1
|
Qing X, Kalidindi P, Liu Z, Vananroye A, Taurino I, Katsaounis A, Fardim P. Phytic acid/chitosan-assisted zwitterionic double-network hydrogels with enhanced mechanical properties, adhesion ability and ionic conductivity for wearable strain sensors. Int J Biol Macromol 2025; 309:142841. [PMID: 40203931 DOI: 10.1016/j.ijbiomac.2025.142841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Ionic conductive hydrogels have recently attracted tremendous attention in flexible wearable strain sensors. However, achieving a combination of good mechanical properties, strong adhesion to various material surfaces, and remarkable ionic conductivity in a single ionic conductive hydrogel remains a challenge. Herein, new poly(acrylamide-co-sulfobetaine methacrylate)/chitosan/phytic acid (ASCP) ionic conductive hydrogels with double networks were prepared through free radical polymerization. The versatile functional groups from chitosan and phytic acid gave the hydrogels universal adhesion capabilities with a maximum adhesion strength of 18.7 kPa to paper. The obtained ASCP conductive hydrogels exhibited a large elongation of 675 % and a moderate tensile strength 52.8 kPa due to the synergy of chemical cross-linking and physical interactions. Phytic acid as the conductive component conferred the hydrogels with excellent ionic conductivity of 10.3 S m-1. Moreover, the incorporation of chitosan and phytic acid imparted the hydrogels with enhanced anti-drying capability, as evidenced by a residual mass ratio of 58.3 % after 10 days, and exhibited favorable anti-swelling behavior, with an equilibrium swelling ratio of 115 % in water after 4 days. The described ionic conductive hydrogels were assembled into wearable strain sensors to detect various human joint movements. This work offers a straightforward strategy to design multifunctional conductive hydrogels which envision prospective applications in wearable sensors and other flexible electronic devices.
Collapse
Affiliation(s)
- Xiaoyan Qing
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium
| | - Praneetha Kalidindi
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium
| | - Zhongda Liu
- Department of Chemical Engineering, University of Patras, Caratheodory 1 St, 26504 Patras, Greece
| | - Anja Vananroye
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001 Leuven, Belgium
| | - Irene Taurino
- Micro and Nano Systems (MNS), Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium; Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium
| | - Alexandros Katsaounis
- Department of Chemical Engineering, University of Patras, Caratheodory 1 St, 26504 Patras, Greece
| | - Pedro Fardim
- Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200f, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Calais GB, Garcia GD, de Moura Júnior CF, Soares JDM, Lona LMF, Beppu MM, Hernandez-Montelongo J, Rocha Neto JBM. Therapeutic functions of medical implants from various material categories with integrated biomacromolecular systems. Front Bioeng Biotechnol 2025; 12:1509397. [PMID: 39867472 PMCID: PMC11757644 DOI: 10.3389/fbioe.2024.1509397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions. It synthesizes advancements in surface modification, discusses biomacromolecules as carriers for controlled drug release, and explores the application of nanoceramics and composites to improve osseointegration and tissue regeneration. Biomacromolecule systems are capable of interacting with device components and therapeutic agents - such as growth factors (GFs), antibiotics, and nanoceramics - allowing control over substance release. Incorporating therapeutic agents into these systems enables localized treatments for tissue regeneration, osseointegration, post-surgery infection control, and disease and pre-existing conditions. The review highlights these materials' therapeutic advantages and customization opportunities, by covering mechanical and biological perspectives. Developing composites and hybrid drug delivery systems align with recent efforts in interdisciplinary personalized medicine and implant innovations. For instance, a trend was observed for integrating inorganic (especially nanoceramics, e.g., hydroxyapatite) and organic phases in composites for better implant interaction with biological tissues and faster recovery. This article supports understanding how integrating these materials can create more personalized, functional, durable, and biocompatible implant devices.
Collapse
Affiliation(s)
- Guilherme Bedeschi Calais
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Guilherme Domingos Garcia
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Celso Fidelis de Moura Júnior
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - José Diego Magalhães Soares
- Federal University of Alagoas, Center of Technology, Maceió, Brazil
- Federal Institute of Alagoas (IFAL), Chemistry Coordination Office (Campus Maceió), Maceió, Brazil
| | - Liliane Maria Ferrareso Lona
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Marisa Masumi Beppu
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Jacobo Hernandez-Montelongo
- Universidad Católica de Temuco, Department of Mathematical and Physical Sciences, Bioproducts and Advanced Materials Research Center (BioMA), Temuco, Chile
- Universidad de Guadalajara, Department of Translational Bioengineering, Guadalajara, Mexico
| | | |
Collapse
|
3
|
Rahimnejad M, Jahangiri S, Zirak Hassan Kiadeh S, Rezvaninejad S, Ahmadi Z, Ahmadi S, Safarkhani M, Rabiee N. Stimuli-responsive biomaterials: smart avenue toward 4D bioprinting. Crit Rev Biotechnol 2024; 44:860-891. [PMID: 37442771 DOI: 10.1080/07388551.2023.2213398] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 07/15/2023]
Abstract
3D bioprinting is an advanced technology combining cells and bioactive molecules within a single bioscaffold; however, this scaffold cannot change, modify or grow in response to a dynamic implemented environment. Lately, a new era of smart polymers and hydrogels has emerged, which can add another dimension, e.g., time to 3D bioprinting, to address some of the current approaches' limitations. This concept is indicated as 4D bioprinting. This approach may assist in fabricating tissue-like structures with a configuration and function that mimic the natural tissue. These scaffolds can change and reform as the tissue are transformed with the potential of specific drug or biomolecules released for various biomedical applications, such as biosensing, wound healing, soft robotics, drug delivery, and tissue engineering, though 4D bioprinting is still in its early stages and more works are required to advance it. In this review article, the critical challenge in the field of 4D bioprinting and transformations from 3D bioprinting to 4D phases is reviewed. Also, the mechanistic aspects from the chemistry and material science point of view are discussed too.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montréal, Canada
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montréal, Canada
| | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, Canada
| | | | | | - Zarrin Ahmadi
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- School of Engineering, Macquarie University, Sydney, Australia
| |
Collapse
|
4
|
Rajput A, Pingale P, Telange D, Musale S, Chalikwar S. A current era in pulsatile drug delivery system: Drug journey based on chronobiology. Heliyon 2024; 10:e29064. [PMID: 38813204 PMCID: PMC11133509 DOI: 10.1016/j.heliyon.2024.e29064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 05/31/2024] Open
Abstract
Almost all biological processes in the human body are regulated by circadian rhythm, which results in drastically different biochemical and physiological conditions throughout a 24 h period. Hence, suitable drug delivery systems should be efficiently monitored to attain the required therapeutic plasma concentration and therapeutic drug responses when needed as per chrono pharmacological concepts. "Chronotherapy" is the fast and transient release of a particular quantity of drug substance post a predetermined off-release period, termed as 'lag time'. Due to rhythmic variations, it is typically unnecessary to administer a medicine drug in an unhealthy condition constantly. Pulsatile drug delivery systems have received a lot of attention in pharmaceutical development because they give a quick or rate-controlled drug release after administration, followed by an anticipated lag period. Patients with various illnesses, such as asthma, hypertension, joint inflammation, and ulcers, can benefit from a pulsatile drug delivery system. Thus, a pulsatile drug delivery system may be a potential system for managing different diseases. This review mainly focuses on pulsatile drug delivery systems. It reviews and discusses the rationale, drug release mechanism, need, and system classification. In addition, it covers mainly externally regulated pulsatile drug delivery systems and recent advances in pulsatile systems like artificial intelligence and 3D printing. It also covers the ethical issues associated with pulsatile drug delivery systems.
Collapse
Affiliation(s)
- Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, 411038, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik, 422005, Maharashtra, India
| | - Darshan Telange
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| | - Shubham Musale
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences & Research, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India
| | - Shailesh Chalikwar
- Department of Industrial Pharmacy and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education & Research, Karwand Naka, Shirpur, 425405, Maharashtra, India
| |
Collapse
|
5
|
Gong Z, Peng S, Cao J, Tan H, Zhao H, Bai J. Advances in the variations and biomedical applications of stimuli-responsive nanodrug delivery systems. NANOTECHNOLOGY 2024; 35:132001. [PMID: 38198449 DOI: 10.1088/1361-6528/ad170b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Chemotherapy is an important cancer treatment modality, but the clinical utility of chemotherapeutics is limited by their toxic side effects, inadequate distribution and insufficient intracellular concentrations. Nanodrug delivery systems (NDDSs) have shown significant advantages in cancer diagnosis and treatment. Variable NDDSs that respond to endogenous and exogenous triggers have attracted much research interest. Here, we summarized nanomaterials commonly used for tumor therapy, such as peptides, liposomes, and carbon nanotubes, as well as the responses of NDDSs to pH, enzymes, magnetic fields, light, and multiple stimuli. Specifically, well-designed NDDSs can change in size or morphology or rupture when induced by one or more stimuli. The varying responses of NDDSs to stimulation contribute to the molecular design and development of novel NDDSs, providing new ideas for improving drug penetration and accumulation, inhibiting tumor resistance and metastasis, and enhancing immunotherapy.
Collapse
Affiliation(s)
- Zhongying Gong
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061, People's Republic of China
| | - Shan Peng
- School of Stomatology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Juanjuan Cao
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Jinan 250012, People's Republic of China
| | - Hongxia Zhao
- College of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061, People's Republic of China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, People's Republic of China
| |
Collapse
|
6
|
Zheng S, Wei L, Zhang Z, Pan J, He J, Gao L, Li CC. In Situ Polymerization of Ionic Liquid with Tunable Phase Separation for Highly Reversible and Ultralong Cycle Life Zn-Ion Battery. NANO LETTERS 2022; 22:9062-9070. [PMID: 36331177 DOI: 10.1021/acs.nanolett.2c03421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Severe Zn dendrite growth and side reactions greatly limit the application of aqueous zinc-ion batteries. Herein, we design a layer of polyionic liquid (PCAVImBr) film with a tunable pore size and charge density on the Zn anode to endow homogenized distribution of an electronic field, acerated Zn2+ permeation, and inhabitation of water entry. Such an optimal combination is achieved via a polymerization induced phase separation strategy, where the enhanced cross-linking density arrests the phase separation in a shallow depth and vice versa. Furthermore, the Zn@PCAVImBr electrode has good plating/stripping reversibility, which retains a 99.6% CE efficiency after 3000 cycles. The symmetric cells can achieve a cycle life of more than 2400 h at different current densities. It is worth mentioning that the NVO//Zn@PCAVImBr full cell can still reach a 91.2% capacity retention after nearly 4000 cycles at a high current of 10 A g-1, and provides new insights for the future research of zinc-ion battery anodes.
Collapse
Affiliation(s)
- Si Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Licheng Wei
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Zhaoyu Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Jiageng Pan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Jiangfeng He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Liang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou510006, China
| |
Collapse
|
7
|
Veletić M, Apu EH, Simić M, Bergsland J, Balasingham I, Contag CH, Ashammakhi N. Implants with Sensing Capabilities. Chem Rev 2022; 122:16329-16363. [PMID: 35981266 DOI: 10.1021/acs.chemrev.2c00005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of the aging human population and increased numbers of surgical procedures being performed, there is a growing number of biomedical devices being implanted each year. Although the benefits of implants are significant, there are risks to having foreign materials in the body that may lead to complications that may remain undetectable until a time at which the damage done becomes irreversible. To address this challenge, advances in implantable sensors may enable early detection of even minor changes in the implants or the surrounding tissues and provide early cues for intervention. Therefore, integrating sensors with implants will enable real-time monitoring and lead to improvements in implant function. Sensor integration has been mostly applied to cardiovascular, neural, and orthopedic implants, and advances in combined implant-sensor devices have been significant, yet there are needs still to be addressed. Sensor-integrating implants are still in their infancy; however, some have already made it to the clinic. With an interdisciplinary approach, these sensor-integrating devices will become more efficient, providing clear paths to clinical translation in the future.
Collapse
Affiliation(s)
- Mladen Veletić
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ehsanul Hoque Apu
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Mitar Simić
- Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Jacob Bergsland
- The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ilangko Balasingham
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Zhao YQ, Li LJ, Zhou EF, Wang JY, Wang Y, Guo LM, Zhang XX. Lipid-Based Nanocarrier Systems for Drug Delivery: Advances and Applications. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1751036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Lipid-based nanocarriers have been extensively investigated for drug delivery due to their advantages including biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity. However, the shortcomings of traditional lipid-based nanocarriers such as insufficient targeting, capture by the reticuloendothelial system, and fast elimination limit the efficiency of drug delivery and therapeutic efficacy. Therefore, a series of multifunctional lipid-based nanocarriers have been developed to enhance the accumulation of drugs in the lesion site, aiming for improved diagnosis and treatment of various diseases. In this review, we summarized the advances and applications of lipid-based nanocarriers from traditional to novel functional lipid preparations, including liposomes, stimuli-responsive lipid-based nanocarriers, ionizable lipid nanoparticles, lipid hybrid nanocarriers, as well as biomembrane-camouflaged nanoparticles, and further discussed the challenges and prospects of this system. This exploration may give a complete idea viewing the lipid-based nanocarriers as a promising choice for drug delivery system, and fuel the advancement of pharmaceutical products by materials innovation and nanotechnology.
Collapse
Affiliation(s)
- Yan-Qi Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Li-Jun Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Er-Fen Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jiang-Yue Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lin-Miao Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin-Xin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
9
|
Lu X, Lu X, Yang P, Zhang Z, Lv H. Honokiol nanosuspensions loaded thermosensitive hydrogels as the local delivery system in combination with systemic paclitaxel for synergistic therapy of breast cancer. Eur J Pharm Sci 2022; 175:106212. [DOI: 10.1016/j.ejps.2022.106212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
|
10
|
Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010146. [PMID: 35011376 PMCID: PMC8746670 DOI: 10.3390/molecules27010146] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a group of disorders characterized by uncontrolled cell growth that affects around 11 million people each year globally. Nanocarrier-based systems are extensively used in cancer imaging, diagnostics as well as therapeutics; owing to their promising features and potential to augment therapeutic efficacy. The focal point of research remains to develop new-fangled smart nanocarriers that can selectively respond to cancer-specific conditions and deliver medications to target cells efficiently. Nanocarriers deliver loaded therapeutic cargos to the tumour site either in a passive or active mode, with the least drug elimination from the drug delivery systems. This review chiefly focuses on current advances allied to smart nanocarriers such as dendrimers, liposomes, mesoporous silica nanoparticles, quantum dots, micelles, superparamagnetic iron-oxide nanoparticles, gold nanoparticles and carbon nanotubes, to list a few. Exhaustive discussion on crucial topics like drug targeting, surface decorated smart-nanocarriers and stimuli-responsive cancer nanotherapeutics responding to temperature, enzyme, pH and redox stimuli have been covered.
Collapse
|
11
|
Design of poly-l-glutamic acid embedded mesoporous bioactive glass nanospheres for pH-stimulated chemotherapeutic drug delivery and antibacterial susceptibility. Colloids Surf B Biointerfaces 2021; 202:111700. [DOI: 10.1016/j.colsurfb.2021.111700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
|
12
|
Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA. Stimuli-Responsive Drug Release from Smart Polymers. J Funct Biomater 2019; 10:jfb10030034. [PMID: 31370252 PMCID: PMC6787590 DOI: 10.3390/jfb10030034] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Over the past 10 years, stimuli-responsive polymeric biomaterials have emerged as effective systems for the delivery of therapeutics. Persistent with ongoing efforts to minimize adverse effects, stimuli-responsive biomaterials are designed to release in response to either chemical, physical, or biological triggers. The stimuli-responsiveness of smart biomaterials may improve spatiotemporal specificity of release. The material design may be used to tailor smart polymers to release a drug when particular stimuli are present. Smart biomaterials may use internal or external stimuli as triggering mechanisms. Internal stimuli-responsive smart biomaterials include those that respond to specific enzymes or changes in microenvironment pH; external stimuli can consist of electromagnetic, light, or acoustic energy; with some smart biomaterials responding to multiple stimuli. This review looks at current and evolving stimuli-responsive polymeric biomaterials in their proposed applications.
Collapse
Affiliation(s)
- Carlos M Wells
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA.
| | - Michael Harris
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
| | - Landon Choi
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
| | - Vishnu Priya Murali
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
| | | | - J Amber Jennings
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
13
|
Abstract
Currently, with the rapid development of nanotechnology, novel drug delivery systems (DDSs) have made rapid progress, in which nanocarriers play an important role in the tumour treatment. In view of the conventional chemotherapeutic drugs with many restrictions such as nonspecific systemic toxicity, short half-life and low concentration in the tumour sites, stimuli-responsive DDSs can deliver anti-tumour drugs targeting to the specific sites of tumours. Owing to precise stimuli response, stimuli-responsive DDSs can control drug release, so as to improve the curative effects, reduce the damage of normal tissues and organs, and decrease the side effects of traditional anticancer drugs. At present, according to the physicochemical properties and structures of nanomaterials, they can be divided into three categories: (1) endogenous stimuli-responsive materials, including pH, enzyme and redox responsive materials; (2) exogenous stimuli-responsive materials, such as temperature, light, ultrasound and magnetic field responsive materials; (3) multi-stimuli responsive materials. This review mainly focuses on the researches and developments of these novel stimuli-responsive DDSs based on above-mentioned nanomaterials and their clinical applications.
Collapse
Affiliation(s)
- Li Li
- a Department of Oncology Minimally Invasive , Hospital of PLA, Clinical College of Anhui Medical University , Beijing , PR China.,b Institute of Military Cognitive and Brain Sciences , Beijing , PR China
| | - Wu-Wei Yang
- a Department of Oncology Minimally Invasive , Hospital of PLA, Clinical College of Anhui Medical University , Beijing , PR China
| | - Dong-Gang Xu
- b Institute of Military Cognitive and Brain Sciences , Beijing , PR China
| |
Collapse
|
14
|
Götz T, Schädel N, Petri N, Kirchhof M, Bilitewski U, Tovar GEM, Laschat S, Southan A. Triazole-based cross-linkers in radical polymerization processes: tuning mechanical properties of poly(acrylamide) and poly( N,N-dimethylacrylamide) hydrogels. RSC Adv 2018; 8:34743-34753. [PMID: 35548633 PMCID: PMC9086908 DOI: 10.1039/c8ra07145d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 11/21/2022] Open
Abstract
Triazole-based cross-linkers with different spacer lengths and different functional end groups (acrylamides, methacrylamides, maleimides and vinylsulfonamides) were synthesized, investigated for cytotoxic and antibacterial activity, and incorporated into poly(acrylamide) (PAAm) and poly(N,N-dimethylacrylamide) (PDMAAm) hydrogels by free-radical polymerization. Hydrogels prepared with different cross-linkers and cross-linker contents between 0.2% and 1.0% were compared by gel yields, equilibrium degrees of swelling (S) and storage moduli (G'). Generally with increasing cross-linker content, G' values of the hydrogels increased, while S values decreased. The different polymerizable cross-linker end groups resulted in a decrease of G' in the following order for cross-linkers with C4 spacers: acrylamide > maleimide > methacrylamide > vinylsulfonamide. Longer cross-linker alkyl spacer lengths caused an increase in G' and a decrease in S. Independent of the cross-linker used, a universal correlation between G' and equilibrium polymer volume fraction ϕ was found. For PAAm hydrogels, G' ranged between 4 kPa and 23 kPa and ϕ between 0.07 and 0.14. For PDMAAm hydrogels, G' ranged between 0.1 kPa and 4.9 kPa and ϕ between 0.02 and 0.06. The collected data were used to establish an empirical model to predict G' depending on ϕ. G' of PAAm and PDMAAm hydrogels is given by G' = 4034 kPa ϕ 2.66 and G' = 4297 kPa ϕ 2.46, respectively.
Collapse
Affiliation(s)
- Tobias Götz
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany +49 711 68568162
| | - Nicole Schädel
- Institute of Organic Chemistry IOC, University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Nadja Petri
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany +49 711 68568162
- Institute of Organic Chemistry IOC, University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Manuel Kirchhof
- Institute of Organic Chemistry IOC, University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Ursula Bilitewski
- AG Compound Profiling and Screening, Helmholtz Centre for Infection Research (HZI) Inhoffenstr. 7 38124 Braunschweig Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany +49 711 68568162
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| | - Sabine Laschat
- Institute of Organic Chemistry IOC, University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany +49 711 68568162
| |
Collapse
|
15
|
Wang W, Lu D, Zhu M, Saunders JM, Milani AH, Armes SP, Saunders BR. Highly deformable hydrogels constructed by pH-triggered polyacid nanoparticle disassembly in aqueous dispersions. SOFT MATTER 2018; 14:3510-3520. [PMID: 29671461 DOI: 10.1039/c8sm00325d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Most hydrogels are prepared using small-molecule monomers but unfortunately this approach may not be feasible for certain biomaterial applications. Consequently, alternative gel construction strategies have been established, which include using covalent inter-linking of preformed gel particles, or microgels (MGs). For example, covalently interlinking pH-responsive MGs can produce hydrogels comprising doubly crosslinked microgels (DX MGs). We hypothesised that the deformability of such DX MGs was limited by the presence of intra-MG crosslinking. Thus, in this study we designed new nanoparticle (NP)-based gels based on pH-swellable NPs that are not internally crosslinked. Two polyacid NPs were synthesised containing methacrylic acid (MAA) and either ethyl acrylate (EA) or methyl methacrylate (MMA). The PMAA-EA and PMAA-MMA NPs were subsequently vinyl-functionalised using glycidyl methacrylate (GMA) prior to gel formation via free-radical crosslinking. The NPs mostly disassembled on raising the solution pH but some self-crosslinking was nevertheless evident. The gels constructed from the EA- and MMA-based NPs had greater breaking strains than a control DX MG. The effect of varying the solution pH during curing on the morphology and mechanical properties of gels prepared using PMAA-MMA-GMA NPs was studied and both remarkable deformability and excellent recovery were observed. The gels were strongly pH-responsive and had tensile breaking strains of up to 420% with a compressive strain-at-break of more than 93%. An optimised formulation produced the most deformable and stretchable gel yet constructed using NPs or MGs as the only building block.
Collapse
Affiliation(s)
- Wenkai Wang
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Dongdong Lu
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Mingning Zhu
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Jennifer M Saunders
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Amir H Milani
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK
| | - Brian R Saunders
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| |
Collapse
|
16
|
Xu X, Huang Z, Huang Z, Zhang X, He S, Sun X, Shen Y, Yan M, Zhao C. Injectable, NIR/pH-Responsive Nanocomposite Hydrogel as Long-Acting Implant for Chemophotothermal Synergistic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20361-20375. [PMID: 28532154 DOI: 10.1021/acsami.7b02307] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, gold nanorods (GNRs) were incorporated into the hydrogel networks formed by the copolymerization of N-isopropylacrylamide (NIPAm) and methacrylated poly-β-cyclodextrin (MPCD)-based macromer to fabricate an injectable and near-infrared (NIR)/pH-responsive poly(NIPAm-co-MPCD)/GNRs nanocomposite hydrogel, which could serve as a long-acting implant for chemophotothermal synergistic cancer therapy. The nanocomposite hydrogel showed superior mechanical and swelling properties, gelation characteristics, and excellent NIR-responsive property. A hydrophobic acid-labile adamantane-modified doxorubicin (AD-DOX) prodrug was loaded into the hydrogel efficiently by host-guest interaction. The nanocomposite hydrogel exhibited a manner of sustained drug release and could sustain the slow and steady release of DOX for more than 1 month. The pH-responsive release of DOX from the nanocomposite hydrogel was observed owing to the cleavage of acid-labile hydrazone bond between DOX and the adamantyl group in acidic environment. NIR irradiation could accelerate the release of DOX from the networks, which was controlled by the collapse of the hydrogel networks induced by photothermal effect of GNRs. The in vitro cytotoxicity test demonstrated the excellent biocompatibility and photothermal effect of the nanocomposite hydrogel. Moreover, the in situ-forming hydrogel showed promising tissue biocompatibility in the mouse model study. The in vivo antitumor test demonstrated the capacity of the nanocomposite hydrogel for chemophotothermal synergistic therapy with reduced adverse effects owing to the prolonged drug retention in the tumor region and efficient photothermal effect. Therefore, this injectable and NIR/pH-responsive nanocomposite hydrogel exhibited great potential as a long term drug delivery platform for chemophotothermal synergistic cancer therapy.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Ziyuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Xuefei Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Siyu He
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Xiaoqi Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Yifeng Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Mina Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| |
Collapse
|
17
|
He H, Ren Y, Wang Z, Xie Z. A pH-responsive poly(ether amine) micelle with hollow structure for controllable drug release. RSC Adv 2016. [DOI: 10.1039/c6ra18555j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A pH-responsive poly(ether amine) micelle with hollow structure was developed for controllable drug release.
Collapse
Affiliation(s)
- Haozhe He
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Yanrong Ren
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Zhanfeng Wang
- Departments of Neurosurgery
- China–Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|