1
|
Chakraborty A, Rani A, Sinha P, Sarma S, Agarwal V, Prasun A, Jha HC, Sarma TK. Guanosine Monophosphate Induced Solubilization of Folic Acid Leading to Hydrogel Formation for Targeted Delivery of Hydrophilic and Hydrophobic Drugs. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11848-11860. [PMID: 39939122 DOI: 10.1021/acsami.4c21306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Hydrogels are emerging as one of the most sought-after drug carriers due to their biocompatibility, high water content mimicking tissue-like environment, injectability, and stimuli responsiveness. Sustained drug release accompanied by targeted delivery to cancer cells can abate numerous adverse side effects of conventional chemotherapy. Folate receptors are overexpressed in various cancer cells, and their high binding affinity to folic acid (FA) makes folic acid-anchored drug carriers a specific targeting entity. Reports of folic acid-based hydrogels are still scarce, owing to their low solubility in water. In this study, we present a simple approach to generate a self-assembled supramolecular hydrogel by employing an amphiphilic low molecular weight gelator (LMWG), guanosine monophosphate (GMP), which noncovalently interacts and coassembles with FA. The hydrogel shows biocompatibility, thermoreversibility, self-healing, injectability, thixotropy, and self-adhesive properties. The hydrogel could encapsulate and release both hydrophilic (doxorubicin) and hydrophobic (curcumin) drugs in a sustained manner. In vitro studies on cancer cells showed that encapsulating the drugs within the hydrogel matrix resulted in enhanced uptake by the cancer cells, thereby increasing their therapeutic efficacy through upregulating tumor suppressor, apoptotic gene expression, and inhibiting cell proliferation markers. Thus, a straightforward fabrication procedure, cost-effectiveness, and treatment potency make the FA-GMP hydrogel a promising drug carrier for practical use in biomedical applications.
Collapse
Affiliation(s)
- Amrita Chakraborty
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Annu Rani
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Pramesh Sinha
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Suryakamal Sarma
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Vidhi Agarwal
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Aditya Prasun
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Hem Chandra Jha
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Tridib K Sarma
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
2
|
Martinotti S, Bonsignore G, Patrone M, Ranzato E. Correlation between Honey Parameters and Wound Healing Properties: The Case of Piedmont (Italy) Samples. Curr Pharm Biotechnol 2025; 26:302-311. [PMID: 39238381 DOI: 10.2174/0113892010328741240828093859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024]
Abstract
INTRODUCTION Honey possesses several positive properties, making it effective in wound healing mechanisms. However, very little information is available on the different honey types for wound healing activity. METHOD In the first "Academy of Sciences", a public engagement project with high school students, we assessed the properties of thirteen kinds of honey from the Piedmont area (Nord West Italy). In particular, we characterized the color intensity (by Pfund scale), total phenolic content (TPC), total flavonoid content (TFC), H2O2 production, and wound closure rate. RESULTS Then, we tried to verify the presence of a correlation between these parameters, finding a positive correlation between H2O2 and wound closure rate. CONCLUSION These data pave the way to characterize different types of Italian honey to completely understand its potential.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Gregorio Bonsignore
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Mauro Patrone
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Elia Ranzato
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
3
|
Chrószcz-Porębska M, Gadomska-Gajadhur A. Cysteine Conjugation: An Approach to Obtain Polymers with Enhanced Muco- and Tissue Adhesion. Int J Mol Sci 2024; 25:12177. [PMID: 39596243 PMCID: PMC11594736 DOI: 10.3390/ijms252212177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The modification of polymers towards increasing their biocompatibility gathers the attention of scientists worldwide. Several strategies are used in this field, among which chemical post-polymerization modification has recently been the most explored. Particular attention revolves around polymer-L-cysteine (Cys) conjugates. Cys, a natural amino acid, contains reactive thiol, amine, and carboxyl moieties, allowing hydrogen bond formation and improved tissue adhesion when conjugated to polymers. Conjugation of Cys and its derivatives to polymers has been examined mostly for hyaluronic acid, chitosan, alginate, polyesters, polyurethanes, poly(ethylene glycol), poly(acrylic acid), polycarbophil, and carboxymethyl cellulose. It was shown that the conjugation of Cys and its derivatives to polymers significantly increased their tissue adhesion, particularly mucoadhesion, stability at physiological pH, drug encapsulation efficiency, drug release, and drug permeation. Conjugates were also non-toxic toward various cell lines. These properties make Cys conjugation a promising strategy for advancing polymer applications in drug delivery systems and tissue engineering. This review aims to provide an overview of these features and to present the conjugation of Cys and its derivatives as a modern and promising approach for enhancing polymer tissue adhesion and its application in the medical field.
Collapse
|
4
|
Li Y, Gao X, Li Y, Yan S, Zhang Y, Zheng X, Gu Q. Endocytosis: the match point of nanoparticle-based cancer therapy. J Mater Chem B 2024; 12:9435-9458. [PMID: 39192831 DOI: 10.1039/d4tb01227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Nanomedicine has inspired a ground-breaking strategy for cancer therapy. By intelligently assembling diverse moieties to form nanoparticles, numerous functionalities such as controlled release, synergistic efficiency, and in situ killing can be achieved. The emerging nanoparticles have been designed with elevated targeting efficiency as targeting cancer cells is the primary requirement for nanoparticles. However, effective targeting does not guarantee therapeutic effects as endocytosis is a prerequisite for nanoparticles to exert effects. The recent decade has witnessed the rapid development of endocytosis-oriented nanoparticles, and this review subtly analyzes, categorizes, and exemplifies these nanoparticles according to their biological internalization patterns, and the correlation between the endocytosis mechanism and the property of nanoparticles is bridged. Based on the interdisciplinary vision, the present challenges and future perspectives of nanoparticle design for successful endocytosis are discussed, highlighting the potential strategies for the future development of endocytosis-oriented nanoparticles, thus facilitating the endocytosis-oriented strategy from bench to bedside. The undeniable fact is that endocytosis-oriented nanoparticles will definitely bring new blood to the next generation of advanced cancer therapies.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yiru Zhang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Mishra S, Sannigrahi A, Ruidas S, Chatterjee S, Roy K, Misra D, Maity BK, Paul R, Ghosh CK, Saha KD, Bhaumik A, Chattopadhyay K. Conformational Switch of a Peptide Provides a Novel Strategy to Design Peptide Loaded Porous Organic Polymer for Pyroptosis Pathway Mediated Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402953. [PMID: 38923392 DOI: 10.1002/smll.202402953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/24/2024] [Indexed: 06/28/2024]
Abstract
While peptide-based drug development is extensively explored, this strategy has limitations due to rapid excretion from the body (or shorter half-life in the body) and vulnerability to protease-mediated degradation. To overcome these limitations, a novel strategy for the development of a peptide-based anticancer agent is introduced, utilizing the conformation switch property of a chameleon sequence stretch (PEP1) derived from a mycobacterium secretory protein, MPT63. The selected peptide is then loaded into a new porous organic polymer (PG-DFC-POP) synthesized using phloroglucinol and a cresol derivative via a condensation reaction to deliver the peptide selectively to cancer cells. Utilizing ensemble and single-molecule approaches, this peptide undergoes a transition from a disordered to an alpha-helical conformation, triggered by the acidic environment within cancer cells that is demonstrated. This adopted alpha-helical conformation resulted in the formation of proteolysis-resistant oligomers, which showed efficient membrane pore-forming activity selectively for negatively charged phospholipids accumulated in cancer cell membranes. The experimental results demonstrated that the peptide-loaded PG-DFC-POP-PEP1 exhibited significant cytotoxicity in cancer cells, leading to cell death through the Pyroptosis pathway, which is established by monitoring numerous associated events starting from lysosome membrane damage to GSDMD-induced cell membrane demolition. This novel conformational switch-based drug design strategy is believed to have great potential in endogenous environment-responsive cancer therapy and the development of future drug candidates to mitigate cancers.
Collapse
Affiliation(s)
- Snehasis Mishra
- Department of Cell, Developmental, & Integrative Biology, University of Alabama, Birmingham, AL, 35233, USA
| | - Achinta Sannigrahi
- Molecular genetics department, University of Texas Southwestern Medical center, Dallas, TX, 75390, USA
| | - Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Sujan Chatterjee
- NIPM and SoLs, University of Nevada Las Vegas, Nevada, NV, 89154, USA
| | - Kamalesh Roy
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Deblina Misra
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Barun Kumar Maity
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rabindranath Paul
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chandan Kumar Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Krishnananda Chattopadhyay
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| |
Collapse
|
6
|
Zeng L, Kang D, Zhu L, Zhou Z, Li Y, Ling W, Zhang Y, Yu DG, Kim I, Song W. Poly(phenylalanine) and poly(3,4-dihydroxy-L-phenylalanine): Promising biomedical materials for building stimuli-responsive nanocarriers. J Control Release 2024; 372:810-828. [PMID: 38968969 DOI: 10.1016/j.jconrel.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Cancer is a serious threat to human health because of its high annual mortality rate. It has attracted significant attention in healthcare, and identifying effective strategies for the treatment and relief of cancer pain requires urgency. Drug delivery systems (DDSs) offer the advantages of excellent efficacy, low cost, and low toxicity for targeting drugs to tumor sites. In recent decades, copolymer carriers based on poly(phenylalanine) (PPhe) and poly(3,4-dihydroxy-L-phenylalanine) (PDopa) have been extensively investigated owing to their good biocompatibility, biodegradability, and controllable stimulus responsiveness, which have resulted in DDSs with loading and targeted delivery capabilities. In this review, we introduce the synthesis of PPhe and PDopa, highlighting the latest proposed synthetic routes and comparing the differences in drug delivery between PPhe and PDopa. Subsequently, we summarize the various applications of PPhe and PDopa in nanoscale-targeted DDSs, providing a comprehensive analysis of the drug release behavior based on different stimulus-responsive carriers using these two materials. In the end, we discuss the challenges and prospects of polypeptide-based DDSs in the field of cancer therapy, aiming to promote their further development to meet the growing demands for treatment.
Collapse
Affiliation(s)
- Lingcong Zeng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Linglin Zhu
- Oncology Department of Huadong Hospital, Minimally Invasive Tumor Treatment Center, No. 139 Yan'an West Road, Jing'an District, Shanghai, China 200040
| | - Zunkang Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yichong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wei Ling
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
7
|
Song W, Wen Y, Wang Z, Xu H, Liao Q, Tang Y, Yu DG, Kim I. Versatile Hyper-Cross-Linked Polymers Derived from Waste Polystyrene: Synthesis, Properties, and Intentional Recycling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38913990 DOI: 10.1021/acs.langmuir.4c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Waste polystyrene contributes considerably to environmental pollution due to its persistent nature, prompting a widespread consensus on the urgent need for viable recycling solutions. Owing to the aromatic groups structure of polystyrene, hyper-cross-linked polymers can be synthesized through the Friedel-Crafts cross-linking reaction using Lewis acids as catalysts. In addition, hyper-cross-linked polystyrene and its carbonaceous counterparts can be used in several important applications, which helps in their efficient recycling. This review systematically explores methods for preparing multifunctional hyper-cross-linked polymers from waste polystyrene and their applications in sustainable recycling. We have comprehensively outlined various synthetic approaches for these polymers and investigated their physical and chemical properties. These multifunctional polymers not only exhibit structural flexibility but also demonstrate diversity in performance, making them suitable for various applications. Through a systematic examination of synthetic methods, we showcase the cutting-edge positions of these materials in the field of hyper-cross-linked polymers. Additionally, we provide in-depth insights into the potential applications of these hyper-cross-linked polymers in intentional recycling, highlighting their important contributions to environmental protection and sustainable development. This research provides valuable references to the fields of sustainable materials science and waste management, encouraging further exploration of innovative approaches for the utilization of discarded polystyrene.
Collapse
Affiliation(s)
- Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yuheng Wen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Zeyu Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Hailang Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Qian Liao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busandaehak-ro 63-2, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Zhang Y, Tang Y, Liao Q, Qian Y, Zhu L, Yu DG, Xu Y, Lu X, Kim I, Song W. Silver oxide decorated urchin-like microporous organic polymer composites as versatile antibacterial organic coating materials. J Mater Chem B 2024; 12:2054-2069. [PMID: 38305698 DOI: 10.1039/d3tb02619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Microporous organic polymers (MOPs) and metal oxide hybrid composites are considered valuable coating materials because of their versatility derived from the synergistic combination of MOPs' inherent dispersibility and the distinctive properties of metal oxides. In this study, we present the synthesis of sea-urchin-like MOPs hybridised with silver oxide nanoparticles (Ag2O NPs) to fabricate antibacterial composites suitable for potential antibacterial coating applications. Ag2O NP-decorated urchin-like MOPs (Ag2O@UMOPs) were synthesised by employing a combination of two methods: a one-pot Lewis acid-base interaction-mediated self-assembly and a straightforward impregnation process. The as-prepared Ag2O@UMOPs demonstrated high antibacterial efficacy against both E. coli (G-) and S. aureus (G+). The antibacterial mechanism of Ag2O@UMOPs mainly involved the synergistic effects of accumulation of Ag2O@UMOPs, the release of Ag+ ions, and the generation of reactive oxygen species. The exceptional processability and biosafety of Ag2O@UMOPs make them ideal organic coating materials for convenient application on various substrates. These remarkable features of Ag2O@UMOPs provide an effective platform for potential antibacterial applications in biological sciences.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Qian Liao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yiduo Qian
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Linglin Zhu
- Department of Oncology, Huadong Hospital Affiliated to Fudan University, No. 139 Yan An Xi Road, Shanghai, 200040, P. R. China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yixin Xu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P. R. China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| |
Collapse
|
9
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|
10
|
Aventaggiato M, Valentini F, Caissutti D, Relucenti M, Tafani M, Misasi R, Zicari A, Di Martino S, Virtuoso S, Neri A, Mardente S. Biological Effects of Small Sized Graphene Oxide Nanosheets on Human Leukocytes. Biomedicines 2024; 12:256. [PMID: 38397858 PMCID: PMC10887315 DOI: 10.3390/biomedicines12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Since the discovery of graphene, there has been a wide range of the literature dealing with its versatile structure and easy binding of biomolecules as well as its large loading capacity. In the emerging field of immunotherapy, graphene and its derivatives have potential uses as drug delivery platforms directly into tumour sites or as adjuvants in cancer vaccines, as they are internalized by monocytes which in turn may activate adaptive anti-tumoral immune responses. In this study, we expose cells of the innate immune system and a human acute monocytic leukemia cell line (THP-1) to low doses of small-sized GO nanosheets functionalized with bovine serum albumin (BSA) and fluorescein isothiocyanate (FITC), to study their acute response after internalization. We show by flow cytometry, uptake in cells of GO-BSA-FITC reaches 80% and cell viability and ROS production are both unaffected by exposure to nanoparticles. On the contrary, GO-BSA nanosheets seem to have an inhibitory effect on ROS production, probably due to their antioxidant properties. We also provided results on chemotaxis of macrophages derived from peripheral blood monocytes treated with GO-BSA. In conclusion, we showed the size of nanosheets, the concentration used and the degree of functionalization were important factors for biocompatibility of GO in immune cells. Its low cytotoxicity and high adaptability to the cells of the innate immune system make it a good candidate for deployment in immunotherapy, in particular for delivering protein antigens to monocytes which activate adaptive immunity.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Federica Valentini
- Department of Sciences and Chemical Technologies, Tor Vergata University, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Daniela Caissutti
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy;
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Alessandra Zicari
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Sara Di Martino
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Sara Virtuoso
- Higher Institute of Health (ISS), Viale Regina Elena 299, 00161 Rome, Italy;
| | - Anna Neri
- Department of Biomedicine and Prevention, Tor Vergata University, Viale Montpellier, 1, 00133 Rome, Italy;
| | - Stefania Mardente
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| |
Collapse
|
11
|
Zhang Y, Lu Y, Li Y, Xu Y, Song W. Poly(Glutamic Acid)-Engineered Nanoplatforms for Enhanced Cancer Phototherapy. Curr Drug Deliv 2024; 21:326-338. [PMID: 36650626 DOI: 10.2174/1567201820666230116164511] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 01/19/2023]
Abstract
Phototherapies, including photothermal therapy and photodynamic therapy, have gained booming development over the past several decades for their attractive non-invasiveness nature, negligible adverse effects, minimal systemic toxicity, and high spatial selectivity. Phototherapy usually requires three components: light irradiation, photosensitizers, and molecular oxygen. Photosensitizers can convert light energy into heat or reactive oxygen species, which can be used in the tumor-killing process. The direct application of photosensitizers in tumor therapy is restricted by their poor water solubility, fast clearance, severe toxicity, and low cellular uptake. The encapsulation of photosensitizers into nanostructures is an attractive strategy to overcome these critical limitations. Poly(glutamic acid) (PGA) is a kind of poly(amino acid)s containing the repeating units of glutamic acid. PGA has superiority for cancer treatment because of its good biocompatibility, low immunogenicity, and modulated pH responsiveness. The hydrophilicity nature of PGA allows the physical entrapment of photosensitizers and anticancer drugs via the construction of amphiphilic polymers. Moreover, the pendent carboxyl groups of PGA enable chemical conjugation with therapeutic agents. In this mini-review, we highlight the stateof- the-art design and fabrication of PGA-based nanoplatforms for phototherapy. We also discuss the potential challenges and future perspectives of phototherapy, and clinical translation of PGA-based nanomedicines.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai-201318, P. R. China
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai-201318, P. R. China
| | - Yicong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai-200093, P. R. China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai-201318, P. R. China
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai-200093, P. R. China
| |
Collapse
|
12
|
Fernández M, Alvear-Arias JJ, Carmona EM, Carrillo C, Pena-Pichicoi A, Hernandez-Ochoa EO, Neely A, Alvarez O, Latorre R, Garate JA, Gonzalez C. Trapping Charge Mechanism in Hv1 Channels ( CiHv1). Int J Mol Sci 2023; 25:426. [PMID: 38203601 PMCID: PMC10779229 DOI: 10.3390/ijms25010426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic-hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor.
Collapse
Affiliation(s)
- Miguel Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, Chile; (M.F.); (J.J.A.-A.); (C.C.); (A.P.-P.); (A.N.); (O.A.); (R.L.)
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso 2351319, Chile
| | - Juan J. Alvear-Arias
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, Chile; (M.F.); (J.J.A.-A.); (C.C.); (A.P.-P.); (A.N.); (O.A.); (R.L.)
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso 2351319, Chile
| | - Emerson M. Carmona
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Christian Carrillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, Chile; (M.F.); (J.J.A.-A.); (C.C.); (A.P.-P.); (A.N.); (O.A.); (R.L.)
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso 2351319, Chile
| | - Antonio Pena-Pichicoi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, Chile; (M.F.); (J.J.A.-A.); (C.C.); (A.P.-P.); (A.N.); (O.A.); (R.L.)
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso 2351319, Chile
| | - Erick O. Hernandez-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, Chile; (M.F.); (J.J.A.-A.); (C.C.); (A.P.-P.); (A.N.); (O.A.); (R.L.)
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso 2351319, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, Chile; (M.F.); (J.J.A.-A.); (C.C.); (A.P.-P.); (A.N.); (O.A.); (R.L.)
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2351319, Chile; (M.F.); (J.J.A.-A.); (C.C.); (A.P.-P.); (A.N.); (O.A.); (R.L.)
| | - Jose A. Garate
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastian, Santiago 7780272, Chile
| | - Carlos Gonzalez
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso 2351319, Chile
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
13
|
Ermakov AV, Chapek SV, Lengert EV, Konarev PV, Volkov VV, Artemov VV, Soldatov MA, Trushina DB. Microfluidically Assisted Synthesis of Calcium Carbonate Submicron Particles with Improved Loading Properties. MICROMACHINES 2023; 15:16. [PMID: 38276844 PMCID: PMC10818696 DOI: 10.3390/mi15010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
The development of advanced methods for the synthesis of nano- and microparticles in the field of biomedicine is of high interest due to a range of reasons. The current synthesis methods may have limitations in terms of efficiency, scalability, and uniformity of the particles. Here, we investigate the synthesis of submicron calcium carbonate using a microfluidic chip with a T-shaped oil supply for droplet-based synthesis to facilitate control over the formation of submicron calcium carbonate particles. The design of the chip allowed for the precise manipulation of reaction parameters, resulting in improved porosity while maintaining an efficient synthesis rate. The pore size distribution within calcium carbonate particles was estimated via small-angle X-ray scattering. This study showed that the high porosity and reduced size of the particles facilitated the higher loading of a model peptide: 16 vs. 9 mass.% for the particles synthesized in a microfluidic device and in bulk, correspondingly. The biosafety of the developed particles in the concentration range of 0.08-0.8 mg per plate was established by the results of the cytotoxicity study using mouse fibroblasts. This innovative approach of microfluidically assisted synthesis provides a promising avenue for future research in the field of particle synthesis and drug delivery systems.
Collapse
Affiliation(s)
- Alexey V. Ermakov
- Institute of Molecular Theranostics, First Moscow State Medical University, 119991 Moscow, Russia; (E.V.L.); (D.B.T.)
| | - Sergei V. Chapek
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia; (S.V.C.); (M.A.S.)
| | - Ekaterina V. Lengert
- Institute of Molecular Theranostics, First Moscow State Medical University, 119991 Moscow, Russia; (E.V.L.); (D.B.T.)
| | - Petr V. Konarev
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| | - Vladimir V. Volkov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| | - Vladimir V. Artemov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| | - Mikhail A. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia; (S.V.C.); (M.A.S.)
| | - Daria B. Trushina
- Institute of Molecular Theranostics, First Moscow State Medical University, 119991 Moscow, Russia; (E.V.L.); (D.B.T.)
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| |
Collapse
|
14
|
Chen P, Liao X. Kartogenin delivery systems for biomedical therapeutics and regenerative medicine. Drug Deliv 2023; 30:2254519. [PMID: 37665332 PMCID: PMC10478613 DOI: 10.1080/10717544.2023.2254519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Kartogenin, a small and heterocyclic molecule, has emerged as a promising therapeutic agent for incorporation into biomaterials, owing to its unique physicochemical and biological properties. It holds potential for the regeneration of cartilage-related tissues in various common conditions and injuries. Achieving sustained release of kartogenin through appropriate formulation and efficient delivery systems is crucial for modulating cell behavior and tissue function. This review provides an overview of cutting-edge kartogenin-functionalized biomaterials, with a primarily focus on their design, structure, functions, and applications in regenerative medicine. Initially, we discuss the physicochemical properties and biological functions of kartogenin, summarizing the underlying molecular mechanisms. Subsequently, we delve into recent advancements in nanoscale and macroscopic materials for the carriage and delivery of kartogenin. Lastly, we address the opportunities and challenges presented by current biomaterial developments and explore the prospects for their application in tissue regeneration. We aim to enhance the generation of insightful ideas for the development of kartogenin delivery materials in the field of biomedical therapeutics and regenerative medicine by providing a comprehensive understanding of common preparation methods.
Collapse
Affiliation(s)
- Peixing Chen
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, China
| |
Collapse
|
15
|
Meng Q, Zhong S, Wang J, Gao Y, Cui X. 10-hydroxycamptothecin-loaded starch-based microcapsules with the stepwise responsive release strategy for targeted controlled release. Int J Biol Macromol 2023; 252:126424. [PMID: 37607650 DOI: 10.1016/j.ijbiomac.2023.126424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Controlled and accurate drug release at the target site have been the focus of research. Especially in cancer therapy, economical, convenient and accurate delivery strategies could help to reduce the toxic effects of drugs on normal tissues and improve drug availability. In the study, glutathione (GSH)-responsive microcapsules (FA-RSMCs) were prepared by sonochemical method based on thiolated modified starch. 10-Hydroxycamptothecin (HCPT) was designed as a reactive oxygen species (ROS)-responsive polyprodrug (polyHCPT), which was loaded into the core of the microcapsules to obtain stepwise released drug delivery carriers. In the tumor microenvironment, FA-RSMCs first triggered GSH-responsive cleavage to release polyHCPT, followed by ROS-responsive cleavage of polyHCPT to release intact HCPT drug molecules. The results of experiments in simulated tumor microenvironment showed that FA-RSMCs exhibited good cascade-response release properties in vitro. It exhibited good anti-tumor ability and protection of normal cells in cytotoxicity in vitro. This strategy enhanced the accuracy and safety of targeted delivery of HCPT via microcapsules, which has potential for clinical application.
Collapse
Affiliation(s)
- Qingye Meng
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Jia Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
16
|
Thamer BM, Al-aizari FA, Abdo HS. Enhanced Adsorption of Textile Dyes by a Novel Sulfonated Activated Carbon Derived from Pomegranate Peel Waste: Isotherm, Kinetic and Thermodynamic Study. Molecules 2023; 28:7712. [PMID: 38067443 PMCID: PMC10708109 DOI: 10.3390/molecules28237712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
The rapid growth of the dye and textile industry has raised significant public concerns regarding the pollution caused by dye wastewater, which poses potential risks to human health. In this study, we successfully improved the adsorption efficiency of activated carbon derived from pomegranate peel waste (PPAC) through a single-step and surface modification approach using 5-sulfonate-salicylaldehyde sodium salt. This innovative and effective sulfonation approach to produce sulfonated activated carbon (S-PPAC) proved to be highly effective in removing crystal violet dye (CV) from polluted water. The prepared PPAC and S-PPAC were characterized via FESEM, EDS, FTIR and BET surface area. Characterization studies confirmed the highly porous structure of the PPAC and its successful surface modification, with surface areas reaching 1180.63 m2/g and 740.75 m2/g for the PPAC and S-PPAC, respectively. The maximum adsorption capacity was achieved at 785.53 mg/g with the S-PPAC, an increase of 22.76% compared to the PPAC at 45 °C. The isothermic adsorption and kinetic studies demonstrated that the adsorption process aligned well with the Freundlich isotherm model and followed the Elovich kinetic model, respectively. The thermodynamic study confirmed that the adsorption of CV dye was endothermic, spontaneous and thermodynamically favorable onto PPAC and S-PPAC.
Collapse
Affiliation(s)
- Badr M. Thamer
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Faiz A. Al-aizari
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hany S. Abdo
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
| |
Collapse
|
17
|
Nifontova G, Kalenichenko D, Kriukova I, Terryn C, Audonnet S, Karaulov A, Nabiev I, Sukhanova A. Impact of Macrophages on the Interaction of Cetuximab-Functionalized Polyelectrolyte Capsules with EGFR-Expressing Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917654 DOI: 10.1021/acsami.3c10864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Polyelectrolyte capsules (PCs) are a promising tool for anticancer drug delivery and tumor targeting. Surface functionalization of PCs with antibodies is widely used for providing their specific interactions with cancer cells. The efficiency of PC-based targeted delivery systems can be affected by the cellular heterogeneity of the tumor, particularly by the presence of tumor-associated macrophages. We used human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells in either monoculture or coculture to analyze the targeting capacity and internalization efficiency of PCs with a mean size of 1.03 ± 0.11 μm. The PCs were functionalized with the monoclonal antibody cetuximab targeting the human epidermal growth factor receptor (EGFR). We have shown that surface functionalization of the PCs with cetuximab ensures a specific interaction with EGFR-expressing cancer cells and promotes capsule internalization. In monoculture, the macrophages derived from human leukemia monocytic cells have been found to internalize both nonfunctionalized PCs and cetuximab-functionalized PCs (Cet-PCs) more intensely compared to epidermoid carcinoma cells. The internalization of Cet-PCs by cancer cells is mediated by lipid rafts of the cell membrane, whereas the PC internalization by macrophages is only slightly influenced by lipid rafts. Experiments with a coculture of human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells have shown that Cet-PCs preferentially interact with cancer cells, which are subsequently attacked by macrophages. These data can be used to further improve the strategy of PC functionalization for targeted delivery, with the cellular heterogeneity of the tumor microenvironment taken into consideration.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Daria Kalenichenko
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Irina Kriukova
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
| | - Christine Terryn
- Plateau Technique PICT, Université de Reims Champagne-Ardenne, 51096 Reims, France
| | - Sandra Audonnet
- URCACyt, Flow Cytometry Technical Platform, Université de Reims Champagne-Ardenne, 51096, Reims, France
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University, Sechenov University, 119146 Moscow, Russian Federation
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russian Federation
- Sechenov First Moscow State Medical University, Sechenov University, 119146 Moscow, Russian Federation
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51096 Reims, France
| |
Collapse
|
18
|
Teixeira-Santos R, Belo S, Vieira R, Mergulhão FJM, Gomes LC. Graphene-Based Composites for Biomedical Applications: Surface Modification for Enhanced Antimicrobial Activity and Biocompatibility. Biomolecules 2023; 13:1571. [PMID: 38002253 PMCID: PMC10669141 DOI: 10.3390/biom13111571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The application of graphene-based materials in medicine has led to significant technological breakthroughs. The remarkable properties of these carbon materials and their potential for functionalization with various molecules and compounds make them highly attractive for numerous medical applications. To enhance their functionality and applicability, extensive research has been conducted on surface modification of graphene (GN) and its derivatives, including modifications with antimicrobials, metals, polymers, and natural compounds. This review aims to discuss recent and relevant studies related to advancements in the formulation of graphene composites, addressing their antimicrobial and/or antibiofilm properties and evaluating their biocompatibility, with a primary focus on their biomedical applications. It was concluded that GN surface modification, particularly with compounds intrinsically active against bacteria (e.g., antimicrobial peptides, silver and copper nanomaterials, and chitosan), has resulted in biomaterials with improved antimicrobial performance. Furthermore, the association of GN materials with non-natural polymers provides composites with increased biocompatibility when interfaced with human tissues, although with slightly lower antimicrobial efficacy. However, it is crucial to highlight that while modified GN materials hold huge potential, their widespread use in the medical field is still undergoing research and development. Comprehensive studies on safety, long-term effects, and stability are essential before their adoption in real-world medical scenarios.
Collapse
Affiliation(s)
- Rita Teixeira-Santos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.B.); (R.V.); (F.J.M.M.); (L.C.G.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Samuel Belo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.B.); (R.V.); (F.J.M.M.); (L.C.G.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita Vieira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.B.); (R.V.); (F.J.M.M.); (L.C.G.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J. M. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.B.); (R.V.); (F.J.M.M.); (L.C.G.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (S.B.); (R.V.); (F.J.M.M.); (L.C.G.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
19
|
De Castro F, Stefàno E, Fanizzi FP, Di Corato R, Abdalla P, Luchetti F, Nasoni MG, Rinaldi R, Magnani M, Benedetti M, Antonelli A. Compatibility of Nucleobases Containing Pt(II) Complexes with Red Blood Cells for Possible Drug Delivery Applications. Molecules 2023; 28:6760. [PMID: 37836603 PMCID: PMC10574024 DOI: 10.3390/molecules28196760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The therapeutic advantages of some platinum complexes as major anticancer chemotherapeutic agents and of nucleoside analogue-based compounds as essential antiviral/antitumor drugs are widely recognized. Red blood cells (RBCs) offer a potential new strategy for the targeted release of therapeutic agents due to their biocompatibility, which can protect loaded drugs from inactivation in the blood, thus improving biodistribution. In this study, we evaluated the feasibility of loading model nucleobase-containing Pt(II) complexes into human RBCs that were highly stabilized by four N-donors and susceptible to further modification for possible antitumor/antiviral applications. Specifically, platinum-based nucleoside derivatives [PtII(dien)(N7-Guo)]2+, [PtII(dien)(N7-dGuo)]2+, and [PtII(dien)(N7-dGTP)] (dien = diethylenetriamine; Guo = guanosine; dGuo = 2'-deoxy-guanosine; dGTP = 5'-(2'-deoxy)-guanosine-triphosphate) were investigated. These Pt(II) complexes were demonstrated to be stable species suitable for incorporation into RBCs. This result opens avenues for the possible incorporation of other metalated nucleobases analogues, with potential antitumor and/or antiviral activity, into RBCs.
Collapse
Affiliation(s)
- Federica De Castro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.D.C.); (E.S.)
| | - Erika Stefàno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.D.C.); (E.S.)
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.D.C.); (E.S.)
| | - Riccardo Di Corato
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010 Arnesano, Italy;
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy;
| | - Pasant Abdalla
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (P.A.); (F.L.); (M.G.N.); (M.M.)
| | - Francesca Luchetti
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (P.A.); (F.L.); (M.G.N.); (M.M.)
| | - Maria Gemma Nasoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (P.A.); (F.L.); (M.G.N.); (M.M.)
| | - Rosaria Rinaldi
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy;
- Mathematics and Physics “E. De Giorgi” Department, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Mauro Magnani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (P.A.); (F.L.); (M.G.N.); (M.M.)
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.D.C.); (E.S.)
| | - Antonella Antonelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy; (P.A.); (F.L.); (M.G.N.); (M.M.)
| |
Collapse
|
20
|
Sanchaniya JV, Lasenko I, Kanukuntala SP, Smogor H, Viluma-Gudmona A, Krasnikovs A, Tipans I, Gobins V. Mechanical and Thermal Characterization of Annealed Oriented PAN Nanofibers. Polymers (Basel) 2023; 15:3287. [PMID: 37571181 PMCID: PMC10422648 DOI: 10.3390/polym15153287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Polyacrylonitrile (PAN) nanofibers have extensive applications as filters in various fields, including air and water filtration, biofluid purification, and the removal of toxic compounds and hazardous pollutants from contaminated water. This research focuses on investigating the impacts of annealing on the mechanical and thermal characteristics of oriented PAN nanofibers produced through the electrospinning of a PAN solution. The nanofiber mats were subjected to annealing temperatures ranging from 70 °C to 350 °C and characterized using a tensile test machine, thermogravimetry, differential scanning calorimetry, and scanning electron microscopy (SEM). The study aimed to examine the tensile strength in the transverse and longitudinal directions, Young's modulus, and glass transition temperatures of PAN nanofiber mats. The results indicate that, upon annealing, the diameter of the nanofibers decreased by approximately 20%, while the tensile strength increased in the longitudinal and transverse directions by 32% and 23%, respectively. Furthermore, the annealing temperature influenced the glass transition temperature of the nanofiber mats, which exhibited a 6% decrease at 280 °C, while the degradation temperature showed a slight increase of 3.5% at 280 °C. The findings contribute to a better understanding of the effects of annealing on PAN nanofiber mats, facilitating their potential for various filtration applications.
Collapse
Affiliation(s)
- Jaymin Vrajlal Sanchaniya
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia; (I.L.)
- Department of Theoretical Mechanics and Strength of Materials, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Inga Lasenko
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia; (I.L.)
| | - Sai Pavan Kanukuntala
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia; (I.L.)
- Department of Theoretical Mechanics and Strength of Materials, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Hilary Smogor
- NETZSCH Instrumenty, Halicka 9, 31-036 Krakow, Poland
| | - Arta Viluma-Gudmona
- Mechanics and Biotextile Research Laboratory, Riga Technical University, 3/3-20 Pulka Street, LV-1007 Riga, Latvia; (I.L.)
| | - Andrejs Krasnikovs
- Department of Theoretical Mechanics and Strength of Materials, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Igors Tipans
- Department of Theoretical Mechanics and Strength of Materials, Riga Technical University, 6B Kipsala Street, LV-1048 Riga, Latvia
| | - Valters Gobins
- Laboratory of Environmental Genetics, Institute of Biology, Faculty of Biology, Latvian University, Jelgavas Street 1, LV-1004 Riga, Latvia
| |
Collapse
|
21
|
Jafari S, Khodaensaf F, Delattre C, Bazargan V, Lukova P. Mesoporous Starch Cryoaerogel Material as an Emerging Platform for Oral Drug Delivery: Synthesis and In Vitro Evaluation. Gels 2023; 9:623. [PMID: 37623078 PMCID: PMC10453812 DOI: 10.3390/gels9080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, a starch cryoaerogel formulation was developed as a carrier for poorly water-soluble drugs, like atorvastatin. Cryoaerogels were generated through a sol-gel method combined with a freeze-drying technique, and atorvastatin was incorporated into the obtained mesoporous systems during the solvent exchange stage. The formulated drug-loaded polymer structures were characterized in terms of their physicochemical properties, solid-state behavior, and cytotoxicity. They had a pore size of 27.56 nm and a drug loading size of 38.60%. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) analyses indicated that atorvastatin was successfully incorporated into the cryoaerogel pores. The amorphous nature of the loaded drug was confirmed via X-ray diffraction (XRD). Furthermore, after the atorvastatin incorporation into the cryogel, the volume of nitrogen adsorbed on one gram of cryoaerogel (Vm), as well as the specific surface area (aBET) were reduced. The comparison between the drug release profiles of crystalline atorvastatin and the loaded formulation of atorvastatin showed that by including the drug into the pores of the developed cryoaerogel matrix its solubility was significantly improved-the time for the dissolution of 30% pure atorvastatin (t30%) was approximately 4 h, whereas the determined t30% for the formulated cryoaerogels was only 1 h. Moreover, the data from the MTT assay illustrated that the designed cryoaerogel could be used as a safe oral atorvastatin delivery system. According to obtained results, it could be concluded that the starch cryoaerogel formulation is a promising candidate for oral delivery of poorly water-soluble therapeutic agents.
Collapse
Affiliation(s)
- Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - Farzaneh Khodaensaf
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Cédric Delattre
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France;
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Vahid Bazargan
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
22
|
Wei X, Yu CY, Wei H. Application of Cyclodextrin for Cancer Immunotherapy. Molecules 2023; 28:5610. [PMID: 37513483 PMCID: PMC10384645 DOI: 10.3390/molecules28145610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor immunotherapy, compared with other treatment strategies, has the notable advantage of a long-term therapeutic effect for preventing metastasis and the recurrence of tumors, thus holding great potential for the future of advanced tumor therapy. However, due to the poor water solubility of immune modulators and immune escape properties of tumor cells, the treatment efficiency of immunotherapy is usually significantly reduced. Cyclodextrin (CD) has been repeatedly highlighted to be probably one of the most investigated building units for cancer therapy due to its elegant integration of an internal hydrophobic hollow cavity and an external hydrophilic outer surface. The application of CD for immunotherapy provides new opportunities for overcoming the aforementioned obstacles. However, there are few published reviews, to our knowledge, summarizing the use of CD for cancer immunotherapy. For this purpose, this paper provides a comprehensive summary on the application of CD for immunotherapy with an emphasis on the role, function, and reported strategies of CD in mediating immunotherapy. This review summarizes the research progress made in using CD for tumor immunotherapy, which will facilitate the generation of various CD-based immunotherapeutic delivery systems with superior anticancer efficacy.
Collapse
Affiliation(s)
- Xiaojie Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| |
Collapse
|
23
|
Cojocaru E, Ghitman J, Pircalabioru GG, Zaharia A, Iovu H, Sarbu A. Electrospun/3D-Printed Bicomponent Scaffold Co-Loaded with a Prodrug and a Drug with Antibacterial and Immunomodulatory Properties. Polymers (Basel) 2023; 15:2854. [PMID: 37447499 DOI: 10.3390/polym15132854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
This work reports the construction of a bicomponent scaffold co-loaded with both a prodrug and a drug (BiFp@Ht) as an efficient platform for wound dressing, by combining the electrospinning and 3D-printing technologies. The outer component consisted of a chitosan/polyethylene oxide-electrospun membrane loaded with the indomethacin-polyethylene glycol-indomethacin prodrug (Fp) and served as a support for printing the inner component, a gelatin methacryloyl/sodium alginate hydrogel loaded with tetracycline hydrochloride (Ht). The different architectural characteristics of the electrospun and 3D-printed layers were very well highlighted in a morphological analysis performed by Scanning Electron Microscopy (SEM). In vitro release profile studies demonstrated that both Fp and Ht layers were capable to release the loaded therapeutics in a controlled and sustained manner. According to a quantitative in vitro biological assessment, the bicomponent BiFp@Ht scaffold showed a good biocompatibility and no cytotoxic effect on HeLa cell cultures, while the highest proliferation level was noted in the case of HeLa cells seeded onto an Fp nanofibrous membrane. Furthermore, the BiFp@Ht scaffold presented an excellent antimicrobial activity against the E. coli and S. aureus bacterial strains, along with promising anti-inflammatory and proangiogenic activities, proving its potential to be used for wound dressing.
Collapse
Affiliation(s)
- Elena Cojocaru
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Anamaria Zaharia
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- eBio-Hub Research Center, University Politehnica of Bucharest-CAMPUS, 6 Iuliu Maniu Boulevard, 061344 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
24
|
Milutinov J, Krstonošić V, Ćirin D, Pavlović N. Emulgels: Promising Carrier Systems for Food Ingredients and Drugs. Polymers (Basel) 2023; 15:polym15102302. [PMID: 37242878 DOI: 10.3390/polym15102302] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Novel delivery systems for cosmetics, drugs, and food ingredients are of great scientific and industrial interest due to their ability to incorporate and protect active substances, thus improving their selectivity, bioavailability, and efficacy. Emulgels are emerging carrier systems that represent a mixture of emulsion and gel, which are particularly significant for the delivery of hydrophobic substances. However, the proper selection of main constituents determines the stability and efficacy of emulgels. Emulgels are dual-controlled release systems, where the oil phase is utilized as a carrier for hydrophobic substances and it determines the occlusive and sensory properties of the product. The emulsifiers are used to promote emulsification during production and to ensure emulsion stability. The choice of emulsifying agents is based on their capacity to emulsify, their toxicity, and their route of administration. Generally, gelling agents are used to increase the consistency of formulation and improve sensory properties by making these systems thixotropic. The gelling agents also impact the release of active substances from the formulation and stability of the system. Therefore, the aim of this review is to gain new insights into emulgel formulations, including the components selection, methods of preparation, and characterization, which are based on recent advances in research studies.
Collapse
Affiliation(s)
- Jovana Milutinov
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Veljko Krstonošić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Dejan Ćirin
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
25
|
Zygouri E, Bekiari V, Malis G, Karamanos NK, Koutsakis C, Psomas G, Tangoulis V. pH-Sensitive Gold Nanorods for Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Delivery and DNA-Binding Studies. Molecules 2023; 28:molecules28093780. [PMID: 37175189 PMCID: PMC10179929 DOI: 10.3390/molecules28093780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
A facile experimental protocol for the synthesis of poly(ethylene glycol)-modified (PEGylated) gold nanorods (AuNRs@PEG) is presented as well as an effective drug loading procedure using the non-steroidal anti-inflammatory drug (NSAID) naproxen (NAP). The interaction of AuNRs@PEG and drug-loaded AuNRs (AuNRs@PEG@NAP) with calf-thymus DNA was studied at a diverse temperature revealing different interaction modes; AuNRs@PEG may interact via groove-binding and AuNRs@PEG@NAP may intercalate to DNA-bases. The cleavage activity of the gold nanoparticles for supercoiled circular pBR322 plasmid DNA was studied by gel electrophoresis while their affinity for human and bovine serum albumins was also evaluated. Drug-release studies revealed a pH-sensitive behavior with a release up to a maximum of 24% and 33% NAP within the first 180 min at pH = 4.2 and 6.8, respectively. The cytotoxicity of AuNRs@PEG and AuNRs@PEG@NAP was evaluated against MCF-7 and MDA-MB-231 breast cancer cell lines. The development of AuNRs as an efficient non-steroidal anti-inflammatory drugs (NSAIDs) delivery system for chemotherapy is still in its infancy. The present work can shed light and inspire other research groups to work in this direction.
Collapse
Affiliation(s)
- Eleni Zygouri
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece
| | - Vlasoula Bekiari
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece
| | - Georgios Malis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), 26504 Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vassilis Tangoulis
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
26
|
Michna A, Pomorska A, Ozcan O. Biocompatible Macroion/Growth Factor Assemblies for Medical Applications. Biomolecules 2023; 13:biom13040609. [PMID: 37189357 DOI: 10.3390/biom13040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Growth factors are a class of proteins that play a role in the proliferation (the increase in the number of cells resulting from cell division) and differentiation (when a cell undergoes changes in gene expression becoming a more specific type of cell) of cells. They can have both positive (accelerating the normal healing process) and negative effects (causing cancer) on disease progression and have potential applications in gene therapy and wound healing. However, their short half-life, low stability, and susceptibility to degradation by enzymes at body temperature make them easily degradable in vivo. To improve their effectiveness and stability, growth factors require carriers for delivery that protect them from heat, pH changes, and proteolysis. These carriers should also be able to deliver the growth factors to their intended destination. This review focuses on the current scientific literature concerning the physicochemical properties (such as biocompatibility, high affinity for binding growth factors, improved bioactivity and stability of the growth factors, protection from heat, pH changes or appropriate electric charge for growth factor attachment via electrostatic interactions) of macroions, growth factors, and macroion-growth factor assemblies, as well as their potential uses in medicine (e.g., diabetic wound healing, tissue regeneration, and cancer therapy). Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.
Collapse
|
27
|
Shen Z, Pan Y, Yan D, Wang D, Tang BZ. AIEgen-Based Nanomaterials for Bacterial Imaging and Antimicrobial Applications: Recent Advances and Perspectives. Molecules 2023; 28:2863. [PMID: 36985835 PMCID: PMC10057855 DOI: 10.3390/molecules28062863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Microbial infections have always been a thorny problem. Multi-drug resistant (MDR) bacterial infections rendered the antibiotics commonly used in clinical treatment helpless. Nanomaterials based on aggregation-induced emission luminogens (AIEgens) recently made great progress in the fight against microbial infections. As a family of photosensitive antimicrobial materials, AIEgens enable the fluorescent tracing of microorganisms and the production of reactive oxygen (ROS) and/or heat upon light irradiation for photodynamic and photothermal treatments targeting microorganisms. The novel nanomaterials constructed by combining polymers, antibiotics, metal complexes, peptides, and other materials retain the excellent antimicrobial properties of AIEgens while giving other materials excellent properties, further enhancing the antimicrobial effect of the material. This paper reviews the research progress of AIEgen-based nanomaterials in the field of antimicrobial activity, focusing on the materials' preparation and their related antimicrobial strategies. Finally, it concludes with an outlook on some of the problems and challenges still facing the field.
Collapse
Affiliation(s)
- Zipeng Shen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yinzhen Pan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
28
|
Wu KY, Ashkar S, Jain S, Marchand M, Tran SD. Breaking Barriers in Eye Treatment: Polymeric Nano-Based Drug-Delivery System for Anterior Segment Diseases and Glaucoma. Polymers (Basel) 2023; 15:polym15061373. [PMID: 36987154 PMCID: PMC10054733 DOI: 10.3390/polym15061373] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
The eye has anatomical structures that function as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of medications administered topically. The development of polymeric nano-based drug-delivery systems (DDS) could be the solution to these challenges: it can pass through ocular barriers, offering higher bioavailability of administered drugs to targeted tissues that are otherwise inaccessible; it can stay in ocular tissues for longer periods of time, requiring fewer drug administrations; and it can be made up of polymers that are biodegradable and nano-sized, minimizing the undesirable effects of the administered molecules. Therefore, therapeutic innovations in polymeric nano-based DDS have been widely explored for ophthalmic drug-delivery applications. In this review, we will give a comprehensive overview of polymeric nano-based drug-delivery systems (DDS) used in the treatment of ocular diseases. We will then examine the current therapeutic challenges of various ocular diseases and analyze how different types of biopolymers can potentially enhance our therapeutic options. A literature review of the preclinical and clinical studies published between 2017 and 2022 was conducted. Thanks to the advances in polymer science, the ocular DDS has rapidly evolved, showing great promise to help clinicians better manage patients.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Said Ashkar
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shrieda Jain
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
29
|
Li Z, Xu K, Qin L, Zhao D, Yang N, Wang D, Yang Y. Hollow Nanomaterials in Advanced Drug Delivery Systems: From Single- to Multiple Shells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203890. [PMID: 35998336 DOI: 10.1002/adma.202203890] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Hollow-structured nanomaterials (HSNMs) have attracted increased interest in biomedical fields, owing to their excellent potential as drug delivery systems (DDSs) for clinical applications. Among HSNMs, hollow multi-shelled structures (HoMSs) exhibit properties such as high loading capacity, sequential drug release, and multi-functionalized modification and represent a new class of nanoplatforms for clinical applications. The remarkable properties of HoMS-based DDS can simultaneously satisfy and enhance DDSs for delivering small molecular drugs (e.g., antibiotics, chemotherapy drugs, and imaging agents) and macromolecular drugs (e.g., protein/peptide- and nucleic acid-based drugs). First, the latest research advances in delivering small molecular drugs are summarized and highlight the inherent advantages of HoMS-based DDSs for small molecular drug targeting, combining continuous therapeutic drug delivery and theranostics to optimize the clinical benefit. Meanwhile, the macromolecular drugs DDSs are in the initial development stage and currently offer limited delivery modes. There is a growing need to analyze the deficiency of other HSNMs and integrate the advantages of HSNMs, providing solutions for the safe, stable, and cascade delivery of macromolecular drugs to meet vast treatment requirements. Therefore, the latest advances in HoMS-based DDSs are comprehensively reviewed, mainly focusing on the characteristics, research progress by drug category, and future research prospects.
Collapse
Affiliation(s)
- Zhao Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
30
|
Bio-Inspired Drug Delivery Systems: From Synthetic Polypeptide Vesicles to Outer Membrane Vesicles. Pharmaceutics 2023; 15:pharmaceutics15020368. [PMID: 36839691 PMCID: PMC9965272 DOI: 10.3390/pharmaceutics15020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomedicine is a broad field that focuses on the development of nanocarriers to deliver specific drugs to targeted sites. A synthetic polypeptide is a kind of biomaterial composed of repeating amino acid units that are linked by peptide bonds. The multiplied amphiphilicity segment of the polypeptide could assemble to form polypeptide vesicles (PVs) under suitable conditions. Different from polypeptide vesicles, outer membrane vesicles (OMVs) are spherical buds of the outer membrane filled with periplasmic content, which commonly originate from Gram-negative bacteria. Owing to their biodegradability and excellent biocompatibility, both PVs and OMVs have been utilized as carriers in delivering drugs. In this review, we discuss the recent drug delivery research based on PVs and OMVs. These related topics are presented: (1) a brief introduction to the production methods for PVs and OMVs; (2) a thorough explanation of PV- and OMV-related applications in drug delivery including the vesicle design and biological assessment; (3) finally, we conclude with a discussion on perspectives and future challenges related to the drug delivery systems of PVs and OMVs.
Collapse
|
31
|
Zhang Y, Kim I, Lu Y, Xu Y, Yu DG, Song W. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J Control Release 2022; 349:963-982. [PMID: 35944751 DOI: 10.1016/j.jconrel.2022.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive drug delivery systems based on polymeric nanovehicles are among the most promising treatment regimens for malignant cancers. Such intelligent systems that release payloads in response to the physiological characteristics of tumor sites have several advantages over conventional drug carriers, offering, in particular, enhanced therapeutic effects and decreased toxicity. The tumor microenvironment (TME) is acidic, suggesting the potential of pH-responsive nanovehicles for enhancing treatment specificity and efficacy. The synthetic polypeptide poly(l-histidine) (PLH) is an appropriate candidate for the preparation of pH-responsive nanovehicles because the pKa of PLH (approximately 6.0) is close to the pH of the acidic TME. In addition, the pendent imidazole rings of PLH yield pH-dependent hydrophobic-to-hydrophilic phase transitions in the acidic TME, triggering the destabilization of nanovehicles and the subsequent release of encapsulated chemotherapeutic agents. Herein, we highlight the state-of-the-art design and construction of pH-responsive nanovehicles based on PLH and discuss the future challenges and perspectives of this fascinating biomaterial for targeted cancer treatment and "benchtop-to-clinic" translation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
32
|
Tang Y, Varyambath A, Ding Y, Chen B, Huang X, Zhang Y, Yu DG, Kim I, Song W. Porous organic polymers for drug delivery: hierarchical pore structures, variable morphologies, and biological properties. Biomater Sci 2022; 10:5369-5390. [PMID: 35861101 DOI: 10.1039/d2bm00719c] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porous organic polymers have received considerable attention in recent years because of their applicability as biomaterials. In particular, their hierarchical pore structures, variable morphologies, and tunable biological properties make them suitable as drug-delivery systems. In this review, the synthetic and post forming/control methods including templated methods, template-free methods, mechanical methods, electrospun methods, and 3D printing methods for controlling the hierarchical structures and morphologies of porous organic polymers are discussed, and the different methods affecting their specific surface areas, hierarchical structures, and unique morphologies are highlighted in detail. In addition, we discuss their applications in drug encapsulation and the development of stimuli (pH, heat, light, and dual-stimuli)-responsive materials, focusing on their use for targeted drug release and as therapeutic agents. Finally, we present an outlook concerning the research directions and applications of porous polymer-based drug delivery systems.
Collapse
Affiliation(s)
- Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Anuraj Varyambath
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | - Yuanchen Ding
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Bailiang Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Xinyi Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | - Il Kim
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China. .,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
33
|
Triazole-Functionalized Mesoporous Materials Based on Poly(styrene- block-lactic acid): A Morphology Study of Thin Films. Polymers (Basel) 2022; 14:polym14112231. [PMID: 35683904 PMCID: PMC9182962 DOI: 10.3390/polym14112231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
We report the synthesis of poly(styrene-block-lactic acid) (PS-b-PLA) copolymers with triazole rings as a junction between blocks. These materials were prepared via a ‘click’ strategy which involved the reaction between azide-terminated poly(styrene) (PS-N3) and acetylene-terminated poly(D,L-lactic acid) (PLA-Ac), accomplished by copper-catalyzed azide-alkyne cycloaddition reaction. This synthetic approach has demonstrated to be effective to obtain specific copolymer structures with targeted self-assembly properties. We observed the self-assembly behavior of the PS-b-PLA thin films as induced by solvent vapor annealing (SVA), thermal annealing (TA), and hydrolysis of the as-spun substrates and monitored their morphological changes by means of different microscopic techniques. Self-assembly via SVA and TA proved to be strongly dependent on the pretreatment of the substrates. Microphase segregation of the untreated films yielded a pore size of 125 nm after a 45-min SVA. After selectively removing the PLA microdomains, the as-spun substrates exhibited the formation of pores on the surface, which can be a good alternative to form an ordered pattern of triazole functionalized porous PS at the mesoscale. Finally, as revealed by scanning electron microscopy–energy dispersive X-ray spectroscopy, the obtained triazole-functionalized PS-porous film exhibited some affinity to copper (Cu) in solution. These materials are suitable candidates to further study its metal-caption properties.
Collapse
|
34
|
Cross-Linking of Polypropylene with Thiophene and Imidazole. Polymers (Basel) 2022; 14:polym14112198. [PMID: 35683871 PMCID: PMC9182647 DOI: 10.3390/polym14112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
In this work, two novel routes to synthesis cross-linked polypropylene (PP) are introduced by using two different precursors (2-thiophenemethyl amine (TMA) and 1-(3 aminopropyl) imidazole (API)), both cross-linked with 1,1′-(methylenedi-4,1-phenylene) bismaleimide (BM) at two different annealing temperature values (T = 50 °C and T = 150 °C). Both Diels–Alder (DA) and Michael addition reactions were successfully performed with TMA and API, respectively, albeit with different reactivity. Imidazole clearly shows a higher reactivity compared to thiophene. In addition, an increase in annealing temperature leads to a higher degree of cross-linking. The highest degree of cross-linking was obtained by the imidazole product after annealing at 150 °C (IMG1A150) as evident from the highest complex viscosity (|η*|) value of IMG1A150. A difference in rheology and thermal properties between the imidazole and thiophene cross-linked products was also observed. However, both products have superior melt properties and thermal stability compared with the starting material. They show processability at high temperatures. The melt flow behavior and de-cross-linking at higher temperatures can be tuned depending on the choice of imidazole or thiophene. This study shows an advance on the cross-linked PP processing and its product performances for further application on the commercial scale.
Collapse
|
35
|
Zhang Y, Song W, Lu Y, Xu Y, Wang C, Yu DG, Kim I. Recent Advances in Poly(α- L-glutamic acid)-Based Nanomaterials for Drug Delivery. Biomolecules 2022; 12:636. [PMID: 35625562 PMCID: PMC9138577 DOI: 10.3390/biom12050636] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 02/06/2023] Open
Abstract
Poly(α-L-glutamic acid) (PGA) is a class of synthetic polypeptides composed of the monomeric unit α-L-glutamic acid. Owing to their biocompatibility, biodegradability, and non-immunogenicity, PGA-based nanomaterials have been elaborately designed for drug delivery systems. Relevant studies including the latest research results on PGA-based nanomaterials for drug delivery have been discussed in this work. The following related topics are summarized as: (1) a brief description of the synthetic strategies of PGAs; (2) an elaborated presentation of the evolving applications of PGA in the areas of drug delivery, including the rational design, precise fabrication, and biological evaluation; (3) a profound discussion on the further development of PGA-based nanomaterials in drug delivery. In summary, the unique structures and superior properties enables PGA-based nanomaterials to represent as an enormous potential in biomaterials-related drug delivery areas.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (Y.Z.); (Y.L.); (Y.X.)
| | - Wenliang Song
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea;
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (Y.Z.); (Y.L.); (Y.X.)
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (Y.Z.); (Y.L.); (Y.X.)
| | - Changping Wang
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Il Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
36
|
He S, Meng Q, Zhong S, Gao Y, Cui X. Sonochemical fabrication of reduction-responsive alginate-based nanocapsules with folate targeting for drug delivery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Zhang M, Song W, Tang Y, Xu X, Huang Y, Yu D. Polymer-Based Nanofiber-Nanoparticle Hybrids and Their Medical Applications. Polymers (Basel) 2022; 14:351. [PMID: 35054758 PMCID: PMC8780324 DOI: 10.3390/polym14020351] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
The search for higher-quality nanomaterials for medicinal applications continues. There are similarities between electrospun fibers and natural tissues. This property has enabled electrospun fibers to make significant progress in medical applications. However, electrospun fibers are limited to tissue scaffolding applications. When nanoparticles and nanofibers are combined, the composite material can perform more functions, such as photothermal, magnetic response, biosensing, antibacterial, drug delivery and biosensing. To prepare nanofiber and nanoparticle hybrids (NNHs), there are two primary ways. The electrospinning technology was used to produce NNHs in a single step. An alternate way is to use a self-assembly technique to create nanoparticles in fibers. This paper describes the creation of NNHs from routinely used biocompatible polymer composites. Single-step procedures and self-assembly methodologies are used to discuss the preparation of NNHs. It combines recent research discoveries to focus on the application of NNHs in drug release, antibacterial, and tissue engineering in the last two years.
Collapse
Affiliation(s)
- Mingxin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Yunxin Tang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Xizi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Yingning Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.Z.); (Y.T.); (X.X.); (Y.H.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
38
|
Zhu Y, Xu P, Zhang X, Wu D. Emerging porous organic polymers for biomedical applications. Chem Soc Rev 2022; 51:1377-1414. [DOI: 10.1039/d1cs00871d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes and discusses the recent progress in porous organic polymers for diverse biomedical applications such as drug delivery, biomacromolecule immobilization, phototherapy, biosensing, bioimaging, and antibacterial applications.
Collapse
Affiliation(s)
- Youlong Zhu
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Peiwen Xu
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Dingcai Wu
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
39
|
Dash TK, Patra D, Venu P, Das B, Bhattacharyya R, Shunmugam R. Hetero-Trifunctional Malonate-Based Nanotheranostic System for Targeted Breast Cancer Therapy. ACS APPLIED BIO MATERIALS 2021; 4:5251-5265. [PMID: 35007007 DOI: 10.1021/acsabm.1c00407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Designing multifunctional linkers is crucial for tricomponent theranostic targeted nanomedicine development as they are essential to enrich polymeric systems with different functional moieties. Herein, we have obtained a hetero-trifunctional linker from malonic acid and demonstrated its implication as an amphiphilic targeted nanotheranostic system (CB DX UN PG FL). We synthesized it with varying hydrophilic segment to fine-tune the hydrophobic/hydrophilic ratio to optimize its self-assembly. pH-responsive hydrazone-linked doxorubicin was conjugated to the backbone (UN PG FL) containing folate as a targeting ligand. Cobalt carbonyl complex was used for T2-weighted magnetic resonance imaging (MRI). Electron micrographs of optimized molecule CB DX UN PG(4 kDa) FL in an aqueous system have demonstrated about 50-60 nm-sized uniform micelles. The relaxivity study and the one-dimensional (1D) imaging experiments clearly revealed the effect of the nanotheranostics system on transverse relaxation (T2) of water molecules, which validated the system as a T2-weighted MRI contrast agent. The detailed in vitro biological studies validated the targeted delivery and anticancer potential of CB DX UN PG(4 kDa) FL. Combining the data on transverse relaxation, folate mediated uptake, and anticancer activity, the designed molecule will have a significant impact on the development of targeted theranostic.
Collapse
Affiliation(s)
- Tapan Kumar Dash
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Diptendu Patra
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Parvathy Venu
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Department of Translational Research, Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
| | - Rangeet Bhattacharyya
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Raja Shunmugam
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
40
|
Regular Polymeric Microspheres with Highly Developed Internal Structure and Remarkable Thermal Stability. MATERIALS 2021; 14:ma14092240. [PMID: 33925374 PMCID: PMC8123802 DOI: 10.3390/ma14092240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 12/21/2022]
Abstract
In this study, the synthesis and characterization of permanently porous polymeric microspheres was presented. The microspheres were obtained via suspension polymerization using diverse functional monomers, such as 4,4′-bis(methacryloyloxymethylphenyl)sulphone, 1,4-bis(methacryloyloxymethyl)benzene, 4,4′-bis(methacryloyloxymethylphenyl)methane, N-vinylpyrrolidone, ethylene glycol dimethacrylate, and divinylbenzene as a co-monomer. As porogenic solvents, toluene and chlorobenzene were applied. The main aim of the research was to synthesize polymers having a highly developed internal structure and a good thermal stability. The synthesized materials were characterized by ATR-FTIR, scanning electron microscopy, a size distribution analysis, a low-temperature nitrogen adsorption–desorption method, differential scanning calorimetry, and thermogravimetry coupled with FTIR and inverse gas chromatography. It was found that, depending on the functional monomer, regular microspheres with a specific surface area in the range of 418–746 m2/g can be successfully synthesized. Moreover, all the synthesized copolymers showed a good thermal stability. In helium, they exhibited 5% mass losses at temperatures over 300 °C, whereas in air these values were only slightly lower. In addition, the presence of miscellaneous functional groups promoted diverse kinds of interactions. Therefore, the microspheres can be possibly use in many adsorption techniques including high temperature processes.
Collapse
|