1
|
Lopuszynski J, Wang J, Zahid M. Beyond Transduction: Anti-Inflammatory Effects of Cell Penetrating Peptides. Molecules 2024; 29:4088. [PMID: 39274936 PMCID: PMC11397606 DOI: 10.3390/molecules29174088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
One of the bottlenecks to bringing new therapies to the clinic has been a lack of vectors for delivering novel therapeutics in a targeted manner. Cell penetrating peptides (CPPs) have received a lot of attention and have been the subject of numerous developments since their identification nearly three decades ago. Known for their transduction abilities, they have generally been considered inert vectors. In this review, we present a schema for their classification, highlight what is known about their mechanism of transduction, and outline the existing literature as well as our own experience, vis a vis the intrinsic anti-inflammatory properties that certain CPPs exhibit. Given the inflammatory responses associated with viral vectors, CPPs represent a viable alternative to such vectors; furthermore, the anti-inflammatory properties of CPPs, mostly through inhibition of the NF-κB pathway, are encouraging. Much more work in relevant animal models, toxicity studies in large animal models, and ultimately human trials are needed before their potential is fully realized.
Collapse
Affiliation(s)
| | | | - Maliha Zahid
- Department of Cardiovascular Medicine, Guggenheim Gu 9-01B, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Dowaidar M. Uptake pathways of cell-penetrating peptides in the context of drug delivery, gene therapy, and vaccine development. Cell Signal 2024; 117:111116. [PMID: 38408550 DOI: 10.1016/j.cellsig.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Cell-penetrating peptides have been extensively utilized for the purpose of facilitating the intracellular delivery of cargo that is impermeable to the cell membrane. The researchers have exhibited proficient delivery capabilities for oligonucleotides, thereby establishing cell-penetrating peptides as a potent instrument in the field of gene therapy. Furthermore, they have demonstrated a high level of efficiency in delivering several additional payloads. Cell penetrating peptides (CPPs) possess the capability to efficiently transport therapeutic molecules to specific cells, hence offering potential remedies for many illnesses. Hence, their utilization is imperative for the improvement of therapeutic vaccines. In contemporary studies, a plethora of cell-penetrating peptides have been unveiled, each characterized by its own distinct structural attributes and associated mechanisms. Although it is widely acknowledged that there are multiple pathways through which particles might be internalized, a comprehensive understanding of the specific mechanisms by which these particles enter cells has to be fully elucidated. The absorption of cell-penetrating peptides can occur through either direct translocation or endocytosis. However, it is worth noting that categories of cell-penetrating peptides are not commonly linked to specific entrance mechanisms. Furthermore, research has demonstrated that cell-penetrating peptides (CPPs) possess the capacity to enhance antigen uptake by cells and facilitate the traversal of various biological barriers. The primary objective of this work is to examine the mechanisms by which cell-penetrating peptides are internalized by cells and their significance in facilitating the administration of drugs, particularly in the context of gene therapy and vaccine development. The current study investigates the immunostimulatory properties of numerous vaccine components administered using different cell-penetrating peptides (CPPs). This study encompassed a comprehensive discussion on various topics, including the uptake pathways and mechanisms of cell-penetrating peptides (CPPs), the utilization of CPPs as innovative vectors for gene therapy, the role of CPPs in vaccine development, and the potential of CPPs for antigen delivery in the context of vaccine development.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
3
|
Wang L, Geng J, Wang H. Emerging Landscape of Supercharged Proteins and Peptides for Drug Delivery. ACS Pharmacol Transl Sci 2024; 7:614-629. [PMID: 38481692 PMCID: PMC10928892 DOI: 10.1021/acsptsci.3c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2025]
Abstract
Although groundbreaking biotechnological techniques such as gene editing have significantly progressed, the effective and targeted transport of therapeutic agents into host cells remains a major obstacle to the development of biotherapeutics. Confronting the unique challenge posed by large macromolecules such as proteins, peptides, and nucleic acids adds complexity to this issue. Recent findings reveal that the supercharging of proteins and peptides not only enables control over critical properties, such as temperature resistance and catalytic activity, but also holds promise as a viable strategy for their use in drug delivery. This review provides a concise summary of the attributes of supercharged proteins and peptides, encompassing both their natural occurrence and engineered variants. Furthermore, it sheds light on the present status and future possibilities of supercharged proteins and peptides as carriers for significant biomolecules in the realms of medical research and therapeutic applications.
Collapse
Affiliation(s)
- Lidan Wang
- Laboratory
Medicine Department, Chinese Medicine Hospital
of Puyang, Puyang 457000, China
| | - Jingping Geng
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - Hu Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21215, United States
| |
Collapse
|
4
|
Rohrbeck A, Bruhn VA, Hussein N, Hagemann S, Just I. Clostridium botulinum C3bot mediated effects on cytokine-induced psoriasis-like phenotype in full-thickness skin model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1671-1686. [PMID: 37707681 PMCID: PMC10858834 DOI: 10.1007/s00210-023-02718-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Clostridium botulinum C3 exoenzyme (C3bot) exclusively inhibits RhoA, B and C by ADP-ribosylation and is therefore used as a cell-permeable tool for investigating the cellular role of these Rho-GTPases. Rho-GTPases represent a molecular switch integrating different receptor signalling to downstream cascades including transcriptional cascades that regulate various cellular processes, such as regulation of actin cytoskeleton and cell proliferation. C3bot-induced inhibition of RhoA leads to reorganization of the actin cytoskeleton, morphological changes, and inhibition of cell proliferation as well as modulation of inflammatory response. In this study, we characterized the C3bot-mediated effects on a full-thickness skin model exhibiting a psoriasis-like phenotype through the addition of cytokines. Indeed, after the addition of cytokines, a decrease in epidermal thickness, parakeratosis, and induction of IL-6 was detected. In the next step, it was studied whether C3bot caused a reduction in the cytokine-induced psoriasis-like phenotypes. Basal addition of C3bot after cytokine induction of the full-thickness skin models caused less epidermal thinning and reduced IL-6 abundance. Simultaneous basal incubation with cytokines and C3bot, IL-6 abundance was inhibited, but epidermal thickness was only moderately affected. When C3bot was added apically to the skin model, IL-6 abundance was reduced, but no further effects on the psoriasis-like phenotype of the epidermis were observed. In summary, C3bot inhibits the cytokine-induced expression of IL-6 and thus may have an impact on the pro-inflammatory immune response in the psoriasis-like phenotype.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany.
| | - Vanessa Anna Bruhn
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Nali Hussein
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Sandra Hagemann
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| |
Collapse
|
5
|
Wang L, Geng J, Wang H. Delivery of Oleanolic Acid with Improved Antifibrosis Efficacy by a Cell Penetrating Peptide P10. ACS Pharmacol Transl Sci 2023; 6:1006-1014. [PMID: 37470025 PMCID: PMC10353059 DOI: 10.1021/acsptsci.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 07/21/2023]
Abstract
Oleanolic acid (OA), a common pentacyclic triterpenoid found in plants, has several therapeutic uses, including the treatment of hepatopathy disorders. However, due to OA's weak permeability and limited bioavailability, its therapeutic advantages are limited. Here, we showed that a short peptide known as p10 not only binds to OA but also rapidly enhances OA delivery into cultured hepatic stellate cells (HSCs), lowers their synthesis of fibrogenic proteins, and further reduces the HSC migration capacity. Our findings show that noncovalently conjugating short peptides to OA improves its pharmacological efficacy and permeability.
Collapse
Affiliation(s)
- Lidan Wang
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China
- Laboratory
Medicine Department, Chinese Medicine Hospital
of Puyang, Puyang 457000, China
| | - Jingping Geng
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - Hu Wang
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21215, United States
| |
Collapse
|
6
|
Geng J, Wang J, Wang H. Emerging Landscape of Cell-Penetrating Peptide-Mediated Organelle Restoration and Replacement. ACS Pharmacol Transl Sci 2023; 6:229-244. [PMID: 36798470 PMCID: PMC9926530 DOI: 10.1021/acsptsci.2c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 01/18/2023]
Abstract
Organelles are specialized subunits within a cell membrane that perform specific roles or functions, and their dysfunction can lead to a variety of pathophysiologies including developmental defects, aging, and diseases (cancer, cardiovascular and neurodegenerative diseases). Recent studies have shown that cell-penetrating peptide (CPP)-based pharmacological therapies delivered to organelles or even directly resulting in organelle replacement can restore cell function and improve or prevent disease. In this review, we summarized the current developments in the precise delivery of exogenous cargoes via CPPs at the organelle level, CPP-mediated organelle delivery, and discuss their feasibility as next-generation targeting strategies for the diagnosis and treatment of diseases at the organelle level.
Collapse
Affiliation(s)
- Jingping Geng
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097Warszawa, Poland
| | - Jing Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| | - Hu Wang
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| |
Collapse
|
7
|
Wang F, Zhan Y, Li M, Wang L, Zheng A, Liu C, Wang H, Wang T. Cell-Permeable PROTAC Degraders against KEAP1 Efficiently Suppress Hepatic Stellate Cell Activation through the Antioxidant and Anti-Inflammatory Pathway. ACS Pharmacol Transl Sci 2023; 6:76-87. [PMID: 36654751 PMCID: PMC9841780 DOI: 10.1021/acsptsci.2c00165] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that oxidative stress and inflammation are involved in the physiopathology of liver fibrogenesis. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor, which regulates the expression of redox regulators to establish cellular redox homeostasis. The Nrf2 modulator can serve as a primary cellular defense against the cytotoxic effects of oxidative stress. We designed a chimeric Keap1-Keap1 peptide (KKP1) based on the proteolysis-targeting chimera technology. The KKP1 peptide not only can efficiently penetrate into the rat hepatic stellate cell line (HSC-T6) cells but also can induce Keap1 protein degradation by the ubiquitination-proteasome degradation pathway, which releases Nrf2 and promotes the transcriptional activity of the Nrf2/antioxidant response element pathway. It then activates the protein expression of the downstream antioxidant factors, the glutamate-cysteine ligase catalytic subunit and heme oxygenase-1 (HO-1). Finally, Keap1 protein degradation inhibits the nuclear factor-kappaB inflammatory signal pathway, the downstream inflammatory factor tumor necrosis factor alpha, and the interleukin-1beta protein expression and further inhibits the expression of the fibrosis biomarker gene. The current research suggests that our designed KKP1 may provide a new avenue for the future treatment of liver fibrosis.
Collapse
Affiliation(s)
- Fengqin Wang
- Hubei
Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Ying Zhan
- Hubei
Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Manman Li
- Hubei
Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Lidan Wang
- Hubei
Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China
| | - Austin Zheng
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21215, United States
| | - Changbai Liu
- Hubei
Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Hu Wang
- Hubei
Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21215, United States
| | - Tao Wang
- The
First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443003, China
| |
Collapse
|
8
|
Wang L, Geng J, Chen L, Guo X, Wang T, Fang Y, Belingon B, Wu J, Li M, Zhan Y, Shang W, Wan Y, Feng X, Li X, Wang H. Improved transfer efficiency of supercharged 36 + GFP protein mediate nucleic acid delivery. Drug Deliv 2022; 29:386-398. [PMID: 35075948 PMCID: PMC8794074 DOI: 10.1080/10717544.2022.2030430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
The potential of nucleic acid therapeutics to treat diseases by targeting specific cells has resulted in its increasing number of uses in clinical settings. However, the major challenge is to deliver bio-macromolecules into target cells and/or subcellular locations of interest ahead in the development of delivery systems. Although, supercharged residues replaced protein 36 + GFP can facilitate itself and cargoes delivery, its efficiency is still limited. Therefore, we combined our recent progress to further improve 36 + GFP based delivery efficiency. We found that the penetration efficacy of 36 + GFP protein was significantly improved by fusion with CPP-Dot1l or treatment with penetration enhancer dimethyl sulfoxide (DMSO) in vitro. After safely packaged with plasmid DNA, we found that the efficacy of in vitro and in vivo transfection mediated by 36 + GFP-Dot1l fusion protein is also significantly improved than 36 + GFP itself. Our findings illustrated that fusion with CPP-Dot1l or incubation with DMSO is an alternative way to synergically promote 36 + GFP mediated plasmid DNA delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Lidan Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jingping Geng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Linlin Chen
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Xiangli Guo
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Tao Wang
- The First Clinical Medical College of China Three Gorges University, Yichang, China
| | - Yanfen Fang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Hubei, China
| | - Bonn Belingon
- School of Medicine, Institute of Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiao Wu
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Manman Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Ying Zhan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Wendou Shang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yingying Wan
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Xuemei Feng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Xianghui Li
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Hu Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
9
|
Zheng L, Shen L, Li Z, Zhang X, Wu M, Zhang Y, Liu J. Design, Preparation, and Evaluation of Osthol Poly-Butyl-Cyanoacrylate Nanoparticles with Improved In Vitro Anticancer Activity in Neuroblastoma Treatment. Molecules 2022; 27:molecules27206908. [PMID: 36296500 PMCID: PMC9609737 DOI: 10.3390/molecules27206908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Osthol (osthole), known as a neuroprotective drug, has shown potent anticancer activity. However, the potential clinical application of osthol is limited due to its low water solubility and low bioavailability. Polybutyl cyanoacrylate (PBCA) has been widely used to improve the solubility of drugs with poor water solubility. In this study, an orthogonal experimental design (OED) was applied to design the preparation process of PBCA nanoparticles (NPs). Then, nanoparticles were prepared and evaluated in terms of physicochemical properties, in vitro release, and cellular uptake, etc. Further, the anti-cancer activity of osthol-PBCA NPs was demonstrated in SH-SY5Y cells. The pharmacokinetics and area under the curve (AUC) were investigated. The obtained osthol-NPs presented a spherical shape with a particle size of 110 ± 6.7 nm, a polydispersity index (PDI) of 0.126, and a zeta potential of −13 ± 0.32 mV. Compared with the free osthol, the drugs in osthol-NPs presented better stability and sustained release pattern activity. In vitro analysis using SH-SY5Y neuroblastoma cells showed that osthol-loaded nanoparticles displayed a significantly enhanced intracellular absorption process (three times) and cytotoxicity compared with free osthol (p < 0.05, increased 10−20%). The in vivo pharmacokinetic study revealed that the AUC of osthol-NPs was 3.3-fold higher than that of free osthol. In conclusion, osthol-PBCA NPs can enhance the bioactivity of osthol, being proposed as a novel, promising vehicle for drug delivery.
Collapse
Affiliation(s)
- Liqing Zheng
- Department of Pharmacy, Hebei North University, Hebei Key Laboratory of Neuropharmacology, Zhangjiakou 075000, China
- Correspondence: (L.Z.); (J.L.)
| | - Lixia Shen
- Department of Pharmacy, Hebei North University, Hebei Key Laboratory of Neuropharmacology, Zhangjiakou 075000, China
| | - Ze Li
- Department of Pharmacy, Hebei North University, Hebei Key Laboratory of Neuropharmacology, Zhangjiakou 075000, China
| | - Xiaoli Zhang
- Life Science Research Center, Hebei North University, Zhangjiakou 075000, China
| | - Miaomiao Wu
- Department of Pharmacy, Hebei North University, Hebei Key Laboratory of Neuropharmacology, Zhangjiakou 075000, China
| | - Yuanyuan Zhang
- Department of Pharmacy, Hebei North University, Hebei Key Laboratory of Neuropharmacology, Zhangjiakou 075000, China
| | - Jianhua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
- Correspondence: (L.Z.); (J.L.)
| |
Collapse
|
10
|
Zeng S, Feng X, Xing S, Xu Z, Miao Z, Liu Q. Advanced Peptide Nanomedicines for Bladder Cancer Theranostics. Front Chem 2022; 10:946865. [PMID: 35991612 PMCID: PMC9389364 DOI: 10.3389/fchem.2022.946865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is still a global public health problem. Although remarkable success has been achieved in cancer diagnosis and treatment, the high recurrence and mortality rates remain severely threatening to human lives and health. In recent years, peptide nanomedicines with precise selectivity and high biocompatibility have attracted intense attention in biomedical applications. In particular, there has been a significant increase in the exploration of peptides and their derivatives for malignant tumor therapy and diagnosis. Herein, we review the applications of peptides and their derivatives in the diagnosis and treatment of bladder cancer, providing new insights for the design and development of novel peptide nanomedicines for the treatment of bladder cancer in the future.
Collapse
Affiliation(s)
- Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| | - Xiaodi Feng
- Department of Urology, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), ShanDong, China
| | - Shaoqiang Xing
- Department of Urology, Weihai Central Hospital, ShanDong, China
| | - Zhaoliang Xu
- Department of Urology, First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Zhizhao Miao
- School of Medicine, Nankai University, Tianjin, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Qian Liu,
| |
Collapse
|
11
|
Wichmann N, Lund PM, Hansen MB, Hjørringgaard CU, Larsen JB, Kristensen K, Andresen TL, Simonsen JB. Applying flow cytometry to identify the modes of action of membrane-active peptides in a label-free and high-throughput fashion. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183820. [PMID: 34813768 DOI: 10.1016/j.bbamem.2021.183820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Membrane-active peptides (MAPs) have several potential therapeutic uses, including as antimicrobial drugs. Many traditional methods used to evaluate the membrane interactions of MAPs have limited applicability. Low-throughput methods, such as microscopy, provide detailed information but often rely on fluorophore-labeled MAPs, and high-throughput assays, such as the calcein release assay, cannot assess the mechanism behind the disruption of vesicular-based lipid membranes. Here we present a flow cytometric assay that provides detailed information about the peptide-lipid membrane interactions on single artificial lipid vesicles while being high-throughput (1000-2000 vesicles/s) and based on label-free MAPs. We synthesized and investigated six MAPs with different modes of action to evaluate the versatility of the assay. The assay is based on the flow cytometric readouts from artificial lipid vesicles, including the fluorescence from membrane-anchored and core-encapsulated fluorophores, and the vesicle concentration. From these parameters, we were able to distinguish between MAPs that induce vesicle solubilization, permeation (pores/membrane distortion), and aggregation or fusion. Our flow cytometry findings have been verified by traditional methods, including the calcein release assay, dynamic light scattering, and fluorescence microscopy on giant unilamellar vesicles. We envision that the presented flow cytometric assay can be used for various types of peptide-lipid membrane studies, e.g. to identify new antibiotics. Moreover, the assay can easily be expanded to derive additional valuable information.
Collapse
Affiliation(s)
- Nanna Wichmann
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Philip M Lund
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Morten B Hansen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Claudia U Hjørringgaard
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jannik B Larsen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kasper Kristensen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Jens B Simonsen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
12
|
Geng J, Xia X, Teng L, Wang L, Chen L, Guo X, Belingon B, Li J, Feng X, Li X, Shang W, Wan Y, Wang H. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. J Control Release 2022; 341:166-183. [PMID: 34822907 DOI: 10.1016/j.jconrel.2021.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
The safety issues like immunogenicity and unacceptable cancer risk of viral vectors for DNA/mRNA vaccine delivery necessitate the development of non-viral vectors with no toxicity. Among the non-viral strategies, cell-penetrating peptides (CPPs) have been a topic of interest recently because of their ability to cross plasma membranes and facilitate nucleic acids delivery both in vivo and in vitro. In addition to the application in the field of gene vaccine and gene therapy, CPPs based nucleic acids delivery have been proved by its potential application like gene editing, RNA-sequencing, and imaging. Here, we focus on summarizing the recent applications and progress of CPPs-mediated nucleic acids delivery and discuss the current problems and solutions in this field.
Collapse
Affiliation(s)
- Jingping Geng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xuan Xia
- Department of Physiology and Pathophysiology, Medical School, China Three Gorges University, Yichang 443002, China
| | - Lin Teng
- Department of Cardiovascular Medicine, The First Clinical Medical College of China Three Gorges University, Yichang 443002, China
| | - Lidan Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Linlin Chen
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Affiliated Ren He Hospital of China Three Gorges University, Yichang 443002, China
| | - Xiangli Guo
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Bonn Belingon
- Institute of Cell Engineering, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Jason Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21210, USA
| | - Xuemei Feng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Xianghui Li
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Wendou Shang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Yingying Wan
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
| | - Hu Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
13
|
Chen L, Guo X, Wang L, Geng J, Wu J, Hu B, Wang T, Li J, Liu C, Wang H. In silico identification and experimental validation of cellular uptake by a new cell penetrating peptide P1 derived from MARCKS. Drug Deliv 2021; 28:1637-1648. [PMID: 34338123 PMCID: PMC8330795 DOI: 10.1080/10717544.2021.1960922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Viral vectors for vaccine delivery are challenged by recently reported safety issues like immunogenicity and risk for cancer development, and thus there is a growing need for the development of non-viral vectors. Cell penetrating peptides (CPPs) are non-viral vectors that can enter plasma membranes efficiently and deliver a broad range of cargoes. Our bioinformatic prediction and wet-lab validation data suggested that peptide P1 derived from MARCKS protein phosphorylation site domain is a new potential CPP candidate. We found that peptide P1 can efficiently internalize into various cell lines in a concentration-dependent manner. Receptor-mediated endocytosis pathway is the major mechanism of P1 penetration, although P1 also directly penetrates the plasma membrane. We also found that peptide P1 has low cytotoxicity in cultured cell lines as well as mouse red blood cells. Furthermore, peptide P1 not only can enter into cultured cells itself, but it also can interact with plasmid DNA and mediate the functional delivery of plasmid DNA into cultured cells, even in hard-to-transfect cells. Combined, these findings indicate that P1 may be a promising vector for efficient intracellular delivery of bioactive cargos.
Collapse
Affiliation(s)
- Linlin Chen
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Xiangli Guo
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Lidan Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jingping Geng
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jiao Wu
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Bin Hu
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Tao Wang
- The First Clinical Medical College of China Three Gorges University, Yichang, China
| | - Jason Li
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Changbai Liu
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Hu Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
14
|
Guo X, Chen L, Wang L, Geng J, Wang T, Hu J, Li J, Liu C, Wang H. In silico identification and experimental validation of cellular uptake and intracellular labeling by a new cell penetrating peptide derived from CDN1. Drug Deliv 2021; 28:1722-1736. [PMID: 34463179 PMCID: PMC8409945 DOI: 10.1080/10717544.2021.1963352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
Bioactive therapeutic molecules are generally impermeable to the cell membrane, hindering their utility and efficacy. A group of peptides called cell-penetrating peptides (CPPs) were found to have the capability of transporting different types of cargo molecules across the cell membrane. Here, we identified a short peptide named P2, which has a higher proportion of basic residues than the CDN1 (cyclin-dependent kinase inhibitor 1) protein it is derived from, and we used bioinformatic analysis and experimental validation to confirm the penetration property of peptide P2. We found that peptide P2 can efficiently enter different cell lines in a concentration-dependent manner. The endocytosis pathway, especially receptor-related endocytosis, may be involved in the process of P2 penetration. Our data also showed that peptide P2 is safe in cultured cell lines and red blood cells. Lastly, peptide P2 can efficiently deliver self-labeling protein HaloTag into cells for imaging. Our study illustrates that peptide P2 is a promising imaging agent delivery vehicle for future applications.
Collapse
Affiliation(s)
- Xiangli Guo
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Linlin Chen
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Lidan Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jingping Geng
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Tao Wang
- The First Clinical Medical College of China Three Gorges University, Yichang, China
| | - Jixiong Hu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Jason Li
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Changbai Liu
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Hu Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Lead Contact
| |
Collapse
|
15
|
Hu G, Miao Y, Luo X, Chu W, Fu Y. Identification of a novel cell-penetrating peptide derived from the capsid protein of chicken anemia virus and its application in gene delivery. Appl Microbiol Biotechnol 2020; 104:10503-10513. [PMID: 33141296 DOI: 10.1007/s00253-020-10988-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
Cell membranes are a great obstacle for entrance of gene therapeutic agents. Cell-penetrating peptides (CPPs) have been proven as a promising gene delivery tool. However, the early TAT peptide derived from the HIV transcription activator protein has been proven that the sequence contains Furin protease cleaved motifs which limited the TAT application in delivery of exogenous active molecules. In the present study, through the bioinformatics and experimental approach, we have identified a novel CPP derived from the N terminus of VP1 protein of chicken anemia virus (CAV), designated as CVP1-N2, which is rich in arginine residues and contains α-helical structure. Then, the ability of CVP1-N2 cell penetrating was detected using confocal imaging and flow cytometry. FITC-labeled CVP1-N2 peptide could rapidly internalize into different types of live cells with dose dependence and without cytotoxic effects by MTT assay. Surprisingly, CVP1-N2 with a pattern of nuclear sub-location has shown the higher uptake efficiency than TAT. At 10, 1, and 0.1 μM, the mean relative internalization of CVP1-N2 was respectively 1.08-, 12-, and 75-fold higher than that of CVP1, as well as 1.6-, 56-, and 75-fold higher than that of TAT. Moreover, using endocytic inhibitors along with low-temperature stress validated that the CVP1-N2 internalization route is direct translocation pathway. Finally, the capacity of CVP1-N2 for delivery of gene into cells was determined, where it was able to carry red fluorescent protein (RFP) and apoptin genes into cells respectively and induce the apoptosis. All these data indicate that CVP1-N2 could be used as a novel gene delivery vehicle for gene therapy in the future. KEY POINTS: • 1CVP1-N2 was identified as a novel more efficient cell-penetrating peptide. • 2. CVP1-N2 localized to the nucleus through the direct transduction pathway. • 3. CVP1-N2 was able to deliver the apoptin gene into HCT116 cells and induce apoptosis.
Collapse
Affiliation(s)
- Gaowei Hu
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, 318000, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yingjie Miao
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Xi Luo
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Wenhui Chu
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Yongqian Fu
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
16
|
Geng J, Guo X, Wang L, Nguyen RQ, Wang F, Liu C, Wang H. Intracellular Delivery of DNA and Protein by a Novel Cell-Permeable Peptide Derived from DOT1L. Biomolecules 2020; 10:217. [PMID: 32024261 PMCID: PMC7072583 DOI: 10.3390/biom10020217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/27/2022] Open
Abstract
Cellular uptake and intracellular release efficiency of biomacromolecules is low because of hurdles in the cell membrane that result in limited access to intra-cellular targets with few functional effects. Cell-penetrating peptides (CPPs) act as cargo delivery vehicles to promote therapeutic molecule translocation. Here, we describe the novel CPP-Dot1l that not only penetrates by itself, but also mediates cargo translocation in cultured cells, as confirmed by fluorescence microscopy and fluorescence spectrophotometry. We conducted cytotoxicity assays and safety evaluations, and determined peptide-membrane interactions to understand the possible pathway for cargo translocation. Additional nucleic acid and covalently conjugated green fluorescence protein (GFP) studies mediated by CPP-Dot1l were conducted to show functional delivery potential. Results indicate that CPP-Dot1l is a novel and effective CPP due to its good penetrating properties in different cell lines and its ability to enter cells in a concentration-dependent manner. Its penetration efficiency can be prompted by DMSO pretreatment. In addition, not only can it mediate plasmid delivery, but CPP-Dot1l can also deliver GFP protein into cytosol. In conclusion, the findings of this study showed CPP-Dot1l is an attractive pharmaceutical and biochemical tool for future drug, regenerative medicine, cell therapy, gene therapy, and gene editing-based therapy development.
Collapse
Affiliation(s)
- Jingping Geng
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; (J.G.); (X.G.); (L.W.)
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China;
| | - Xiangli Guo
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; (J.G.); (X.G.); (L.W.)
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China;
| | - Lidan Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; (J.G.); (X.G.); (L.W.)
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China;
| | - Richard Q. Nguyen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Fengqin Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China;
| | - Changbai Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China;
| | - Hu Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang 443002, China; (J.G.); (X.G.); (L.W.)
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
17
|
Covarrubias-Zambrano O, Yu J, Bossmann SH. Nano-Inspired Technologies for Peptide Delivery. Curr Protein Pept Sci 2019; 21:379-400. [PMID: 31793426 DOI: 10.2174/1389203720666191202112429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/26/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
Nano-inspired technologies offer unique opportunities to treat numerous diseases by using therapeutic peptides. Therapeutic peptides have attractive pharmacological profiles and can be manufactured at relatively low costs. The major advantages of using a nanodelivery approach comprises significantly lower required dosages compared to systemic delivery, and thus reduced toxicity and immunogenicity. The combination of therapeutic peptides with delivery peptides and nanoparticles or small molecule drugs offers systemic treatment approaches, instead of aiming for single biological targets or pathways. This review article discusses exemplary state-of-the-art nanosized delivery systems for therapeutic peptides and antibodies, as well as their biochemical and biophysical foundations and emphasizes still remaining challenges. The competition between using different nanoplatforms, such as liposome-, hydrogel-, polymer-, silica nanosphere-, or nanosponge-based delivery systems is still "on" and no clear frontrunner has emerged to date.
Collapse
Affiliation(s)
| | - Jing Yu
- Department of Chemistry, Kansas State University, 419 CBC Building, Manhattan, KS 66506-0401, United States.,Johns Hopkins University, Department of Radiology, Baltimore, MD, United States
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, 419 CBC Building, Manhattan, KS 66506-0401, United States
| |
Collapse
|
18
|
Kardani K, Milani A, H Shabani S, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv 2019; 16:1227-1258. [PMID: 31583914 DOI: 10.1080/17425247.2019.1676720] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cell penetrating peptides (CPPs) known as protein translocation domains (PTD), membrane translocating sequences (MTS), or Trojan peptides (TP) are able to cross biological membranes without clear toxicity using different mechanisms, and facilitate the intracellular delivery of a variety of bioactive cargos. CPPs could overcome some limitations of drug delivery and combat resistant strains against a broad range of diseases. Despite delivery of different therapeutic molecules by CPPs, they lack cell specificity and have a short duration of action. These limitations led to design of combined cargo delivery systems and subsequently improvement of their clinical applications. Areas covered: This review covers all our studies and other researchers in different aspects of CPPs such as classification, uptake mechanisms, and biomedical applications. Expert opinion: Due to low cytotoxicity of CPPs as compared to other carriers and final degradation to amino acids, they are suitable for preclinical and clinical studies. Generally, the efficiency of CPPs was suitable to penetrate the cell membrane and deliver different cargos to specific intracellular sites. However, no CPP-based therapeutic approach has approved by FDA, yet; because there are some disadvantages for CPPs including short half-life in blood, and nonspecific CPP-mediated delivery to normal tissue. Thus, some methods were used to develop the functions of CPPs in vitro and in vivo including the augmentation of cell specificity by activatable CPPs, specific transport into cell organelles by insertion of corresponding localization sequences, incorporation of CPPs into multifunctional dendrimeric or liposomal nanocarriers to improve selectivity and efficiency especially in tumor cells.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Samaneh H Shabani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
19
|
Ding Y, Zhao X, Geng J, Guo X, Ma J, Wang H, Liu C. Intracellular delivery of nucleic acid by cell-permeable hPP10 peptide. J Cell Physiol 2019; 234:11670-11678. [PMID: 30515802 DOI: 10.1002/jcp.27826] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022]
Abstract
Although gene therapy offers hope against incurable diseases, nonreplicating transduction vectors remain lacking. We have previously characterized a cell-penetrating peptide hPP10 for the delivery of various cargoes; however, whether hPP10 can mediate nucleic acid delivery is still unknown. Here, examining via different ways, we demonstrate that hPP10 stably complexes with plasmid DNA (pDNA) and safely mediates nucleic acid transfection. hPP10 can mediate GFP-, dsRed-, and luciferase-expressing plasmids into cells with nearly the same efficiency as commercial transfection reagents Turbofectin or Lipofect. Furthermore, hPP10 can mediate Cre fusion protein delivery and pDNA transfection simultaneously in the Cre/loxp system in vitro. In addition, hPP10 fused with an RNA-binding domain can mediate delivery of small interfering RNA into cells to silence the reporter gene expression. Collectively, our results suggest that hPP10 is an option for nucleic acid delivery with efficiencies similar to that of commercial reagents.
Collapse
Affiliation(s)
- Yi Ding
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
| | - Xueli Zhao
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
| | - Jingping Geng
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
| | - Xiangli Guo
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
| | - Jielan Ma
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
| | - Hu Wang
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Changbai Liu
- Hubei Key Lab of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
20
|
Zhang M, Zhao X, Geng J, Liu H, Zeng F, Qin Y, Li J, Liu C, Wang H. Efficient penetration of Scp01-b and its DNA transfer abilities into cells. J Cell Physiol 2019; 234:6539-6547. [PMID: 30230543 DOI: 10.1002/jcp.27392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
The in vivo application potential of viral-based gene delivery approaches is hindered by a risk of insertional oncogenesis. Of the many delivery methods, cell-penetrating peptides (CPP)-based delivery has good biocompatibility and biodegradability. However, low efficiency is still the disadvantage of CPPs-based nucleic acid transfection, and delivery efficiency may vary from different CPPs. Here, we describe Scp01-b, as a new CPP, which can enter cultured cell lines and primary cultured cells examined by fluorescence microscopy and quantitative assay, the internalization process is a concentration, temperature, and incubation time-dependent manner. Scp01-b does not insert into the membrane directly and its uptake is mediated through endocytosis pathway. Moreover, Scp01-b could mediate the uptake of plasmid DNA into the Caski and HSC-T6 cells, and we noted that Scp01-b-mediated transfection efficiency was nearly the same with traditional liposome (TurboFectin)-mediated transfection. These findings suggest that Scp01-b can act as a useful tool for non-viral-based delivery in further application such as reprogramming and gene editing.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Orthopedics Surgery, Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xueli Zhao
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jingping Geng
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
| | - Huiting Liu
- Department of Nuclear Medicine, Chongqing Three Gorges Central Hospital, Wanzhou, China
| | - Fanhui Zeng
- Department of Obstetrics and Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yanyan Qin
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jason Li
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Changbai Liu
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Hu Wang
- Department of Pathology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Amit C, Muralikumar S, Janaki S, Lakshmipathy M, Therese KL, Umashankar V, Padmanabhan P, Narayanan J. Designing and enhancing the antifungal activity of corneal specific cell penetrating peptide using gelatin hydrogel delivery system. Int J Nanomedicine 2019; 14:605-622. [PMID: 30697045 PMCID: PMC6339655 DOI: 10.2147/ijn.s184911] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Fungal keratitis is a major cause of corneal blindness accounting for more than one-third of microbiologically proven cases. The management of fungal keratitis is through topical or systemic antifungal medications alone or in combination with surgical treatment. Topical medications such as natamycin and voriconazole pose major challenges due to poor penetration across the corneal epithelium. To address the issue various carrier molecules like nanoparticles, lipid vesicles, and cell penetrating peptides were explored. But the major drawback such as non-specificity and lack of bioavailability remains. Purpose In this study, we have attempted to design corneal specific cell penetrating peptide using subtractive proteomic approach from the published literature and tried to improve its bioavailability through gelatin hydrogel delivery system. Material and Methods Using subtractive proteomic approach two peptides VRF005 and VRF007 were identified on the basis of solubility, cell permeability and amphipathicity. The peptides were modeled for three-dimensional structure and simulated for membrane penetration. The peptides were characterized using circular dichroism spectroscopy, dynamic light scattering and native polyacrylamide gel electrophoresis. Further uptake studies were performed on primary corneal epithelial cells and the stability was analyzed in corneal epithelial tissue lysates. Insilico prediction of peptides showed it to have antifungal activity which was further validated using colony forming assay and time killing kinetics. The duration of antifungal activity of peptide was improved using gelatin hydrogel through sustained delivery. Results VRF005 and VRF007 showed α-helical structure and was within the allowed region of Ramachandran plot. The simulation study showed their membrane penetration. The peptide uptake was found to be specific to corneal epithelial cells and also showed intracellular localization in Candida albicans and Fusarium solani. Peptides were found to be stable up to 2 hours when incubated with corneal epithelial tissue lysate. Dynamic light scattering, and native polyacrylamide gel electrophoresis revealed aggregation of peptides. VRF007 showed antifungal activity up to 24 hour whereas VRF005 showed activity up to 4 hours. Hence gelatin hydrogel-based delivery system was used to improve the activity. Actin staining of corneal epithelial cells showed that the cells were attached on gelatin hydrogel. Conclusion We have designed corneal specific cell penetrating peptides using subtractive proteomic approach. Bioavailability and delivery of peptide was enhanced using gelatin hydrogel system.
Collapse
Affiliation(s)
- Chatterjee Amit
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya campus, Chennai, Tamil Nadu, India, .,School of Chemical and Biotechnology, SASTRA University, Tanjore, Tamil Nadu, India
| | - Shalini Muralikumar
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya campus, Chennai, Tamil Nadu, India
| | - Sargunam Janaki
- L&T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya campus, Chennai, Tamil Nadu, India
| | - Meena Lakshmipathy
- Department of Cornea, Medical Research Foundation, Sankara Nethralaya campus, Chennai, Tamil Nadu, India
| | - Kulandai Lily Therese
- L&T Microbiology Research Centre, Vision Research Foundation, Sankara Nethralaya campus, Chennai, Tamil Nadu, India
| | - Vetrivel Umashankar
- Centre for Bioinformatics, Vision Research Foundation, Sankara Nethralaya campus, Chennai, Tamil Nadu, India
| | - Prema Padmanabhan
- Department of Cornea, Medical Research Foundation, Sankara Nethralaya campus, Chennai, Tamil Nadu, India
| | - Janakiraman Narayanan
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya campus, Chennai, Tamil Nadu, India,
| |
Collapse
|
22
|
Gallo M, Defaus S, Andreu D. 1988-2018: Thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Arch Biochem Biophys 2018; 661:74-86. [PMID: 30447207 DOI: 10.1016/j.abb.2018.11.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022]
Abstract
In 1988, two unrelated papers reported the discovery of peptide vectors with innate cell translocation properties, setting the ground for a new area of research that over the years has grown into considerable therapeutic potential. The vectors, named cell-penetrating peptides (CPPs), constitute a now large and diversified family, sharing the extraordinary ability to diffuse unaltered across cell membranes while ferrying diverse associated cargos. Such properties have made CPPs ideal tools for delivery of nucleic acids, proteins and other therapeutic/diagnostic molecules to cells and tissues via covalent conjugation or complexation. This year 2018 marks the 30th anniversary of a peptide research landmark opening new perspectives in drug delivery. Given its vastness, exhaustive coverage of the main features and accomplishments in the CPP field is virtually impossible. Hence this manuscript, after saluting the above 30th jubilee, focuses by necessity on the most recent contributions, providing a comprehensive list of recognized CPPs and their latest-reported applications over the last two years. In addition, it thoroughly reviews three areas of peptide vector research of particular interest to us, namely (i) efficient transport of low-bioavailability drugs into the brain; (ii) CPP-delivered disruptors of G protein-coupled receptor (GPCRs) heteromers related to several disorders, and (iii) CPP-mediated delivery of useful but poorly internalized drugs into parasites.
Collapse
Affiliation(s)
- Maria Gallo
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Sira Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| |
Collapse
|
23
|
Wu J, Li J, Wang H, Liu CB. Mitochondrial-targeted penetrating peptide delivery for cancer therapy. Expert Opin Drug Deliv 2018; 15:951-964. [PMID: 30173542 DOI: 10.1080/17425247.2018.1517750] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mitochondria are promising targeting organelles for anticancer strategies; however, mitochondria are difficult for antineoplastic drugs to recognize and bind. Mitochondria-penetrating peptides (MPPs) are unique tools to gain access to the cell interior and deliver a bioactive cargo into mitochondria. MPPs have combined or delivered a variety of antitumor cargoes and obviously inhibited the tumor growth in vivo and in vitro. MPPs create new opportunities to develop new treatments for cancer. AREAS COVERED We review the target sites of mitochondria and the target-penetration mechanism of MPPs, different strategies, and various additional strategies decorated MPPs for tumor cell mitochondria targeting, the decorating mattes including metabolism molecules, RNA, DNA, and protein, which exploited considered as therapeutic combined with MPPs and target in human cancer treatment. EXPERT OPINION/COMMENTARY Therapeutic selectivity that preferentially targets the mitochondrial abnormalities in cancer cells without toxic impact on normal cells still need to be deepen. Moreover, it needs appropriate study designs for a correct evaluation of the target delivery outcome and the degradation rate of the drug in the cell. Generally, it is optimistic that the advances in mitochondrial targeting drug delivery by MPPs plasticity outlined here will ultimately help to the discovery of new approaches for the prevention and treatment of cancers.
Collapse
Affiliation(s)
- Jiao Wu
- a Affiliated Ren He Hospital of China Three Gorges University , Yichang , China
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China
- c Medical School , China Three Gorges University , Yichang , China
| | - Jason Li
- d Institute for Cell Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Hu Wang
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China
- c Medical School , China Three Gorges University , Yichang , China
- d Institute for Cell Engineering , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Chang-Bai Liu
- b Hubei Key Lab. of Tumor Microenvironment and Immunotherapy , China Three Gorges University , Yichang , China
- c Medical School , China Three Gorges University , Yichang , China
| |
Collapse
|
24
|
Siow WX, Chang YT, Babič M, Lu YC, Horák D, Ma YH. Interaction of poly-l-lysine coating and heparan sulfate proteoglycan on magnetic nanoparticle uptake by tumor cells. Int J Nanomedicine 2018; 13:1693-1706. [PMID: 29599614 PMCID: PMC5866726 DOI: 10.2147/ijn.s156029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Poly-l-lysine (PLL) enhances nanoparticle (NP) uptake, but the molecular mechanism remains unresolved. We asked whether PLL may interact with negatively charged glycoconjugates on the cell surface and facilitate uptake of magnetic NPs (MNPs) by tumor cells. Methods PLL-coated MNPs (PLL-MNPs) with positive and negative ζ-potential were prepared and characterized. Confocal and transmission electron microscopy was used to analyze cellular internalization of MNPs. A colorimetric iron assay was used to quantitate cell-associated MNPs (MNPcell). Results Coadministration of PLL and dextran-coated MNPs in culture enhanced cellular internalization of MNPs, with increased vesicle size and numbers/cell. MNPcell was increased by eight- to 12-fold in response to PLL in a concentration-dependent manner in human glioma and HeLa cells. However, the application of a magnetic field attenuated PLL-induced increase in MNPcell. PLL-coating increased MNPcell regardless of ζ-potential of PLL-MNPs, whereas magnetic force did not enhance MNPcell. In contrast, epigallocatechin gallate and magnetic force synergistically enhanced PLL-MNP uptake. In addition, heparin, but not sialic acid, greatly reduced the enhancement effects of PLL; however, removal of heparan sulfate from heparan sulfate proteoglycans of the cell surface by heparinase III significantly reduced MNPcell. Conclusion Our results suggest that PLL-heparan sulfate proteoglycan interaction may be the first step mediating PLL-MNP internalization by tumor cells. Given these results, PLL may facilitate NP interaction with tumor cells via a molecular mechanism shared by infection machinery of certain viruses.
Collapse
Affiliation(s)
- Wei Xiong Siow
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan, Republic of China.,Department of Physiology and Pharmacology and Healthy Aging Research Center, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan, Republic of China
| | - Yi-Ting Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan, Republic of China.,Department of Physiology and Pharmacology and Healthy Aging Research Center, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan, Republic of China
| | - Michal Babič
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Yi-Ching Lu
- Department of Physiology and Pharmacology and Healthy Aging Research Center, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan, Republic of China
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Yunn-Hwa Ma
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan, Republic of China.,Department of Physiology and Pharmacology and Healthy Aging Research Center, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan, Republic of China.,Department of Neurology, Chang Gung Memorial Hospital, Guishan, Taoyuan, Taiwan, Republic of China
| |
Collapse
|
25
|
Chiper M, Niederreither K, Zuber G. Transduction Methods for Cytosolic Delivery of Proteins and Bioconjugates into Living Cells. Adv Healthc Mater 2018; 7:e1701040. [PMID: 29205903 DOI: 10.1002/adhm.201701040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Indexed: 01/05/2023]
Abstract
The human organism and its constituting cells rely on interplay between multiple proteins exerting specific functions. Progress in molecular biotechnologies has facilitated the production of recombinant proteins. When administrated to patients, recombinant proteins can provide important healthcare benefits. To date, most therapeutic proteins must act from the extracellular environment, with their targets being secreted modulators or extracellular receptors. This is because proteins cannot passively diffuse across the plasma membrane into the cytosol. To expand the scope of action of proteins for cytosolic targets (representing more than 40% of the genome) effective methods assisting protein cytosolic entry are being developed. To date, direct protein delivery is extremely tedious and inefficient in cultured cells, even more so in animal models of pathology. Novel techniques are changing this limitation, as recently developed in vitro methods can robustly convey large amount of proteins into cell cultures. Moreover, advances in protein formulation or protein conjugates are slowly, but surely demonstrating efficiency for targeted cytosolic entry of functional protein in vivo in tumor xenograft models. In this review, various methods and recently developed techniques for protein transport into cells are summarized. They are put into perspective to address the challenges encountered during delivery.
Collapse
Affiliation(s)
- Manuela Chiper
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
- Faculté de Pharmacie—Université de Strasbourg 74 Route du Rhin F‐67400 Illkirch France
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department Institute of Genetics and Molecular and Cellular Biology (IGBMC) F‐67412 Illkirch France
- Faculté de Chirurgie Dentaire Université de Strasbourg CNRS UMR 7104, INSERM U 964 F‐67000 Strasbourg France
| | - Guy Zuber
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
| |
Collapse
|
26
|
Birch D, Christensen MV, Staerk D, Franzyk H, Nielsen HM. Fluorophore labeling of a cell-penetrating peptide induces differential effects on its cellular distribution and affects cell viability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2483-2494. [DOI: 10.1016/j.bbamem.2017.09.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
|
27
|
Zhou N, Wu J, Qin YY, Zhao XL, Ding Y, Sun LS, He T, Huang XW, Liu CB, Wang H. Novel peptide MT23 for potent penetrating and selective targeting in mouse melanoma cancer cells. Eur J Pharm Biopharm 2017; 120:80-88. [PMID: 28860066 DOI: 10.1016/j.ejpb.2017.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/15/2017] [Accepted: 08/25/2017] [Indexed: 10/19/2022]
Abstract
Cell-penetrating peptides (CPPs) have a great potential for intracellular delivery of cell-impermeable biological macromolecules in clinical therapy. However, their lack of cell and tissue specificity remains the primary limitation for their clinical development as drug delivery vehicles. In this study, based on phage display and an in silico approach, we found a novel CPP-MT23 with mouse melanoma cell specificity, it can only enter B16 melanoma cancer cells and without any cytotoxicity, Moreover, MT23 showed higher penetration efficiency based on fluorescence microcopy and quantitative assay, and it has capability for mediating functional Apoptin into cells in vitro or in vivo. Moreover, MT23-Apoptin can significantly inhibit tumor growth and induce the cell apoptosis in B16 tumor bearing mice. To sum up, all the results implicated that MT23 has the potential to deliver exogenous therapeutic proteins for further use and it also expected to lay the foundation for developing human melanoma cancer cell specific CPP.
Collapse
Affiliation(s)
- Nan Zhou
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiao Wu
- Hubei Key Lab. of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Medical School, China Three Gorges University, Yichang 443002, China
| | - Yan-Yan Qin
- Hubei Key Lab. of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Medical School, China Three Gorges University, Yichang 443002, China
| | - Xue-Li Zhao
- Hubei Key Lab. of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Medical School, China Three Gorges University, Yichang 443002, China
| | - Yi Ding
- Hubei Key Lab. of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Medical School, China Three Gorges University, Yichang 443002, China
| | - Li-Sha Sun
- Hubei Key Lab. of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Medical School, China Three Gorges University, Yichang 443002, China
| | - Tong He
- Medical School, China Three Gorges University, Yichang 443002, China
| | - Xiao-Wen Huang
- Department Otolaryngy-Head and Neck Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chang-Bai Liu
- Hubei Key Lab. of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China; Medical School, China Three Gorges University, Yichang 443002, China.
| | - Hu Wang
- Medical School, China Three Gorges University, Yichang 443002, China; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|