1
|
Li Y, Saba L, Scheinman RI, Banda NK, Holers M, Monte A, Dylla L, Moghimi SM, Simberg D. Nanoparticle-Binding Immunoglobulins Predict Variable Complement Responses in Healthy and Diseased Cohorts. ACS NANO 2024; 18:28649-28658. [PMID: 39395006 PMCID: PMC11651220 DOI: 10.1021/acsnano.4c05087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Systemic administration of nanomedicines results in the activation of the complement cascade, promoting phagocytic uptake and triggering proinflammatory responses. Identifying the biomarkers that can predict the "risk" of abnormally high complement responders can improve the safety and efficacy of nanomedicines. Polyethylene glycol (PEG) and dextran are two types of clinically approved polymer coatings that trigger complement activation. We performed a multifaceted analysis of the factors affecting the complement activation by PEGylated liposomal doxorubicin (PLD) and dextran-coated superparamagnetic iron oxide nanoworms (SPIO NWs) in plasma from patients with different inflammatory disease conditions and healthy donors. The complement activation (measured as deposition of the complement protein C3) varied greatly, with 29-fold and 26-fold differences for PLD and SPIO NWs, respectively. Chronic inflammation, acute infection, use of steroids, and sex had minor effects on the variable complement activation, whereas age inversely correlated with the complement activation. C-reactive protein level was not predictive of high (top 20th percentile) complement responses. Plasma concentrations of the main complement factors, as well as total IgG and IgM, showed no correlation with the activation by either nanoparticle. On the other hand, plasma concentrations of anti-PEG IgG and IgM showed a strong positive correlation with the activation by PLD. Particularly, titers of anti-PEG IgM showed the best predictive value for the "risk" of high complement activation by PLD. Titers of antidextran IgG and IgM showed a lower correlation with the activation by SPIO NWs and poor predictive value of the top 20% complement responses. Nanoparticle-bound immunoglobulins showed the best correlation with complement activation and a strong predictive value, supporting the critical role of immunoglobulins in inciting complement. The opsonization of PLD with C3 in plasma with high anti-PEG antibodies was predominantly via the alternative pathway. Characterizing the nature of nanoparticle-binding antibodies has important implications in mitigating and stratifying nanomedicine safety.
Collapse
Affiliation(s)
- Yue Li
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Laura Saba
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robert I Scheinman
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Colorado Center for Nanomedicine and Nanosafety, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Andrew Monte
- Department of Emergency Medicine, The University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Layne Dylla
- Department of Emergency Medicine, The University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - S Moein Moghimi
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Colorado Center for Nanomedicine and Nanosafety, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
- Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Colorado Center for Nanomedicine and Nanosafety, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
2
|
Anchordoquy T, Artzi N, Balyasnikova IV, Barenholz Y, La-Beck NM, Brenner JS, Chan WCW, Decuzzi P, Exner AA, Gabizon A, Godin B, Lai SK, Lammers T, Mitchell MJ, Moghimi SM, Muzykantov VR, Peer D, Nguyen J, Popovtzer R, Ricco M, Serkova NJ, Singh R, Schroeder A, Schwendeman AA, Straehla JP, Teesalu T, Tilden S, Simberg D. Mechanisms and Barriers in Nanomedicine: Progress in the Field and Future Directions. ACS NANO 2024; 18:13983-13999. [PMID: 38767983 PMCID: PMC11214758 DOI: 10.1021/acsnano.4c00182] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.
Collapse
Affiliation(s)
- Thomas Anchordoquy
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie Artzi
- Brigham and Woman's Hospital, Department of Medicine, Division of Engineering in Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02215, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University; Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Yechezkel Barenholz
- Membrane and Liposome Research Lab, IMRIC, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| | - Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| | - Jacob S Brenner
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, 16163 Genova, Italy
| | - Agata A Exner
- Departments of Radiology and Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Alberto Gabizon
- The Helmsley Cancer Center, Shaare Zedek Medical Center and The Hebrew University of Jerusalem-Faculty of Medicine, Jerusalem, 9103102, Israel
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, Texas 77030, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine College (WCMC), New York, New York 10065, United States
- Department of Biomedical Engineering, Texas A&M, College Station, Texas 7784,3 United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Center for Biohybrid Medical Systems, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
- Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, Colorado 80045, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Madison Ricco
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie J Serkova
- Department of Radiology, University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina 27101, United States
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Anna A Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48108; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48108, United States
| | - Joelle P Straehla
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts 02115 United States
- Koch Institute for Integrative Cancer Research at MIT, Cambridge Massachusetts 02139 United States
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Scott Tilden
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, the University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
3
|
Li Y, Monte A, Dylla L, Moghimi SM, Simberg D. Validation of dot blot immunoassay for measurement of complement opsonization of nanoparticles. J Immunol Methods 2024; 528:113668. [PMID: 38574804 PMCID: PMC11023749 DOI: 10.1016/j.jim.2024.113668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Complement plays a critical role in the immune response toward nanomaterials. The complement attack on a foreign surface results in the deposition of C3, assembly of C3 convertases, the release of anaphylatoxins C3a and C5a, and finally, the formation of membrane attack complex C5b-9. Various technologies can measure complement activation markers in the fluid phase, but measurements of surface C3 deposition are less common. Previously, we developed an ultracentrifugation-based dot blot immunoassay (DBI) to measure the deposition of C3 and other protein corona components on nanoparticles. Here, we validate the repeatability of the DBI and its correlation with pathway-specific and common fluid phase markers. Moreover, we discuss the advantages of DBI, such as cost-effectiveness and versatility, while addressing potential limitations. This study provides insights into complement activation at the nanosurface level, offering a valuable tool for nanomedicine researchers in the field.
Collapse
Affiliation(s)
- Yue Li
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Monte
- Department of Emergency Medicine, the University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Layne Dylla
- Department of Emergency Medicine, the University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Moein Moghimi
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dmitri Simberg
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
López-Estévez AM, Lapuhs P, Pineiro-Alonso L, Alonso MJ. Personalized Cancer Nanomedicine: Overcoming Biological Barriers for Intracellular Delivery of Biopharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309355. [PMID: 38104275 DOI: 10.1002/adma.202309355] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Indexed: 12/19/2023]
Abstract
The success of personalized medicine in oncology relies on using highly effective and precise therapeutic modalities such as small interfering RNA (siRNA) and monoclonal antibodies (mAbs). Unfortunately, the clinical exploitation of these biological drugs has encountered obstacles in overcoming intricate biological barriers. Drug delivery technologies represent a plausible strategy to overcome such barriers, ultimately facilitating the access to intracellular domains. Here, an overview of the current landscape on how nanotechnology has dealt with protein corona phenomena as a first and determinant biological barrier is presented. This continues with the analysis of strategies facilitating access to the tumor, along with conceivable methods for enhanced tumor penetration. As a final step, the cellular barriers that nanocarriers must confront in order for their biological cargo to reach their target are deeply analyzed. This review concludes with a critical analysis and future perspectives of the translational advances in personalized oncological nanomedicine.
Collapse
Affiliation(s)
- Ana María López-Estévez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Philipp Lapuhs
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Laura Pineiro-Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacology, Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
5
|
Li Y, Jacques S, Gaikwad H, Wang G, Banda NK, Holers VM, Scheinman RI, Tomlinson S, Moghimi SM, Simberg D. Inhibition of acute complement responses towards bolus-injected nanoparticles using targeted short-circulating regulatory proteins. NATURE NANOTECHNOLOGY 2024; 19:246-254. [PMID: 37798566 PMCID: PMC11034866 DOI: 10.1038/s41565-023-01514-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/25/2023] [Indexed: 10/07/2023]
Abstract
Effective inhibition of the complement system is needed to prevent the accelerated clearance of nanomaterials by complement cascade and inflammatory responses. Here we show that a fusion construct consisting of human complement receptor 2 (CR2) (which recognizes nanosurface-deposited complement 3 (C3)) and complement receptor 1 (CR1) (which blocks C3 convertases) inhibits complement activation with picomolar to low nanomolar efficacy on many types of nanomaterial. We demonstrate that only a small percentage of nanoparticles are randomly opsonized with C3 both in vitro and in vivo, and CR2-CR1 immediately homes in on this subpopulation. Despite rapid in vivo clearance, the co-injection of CR2-CR1 in rats, or its mouse orthologue CR2-Crry in mice, with superparamagnetic iron oxide nanoparticles nearly completely blocks complement opsonization and unwanted granulocyte/monocyte uptake. Furthermore, the inhibitor completely prevents lethargy caused by bolus-injected nanoparticles, without inducing long-lasting complement suppression. These findings suggest the potential of the targeted complement regulators for clinical evaluation.
Collapse
Affiliation(s)
- Yue Li
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah Jacques
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - V Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert I Scheinman
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen Tomlinson
- Medical University of South Carolina Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Ralph Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - S Moein Moghimi
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Haroon HB, Dhillon E, Farhangrazi ZS, Trohopoulos PN, Simberg D, Moghimi SM. Activation of the complement system by nanoparticles and strategies for complement inhibition. Eur J Pharm Biopharm 2023; 193:227-240. [PMID: 37949325 DOI: 10.1016/j.ejpb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The complement system is a multicomponent and multifunctional arm of the innate immune system. Complement contributes to non-specific host defence and maintains homeostasis through multifaceted processes and pathways, including crosstalk with the adaptive immune system, the contact (coagulation) and the kinin systems, and alarmin high-mobility group box 1. Complement is also present intracellularly, orchestrating a wide range of housekeeping and physiological processes in both immune and nonimmune cells, thus showing its more sophisticated roles beyond innate immunity, but its roles are still controversial. Particulate drug carriers and nanopharmaceuticals typically present architectures and surface patterns that trigger complement system in different ways, resulting in both beneficial and adverse responses depending on the extent of complement activation and regulation as well as pathophysiological circumstances. Here we consider the role of complement system and complement regulations in host defence and evaluate the mechanisms by which nanoparticles trigger and modulate complement responses. Effective strategies for the prevention of nanoparticle-mediated complement activation are introduced and discussed.
Collapse
Affiliation(s)
- Hajira B Haroon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elisha Dhillon
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | | | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Center, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
7
|
Lipsa D, Ruiz Moreno A, Desmet C, Bianchi I, Geiss O, Colpo P, Bremer-Hoffmann S. Inter-Individual Variations: A Challenge for the Standardisation of Complement Activation Assays. Int J Nanomedicine 2023; 18:711-720. [PMID: 36816333 PMCID: PMC9930575 DOI: 10.2147/ijn.s384184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/23/2022] [Indexed: 02/13/2023] Open
Abstract
Introduction The role of the human immune system in pathologic responses to chemicals including nanomaterials was identified as a gap in current hazard assessments. However, the complexity of the human immune system as well as interspecies variations make the development of predictive toxicity tests challenging. In the present study, we have analysed to what extent fluctuations of the complement system of different individuals will have an impact on the standardisation of immunological tests. Methods We treated commercially available pooled sera (PS) from healthy males, individual sera from healthy donors and from patients suffering from cancer, immunodeficiency and allergies with small molecules and liposomes. Changes of iC3b protein levels measured in enzyme-linked immunosorbent assays served as biomarker for complement activation. Results The level of complement activation in PS differed significantly from responses of individual donors (p < 0.01). Only seven out of 32 investigated sera from healthy donors responded similarly to the pooled serum. This variability was even more remarkable when investigating the effect of liposomes on the complement activation in sera from donors with pre-existing pathologies. Neither the 26 sera of donors with allergies nor sera of 16 donors with immunodeficiency responded similar to the PS of healthy donors. Allergy sufferers showed an increase in iC3b levels of 4.16-fold changes when compared to PS treated with liposomes. Discussion Our studies demonstrate that the use of pooled serum can lead to an over- or under-estimation of immunological response in particular for individuals with pre-existing pathologies. This is of high relevance when developing medical products based on nanomaterials and asks for a review of the current practice to use PS from healthy donors for the prediction of immunological effects of drugs in patients. A better understanding of individual toxicological responses to xenobiotics should be an essential part in safety assessments.
Collapse
Affiliation(s)
- Dorelia Lipsa
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ana Ruiz Moreno
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ivana Bianchi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Otmar Geiss
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Pascal Colpo
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Susanne Bremer-Hoffmann
- European Commission, Joint Research Centre (JRC), Ispra, Italy,Correspondence: Susanne Bremer-Hoffmann, Email
| |
Collapse
|
8
|
Plant-Hately AJ, Eryilmaz B, David CAW, Brain DE, Heaton BJ, Perrie Y, Liptrott NJ. Exposure of the Basophilic Cell Line KU812 to Liposomes Reveals Activation Profiles Associated with Potential Anaphylactic Responses Linked to Physico-Chemical Characteristics. Pharmaceutics 2022; 14:pharmaceutics14112470. [PMID: 36432660 PMCID: PMC9695975 DOI: 10.3390/pharmaceutics14112470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Lipidic nanoparticles (LNP), particularly liposomes, have been proven to be a successful and versatile platform for intracellular drug delivery for decades. Whilst primarily developed for small molecule delivery, liposomes have recently undergone a renaissance due to their success in vaccination strategies, delivering nucleic acids, in the COVID-19 pandemic. As such, liposomes are increasingly being investigated for the delivery of nucleic acids, beyond mRNA, as non-viral gene delivery vectors. Although not generally considered toxic, liposomes are increasingly shown to not be immunologically inert, which may have advantages in vaccine applications but may limit their use in other conditions where immunological responses may lead to adverse events, particularly those associated with complement activation. We sought to assess a small panel of liposomes varying in a number of physico-chemical characteristics associated with complement activation and inflammatory responses, and examine how basophil-like cells may respond to them. Basophils, as well as other cell types, are involved in the anaphylactic responses to liposomes but are difficult to isolate in sufficient numbers to conduct large scale analysis. Here, we report the use of the human KU812 cell line as a surrogate for primary basophils. Multiple phenotypic markers of activation were assessed, as well as the release of histamine and inflammasome activity within the cells. We found that larger liposomes were more likely to result in KU812 activation, and that non-PEGylated liposomes were potent stimulators of inflammasome activity (four-fold greater IL-1β secretion than untreated controls), and a lower ratio of cholesterol to lipid was also associated with greater IL-1β secretion ([Cholesterol:DSPC ratio] 1:10; 0.35 pg/mL IL-1β vs. 5:10; 0.1 pg/mL). Additionally, PEGylation appeared to be associated with direct KU812 activation. These results suggest possible mechanisms related to the consequences of complement activation that may be underpinned by basophilic cells, in addition to other immune cell types. Investigation of the mechanisms behind these responses, and their impact on use in vivo, are now warranted.
Collapse
Affiliation(s)
- Alexander J. Plant-Hately
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L7 3NY, UK
| | - Burcu Eryilmaz
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Christopher A. W. David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L7 3NY, UK
| | - Danielle E. Brain
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L7 3NY, UK
| | - Bethany J. Heaton
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L7 3NY, UK
| | - Yvonne Perrie
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Neill J. Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L7 3NY, UK
- Correspondence: ; Tel.: +44-(0)15-1795-7566
| |
Collapse
|
9
|
Pandian SRK, Vijayakumar KK, Murugesan S, Kunjiappan S. Liposomes: An emerging carrier for targeting Alzheimer's and Parkinson's diseases. Heliyon 2022; 8:e09575. [PMID: 35706935 PMCID: PMC9189891 DOI: 10.1016/j.heliyon.2022.e09575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
The function of the brain can be affected by various factors that include infection, tumor, and stroke. The major disorders reported with altered brain function are Alzheimer's disease (AD), Parkinson's disease (PD), dementia, brain cancer, seizures, mental disorders, and other movement disorders. The major barrier in treating CNS disease is the blood-brain barrier (BBB), which protects the brain from toxic molecules, and the cerebrospinal fluid (CSF) barrier, which separates blood from CSF. Brain endothelial cells and perivascular elements provide an integrated cellular barrier, the BBB, which hamper the invasion of molecules from the blood to the brain. Even though many drugs are available to treat neurological disorders, it fails to reach the desired site with the required concentration. In this purview, liposomes can carry required concentrations of molecules intracellular by diverse routes such as carrier-mediated transport and receptor-mediated transcytosis. Surface modification of liposomes enables them to deliver drugs to various brain cells, including neurons, astrocytes, oligodendrocytes, and microglia. The research studies supported the role of liposomes in delivering drugs across BBB and in reducing the pathogenesis of AD and PD. The liposomes were surface-functionalized with various molecules to reach the cells intricated with the AD or PD pathogenesis. The targeted and sustained delivery of drugs by liposomes is disturbed due to the antibody formation, renal clearance, accelerated blood clearance, and complement activation-related pseudoallergy (CARPA). Hence, this review will focus on the characteristics, surface functionalization, drug loading, and biodistribution of liposomes respective to AD and PD. In addition, the alternative strategies to overcome immunogenicity are discussed briefly.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamilnadu, India
| | - Kevin Kumar Vijayakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, 333031, Rajasthan, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamilnadu, India
| |
Collapse
|
10
|
Gaikwad H, Li Y, Wang G, Li R, Dai S, Rester C, Kedl R, Saba L, Banda NK, Scheinman RI, Patrick C, Mallela KM, Moein Moghimi S, Simberg D. Antibody-Dependent Complement Responses toward SARS-CoV-2 Receptor-Binding Domain Immobilized on "Pseudovirus-like" Nanoparticles. ACS NANO 2022; 16:acsnano.2c02794. [PMID: 35507641 PMCID: PMC9092195 DOI: 10.1021/acsnano.2c02794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 05/09/2023]
Abstract
Many aspects of innate immune responses to SARS viruses remain unclear. Of particular interest is the role of emerging neutralizing antibodies against the receptor-binding domain (RBD) of SARS-CoV-2 in complement activation and opsonization. To overcome challenges with purified virions, here we introduce "pseudovirus-like" nanoparticles with ∼70 copies of functional recombinant RBD to map complement responses. Nanoparticles fix complement in an RBD-dependent manner in sera of all vaccinated, convalescent, and naı̈ve donors, but vaccinated and convalescent donors with the highest levels of anti-RBD antibodies show significantly higher IgG binding and higher deposition of the third complement protein (C3). The opsonization via anti-RBD antibodies is not an efficient process: on average, each bound antibody promotes binding of less than one C3 molecule. C3 deposition is exclusively through the alternative pathway. C3 molecules bind to protein deposits, but not IgG, on the nanoparticle surface. Lastly, "pseudovirus-like" nanoparticles promote complement-dependent uptake by granulocytes and monocytes in the blood of vaccinated donors with high anti-RBD titers. Using nanoparticles displaying SARS-CoV-2 proteins, we demonstrate subject-dependent differences in complement opsonization and immune recognition.
Collapse
Affiliation(s)
- Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yue Li
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ronghui Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Cody Rester
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ross Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nirmal K. Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Robert I. Scheinman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Casey Patrick
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - S. Moein Moghimi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- School of Pharmacy, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
11
|
Mechanisms of selective monocyte targeting by liposomes functionalized with a cationic, arginine-rich lipopeptide. Acta Biomater 2022; 144:96-108. [PMID: 35314364 DOI: 10.1016/j.actbio.2022.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 01/01/2023]
Abstract
Stimulation of monocytes with immunomodulating agents can harness the immune system to treat a long range of diseases, including cancers, infections and autoimmune diseases. To this end we aimed to develop a monocyte-targeting delivery platform based on cationic liposomes, which can be utilized to deliver immunomodulators and thus induce monocyte-mediated immune responses while avoiding off-target side-effects. The cationic liposome design is based on functionalizing the liposomal membrane with a cholesterol-anchored tri-arginine peptide (TriArg). We demonstrate that TriArg liposomes can target monocytes with high specificity in both human and murine blood and that this targeting is dependent on the content of TriArg in the liposomal membrane. In addition, we show that the mechanism of selective monocyte targeting involves the CD14 co-receptor, and selectivity is compromised when the TriArg content is increased, resulting in complement-mediated off-target uptake in granulocytes. The presented mechanistic findings of uptake by peripheral blood leukocytes may guide the design of future drug delivery systems utilized for immunotherapy. STATEMENT OF SIGNIFICANCE: Monocytes are attractive targets for immunotherapies of cancers, infections and autoimmune diseases. Specific delivery of immunostimulatory drugs to monocytes is typically achieved using ligand-targeted drug delivery systems, but a simpler approach is to target monocytes using cationic liposomes. To achieve this, however, a deep understanding of the mechanisms governing the interactions of cationic liposomes with monocytes and other leukocytes is required. We here investigate these interactions using liposomes incorporating a cationic arginine-rich lipopeptide. We demonstrate that monocyte targeting can be achieved by fine-tuning the lipopeptide content in the liposomes. Additionally, we reveal that the CD14 receptor is involved in the targeting process, whereas the complement system is not. These mechanistic findings are critical for future design of monocyte-targeting liposomal therapies.
Collapse
|
12
|
Sudheesh MS, Pavithran K, M S. Revisiting the outstanding questions in cancer nanomedicine with a future outlook. NANOSCALE ADVANCES 2022; 4:634-653. [PMID: 36131837 PMCID: PMC9418065 DOI: 10.1039/d1na00810b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 06/01/2023]
Abstract
The field of cancer nanomedicine has been fueled by the expectation of mitigating the inefficiencies and life-threatening side effects of conventional chemotherapy. Nanomedicine proposes to utilize the unique nanoscale properties of nanoparticles to address the most pressing questions in cancer treatment and diagnosis. The approval of nano-based products in the 1990s inspired scientific explorations in this direction. However, despite significant progress in the understanding of nanoscale properties, there are only very few success stories in terms of substantial increase in clinical efficacy and overall patient survival. All existing paradigms such as the concept of enhanced permeability and retention (EPR), the stealth effect and immunocompatibility of nanomedicine have been questioned in recent times. In this review we critically examine impediments posed by biological factors to the clinical success of nanomedicine. We put forth current observations on critical outstanding questions in nanomedicine. We also provide the promising side of cancer nanomedicine as we move forward in nanomedicine research. This would provide a future direction for research in nanomedicine and inspire ongoing investigations.
Collapse
Affiliation(s)
- M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| | - K Pavithran
- Department of Medical Oncology, Amrita Institute of Medial Sciences and Research Centre Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India
| | - Sabitha M
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| |
Collapse
|
13
|
Comparetti EJ, Ferreira NN, Ferreira LMB, Kaneno R, Zucolotto V. Immunomodulatory properties of nanostructured systems for cancer therapy. J Biomed Mater Res A 2022; 110:1166-1181. [PMID: 35043549 DOI: 10.1002/jbm.a.37359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022]
Abstract
Based on statistical data reported in 2020, cancer was responsible for approximately 10 million deaths. Furthermore, 17 million new cases were diagnosed worldwide. Nanomedicine and immunotherapy have shown satisfactory clinical results among all scientific and technological alternatives for the treatment of cancer patients. Immunotherapy-based treatments comprise the consideration of new alternatives to hinder neoplastic proliferation and to reduce adverse events in the body, thereby promoting immune destruction of diseased cells. Additionally, nanostructured systems have been proven to elicit specific immune responses that may enhance anti-tumor activity. A new generation of nanomedicines, based on biomimetic and bioinspired systems, has been proposed to target tumors by providing immunomodulatory features and by enabling recovery of human immune destruction capacity against cancer cells. This review provides an overview of the aspects and the mechanisms by which nanomedicines can be used to enhance clinical procedures using the immune modulatory responses of nanoparticles (NPs) in the host defense system. We initially outline the cancer statistics for conventional and new treatment approaches providing a brief description of the human host defense system and basic principles of NP interactions with monocytes, leukocytes, and dendritic cells for the modulation of antitumor immune responses. A report on different biomimetic and bioinspired systems is also presented here and their particularities in cancer treatments are addressed, highlighting their immunomodulatory properties. Finally, we propose future perspectives regarding this new therapeutic strategy, highlighting the main challenges for future use in clinical practice.
Collapse
Affiliation(s)
- Edson J Comparetti
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Natalia N Ferreira
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Leonardo M B Ferreira
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Ramon Kaneno
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
14
|
Riedel T, de Los Santos Pereira A, Táborská J, Riedelová Z, Pop-Georgievski O, Májek P, Pečánková K, Rodriguez-Emmenegger C. Complement Activation Dramatically Accelerates Blood Plasma Fouling On Antifouling Poly(2-hydroxyethyl methacrylate) Brush Surfaces. Macromol Biosci 2021; 22:e2100460. [PMID: 34959255 DOI: 10.1002/mabi.202100460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Non-specific protein adsorption (fouling) triggers a number of deleterious events in the application of biomaterials. Antifouling polymer brushes successfully suppress fouling, however for some coatings an extremely high variability of fouling for different donors remains unexplained. The authors report that in the case of poly(2-hydroxyethyl methacrylate) (poly(HEMA)) this variability is due to the complement system activation that causes massive acceleration in the fouling kinetics of blood plasma. Using plasma from various donors, the fouling kinetics on poly(HEMA) is analyzed and correlated with proteins identified in the deposits on the surface and with the biochemical compositions of the plasma. The presence of complement components in fouling deposits and concentrations of C3a in different plasmas indicate that the alternative complement pathway plays a significant role in the fouling on poly(HEMA) through the "tick-over" mechanism of spontaneous C3 activation. The generated C3b binds to the poly(HEMA) surface and amplifies complement activation locally. Heat-inactivated plasma prevents accelerated fouling kinetics, confirming the central role of complement activation. The results highlight the need to take into account the variability between individuals when assessing interactions between biomaterials and blood plasma, as well as the importance of the mechanistic insight that can be gained from protein identification.
Collapse
Affiliation(s)
- Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Andres de Los Santos Pereira
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Johanka Táborská
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Zuzana Riedelová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Pavel Májek
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | - Klára Pečánková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | | |
Collapse
|
15
|
Chen M, Sheu MT, Cheng TL, Roffler SR, Lin SY, Chen YJ, Cheng YA, Cheng JJ, Chang HY, Wu TY, Kao AP, Ho YS, Chuang KH. A novel anti-tumor/anti-tumor-associated fibroblast/anti-mPEG tri-specific antibody to maximize the efficacy of mPEGylated nanomedicines against fibroblast-rich solid tumor. Biomater Sci 2021; 10:202-215. [PMID: 34826322 DOI: 10.1039/d1bm01218e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The therapeutic efficacy of methoxypolyethylene glycol (mPEG)-coated nanomedicines in solid tumor treatment is hindered by tumor-associated fibroblasts (TAFs), which promote tumor progression and form physical barriers. We developed an anti-HER2/anti-FAP/anti-mPEG tri-specific antibody (TsAb) for one-step conversion of mPEG-coated liposomal doxorubicin (Lipo-Dox) to immunoliposomes, which simultaneously target HER2+ breast cancer cells and FAP+ TAFs. The non-covalent modification did not adversely alter the physical characteristics and stability of Lipo-Dox. The TsAb-Lipo-Dox exhibited specific targeting and enhanced cytotoxicity against mono- and co-cultured HER2+ breast cancer cells and FAP+ TAFs, compared to bi-specific antibody (BsAb) modified or unmodified Lipo-Dox. An in vivo model of human breast tumor containing TAFs also revealed the improved tumor accumulation and therapeutic efficacy of TsAb-modified mPEGylated liposomes without signs of toxicity. Our data indicate that arming clinical mPEGylated nanomedicines with the TsAb is a feasible and applicable approach for overcoming the difficulties caused by TAFs in solid tumor treatment.
Collapse
Affiliation(s)
- Michael Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tian-Lu Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shyr-Yi Lin
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jou Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yi-An Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Jing-Jy Cheng
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hsin-Yu Chang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Tung-Yun Wu
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - An-Pei Kao
- Stemforce Biotechnology Co., Ltd, Chiayi City, Taiwan
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Cancer Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei, Taiwan. .,Ph.D Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan.,Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Sharma S, Parveen R, Chatterji BP. Toxicology of Nanoparticles in Drug Delivery. CURRENT PATHOBIOLOGY REPORTS 2021; 9:133-144. [PMID: 34840918 PMCID: PMC8611175 DOI: 10.1007/s40139-021-00227-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Nanoparticles have revolutionized biomedicine especially in the field of drug delivery due to their intriguing properties such as systemic stability, level of solubility, and target site specificity. It can, however, be both beneficial and damaging depending on the properties in different environments, thus highlighting the importance of nanotoxicology studies before use in humans. Different types of nanoparticles have been used in drug delivery, and this review summarizes the recent toxicity studies of these nanoparticles. The toxicological evaluation of three widely used nanoparticles in drug delivery that are metal, lipid, and protein nanoparticles has been discussed in detail. Studies have recorded several toxic effects of various nanoparticles such as metal-based nanoparticles have been linked to increased oxidative stress and have the potential to infiltrate the cell nucleus and protein-based nanoparticles have been observed to have hepatotoxicity and nephrotoxicity as their adverse effects. Considering the increasing application of nanoparticles in drug delivery and the growing concerns of regulatory authorities regarding the toxicity of nanocarriers in living organisms, it requires urgent attention to identify the gap in toxicity studies. The review highlights the gap in toxicity studies and potential focus areas to overcome the existing challenges.
Collapse
Affiliation(s)
- Swati Sharma
- St. Xavier's College, Mumbai, Maharashtra 400001 India
| | - Roza Parveen
- School of Engineering, Ajeenkya DY Patil University, Pune, Maharashtra 412105 India
| | | |
Collapse
|
17
|
Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomater 2021; 134:57-78. [PMID: 34364016 DOI: 10.1016/j.actbio.2021.07.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Although an established drug delivery platform, liposomes have not fulfilled their true potential. In the body, interactions of liposomes are mediated by the layer of plasma proteins adsorbed on the surface, the protein corona. The review aims to collect the data of the last decade on liposome protein corona, tracing the path from interactions of individual proteins to the effects mediated by the protein corona in vivo. It offers a classification of the approaches to exploitation of the protein corona-rather than elimination thereof-based on the bilayer composition-corona composition-molecular interactions-biological performance framework. The multitude of factors that affect each level of this relationship urge to the widest implementation of bioinformatics tools to predict the most effective liposome compositions relying on the data on protein corona. Supplementing the picture with new pieces of accurately reported experimental data will contribute to the accuracy and efficiency of the predictions. STATEMENT OF SIGNIFICANCE: The review focuses on liposomes as an established nanomedicine platform and analyzes the available data on how the protein corona formed on liposome surface in biological fluids affects performance of the liposomes. The review offers a rigorous account of existing literature and critical analysis of methodology currently applied to the assessment of liposome-plasma protein interactions. It introduces a classification of the approaches to exploitation of the protein corona and tailoring liposome carriers to advance the field of nanoparticulate drug delivery systems for the benefit of patients.
Collapse
|
18
|
Li Y, Wang G, Griffin L, Banda NK, Saba LM, Groman EV, Scheinman R, Moghimi SM, Simberg D. Complement opsonization of nanoparticles: Differences between humans and preclinical species. J Control Release 2021; 338:548-556. [PMID: 34481928 DOI: 10.1016/j.jconrel.2021.08.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca2+-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca2+-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines.
Collapse
Affiliation(s)
- Yue Li
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lynn Griffin
- Department of Environmental and Radiological Health Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ernest V Groman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert Scheinman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - S Moein Moghimi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; School of Pharmacy, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
19
|
Subasic CN, Kuilamu E, Cowin G, Minchin RF, Kaminskas LM. The pharmacokinetics of PEGylated liposomal doxorubicin are not significantly affected by sex in rats or humans, but may be affected by immune dysfunction. J Control Release 2021; 337:71-80. [PMID: 34245788 DOI: 10.1016/j.jconrel.2021.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
PEGylated liposomal doxorubicin (PLD, Caelyx®, Doxil®) has been suggested to show significant sex-based differences in plasma clearance, as well as high inter-individual variability that may be driven by monocyte counts in cancer patients. This study aimed to establish if these differences are similarly observed in rats, which exhibit similar liposome clearance mechanisms to humans, and to use this model to identify sources of inter-individual and sex-based pharmacokinetic variability. The plasma and lymphatic pharmacokinetics of PLD were evaluated in male and female rats by quantifying doxorubicin as well as the 3H-labelled liposome. In general, the pharmacokinetics of doxorubicin and the 3H-liposome did not differ significantly between male and female rats when corrected for body surface area. Female rats did, however, show significantly higher doxorubicin concentrations in lymph compared to male rats. With the exception of serum testosterone concentrations in males, none of the physiological parameters evaluated correlated with plasma clearance. Further, reanalysis of published human data that formerly reported sex-differences in PLD plasma clearance similarly revealed no significant differences in PLD plasma clearance between males and females with solid tumours, but increased plasma clearance in patients with Kaposi's sarcoma (generally HIV+/immunocompromised). These data suggest that with the exception of lymphatic exposure, there are unlikely to be significant sex effects in the pharmacokinetics of liposomes, but immune function may contribute to inter individual variability.
Collapse
Affiliation(s)
- Christopher N Subasic
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Esther Kuilamu
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
20
|
Methodological needs in the quality and safety characterisation of nanotechnology-based health products: Priorities for method development and standardisation. J Control Release 2021; 336:192-206. [PMID: 34126169 PMCID: PMC8390938 DOI: 10.1016/j.jconrel.2021.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
Nanotechnology-based health products are providing innovative solutions in health technologies and the pharmaceutical field, responding to unmet clinical needs. However, suitable standardised methods need to be available for quality and safety assessments of these innovative products prior to their translation into the clinic and for monitoring their performance when manufacturing processes are changed. The question arises which technological solutions are currently available within the scientific community to support the requested characterisation of nanotechnology-based products, and which methodological developments should be prioritized to support product developers in their regulatory assessment. To this end, the work presented here explored the state-of-the-art methods to identify methodological gaps associated with the preclinical characterisation of nanotechnology-based medicinal products and medical devices. The regulatory information needs, as expressed by regulatory authorities, were extracted from the guidance documents released so far for nanotechnology-based health products and mapped against available methods, thus allowing an analysis of methodological gaps and needs. In the first step, only standardised methods were considered, leading to the identification of methodological needs in five areas of characterisation, including: (i) surface properties, (ii) drug loading and release, (iii) kinetic properties in complex biological media, (iv) ADME (absorption, distribution, metabolism and excretion) parameters and (v) interaction with blood and the immune system. In the second step, a detailed gap analysis included analytical approaches in earlier stages of development, and standardised test methods from outside of the nanotechnology field that could address the identified areas of gaps. Based on this analysis, three categories of methodological needs were identified, including (i) method optimisation/adaptation to nanotechnological platforms, (ii) method validation/standardisation and (iii) method development for those areas where no technological solutions currently exist. The results of the analysis presented in this work should raise awareness within the scientific community on existing and emerging methodological needs, setting priorities for the development and standardisation of relevant analytical and toxicological methods allowing the development of a robust testing strategy for nanotechnology-based health products.
Collapse
|
21
|
Gaikwad H, Li Y, Gifford G, Groman E, Banda NK, Saba L, Scheinman R, Wang G, Simberg D. Complement Inhibitors Block Complement C3 Opsonization and Improve Targeting Selectivity of Nanoparticles in Blood. Bioconjug Chem 2020; 31:1844-1856. [PMID: 32598839 DOI: 10.1021/acs.bioconjchem.0c00342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complement is one of the critical branches of innate immunity that determines the recognition of engineered nanoparticles by immune cells. Antibody-targeted iron oxide nanoparticles are a popular platform for magnetic separations, in vitro diagnostics, and molecular imaging. We used 60 nm cross-linked iron oxide nanoworms (CLIO NWs) modified with antibodies against Her2/neu and EpCAM, which are common markers of blood-borne cancer cells, to understand the role of complement in the selectivity of targeting of tumor cells in whole blood. CLIO NWs showed highly efficient targeting and magnetic isolation of tumor cells spiked in lepirudin-anticoagulated blood, but specificity was low due to high uptake by neutrophils, monocytes, and lymphocytes. Complement C3 opsonization in plasma was predominantly via the alternative pathway regardless of the presence of antibody, PEG, or fluorescent tag, but was higher for antibody-conjugated CLIO NWs. Addition of various soluble inhibitors of complement convertase (compstatin, soluble CD35, and soluble CD55) to whole human blood blocked up to 99% of the uptake of targeted CLIO NWs by leukocytes, which resulted in a more selective magnetic isolation of tumor cells. Using well-characterized nanomaterials, we demonstrate here that complement therapeutics can be used to improve targeting selectivity.
Collapse
Affiliation(s)
| | | | | | | | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | | | | | | | | |
Collapse
|
22
|
Moghimi SM, Simberg D, Papini E, Farhangrazi ZS. Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities. Adv Drug Deliv Rev 2020; 157:83-95. [PMID: 32389761 DOI: 10.1016/j.addr.2020.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Considering the multifaceted protective and homeostatic roles of the complement system, many consequences arise when drug carriers, and particulate pharmaceutical formulations clash with complement proteins, and trigger complement cascade. Complement activation may induce formulation destabilization, promote opsonization, and affect biological and therapeutic performance of pharmaceutical nano- and micro-particles. In some cases, complement activation is beneficial, where complement may play a role in prophylactic protection, whereas uncontrolled complement activation is deleterious, and contributes to disease progression. Accordingly, design initiatives with particulate medicines should consider complement activation properties of the end formulation within the context of administration route, dosing, systems biology, and therapeutic perspective. Here we examine current progress in mechanistic processes underlying complement activation by pre-clinical and clinical particles, identify opportunities and challenges ahead, and suggest future directions in nanomedicine-complement interface research.
Collapse
Affiliation(s)
- S Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Translational and Clinical Research Institute, Faculty of Health and Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety, Skagg's School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Translational Bio-Nanosciences Laboratory, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua 35121, Italy; CRIBI Biotechnology Center, University of Padua, Padua 35121, Italy
| | - Z Shadi Farhangrazi
- S. M. Discovery Group Inc., Denver, CO, USA; S. M. Discovery Group Ltd., Durham, UK
| |
Collapse
|
23
|
d'Avanzo N, Celia C, Barone A, Carafa M, Di Marzio L, Santos HA, Fresta M. Immunogenicity of Polyethylene Glycol Based Nanomedicines: Mechanisms, Clinical Implications and Systematic Approach. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nicola d'Avanzo
- Department of Health SciencesUniversity of Catanzaro “Magna Græcia” Campus Universitario “S. Venuta”, Viale Europa I‐88100 Catanzaro Italy
| | - Christian Celia
- Department of PharmacyUniversity of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 I‐66100 Chieti Italy
| | - Antonella Barone
- Department of Health SciencesUniversity of Catanzaro “Magna Græcia” Campus Universitario “S. Venuta”, Viale Europa I‐88100 Catanzaro Italy
| | - Maria Carafa
- Department of Drug Chemistry and TechnologyUniversity of Rome “Sapienza” 00185 Rome Italy
| | - Luisa Di Marzio
- Department of PharmacyUniversity of Chieti‐Pescara “G. d'Annunzio” Via dei Vestini 31 I‐66100 Chieti Italy
| | - Hélder A. Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy; and Helsinki Institute of Life Science (HiLIFE)University of Helsinki FI‐00014 Helsinki Finland
| | - Massimo Fresta
- Department of Health SciencesUniversity of Catanzaro “Magna Græcia” Campus Universitario “S. Venuta”, Viale Europa I‐88100 Catanzaro Italy
| |
Collapse
|
24
|
Simberg D, Moghimi SM. Complement Activation by Nanomaterials. INTERACTION OF NANOMATERIALS WITH THE IMMUNE SYSTEM 2020. [DOI: 10.1007/978-3-030-33962-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Ding T, Sun J. Formation of Protein Corona on Nanoparticle Affects Different Complement Activation Pathways Mediated by C1q. Pharm Res 2019; 37:10. [PMID: 31872347 DOI: 10.1007/s11095-019-2747-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE As nanoparticles (NPs) are intravenously entering the bloodstream, proteins in the plasma can recognize and bind them to form a protein corona that affects how NPs are perceived by biological systems. The complement is an essential part of the innate immunity that contributes to non-specific host defense. How complement recognizes NPs has not been elucidated. Here, we developed a proteomics and biochemical approach to understand the applied risk of activated complement by NPs. METHODS Complement proteins absorbed on Hydroxyapatite Nanoparticles (HAP-NPs) and Silicon dioxide Nanoparticles (SiO2-NPs) were analyzed by proteomics with LC-MS. The effect of complement activation was studied by iC3b/Sc5b-9/C3a/C4a/C5a with ELISA. An inhibitory model was established via EDTA and EGTA to confirm the selective pathway activation of both NPs. Finally, the regulation of complement by NPs was analyzed by western blot. RESULTS The results indicate that HAP-NPs start the activation of the complement through the classical pathway because of the absorption of C1q and the release of C1r/C1s. Meanwhile, the soluble regulatory molecules such as CFI, C4bp, and CFH tried to resist the complement system activation by the cleavage of C3 convertase. In contrast, SiO2-NPs can activate the alternative pathway of the complement through the absorption of CFD and CFB. CONCLUSION It was clarified that HAP-NPs and SiO2-NPs activate complement through different mechanisms. These studies provide a scientific basis for the design and modification of nano-drug carriers for delaying their recognition and clearance by the mononuclear phagocytic system and simultaneously reducing the immunotoxicity of NPs. The understanding of protein corona is conducive to innovation in the field of "immune-safe-by-design" nanomedicines.
Collapse
Affiliation(s)
- Tingting Ding
- Shanghai Biomaterials Research & Testing Center, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 427, Ju-men Road, Shanghai, 200023, China
| | - Jiao Sun
- Shanghai Biomaterials Research & Testing Center, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 427, Ju-men Road, Shanghai, 200023, China.
| |
Collapse
|
26
|
Wang G, Serkova NJ, Groman EV, Scheinman RI, Simberg D. Feraheme (Ferumoxytol) Is Recognized by Proinflammatory and Anti-inflammatory Macrophages via Scavenger Receptor Type AI/II. Mol Pharm 2019; 16:4274-4281. [PMID: 31556296 PMCID: PMC7513579 DOI: 10.1021/acs.molpharmaceut.9b00632] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Feraheme (ferumoxytol), a negatively charged, carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticle (USPIO, 30 nm, -16 mV), is clinically approved as an iron supplement and is used off-label for magnetic resonance imaging (MRI) of macrophage-rich lesions, but the mechanism of recognition is not known. We investigated mechanisms of uptake of Feraheme by various types of macrophages in vitro and in vivo. The uptake by mouse peritoneal macrophages was not inhibited in complement-deficient serum. In contrast, the uptake of larger and less charged SPIO nanoworms (60 nm, -5 mV; 120 nm, -5 mV, respectively) was completely inhibited in complement deficient serum, which could be attributed to more C3 molecules bound per nanoparticle than Feraheme. The uptake of Feraheme in vitro was blocked by scavenger receptor (SR) inhibitor polyinosinic acid (PIA) and by antibody against scavenger receptor type A I/II (SR-AI/II). Antibodies against other SRs including MARCO, CD14, SR-BI, and CD11b had no effect on Feraheme uptake. Intraperitoneally administered PIA inhibited the peritoneal macrophage uptake of Feraheme in vivo. Nonmacrophage cells transfected with SR-AI plasmid efficiently internalized Feraheme but not noncharged ultrasmall SPIO of the same size (26 nm, -6 mV), suggesting that the anionic carboxymethyl groups of Feraheme are responsible for the SR-AI recognition. The uptake by nondifferentiated bone marrow derived macrophages (BMDM) and by BMDM differentiated into M1 (proinflammatory) and M2 (anti-inflammatory) types was efficiently inhibited by PIA and anti-SR-AI/II antibody. Interestingly, all BMDM types expressed similar levels of SR-AI/II. In conclusion, Feraheme is efficiently recognized via SR-AI/II but not via complement by different macrophage types. The recognition by the common phagocytic receptor has implications for specificity of imaging of macrophage subtypes.
Collapse
Affiliation(s)
- Guankui Wang
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Natalie J. Serkova
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Departments of Radiology, Radiation Oncology, and Medicine/Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Ernest V. Groman
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robert I. Scheinman
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Corresponding Author:
| |
Collapse
|
27
|
Gifford G, Vu VP, Banda NK, Holers VM, Wang G, Groman EV, Backos D, Scheinman R, Moghimi SM, Simberg D. Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55. J Control Release 2019; 302:181-189. [PMID: 30974134 PMCID: PMC6684249 DOI: 10.1016/j.jconrel.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/22/2019] [Accepted: 04/07/2019] [Indexed: 01/04/2023]
Abstract
Complement activation plays an important role in pharmacokinetic and performance of intravenously administered nanomedicines. Significant efforts have been directed toward engineering of nanosurfaces with low complement activation, but due to promiscuity of complement factors and redundancy of pathways, it is still a major challenge. Cell membrane-anchored Decay Accelerating Factor (DAF, a.k.a. CD55) is an efficient membrane bound complement regulator that inhibits both classical and alternative C3 convertases by accelerating their spontaneous decay. Here we tested the effect of various short consensus repeats (SCRs, "sushi" domains) of human CD55 on nanoparticle-mediated complement activation in human sera and plasma. Structural modeling suggested that SCR-2, SCR-3 and SCR-4 are critical for binding to the alternative pathway C3bBb convertase, whereas SCR-1 is dispensable. Various domains were expressed in E.coli and purified by an affinity column. SCRs were added to lepirudin plasma or sera from different healthy subjects, to monitor nanoparticle-mediated complement activation as well as C3 opsonization. Using superparamagnetic iron oxide nanoworms (SPIO NWs), we found that SCR-2-3-4 was the most effective inhibitor (IC50 ~0.24 μM for C3 opsonization in sera), followed by SCR-1-2-3-4 (IC50 ~0.6 μM), whereas shorter domains (SCR-3, SCR-2-3, SCR-3-4) were ineffective. SCR-2-3-4 also inhibited C5a generation (IC50 ~0.16 μM in sera). In addition to SPIO NWs, SCR-2-3-4 effectively inhibited C3 opsonisation and C5a production by clinically approved nanoparticles (Feraheme, LipoDox and Onivyde). SCR-2-3-4 inhibited both lectin and alternative pathway activation by nanoparticles. When added to lepirudin-anticoagulated blood from healthy donors, it significantly reduced the uptake of SPIO NWs by neutrophils and monocytes. These results suggest that soluble domains of membrane-bound complement inhibitors are potential candidates for preventing nanomedicine-mediated complement activation in human subjects.
Collapse
Affiliation(s)
- Geoffrey Gifford
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vivian P Vu
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO 80045, USA
| | - V Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO 80045, USA
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Division of Rheumatology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO 80045, USA
| | - Ernest V Groman
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Donald Backos
- Computational Chemistry and Biology Core Facility, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO 80045, USA
| | - Robert Scheinman
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - S Moein Moghimi
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
28
|
Vu VP, Gifford GB, Chen F, Benasutti H, Wang G, Groman EV, Scheinman R, Saba L, Moghimi SM, Simberg D. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. NATURE NANOTECHNOLOGY 2019; 14:260-268. [PMID: 30643271 PMCID: PMC6402998 DOI: 10.1038/s41565-018-0344-3] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 12/05/2018] [Indexed: 05/20/2023]
Abstract
Deposition of complement factors (opsonization) on nanoparticles may promote clearance from the blood by macrophages and trigger proinflammatory responses, but the mechanisms regulating the efficiency of complement activation are poorly understood. We previously demonstrated that opsonization of superparamagnetic iron oxide (SPIO) nanoworms with the third complement protein (C3) was dependent on the biomolecule corona of the nanoparticles. Here we show that natural antibodies play a critical role in C3 opsonization of SPIO nanoworms and a range of clinically approved nanopharmaceuticals. The dependency of C3 opsonization on immunoglobulin binding is almost universal and is observed regardless of the complement activation pathway. Only a few surface-bound immunoglobulin molecules are needed to trigger complement activation and opsonization. Although the total amount of plasma proteins adsorbed on nanoparticles does not determine C3 deposition efficiency, the biomolecule corona per se enhances immunoglobulin binding to all nanoparticle types. We therefore show that natural antibodies represent a link between biomolecule corona and C3 opsonization, and may determine individual complement responses to nanomedicines.
Collapse
Affiliation(s)
- Vivian P Vu
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Geoffrey B Gifford
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fangfang Chen
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Halli Benasutti
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ernest V Groman
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Robert Scheinman
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laura Saba
- Systems Genetics and Bioinformatics Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Translational Pharmacokinetics and Pharmacogenomics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Seyed Moein Moghimi
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Pharmacy, The Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Division of Stratified Medicine, Biomarkers and Therapeutics, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
29
|
Smith WJ, Wang G, Gaikwad H, Vu VP, Groman E, Bourne DWA, Simberg D. Accelerated Blood Clearance of Antibodies by Nanosized Click Antidotes. ACS NANO 2018; 12:12523-12532. [PMID: 30516974 PMCID: PMC6472973 DOI: 10.1021/acsnano.8b07003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Long blood half-life is one of the advantages of antibodies over small molecule drugs. At the same time, prolonged half-life is a problem for imaging applications or in the case of antibody-induced toxicities. There is a substantial need for antidotes that can quickly clear antibodies from systemic circulation and peripheral tissues. Engineered nanoparticles exhibit intrinsic affinity for clearance organs (mainly liver and spleen). trans-Cyclooctene (TCO) and methyltetrazine (MTZ) are versatile copper-free click chemistry components that are extensively being used for in vivo bioorthogonal couplings. To test the ability of nanoparticles to eliminate antibodies, we prepared a set of click-modified, clinically relevant antidotes based on several classes of drug carriers: phospholipid-PEG micelles, bovine serum albumin (BSA), and cross-linked dextran iron oxide (CLIO) nanoparticles. Mice were injected with IRDye 800CW-labeled, click-modified IgG followed by a click-modified antidote or PBS (control), and the levels of the IgG were monitored up to 72 h postinjection. Long-circulating lipid micelles produced a spike in IgG levels at 1 h, decreased IgG levels at 24 h, and did not decrease the area under the curve (AUC) and IgG accumulation in main organs. Long-circulating BSA decreased IgG levels at 1 and 24 h, decreased the AUC, but did not significantly decrease organ accumulation. Long-circulating CLIO nanoworms increased IgG levels at 1 h, decreased IgG levels at 24 h, did not decrease the AUC, and did not decrease the organ accumulation. On the other hand, short-circulating CLIO nanoparticles decreased IgG levels at 1 and 24 h, significantly decreasing the AUC and accumulation in the main organs. Multiple doses of CLIO and BSA were not able to completely eliminate the antibody from blood, despite the click reactivity of the residual IgG, likely due to exchange of IgG between blood and tissue compartments. Pharmacokinetic modeling suggests that short antidote half-life and fast click reaction rate should result in higher IgG depletion efficiency. Short-circulating click-modified nanocarriers are the most effective antidotes for elimination of antibodies from blood. This study sets a stage for future development of antidotes based on nanomedicine.
Collapse
Affiliation(s)
- Weston J. Smith
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Vivian P. Vu
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Ernest Groman
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - David W. A. Bourne
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Center for Translational Pharmacokinetics and Pharmacogenomics, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Corresponding Author: .
| |
Collapse
|
30
|
Dobrovolskaia M, Neun BW, Szénási G, Szebeni J. Plasma samples from mouse strains and humans demonstrate different susceptibilities to complement activation. PRECISION NANOMEDICINE 2018. [DOI: 10.33218/prnano1(3).181029.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Complement activation can be evaluated in vitro using plasma or serum from animals and human donors, and in vivo using animal models. Despite many years of research, there is no harmonized approach for the selection of matrix and animal models. Herein, we present an in vitro study investigating intra- and inter-species variability in the complement activation. We used the liposomal formulation of amphotericin, Ambisome, as a model particle to assess the magnitude of the complement activation in plasma derived from various mouse strains and individual human donors. We demonstrated that mouse strains differ in the magnitude of the complement activation by liposomes and cobra venom factor (CVF) in vitro. Inter-individual variability in complement activation by Ambisome and CVF was also observed when plasma from individual human donors was analyzed. Such variability in both mouse and human plasma could not be explained by the levels of complement regulatory factors H and I. Moreover, even though mouse plasma was less sensitive to the complement activation by CVF than human plasma, it was equally sensitive to the activation by Ambisome. Our study demonstrates the importance of mouse strain selection for in vitro complement activation analysis. It also shows that traditional positive controls (e.g., CVF) are not predictive of the degree of complement activation by nanomedicines. The study also suggests that besides complement inhibitory factors, other elements contribute to the inter- and intra-species variability in complement activation by nanomedicines.
Collapse
|
31
|
Halamoda-Kenzaoui B, Bremer-Hoffmann S. Main trends of immune effects triggered by nanomedicines in preclinical studies. Int J Nanomedicine 2018; 13:5419-5431. [PMID: 30271138 PMCID: PMC6149906 DOI: 10.2147/ijn.s168808] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The application of nanotechnology to emerging medicinal products is a crucial parameter for the implementation of personalized medicine. For example, sophisticated drug delivery systems can target the diseased tissue by recognizing patient-specific biomarkers while carrying pharmacologically active molecules. However, such nanomedicines can be recognized by the immune system as foreign triggering unexpected biological reactions. The anticipation of the immunogenic potential of emerging nanotechnology-based products in the preclinical phase is challenging due to high interspecies variations between the immune systems of laboratory animals and humans. A close monitoring of the scientific literature is required to better understand the relationship between various immune reactions and the diversity of nanomedicines currently in the development pipeline. We have reviewed the most frequent immune reactions induced by the nanomaterials in vivo and have identified the main effects triggered by lipid-based, polymer-based and inorganic nanoparticles, as the main categories of nanomaterials used in medicine. According to our results, almost 50% of the investigated nanomaterials induced effects related to the activation of the immune system. Among them, complement activation-related hypersensitivity reactions and activation of adaptive immune response were the most frequent effects reported for the lipid-based nanoparticles. However, many of these effects are not or are only partially covered by the current regulatory framework applicable for nanomedicines. In addition, we extracted the most relevant nanospecific properties responsible for the observed biological effects. Our analysis led to identification of the most prevalent measurement endpoints relevant for the assessment of the immunotoxic potential of the nanotechnology-based products and will support the smooth and safe translation of the new formulations to clinical applications.
Collapse
Affiliation(s)
- Blanka Halamoda-Kenzaoui
- Directorate F-Health, Consumers and Reference Materials, European Commission Joint Research Centre (JRC), Ispra (VA), Italy,
| | - Susanne Bremer-Hoffmann
- Directorate F-Health, Consumers and Reference Materials, European Commission Joint Research Centre (JRC), Ispra (VA), Italy,
| |
Collapse
|
32
|
Understanding the Role of Anti-PEG Antibodies in the Complement Activation by Doxil in Vitro. Molecules 2018; 23:molecules23071700. [PMID: 30002298 PMCID: PMC6100003 DOI: 10.3390/molecules23071700] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/27/2022] Open
Abstract
Infusion reactions (IRs) are common immune-mediated side effects in patients treated with a variety of drug products, including, but not limited to, nanotechnology formulations. The mechanism of IRs is not fully understood. One of the best studied mechanisms of IRs to nanomedicines is the complement activation. However, it is largely unknown why some patients develop reactions to nanomedicines while others do not, and why some nanoparticles are more reactogenic than others. One of the theories is that the pre-existing anti-polyethylene glycol (PEG) antibodies initiate the complement activation and IRs in patients. In this study, we investigated this hypothesis in the case of PEGylated liposomal doxorubicin (Doxil), which, when used in a clinical setting, is known to induce IRs; referred to as complement activation-related pseudoallergy (CARPA) in sensitive individuals. We conducted the study in vitro using plasma derived from C57BL/6 mice and twenty human donor volunteers. We used mouse plasma to test a library of well-characterized mouse monoclonal antibodies with different specificity and affinity to PEG as it relates to the complement activation by Doxil. We determined the levels of pre-existing polyclonal antibodies that bind to PEG, methoxy-PEG, and PEGylated liposomes in human plasma, and we also assessed complement activation by Doxil and concentrations of complement inhibitory factors H and I in these human plasma specimens. The affinity, specificity, and other characteristics of the human polyclonal antibodies are not known at this time. Our data demonstrate that under in vitro conditions, some anti-PEG antibodies contribute to the complement activation by Doxil. Such contribution, however, needs to be considered in the context of other factors, including, but not limited to, antibody class, type, clonality, epitope specificity, affinity, and titer. In addition, our data contribute to the knowledge base used to understand and improve nanomedicine safety.
Collapse
|
33
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Szebeni J, Bedőcs P, Dézsi L, Urbanics R. A porcine model of complement activation-related pseudoallergy to nano-pharmaceuticals: Pros and cons of translation to a preclinical safety test. PRECISION NANOMEDICINE 2018. [DOI: 10.29016/180427.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pigs provide a sensitive and quantitative animal model of non-IgE-mediated(pseudoallergic) hypersensitivity reactions (HSRs) caused by liposomes and many other nanoparticulate drugs or drug-carrier nanosystems (nanomedicines). The rapidly arising symptoms, including cardiopulmonary, hemodynamic, hematological, blood chemistry and skin changes, resemble the clinical picture in man undergoing infusion reactions toreactogenic nanoparticles. In addition to summarizing the basic features of the pig CARPA model, thereviewconsiderssome of the advantages and disadvantages of using the modelforpreclinical evaluation of nanomedicine safety.
Collapse
Affiliation(s)
- János Szebeni
- Nanomedicine Research and Education Center, Semmelweis University, Budapest, Hungary
| | - Péter Bedőcs
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - László Dézsi
- Nanomedicine Research and Education Center, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
35
|
Atkinson SP, Andreu Z, Vicent MJ. Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatment. J Pers Med 2018; 8:E6. [PMID: 29360800 PMCID: PMC5872080 DOI: 10.3390/jpm8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Polymer therapeutics (PTs) provides a potentially exciting approach for the treatment of many diseases by enhancing aqueous solubility and altering drug pharmacokinetics at both the whole organism and subcellular level leading to improved therapeutic outcomes. However, the failure of many polymer-drug conjugates in clinical trials suggests that we may need to stratify patients in order to match each patient to the right PT. In this concise review, we hope to assess potential PT-specific biomarkers for cancer treatment, with a focus on new studies, detection methods, new models and the opportunities this knowledge will bring for the development of novel PT-based anti-cancer strategies. We discuss the various "hurdles" that a given PT faces on its passage from the syringe to the tumor (and beyond), including the passage through the bloodstream, tumor targeting, tumor uptake and the intracellular release of the active agent. However, we also discuss other relevant concepts and new considerations in the field, which we hope will provide new insight into the possible applications of PT-related biomarkers.
Collapse
Affiliation(s)
- Stuart P Atkinson
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Zoraida Andreu
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|