh
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Rabail Aslam
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - David Kirchenbuechler
- Center for Advanced Microscopy, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shreyaa Khanna
- University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - David Cimbaluk
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jeffrey H. Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Hematology, Oncology and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
30
|
McCarthy ME, Anglin CM, Peer HA, Boleman SA, Klaubert SR, Birtwistle MR. Protocol for Creating Antibodies with Complex Fluorescence Spectra. Bioconjug Chem 2021; 32:1156-1166. [PMID: 34009954 DOI: 10.1021/acs.bioconjchem.1c00220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fluorescent antibodies are a workhorse of biomedical science, but fluorescence multiplexing has been notoriously difficult due to spectral overlap between fluorophores. We recently established proof-of-principal for fluorescence Multiplexing using Spectral Imaging and Combinatorics (MuSIC), which uses combinations of existing fluorophores to create unique spectral signatures for increased multiplexing. However, a method for labeling antibodies with MuSIC probes has not yet been developed. Here, we present a method for labeling antibodies with MuSIC probes. We conjugate a DBCO-Peg5-NHS ester linker to antibodies and a single-stranded DNA "docking strand" to the linker and, finally, hybridize two MuSIC-compatible, fluorescently labeled oligos to the docking strand. We validate the labeling protocol with spin-column purification and absorbance measurements. We demonstrate the approach using (i) Cy3, (ii) Tex615, and (iii) a Cy3-Tex615 combination as three different MuSIC probes attached to three separate batches of antibodies. We created single-, double-, and triple-positive beads that are analogous to single cells by incubating MuSIC probe-labeled antibodies with protein A beads. Spectral flow cytometry experiments demonstrate that each MuSIC probe can be uniquely distinguished, and the fraction of beads in a mixture with different staining patterns are accurately inferred. The approach is general and might be more broadly applied to cell-type profiling or tissue heterogeneity studies in clinical, biomedical, and drug discovery research.
Collapse
Affiliation(s)
- Madeline E McCarthy
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Caitlin M Anglin
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Heather A Peer
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Sevanna A Boleman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
31
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
32
|
Schwach J, Kolobynina K, Brandstetter K, Gerlach M, Ochtrop P, Helma J, Hackenberger CPR, Harz H, Cardoso MC, Leonhardt H, Stengl A. Site-Specific Antibody Fragment Conjugates for Reversible Staining in Fluorescence Microscopy. Chembiochem 2021; 22:1205-1209. [PMID: 33207032 PMCID: PMC8048457 DOI: 10.1002/cbic.202000727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Indexed: 12/16/2022]
Abstract
Antibody conjugates have taken a great leap forward as tools in basic and applied molecular life sciences that was enabled by the development of chemoselective reactions for the site-specific modification of proteins. Antibody-oligonucleotide conjugates combine the antibody's target specificity with the reversible, sequence-encoded binding properties of oligonucleotides like DNAs or peptide nucleic acids (PNAs), allowing sequential imaging of large numbers of targets in a single specimen. In this report, we use the Tub-tag® technology in combination with Cu-catalyzed azide-alkyne cycloaddition for the site-specific conjugation of single DNA and PNA strands to an eGFP-binding nanobody. We show binding of the conjugate to recombinant eGFP and subsequent sequence-specific annealing of fluorescently labelled imager strands. Furthermore, we reversibly stain eGFP-tagged proteins in human cells, thus demonstrating the suitability of our conjugation strategy to generate antibody-oligonucleotides for reversible immunofluorescence imaging.
Collapse
Affiliation(s)
- Jonathan Schwach
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| | - Ksenia Kolobynina
- Technical University of DarmstadtDepartment of Biology, Cell Biology and EpigeneticsSchnittspahnstr. 1064287DarmstadtGermany
| | - Katharina Brandstetter
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| | - Marcus Gerlach
- Tubulis GmbH, BioSysMButenandtstrasse 181377MunichGermany
| | - Philipp Ochtrop
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Department Chemical BiologyRobert-Rössle-Strasse 1013125BerlinGermany
| | - Jonas Helma
- Tubulis GmbH, BioSysMButenandtstrasse 181377MunichGermany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Department Chemical BiologyRobert-Rössle-Strasse 1013125BerlinGermany
- Humboldt Universität zu BerlinDepartment of ChemistryBrook-Taylor-Strasse 212489BerlinGermany
| | - Hartmann Harz
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| | - M. Cristina Cardoso
- Technical University of DarmstadtDepartment of Biology, Cell Biology and EpigeneticsSchnittspahnstr. 1064287DarmstadtGermany
| | - Heinrich Leonhardt
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| | - Andreas Stengl
- Ludwig-Maximilians-Universität MünchenDepartment of Biology II, Human Biology and BioImaging82152Planegg-MartinsriedGermany
| |
Collapse
|
33
|
Demaree B, Delley CL, Vasudevan HN, Peretz CAC, Ruff D, Smith CC, Abate AR. Joint profiling of DNA and proteins in single cells to dissect genotype-phenotype associations in leukemia. Nat Commun 2021; 12:1583. [PMID: 33707421 PMCID: PMC7952600 DOI: 10.1038/s41467-021-21810-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Studies of acute myeloid leukemia rely on DNA sequencing and immunophenotyping by flow cytometry as primary tools for disease characterization. However, leukemia tumor heterogeneity complicates integration of DNA variants and immunophenotypes from separate measurements. Here we introduce DAb-seq, a technology for simultaneous capture of DNA genotype and cell surface phenotype from single cells at high throughput, enabling direct profiling of proteogenomic states in tens of thousands of cells. To demonstrate the approach, we analyze the disease of three patients with leukemia over multiple treatment timepoints and disease recurrences. We observe complex genotype-phenotype dynamics that illustrate the subtlety of the disease process and the degree of incongruity between blast cell genotype and phenotype in different clinical scenarios. Our results highlight the importance of combined single-cell DNA and protein measurements to fully characterize the heterogeneity of leukemia.
Collapse
Affiliation(s)
- Benjamin Demaree
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Cyrille L Delley
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Harish N Vasudevan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Cheryl A C Peretz
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Children's Hospital and Research Center Oakland, Oakland, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - David Ruff
- Mission Bio, Inc., South San Francisco, CA, USA
| | - Catherine C Smith
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
34
|
Dugal-Tessier J, Thirumalairajan S, Jain N. Antibody-Oligonucleotide Conjugates: A Twist to Antibody-Drug Conjugates. J Clin Med 2021; 10:jcm10040838. [PMID: 33670689 PMCID: PMC7922418 DOI: 10.3390/jcm10040838] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023] Open
Abstract
A summary of the key technological advancements in the preparation of antibody-oligonucleotide conjugates (AOCs) and the distinct advantages and disadvantages of AOCs as novel therapeutics are presented. The merits and demerits of the different approaches to conjugating oligonucleotides to antibodies, antibody fragments or other proteins, mainly from the perspective of AOC purification and analytical characterizations, are assessed. The lessons learned from in vitro and in vivo studies, especially the findings related to silencing, trafficking, and cytotoxicity of the conjugates, are also summarized.
Collapse
Affiliation(s)
- Julien Dugal-Tessier
- NJ Bio, 675 US Highway 1, Suite B129, North Brunswick, NJ 08902, USA;
- Correspondence: ; Tel.: +1-732-202-5664
| | | | - Nareshkumar Jain
- NJ Bio, 675 US Highway 1, Suite B129, North Brunswick, NJ 08902, USA;
| |
Collapse
|
35
|
Abstract
Visualization of the spatial distribution of biomolecules with nanoscale precision is essential to understanding the molecular mechanisms of biological phenomena and diseases. Among several state-of-the-art visualization techniques, expansion microscopy (ExM) is an attractive tool, as it can achieve sub-20-nm resolution imaging of biological specimens, even with conventional diffraction-limited microscopy. This chapter first introduces the concept of ExM and its variants and then provides practical guidelines for implementing expansion microscopy and related techniques.
Collapse
Affiliation(s)
- In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jueun Sim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
36
|
Hsu NS, Lee CC, Kuo WC, Chang YW, Lo SY, Wang AHJ. Development of a Versatile and Modular Linker for Antibody-Drug Conjugates Based on Oligonucleotide Strand Pairing. Bioconjug Chem 2020; 31:1804-1811. [PMID: 32526138 DOI: 10.1021/acs.bioconjchem.0c00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Linker design is crucial to the success of antibody-drug conjugates (ADCs). In this work, we developed a modular linker format for attaching molecular cargos to antibodies based on strand pairing between complementary oligonucleotides. We prepared antibody-oligonucleotide conjugates (AOCs) by attaching 18-mer oligonucleotides to an anti-HER2 antibody through thiol-maleimide chemistry, a method generally applicable to any immunoglobulin with interchain disulfide bridges. The hybridization of drug-bearing complementary oligonucleotides to our AOCs was rapid, stoichiometric, and sequence-specific. AOCs loaded with cytotoxic payloads were able to selectively target HER2-overexpressing cell lines such as SK-BR-3 and N87, with in vitro potencies similar to that of the marketed ADC Kadcyla (T-DM1). Our results demonstrated the potential of utilizing AOCs as a highly versatile and modular platform, where a panel of well-characterized AOCs bearing DNA, RNA, or various nucleic acid analogs, such as peptide nucleic acids, could be easily paired with any cargo of choice for a wide range of diagnostic or therapeutic applications.
Collapse
Affiliation(s)
- Nai-Shu Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Chih Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Wen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shin-Yi Lo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
37
|
Liu M, Lu Y, Yang B, Chen Y, Radda JSD, Hu M, Katz SG, Wang S. Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat Commun 2020; 11:2907. [PMID: 32518300 PMCID: PMC7283333 DOI: 10.1038/s41467-020-16732-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/19/2020] [Indexed: 01/13/2023] Open
Abstract
The three-dimensional architecture of the genome affects genomic functions. Multiple genome architectures at different length scales, including chromatin loops, domains, compartments, and lamina- and nucleolus-associated regions, have been discovered. However, how these structures are arranged in the same cell and how they are mutually correlated in different cell types in mammalian tissue are largely unknown. Here, we develop Multiplexed Imaging of Nucleome Architectures that measures multiscale chromatin folding, copy numbers of numerous RNA species, and associations of numerous genomic regions with nuclear lamina, nucleoli and surface of chromosomes in the same, single cells. We apply this method in mouse fetal liver, and identify de novo cell-type-specific chromatin architectures associated with gene expression, as well as cell-type-independent principles of chromatin organization. Polymer simulation shows that both intra-chromosomal self-associating interactions and extra-chromosomal interactions are necessary to establish the observed organization. Our results illustrate a multi-faceted picture and physical principles of chromatin organization. The three-dimensional architecture of the genome affects genomic functions. Here, the authors developed Multiplexed Imaging of Nucleome Architectures to measure multiscale chromatin folding, RNA profiles, and associations of numerous genomic regions with nuclear lamina and nucleoli in the same, single cells in heterogeneous tissue.
Collapse
Affiliation(s)
- Miao Liu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Yanfang Lu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Bing Yang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Yanbo Chen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Jonathan S D Radda
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Mengwei Hu
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA. .,Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
38
|
Maity S, Lyubchenko YL. AFM Probing of Amyloid-Beta 42 Dimers and Trimers. Front Mol Biosci 2020; 7:69. [PMID: 32391380 PMCID: PMC7193107 DOI: 10.3389/fmolb.2020.00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022] Open
Abstract
Elucidating the molecular mechanisms in the development of such a devastating neurodegenerative disorder as Alzheimer's disease (AD) is currently one of the major challenges of molecular medicine. Evidence strongly suggests that the development of AD is due to the accumulation of amyloid β (Aβ) oligomers; therefore, understanding the molecular mechanisms defining the conversion of physiologically important monomers of Aβ proteins into neurotoxic oligomeric species is the key for the development of treatments and preventions of AD. However, these oligomers are unstable and unavailable for structural, physical, and chemical studies. We have recently developed a novel flexible nano array (FNA)-oligomer scaffold approach in which monomers tethered inside a flexible template can assemble spontaneously into oligomers with sizes defined by the number of tethered monomers. The FNA approach was tested on short decamer Aβ(14-23) peptides which were assembled into dimers and trimers. In this paper, we have extended our FNA technique for assembling full-length Aβ42 dimers. The FNA scaffold enabling the self-assembly of Aβ42 dimers from tethered monomeric species has been designed and the assembly of the dimers has been validated by AFM force spectroscopy experiments. Two major parameters of the force spectroscopy probing, the rupture forces and the rupture profiles, were obtained to prove the assembly of Aβ42 dimers. In addition, the FNA-Aβ42 dimers were used to probe Aβ42 trimers in the force spectroscopy experiments with the use of AFM tips functionalized with FNA-Aβ42 dimers and the surface with immobilized Aβ42 monomers. We found that the binding force for the Aβ42 trimer is higher than the dimer (75 ± 7 pN vs. 60 ± 3 pN) and the rupture pattern corresponds to a cooperative dissociation of the trimer. The rupture profiles for the dissociation of the Aβ42 dimers and trimers are proposed. Prospects for further extension of the FNA-based approach for probing of higher order oligomers of Aβ42 proteins are discussed.
Collapse
Affiliation(s)
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
39
|
Yazaki J, Kawashima Y, Ogawa T, Kobayashi A, Okoshi M, Watanabe T, Yoshida S, Kii I, Egami S, Amagai M, Hosoya T, Shiroguchi K, Ohara O. HaloTag-based conjugation of proteins to barcoding-oligonucleotides. Nucleic Acids Res 2020; 48:e8. [PMID: 31752022 PMCID: PMC6954424 DOI: 10.1093/nar/gkz1086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 11/12/2022] Open
Abstract
Highly sensitive protein quantification enables the detection of a small number of protein molecules that serve as markers/triggers for various biological phenomena, such as cancer. Here, we describe the development of a highly sensitive protein quantification system called HaloTag protein barcoding. The method involves covalent linking of a target protein to a unique molecule counting oligonucleotide at a 1:1 conjugation ratio based on an azido-cycloalkyne click reaction. The sensitivity of the HaloTag-based barcoding was remarkably higher than that of a conventional luciferase assay. The HaloTag system was successfully validated by analyzing a set of protein-protein interactions, with the identification rate of 44% protein interactions between positive reference pairs reported in the literature. Desmoglein 3, the target antigen of pemphigus vulgaris, an IgG-mediated autoimmune blistering disease, was used in a HaloTag protein barcode assay to detect the anti-DSG3 antibody. The dynamic range of the assay was over 104-times wider than that of a conventional enzyme-linked immunosorbent assay (ELISA). The technology was used to detect anti-DSG3 antibody in patient samples with much higher sensitivity compared to conventional ELISA. Our detection system, with its superior sensitivity, enables earlier detection of diseases possibly allowing the initiation of care/treatment at an early disease stage.
Collapse
Affiliation(s)
- Junshi Yazaki
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City 230-0045, Japan
| | - Yusuke Kawashima
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City 230-0045, Japan
| | - Taisaku Ogawa
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka 565-0874, Japan
| | - Atsuo Kobayashi
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City 230-0045, Japan
| | - Mayu Okoshi
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City 230-0045, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City 230-0045, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Isao Kii
- Common Facilities Unit, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science, Technology and Innovation Hub, Kobe 650-0047, Japan
| | - Shohei Egami
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama 230-0045, Japan.,Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Amagai
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama 230-0045, Japan.,Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan.,Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka 565-0874, Japan.,Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama 230-0045, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City 230-0045, Japan
| |
Collapse
|
40
|
Wiener J, Kokotek D, Rosowski S, Lickert H, Meier M. Preparation of single- and double-oligonucleotide antibody conjugates and their application for protein analytics. Sci Rep 2020; 10:1457. [PMID: 31996713 PMCID: PMC6989672 DOI: 10.1038/s41598-020-58238-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
Oligonucleotide-conjugated antibodies have gained importance for their use in protein diagnostics. The possibility to transfer the readout signal from the protein to the DNA level with an oligonucleotide-conjugated antibody increased the sensitivity of protein assays by orders of magnitude and enabled new multiplexing strategies. A bottleneck in the generation of larger oligonucleotide-conjugated antibody panels is the low conjugation yield between antibodies and oligonucleotides, as well as the lack of product purification methods. In this study, we combined a non-site-directed antibody conjugation technique using copper-free click chemistry with ion-exchange chromatography to obtain purified single and double oligonucleotide-conjugated antibodies. We optimized the click conjugation reaction of antibodies with oligonucleotides by evaluating crosslinker, reaction temperature, duration, oligonucleotide length, and secondary structure. As a result, we were able to achieve conjugation yields of 30% at a starting quantity as low as tens of nanograms of antibody, which makes the approach applicable for a wide variety of protein analytical assays. In contrast to previous non-site-directed conjugation methods, we also optimized the conjugation reaction for antibody specificity, confirmed by testing with knockout cell lines. The advantages of using single or double oligonucleotide-conjugated antibodies in regards to signal noise reduction are shown within immunofluorescence, proximity ligation assays, and single cell CITE-seq experiments.
Collapse
Affiliation(s)
- Julius Wiener
- Microfluidic and Biological Engineering, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany.,Microfluidic and Biological Engineering, IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110, Freiburg, Germany
| | - Daniel Kokotek
- Microfluidic and Biological Engineering, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Simon Rosowski
- Microfluidic and Biological Engineering, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,Technical University of Munich, School of Medicine, Munich, Germany
| | - Matthias Meier
- Microfluidic and Biological Engineering, Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
41
|
Gai M, Simon J, Lieberwirth I, Mailänder V, Morsbach S, Landfester K. A bio-orthogonal functionalization strategy for site-specific coupling of antibodies on vesicle surfaces after self-assembly. Polym Chem 2020. [DOI: 10.1039/c9py01136f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attaching targeting ligands on the surface of self-assembled drug delivery systems is one of the key requests for a controlled transport of the drug to a desired location.
Collapse
Affiliation(s)
- Meiyu Gai
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Johanna Simon
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Department of Dermatology
- University Medical Center of the Johannes Gutenberg-University Mainz
| | | | - Volker Mailänder
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
- Department of Dermatology
- University Medical Center of the Johannes Gutenberg-University Mainz
| | | | | |
Collapse
|
42
|
Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol 2019; 12:134. [PMID: 31815659 PMCID: PMC6902404 DOI: 10.1186/s13045-019-0818-2] [Citation(s) in RCA: 352] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
The biggest hurdle to targeted cancer therapy is the inevitable emergence of drug resistance. Tumor cells employ different mechanisms to resist the targeting agent. Most commonly in EGFR-mutant non-small cell lung cancer, secondary resistance mutations on the target kinase domain emerge to diminish the binding affinity of first- and second-generation inhibitors. Other alternative resistance mechanisms include activating complementary bypass pathways and phenotypic transformation. Sequential monotherapies promise to temporarily address the problem of acquired drug resistance, but evidently are limited by the tumor cells' ability to adapt and evolve new resistance mechanisms to persist in the drug environment. Recent studies have nominated a model of drug resistance and tumor progression under targeted therapy as a result of a small subpopulation of cells being able to endure the drug (minimal residual disease cells) and eventually develop further mutations that allow them to regrow and become the dominant population in the therapy-resistant tumor. This subpopulation of cells appears to have developed through a subclonal event, resulting in driver mutations different from the driver mutation that is tumor-initiating in the most common ancestor. As such, an understanding of intratumoral heterogeneity-the driving force behind minimal residual disease-is vital for the identification of resistance drivers that results from branching evolution. Currently available methods allow for a more comprehensive and holistic analysis of tumor heterogeneity in that issues associated with spatial and temporal heterogeneity can now be properly addressed. This review provides some background regarding intratumoral heterogeneity and how it leads to incomplete molecular response to targeted therapies, and proposes the use of single-cell methods, sequential liquid biopsy, and multiregion sequencing to discover the link between intratumoral heterogeneity and early adaptive drug resistance. In summary, minimal residual disease as a result of intratumoral heterogeneity is the earliest form of acquired drug resistance. Emerging technologies such as liquid biopsy and single-cell methods allow for studying targetable drivers of minimal residual disease and contribute to preemptive combinatorial targeting of both drivers of the tumor and its minimal residual disease cells.
Collapse
Affiliation(s)
- Zuan-Fu Lim
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.,Cancer Cell Biology Program, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.,Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State University, P.O. Box 850, Mail Code CH46, 500 University Drive, Hershey, PA, 17033-0850, USA
| | - Patrick C Ma
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Penn State University, P.O. Box 850, Mail Code CH46, 500 University Drive, Hershey, PA, 17033-0850, USA.
| |
Collapse
|
43
|
Stiller C, Aghelpasand H, Frick T, Westerlund K, Ahmadian A, Karlström AE. Fast and Efficient Fc-Specific Photoaffinity Labeling To Produce Antibody-DNA Conjugates. Bioconjug Chem 2019; 30:2790-2798. [PMID: 31609586 DOI: 10.1021/acs.bioconjchem.9b00548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antibody-DNA conjugates are powerful tools for DNA-assisted protein analysis. Growing usage of these methods demands efficient production of high-quality conjugates. We developed an easy and fast synthesis route yielding covalent antibody-DNA conjugates with a defined conjugation site and low batch-to-batch variability. We utilize the Z domain from protein A, containing the unnatural amino acid 4-benzoylphenylalanine (BPA) for photoaffinity labeling of the antibodies' Fc region. Z(xBPA) domains are C-terminally modified with triple-glycine (G3)-modified DNA-oligonucleotides via enzymatic Sortase A coupling. We show reliable modification of the most commonly used IgG's. To prove our conjugates' functionality, we detected antibody-antigen binding events in an assay called Droplet Barcode Sequencing for Protein analysis (DBS-Pro). It confirms not only retained functionality for both conjugate parts but also the potential of using DBS-Pro for quantifying protein abundances. As intermediates are easily storable and our approach is modular, it offers a convenient strategy for screening various antibody-DNA conjugates using the same starting material.
Collapse
Affiliation(s)
- Christiane Stiller
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| | - Hooman Aghelpasand
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, Science for Life Laboratory , 171 65 Solna , Sweden
| | - Tobias Frick
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, Science for Life Laboratory , 171 65 Solna , Sweden
| | - Kristina Westerlund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| | - Afshin Ahmadian
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, Science for Life Laboratory , 171 65 Solna , Sweden
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| |
Collapse
|
44
|
Chen C, Zong S, Liu Y, Wang Z, Zhang Y, Chen B, Cui Y. Profiling of Exosomal Biomarkers for Accurate Cancer Identification: Combining DNA-PAINT with Machine- Learning-Based Classification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901014. [PMID: 31478613 DOI: 10.1002/smll.201901014] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/18/2019] [Indexed: 05/08/2023]
Abstract
Exosomes are endosome-derived vesicles enriched in body fluids such as urine, blood, and saliva. So far, they have been recognized as potential biomarkers for cancer diagnostics. However, the present single-variate analysis of exosomes has greatly limited the accuracy and specificity of diagnoses. Besides, most diagnostic approaches focus on bulk analysis using lots of exosomes and tend to be less accurate because they are vulnerable to impure extraction and concentration differences of exosomes. To address these challenges, a quantitative analysis platform is developed to implement a sequential quantification analysis of multiple exosomal surface biomarkers at the single-exosome level, which utilizes DNA-PAINT and a machine learning algorithm to automatically analyze the results. As a proof of concept, the profiling of four exosomal surface biomarkers (HER2, GPC-1, EpCAM, EGFR) is developed to identify exosomes from cancer-derived blood samples. Then, this technique is further applied to detect pancreatic cancer and breast cancer from unknown samples with 100% accuracy.
Collapse
Affiliation(s)
- Chen Chen
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Yun Liu
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Yizhi Zhang
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| |
Collapse
|
45
|
Lin J, Jordi C, Son M, Van Phan H, Drayman N, Abasiyanik MF, Vistain L, Tu HL, Tay S. Ultra-sensitive digital quantification of proteins and mRNA in single cells. Nat Commun 2019; 10:3544. [PMID: 31391463 PMCID: PMC6685952 DOI: 10.1038/s41467-019-11531-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Simultaneous measurement of proteins and mRNA in single cells enables quantitative understanding and modeling of cellular functions. Here, we present an automated microfluidic system for multi-parameter and ultra-sensitive protein/mRNA measurements in single cells. Our technology improves the sensitivity of digital proximity ligation assay by up to 55-fold, with a detection limit of 2277 proteins per cell and with detection efficiency of as few as 29 protein molecules. Our measurements using this system reveal higher mRNA/protein correlation in single mammalian cells than previous estimates. Furthermore, time-lapse imaging of herpes simplex virus 1 infected epithelial cells enabled by our device shows that expression of ICP4 -a major transcription factor regulating hundreds of viral genes- is only partially correlated with viral protein counts, suggesting that many cells go through abortive infection. These results highlight the importance of high-sensitivity protein/mRNA quantification for understanding fundamental molecular mechanisms in individual cells. Digital proximity ligation assay (dPLA) can measure proteins and mRNAs in single cells, but is not compatible with cell imaging and cannot quantify rare proteins due to a high dilution factor. Here the authors present an automated microfluidic device that combines live-cell imaging, chemical stimulation, and dPLA in a smaller reaction volume.
Collapse
Affiliation(s)
- Jing Lin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Christian Jordi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.,Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Hoang Van Phan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Nir Drayman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Mustafa Fatih Abasiyanik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Luke Vistain
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Hsiung-Lin Tu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.,Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA. .,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
46
|
Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody-Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug Chem 2019; 30:2483-2501. [PMID: 31339691 DOI: 10.1021/acs.bioconjchem.9b00306] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibody-oligonucleotide conjugates (AOCs) are a novel class of synthetic chimeric biomolecules that has been continually gaining traction in different fields of modern biotechnology. This is mainly due to the unique combination of the properties of their two constituents, exceptional targeting abilities and antibody biodistribution profiles, in addition to an extensive scope of oligonucleotide functional and structural roles. Combining these two classes of biomolecules in one chimeric construct has therefore become an important milestone in the development of numerous biotechnological applications, including imaging (DNA-PAINT), detection (PLA, PEA), and therapeutics (targeted siRNA/antisense delivery). Numerous synthetic approaches have been developed to access AOCs ranging from stochastic chemical bioconjugation to site-specific conjugation with reactive handles, introduced into antibody sequences through protein engineering. This Review gives a general overview of the current status of AOC applications with a specific emphasis on the synthetic methods used for their preparation. The reported synthetic techniques are discussed in terms of their practical aspects and limitations. The importance of the development of novel methods for the facile generation of AOCs possessing a defined constitution is highlighted as a priority in AOC research to ensure the advance of their new applications.
Collapse
Affiliation(s)
- Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| | - Oleksandr Koniev
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Sergii Kolodych
- Syndivia SAS , 650 Boulevard Gonthier d'Andernach , 67400 Illkirch-Graffenstaden , France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis , University of Strasbourg , 74 Route du Rhin , 67400 Illkirch-Graffenstaden , France
| |
Collapse
|
47
|
Li G, Moellering RE. A Concise, Modular Antibody-Oligonucleotide Conjugation Strategy Based on Disuccinimidyl Ester Activation Chemistry. Chembiochem 2019; 20:1599-1605. [PMID: 30767357 DOI: 10.1002/cbic.201900027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 12/17/2022]
Abstract
The synthesis of antibody-oligonucleotide conjugates has enabled the development of highly sensitive bioassays for specific epitopes in the laboratory and clinic. Most synthetic schemes to generate these hybrid molecules require expensive reagents, significant quantities of input antibody, and multistep purification routes; thus limiting widespread application. Herein a facile and robust conjugation strategy is reported that involves "plug-and-play" antibody conjugation with succinimidyl-functionalized oligonucleotides, which are high yielding and compatible for use directly after buffer exchange. The succinimidyl-linked oligonucleotides are synthesized with 5'-amine-modified oligonucleotides and disuccinimidyl suberate (DSS), both of which are inexpensive and commercially available. Direct incubation of the resulting stable succinimidyl- oligonucleotide conjugates with commercial antibodies yields conjugates ready for use after benchtop buffer exchange. It is demonstrated that the resulting oligonucleotide-antibody and oligonucleotide-streptavidin conjugates retain potent and specific binding in activity-dependent proximity ligation imaging, and proximity ligation-mediated qPCR detection of endogenous proteins in native cellular contexts down to picogram levels of whole proteome. This DSS conjugation strategy should be widely applicable in the synthesis of protein-oligonucleotide conjugates.
Collapse
Affiliation(s)
- Gang Li
- Department of Chemistry, University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Raymond E Moellering
- Department of Chemistry, University of Chicago, 929 E. 57th Street, Chicago, IL, 60637, USA
| |
Collapse
|
48
|
Development of the covalent antibody-DNA conjugates technology for detection of IgE and IgM antibodies by immuno-PCR. PLoS One 2019; 14:e0209860. [PMID: 30608947 PMCID: PMC6319726 DOI: 10.1371/journal.pone.0209860] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022] Open
Abstract
Immuno-PCR (iPCR) is one of the methods used for the detection of a wide range of analytes and features the high sensitivity of the polymerase chain reaction (PCR) method. iPCR uses antibodies coupled to DNA, followed by the amplification of the attached DNA using RT-PCR. Two major types of antibody-DNA conjugates are currently used, which are obtained as a result of non-covalent (biotin-streptavidin) or covalent interactions. Using a strain-promoted azide-alkyne cycloaddition (SPAAC), we synthesized covalent DNA-antibody conjugates, optimized the reaction conditions, and developed an efficient protocol for the purification of conjugates, with which all unreacted antibodies and oligonucleotides are separated. Covalent DNA-antibody conjugates were tested with iPCR assays that were previously developed for the detection of IgE and IgM antibodies with the use of the supramolecular complex of 5'- and 3'-biotinylated DNA and streptavidin. The results show that the modification of antibodies with amino groups did not allow us to obtain monolabeled antibodies or antibodies with a strictly defined number of DNA-labels. The degree of labeling determined by the dyes introduced through the azido group reflects the actual labeling degree statistically. If the average labeling degree for azido groups is 1.1, the conjugates contain 25% mono-labeled antibodies, 50% double-labeled antibodies, and 25% unlabeled ones. The specificity of the monoclonal antibody to human IgE (BE5) changed after conjugation with the oligonucleotide. The sensitivity of iPCR in the detection of IgM antibodies produced against the LeC disaccharide using a covalent conjugate was similar to that of a supramolecular complex of 5'- and 3'-biotinylated DNA and streptavidin, but the new procedure is two steps shorter.
Collapse
|
49
|
Lynch M, Ramalingam N. Integrated Fluidic Circuits for Single-Cell Omics and Multi-omics Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1129:19-26. [PMID: 30968358 DOI: 10.1007/978-981-13-6037-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Single-cell genomics plays a crucial role in several aspects of biology, from developmental biology to mapping every cell in the human body through the Cell Atlas initiative. To meet these various applications, single-cell methods are rapidly evolving to increase throughput; improve sensitivity, quantification accuracy, and usability; and reduce nucleic-acid amplification bias and cost. In addition to improvement in single-cell methods, there is a huge interest in analyzing multiple analytes such as genome, epigenome, transcriptome, and protein from the same single cell. This approach is generalized as single-cell multi-omics. Automation of multi-step single-cell methods is highly desired to achieve a reproducible workflow; reduce human error and avoid contamination; and introduce technical variability to an existing stochastic process. Typically single-cell reactions start with a low level of nucleic acid, in the range of picograms. Miniaturization in microfluidic devices leads to a gain in reaction efficiency in Nanoliter or picoliter reaction volumes and active mixing help ensure that solid-state microfluidic devices provide the broadest flexibility and best sensitivity in single-cell reactions, compared to other methods. In this chapter, we will present integrated fluidic circuit (IFC) microfluidics for various single-cell multi-omics applications, and show how this technology fits into the current single-cell technology portfolio available from various vendors. We will then discuss possible uses for IFCs in multi-omics applications that are on the horizon.
Collapse
Affiliation(s)
- Mark Lynch
- Fluidigm Corporation, South San Francisco, CA, USA.
| | | |
Collapse
|
50
|
Abstract
Simultaneous detection of both RNA and protein in individual single cells offers a powerful tool for genotype-to-phenotype investigations. Proximity extension assay (PEA) is a quantitative, sensitive, and multiplex protein detection system that has superb utility in single-cell omic analysis. We implemented PEA using the flexible microfluidic workflow of the Fluidigm® C1™ system followed by real-time quantitative polymerase chain reaction (RT-qPCR) on the Fluidigm Biomark™ HD system. With this workflow, targeted quantification of RNAs and proteins within individual cells is readily conducted.
Collapse
Affiliation(s)
- Aik T Ooi
- Fluidigm Corporation, South San Francisco, CA, USA. .,Mission Bio, Inc., South San Francisco, CA, USA.
| | | |
Collapse
|