1
|
Kostal J, Voutchkova-Kostal A. Tale of Three N-Nitrosamines and the Variables Needed to Assess Their Carcinogenicity In Silico Incorporated into a Single Workflow. Chem Res Toxicol 2025; 38:834-848. [PMID: 40243042 DOI: 10.1021/acs.chemrestox.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
N-Nitrosamine impurities in pharmaceuticals present a considerable challenge for regulators and industry alike, where the absence of carcinogenic-potency studies has left a gap that must be adequately filled to protect public health. In the interim, this means balancing risk assessment with the necessity to continue research, development, and supply of pharmaceuticals. In the long term, we need a cost-effective solution that optimizes both. As if beholden to Newton's Third Law, every crisis breeds an opportunity of equal magnitude. Consequently, cross-industry consortia have been racing to find a solution by advancing our current science. Recent spotlight has been on in silico tools, as a fast and increasingly reliable alternative to in vivo and in vitro testing. Because N-nitrosamine bioactivation lends itself uniquely to quantum mechanics (QM) approaches, the integration of electronic-structure considerations has emerged as the dominant in silico approach. This signifies a considerable leap in predictive toxicology, which has, for much of its existence, relied on atomistic (quantitative) structure-activity relationships, i.e., (Q)SARs. Here we present a validation of an integrated docking-QM approach within the CADRE program and demonstrate its utility on three different impurities, N-nitroso-7-monomethylamino-6-deoxytetracycline, N-nitroso-dabigatran etexilate, and 1-methyl-4-nitrosopiperazine. We show that a combined in silico strategy, which considers bioavailability, transport, cytochrome P450 binding, and reactivity, can be leveraged to supplement the overly conservative Carcinogenic Potency Categorization Approach (CPCA) in setting the daily acceptable intake (AI) using defensible, highly mechanistic, and quantitative drivers of N-nitrosamine metabolism. To that end, we argue that while N-nitroso-7-monomethylamino-6-deoxytetracycline and 1-methyl-4-nitrosopiperazine are cohort-of-concern impurities, N-nitroso-dabigatran etexilate is not a potent carcinogen (TD50 > 1.5 mg/kg/day), contrasting the CPCA-derived AI. Lastly, we discuss how the CADRE tool can be integrated with the broader landscape of QM methods and the CPCA into a single harmonized in silico strategy for carcinogenicity assessment of N-nitrosamine impurities.
Collapse
Affiliation(s)
- Jakub Kostal
- Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, Virginia 22314, United States
- The George Washington University, 800 22nd St. NW, Washington, District of Columbia 20052, United States
| | - Adelina Voutchkova-Kostal
- Designing Out Toxicity (DOT) Consulting LLC, 2121 Eisenhower Avenue, Alexandria, Virginia 22314, United States
- The George Washington University, 800 22nd St. NW, Washington, District of Columbia 20052, United States
| |
Collapse
|
2
|
Kidd D, Crooks I, Saccardo A, Ponting DJ, Kocks G, Gandhi R, Thomas D, Pass E, Lynch A, Johnson G, Fowler P, Wilson A. Industrial Genotoxicology Group: 36th Annual Meeting Report. Mutagenesis 2025; 40:111-115. [PMID: 39447060 DOI: 10.1093/mutage/geae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Indexed: 10/26/2024] Open
Abstract
The proceedings of the 36th annual meeting of the Industrial Genotoxicology Group (IGG) are shared here. The meeting held at Lhasa Limited, Leeds, UK on 28 November 2023, focussed on two aspects; new approach methodologies (NAMs), including those for the assessment of non-standard modalities such as gas-vapour assessments and nanomaterials, and addressing the regulatory challenges associated with understanding the genotoxic and carcinogenic potential of N-nitrosamines and N-nitrosamine impurities. New approach methodologies, such as error-corrected sequencing and enhanced Ames tests that may help address these challenges were also discussed.
Collapse
Affiliation(s)
- Darren Kidd
- Labcorp Early Development Laboratories Ltd., Otley Road, Harrogate, North Yorkshire, HG3 1PY, United Kingdom
| | - Ian Crooks
- B.A.T. (Investments) Ltd., R&D, Southampton, Hampshire, SO15 8TL, United Kingdom
| | - Angela Saccardo
- In Vitro Toxicology Group, Institute of Life Sciences, Faculty of Medicine, Health and Life Sciences, Swansea University, Wales, United Kingdom
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, United Kingdom
| | - Grace Kocks
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, United Kingdom
| | - Raj Gandhi
- Safety Innovation, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Dean Thomas
- Genetic Toxicology and Photosafety, GSK Research & Development, Stevenage SG1 2NY, United Kingdom
| | - Emily Pass
- Gentronix Ltd BioHub at Alderley Park, Alderley Edge, Cheshire, SK10 4TF, United Kingdom
| | - Anthony Lynch
- Genetic Toxicology and Photosafety, GSK Research & Development, Stevenage SG1 2NY, United Kingdom
| | - George Johnson
- Institute of Life Sciences, Faculty of Medicine, Health and Life Sciences, Swansea University, Wales, United Kingdom
| | - Paul Fowler
- FStox Consulting Ltd, Northamptonshire, United Kingdom
| | - Amy Wilson
- Safety Innovation, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
3
|
Aishwarya D, Ramakant Dhampalwar V, Pallaprolu N, Peraman R. Nitrosamine Drug Substance-Related Impurities (NDSRIs) in Pharmaceuticals: Formation, Mitigation Strategies, and Emphasis on Mutagenicity Risks. Pharm Res 2025; 42:547-578. [PMID: 40268857 DOI: 10.1007/s11095-025-03857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVES To investigate the formation, detection, mutagenicity, and control strategies of nitrosamine drug substance-related impurities (NDSRIs) in pharmaceutical formulations, emphasizing regulatory compliance, risk mitigation, and the establishment of acceptable intake (AI) limits for enhanced drug safety. METHODS This study reviews the NDSRI formation and mutagenicity assessment methods, including in silico, in vitro, and in vivo assays. It also explores mitigation strategies and approaches for determining AI limits. RESULTS The findings indicate that NDSRIs are primarily formed through the nitrosation of APIs containing amine groups, with key risk factors including reactive functional groups and interactions between drugs and excipients. Mutagenicity evaluation revealed that while in silico and in vitro assays provide initial insights, in vivo assays offer more comprehensive and biologically relevant data by capturing complex metabolic processes and systemic interactions. Effective mitigation strategies, such as optimizing the manufacturing conditions and using nitrosation inhibitors, are crucial in reducing NDSRI formation. Approaches like the carcinogenic potency categorization (CPCA) and read-across methods are proposed for determining AI limits, facilitating safer exposure thresholds and supporting regulatory compliance. CONCLUSION A multifaceted approach is vital for managing NDSRIs in pharmaceuticals. Comprehensive mutagenicity testing, especially in vivo assays, provides biologically relevant insights into NDSRI-associated risks. Implementing control strategies and, determining AI limits are key to minimizing exposure. Strengthening regulatory frameworks and industry practices improves drug safety, quality, and public health protection.
Collapse
Affiliation(s)
- Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, 844102, India
| | - Vaishnavi Ramakant Dhampalwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, 844102, India
| | - Nikhil Pallaprolu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, 844102, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Bihar, 844102, India.
| |
Collapse
|
4
|
Mukherjee P, Yao X, Sitaraman S, Castelli J, Brudvig J, Ramdas S. Risk assessment and management strategy of two new NDSRIs in a pharmaceutical drug product for the treatment of a rare disease: From prediction to control. J Pharm Sci 2025; 114:1572-1582. [PMID: 39884506 DOI: 10.1016/j.xphs.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
N-nitrosamines are a class of compounds belonging to the "cohort of concern" and characterized by the linkage of a nitroso group (-N=O) to an amine functional group (-NR2). Some of these compounds are mutagenic, genotoxic, and potentially carcinogenic agents in humans, which necessitates control at acceptable safe levels. The current work presents a comprehensive risk assessment and mitigation strategy for two complex diastereomeric nitrosamines as New Drug Substance Related Impurities (NDSRIs) for miglustat 65mg capsules. A sequential risk assessment and management strategy was executed, which included predictive chemistry of formation, organic synthesis, and in-silico mutagenic and carcinogenic risk assessments. These activities were followed by the application of a highly sensitive validated analytical method with a Limit of Quantitation of 6.9 ppb for the combined NDSRIs. Confirmatory testing of three drug product batches were performed as per regulatory requirements to verify adherence to a conservative Acceptable Intake Limit of 18 ng/day for the combined NDSRIs.
Collapse
Affiliation(s)
- Partha Mukherjee
- Amicus Therapeutics Inc., 47 Hullfish St., Princeton, NJ 08542, United States.
| | - Xin Yao
- Amicus Therapeutics Inc., 47 Hullfish St., Princeton, NJ 08542, United States
| | - Sheela Sitaraman
- Amicus Therapeutics Inc., 47 Hullfish St., Princeton, NJ 08542, United States
| | - Jeff Castelli
- Amicus Therapeutics Inc., 47 Hullfish St., Princeton, NJ 08542, United States
| | - Jon Brudvig
- Amicus Therapeutics Inc., 47 Hullfish St., Princeton, NJ 08542, United States
| | - Saroj Ramdas
- Amicus Therapeutics Inc., 47 Hullfish St., Princeton, NJ 08542, United States
| |
Collapse
|
5
|
Zhang S, Cheung J, Kostal J, Voutchkova‐Kostal A, Schuler M. Re-Evaluating Acceptable Intake: A Comparative Study of N-Nitrosomorpholine and N-Nitroso Reboxetine Potency. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2025; 66:80-98. [PMID: 40119631 PMCID: PMC11986803 DOI: 10.1002/em.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/24/2025]
Abstract
Establishing regulatory limits for Drug Substance-Related Impurities (NDSRIs) is challenging due to the limited genotoxicity and carcinogenicity data available for many of these impurities, often leading to conservative approaches. In this study, we evaluated the genotoxic potential of two structurally related nitrosamines: N-nitrosomorpholine (NMOR) and N-nitroso reboxetine. Compared to the well-studied NMOR, there is little toxicological information available for N-nitroso reboxetine. Currently, both compounds have an acceptable intake value of 127 ng/day, based on a read-across using the available carcinogenicity data of NMOR. While both compounds tested positive in a series of in vitro and in vivo assays, we found that the mutagenic potential of N-nitroso reboxetine was significantly lower than that of NMOR. The benchmark dose (BMD) analysis of in vivo mutagenicity data supports an acceptable intake of 24,000 ng/day for N-nitroso reboxetine. Computational studies, carried out using the quantum-mechanical CADRE program, were consistent with in vitro and in vivo outcomes, suggesting an acceptable intake at or above 1500 ng/day for N-nitroso reboxetine. In comparison to NMOR, this prediction is supported by lower computed reactivity in the hydroxylation step, greater steric hindrance of the alpha carbons, and more facile proton transfer in the heterolysis toward the aldehyde metabolite. The data presented in this work can be used to refine and improve the Carcinogenic Potency Categorization Approach (CPCA). It also underscores the importance of collaboration between regulatory authorities, the pharmaceutical industry, and scientific researchers to address potential risks while avoiding overestimation of the acceptable intake limits for certain NDSRIs.
Collapse
Affiliation(s)
- Shaofei Zhang
- Pfizer Research, Development, and MedicalGrotonConnecticutUSA
| | - Jennifer Cheung
- Pfizer Research, Development, and MedicalGrotonConnecticutUSA
| | - Jakub Kostal
- DOT Consulting LLCAlexandriaVirginiaUSA
- The George Washington UniversityWashingtonDCUSA
| | | | - Maik Schuler
- Pfizer Research, Development, and MedicalGrotonConnecticutUSA
| |
Collapse
|
6
|
Cheng S, Qiu H, Ding W, Kong C, Ma J, Hou R, Liu C, Ji L. Insight into the molecular initiating event of mutagenic N-nitrosamines: a computational study on DNA alkylation by their diazonium ions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:777-785. [PMID: 39881573 DOI: 10.1093/etojnl/vgae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
N-Nitrosamines are a class of compounds that includes the potent mutagenicity and carcinogenicity of many of its members and is distributed widely throughout the human environment. DNA alkylation by their diazonium ions formed metabolically acts as a molecular initiating event (MIE) that links molecular chemistry to mutagenicity. However, the regiochemistry for diazonium ions reacting with DNA bases is still under debate. Hence, density functional theory calculations involving SN2 alkylation of guanine (Gua) by 14 diverse diazonium ions are presented, the results of which showed the mutagenicity-related shift from GuaN7- to GuaO6-alkylation proceeds by increasing complexity of the alkylating agents, along with a greater proportion of SN1 characteristic in SN2 transition states. Hence, "high oxyphilic" and "low oxyphilic" alkylating agents may instead be "SN1" and "SN2" species, respectively. As the degree of MIE selectivity for hard-hard interactions can be quantified by hard and soft acids and bases theory, quantitative relationships were modeled between the nucleophilic index (ω-) and hydrophobicity (log P) of diazonium ions and their carcinogenic potency. Therefore, the mechanistic link from MIE to target toxicity can be bridged by computational chemistry.
Collapse
Affiliation(s)
- Shiyang Cheng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou, China
| | - Houjun Qiu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Chuiyuan Kong
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Juchen Ma
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Runze Hou
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
7
|
Schieferdecker S, Vock E. Quantum Chemical Evaluation and QSAR Modeling of N-Nitrosamine Carcinogenicity. Chem Res Toxicol 2025; 38:325-339. [PMID: 39915909 DOI: 10.1021/acs.chemrestox.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
N-Nitrosamine compounds in pharmaceuticals are a major concern due to their carcinogenic potential. However, not all nitrosamines are strong carcinogens, and understanding the structure-activity relationships of this compound group is a major challenge. The determination of the acceptable intake limits for this compound group is determined by applying either a simple carcinogenic potency categorization approach (CPCA) or read-across analysis from simple nitrosamines where experimental data exist. However, the emergence of structurally complex nitrosamines makes quantitative models desirable. Here, we present a two-step modeling approach based on a linear discriminant analysis of a set of quantum mechanical and classical descriptors followed by a 3D-QSAR PLS regression model to predict the logTD50 of nitrosamine compounds.
Collapse
Affiliation(s)
- Sebastian Schieferdecker
- Department of Nonclinical Drug Safety, Germany, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach 88397, Germany
| | - Esther Vock
- Department of Nonclinical Drug Safety, Germany, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach 88397, Germany
| |
Collapse
|
8
|
Ponting DJ, Czich A, Felter SP, Glowienke S, Harvey JS, Nudelman R, Schlingemann J, Simon S, Smith GF, Teasdale A, Thomas R. Control of N-nitrosamine impurities in drug products: Progressing the current CPCA framework and supporting the derivation of robust compound specific acceptable intakes. Regul Toxicol Pharmacol 2025; 156:105762. [PMID: 39662665 DOI: 10.1016/j.yrtph.2024.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
The carcinogenic potency categorisation approach (CPCA) has recently been introduced by health authorities. In this model, structural features from recent literature, industry proposals, and analyses performed by health authorities, provide a rapid assessment of the potential acceptable intake (AI) for a nitrosamine impurity. As with other screening regulatory values (such as the ICH M7 Threshold of Toxicological Concern), the CPCA is conservative and can be considered a de minimis risk management framework. In cases where a nitrosamine drug substance-related impurity (NDSRI) is present below the CPCA limit, the framework provides resolution from a toxicological perspective (i.e., no further toxicology studies are required). Where an NDSRI is above the CPCA limit, the framework provides for the initiation of additional activities (i.e., the CPCA is not the only possible limit). Read-across approaches are described in both the CPCA and M7 guidance and can provide a limit with more specific applicability than the general model. The use of available experimental data (in vitro or in vivo), is valuable in order to provide an even more specific limit. The CPCA provides a framework; however, data should permit changing the AI from initial structural assessment, based on increasing data, to ultimately increase precision of the AI.
Collapse
Affiliation(s)
- David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, United Kingdom.
| | - Andreas Czich
- Sanofi Deutschland GmbH, R&D Preclinical Safety, 65926, Frankfurt, Germany
| | - Susan P Felter
- Procter and Gamble, Central Product Safety, 8700 Mason-Montgomery Rd, Mason, OH, USA
| | | | - James S Harvey
- GSK R&D, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, United Kingdom
| | | | - Joerg Schlingemann
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Stephanie Simon
- Merck Healthcare KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Graham F Smith
- AstraZeneca, Safety Innovations, Clinical Pharmacology and Safety Sciences, R&D, Cambridge, United Kingdom
| | - Andrew Teasdale
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Robert Thomas
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, United Kingdom
| |
Collapse
|
9
|
Uppala R, Prabhu RC, Maruthapillai A, Venkatasubbaiah B, Senadi GC, Devikala S. Development of an UPLC-MS/MS approach to detect and quantify N-nitroso mirabegron in mirabegron. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9911. [PMID: 39238361 DOI: 10.1002/rcm.9911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/04/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
In the mirabegron (MIR) synthesis, the N-nitroso mirabegron (NNM) is obtained during synthetic process of MIR; water is being used in reaction under acidic condition. Nitrite source is from water, and secondary amine source is from MIR as it has secondary amine; NNM is generated as an impurity during the synthesis of MIR. The presence of NNM in MIR could potentially affect its effectiveness. The purpose of this study was to establish a Ultra-performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS) methodology to identify NNM in MIR samples. The method for NNM analysis was developed on Acquity HSS T3 (100*2.1) mm 1.8 μm column with gradient elution using mobile phase consisted of 0.1% formic acid in water (mobile phase A) and 0.1% formic acid in methanol (mobile phase B). Mass spectrometer with electrospray ionization operated in the MRM mode was used in the analysis of NNM (m/ z 426.20 → 170.00). The UPLC-MS/MS methodology proposed showed a good linearity (0.02 to 0.72 ppm), good system precision (RSD = 0.57%), good method precision (RSD = 0.87%), acceptable accuracy (94.5-116.5%), low detection limit (0.006 ppm) and low quantification limit (0.02 ppm) for NNM. The UPLC-MS/MS methodology proposed can be utilized to assess the quality of MIR sample for the presence of NNM impurity.
Collapse
Affiliation(s)
- Ravi Uppala
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, India
| | - Rakesh Chandrakant Prabhu
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, India
| | | | | | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, India
| | - Sundaramurthy Devikala
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, India
| |
Collapse
|
10
|
Zheng J, Radich CL, Gong X, Liang X, Mowery MD. A practical HPLC-MS method for the analysis of nitrosamine drug substance related impurities using an inexpensive single quadrupole mass spectrometer. J Chromatogr A 2024; 1736:465399. [PMID: 39342733 DOI: 10.1016/j.chroma.2024.465399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Nitrosamine drug substance related impurities (NDSRIs) are often analyzed using high performance liquid chromatography (HPLC) with mass spectrometry (MS) detection. Due to high sensitivity requirements, high resolution MS or MS/MS is commonly used. However, it is difficult to implement this type of method for routine analysis at a supply site. Herein, we report a systematic approach to develop and validate a practical, robust, and user-friendly method for the analysis of NDSRIs using an inexpensive single quadrupole MS instrument such as QDa. We used 7-nitroso-3-(trifluoromethyl)-5,6,7,8-tetrahydro- [1,2,4] triazolo [4,3-a] pyrazine (NTTP) as an example to demonstrate the method development process. By optimizing the HPLC and MS parameters, we were able to develop a simple HPLC-MS method that provides the desired specificity and sensitivity for the analysis of NTTP and can be easily implemented in an analytical lab. The limit of quantitation is 0.5 ng/mL, corresponding to 0.1 ppm with respect to 5 mg/mL sitagliptin. The method has been successfully validated per ICH guidelines.
Collapse
Affiliation(s)
- Jinjian Zheng
- Analytical Chemistry in Development and Supply, MMD, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA.
| | - Christine L Radich
- Analytical Chemistry in Development and Supply, MMD, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Xiaoyi Gong
- Analytical Chemistry in Development and Supply, MMD, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Xihui Liang
- Analytical Chemistry in Development and Supply, MMD, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Mark D Mowery
- Analytical Chemistry in Development and Supply, MMD, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| |
Collapse
|
11
|
Aggarwal P, Sharma G, Singh V, Dev R, Kumar A. Solid-phase extraction followed by gas chromatography-mass spectrometry for the quantitative analysis of small molecule N-nitrosamine impurities in antitussive syrups. J Chromatogr A 2024; 1732:465148. [PMID: 39079365 DOI: 10.1016/j.chroma.2024.465148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 08/23/2024]
Abstract
A quantitative testing method was developed for the analysis of low molecular weight (small molecules) nitrosamine impurities in cough syrups using solid phase extraction (SPE) on strong cation-exchange functionalized polymeric sorbent cartridges followed by gas chromatography-mass spectrometry. The matrix spike recoveries of the nitrosamine impurities from the cough syrup samples was observed to be within the range of 90 %-120 %. Limit of detection (LOD) achieved for NNitrosodimethylamine (NDMA) and NNitroso morpholine (NMOR) was about 0.1 ng/mL while the LOD for NNitrosodiethylamine (NDEA), NNitrosodiisopropylamine (NDIPA) and NNitrosoisopropylethylamine (NIPEA) impurities was about 0.02 ng/mL. The method was evaluated and found to meet the acceptable criteria as per the ICH Q2 guidelines for a working concentration range of 0.02 ng/mL to 1.2 ng/mL for the analyzed impurities. The selectivity of the nitrosamine impurities against the presence of drug product was established using multiple reaction monitoring (MRM) transitions during analysis.
Collapse
Affiliation(s)
- Praenshu Aggarwal
- Mankind Research Centre, Plot 191-E, Sector 4/II, IMT Manesar, Gurugram 122050 Haryana, India.
| | - Gaurav Sharma
- Mankind Research Centre, Plot 191-E, Sector 4/II, IMT Manesar, Gurugram 122050 Haryana, India
| | - Vinay Singh
- Mankind Research Centre, Plot 191-E, Sector 4/II, IMT Manesar, Gurugram 122050 Haryana, India
| | - Rahul Dev
- Mankind Research Centre, Plot 191-E, Sector 4/II, IMT Manesar, Gurugram 122050 Haryana, India
| | - Anil Kumar
- Mankind Research Centre, Plot 191-E, Sector 4/II, IMT Manesar, Gurugram 122050 Haryana, India
| |
Collapse
|
12
|
Jolly RA, Cornwell PD, Noteboom J, Sayyed FB, Thapa B, Buckley LA. Estimation of acceptable daily intake values based on modeling and in vivo mutagenicity of NDSRIs of fluoxetine, duloxetine and atomoxetine. Regul Toxicol Pharmacol 2024; 152:105672. [PMID: 38968965 DOI: 10.1016/j.yrtph.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Nitrosamine drug substance related impurities or NDSRIs can be formed if an active pharmaceutical ingredient (API) has an intrinsic secondary amine that can undergo nitrosation. This is a concern as 1) nitrosamines are potentially highly potent carcinogens, 2) secondary amines in API are common, and 3) NDSRIs that might form from such secondary amines will be of unknown carcinogenic potency. Approaches for evaluating NDSRIs include read across, quantum mechanical modeling of reactivity, in vitro mutation data, and transgenic in vivo mutation data. These approaches were used here to assess NDSRIs that could potentially form from the drugs fluoxetine, duloxetine and atomoxetine. Based on a read across informed by modeling of physicochemical properties and mechanistic activation from quantum mechanical modeling, NDSRIs of fluoxetine, duloxetine, and atomoxetine were 10-100-fold less potent compared with highly potent nitrosamines such as NDMA or NDEA. While the NDSRIs were all confirmed to be mutagenic in vitro (Ames assay) and in vivo (TGR) studies, the latter data indicated that the potency of the mutation response was ≥4400 ng/day for all compounds-an order of magnitude higher than published regulatory limits for these NDSRIs. The approaches described herein can be used qualitatively to better categorize NDSRIs with respect to potency and inform whether they are in the ICH M7 (R2) designated Cohort of Concern.
Collapse
Affiliation(s)
- Robert A Jolly
- Eli Lilly and Company, Inc. Indianapolis, IN, 46285, USA.
| | | | | | | | - Bishnu Thapa
- Eli Lilly and Company, Inc. Indianapolis, IN, 46285, USA
| | | |
Collapse
|
13
|
Yu S, McWilliams JC, Dirat O, Dobo KL, Kalgutkar AS, Kenyon MO, Martin MT, Watt ED, Schuler M. A Kinetic Model for Assessing Potential Nitrosamine Carcinogenicity. Chem Res Toxicol 2024; 37:1382-1393. [PMID: 39075630 DOI: 10.1021/acs.chemrestox.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Understanding the potential carcinogenic potency of nitrosamines is necessary to setting acceptable intake limits. Nitrosamines and the components that can form them are commonly present in food, water, cosmetics, and tobacco. The recent observation of nitrosamines in pharmaceuticals highlighted the need for effective methods to determine acceptable intake limits. Herein, we describe two computational models that utilize properties based upon quantum mechanical calculations in conjunction with mechanistic insights and established data to determine the carcinogenic potency of a variety of common nitrosamines. These models can be applied to experimentally untested nitrosamines to aid in the establishment of acceptable intake limits.
Collapse
Affiliation(s)
- Shu Yu
- Chemical Research and Development, Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - J Christopher McWilliams
- Chemical Research and Development, Pfizer Research & Development, Groton, Connecticut 06340, United States
| | - Olivier Dirat
- CMC Advisory Office, Pfizer Global Regulatory Sciences, Sandwich CT13 9NJ, U.K
| | - Krista L Dobo
- Drug Safety Research and Development, Pfizer Research & Development-Groton Laboratories, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Pharmacokinetics Dynamics and Metabolism, Pfizer Research & Development, Cambridge, Massachusetts 02139, United States
| | - Michelle O Kenyon
- Drug Safety Research and Development, Pfizer Research & Development-Groton Laboratories, Groton, Connecticut 06340, United States
| | - Matthew T Martin
- Drug Safety Research and Development, Pfizer Research & Development-Groton Laboratories, Groton, Connecticut 06340, United States
| | - Eric D Watt
- Drug Safety Research and Development, Pfizer Research & Development-Groton Laboratories, Groton, Connecticut 06340, United States
| | - Maik Schuler
- Drug Safety Research and Development, Pfizer Research & Development-Groton Laboratories, Groton, Connecticut 06340, United States
| |
Collapse
|
14
|
Batista Junior AC, Bernardo RA, Rocha YA, Vaz BG, Chalom MY, Jardim AC, Chaves AR. An Agile and Accurate Approach for N-Nitrosamines Detection and Quantification in Medicines by DART-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1657-1668. [PMID: 38716699 DOI: 10.1021/jasms.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
N-nitrosamines (NAs) are prevalent mutagenic impurities in various consumer products. Their discovery in valsartan-containing medicines in 2018 prompted global regulatory agencies to set guidelines on their presence and permissible levels in pharmaceuticals. In order to determine the NAs content in medicines, efficient and sensitive analytical methods have been developed based on mass spectrometry techniques. Direct analysis in real time-mass spectrometry (DART-MS) has emerged as a prominent ambient ionization technique for pharmaceutical analysis due to its high-throughput capability, simplicity, and minimal sample preparation requirements. Thus, in this study DART-MS was evaluated for the screening and quantification of NAs in medicines. DART-MS analyses were conducted in positive ion mode, for both direct tablet analysis and solution analysis. The analytical performance was evaluated regarding linearity, precision, accuracy, limits of detection, and quantification. The DART-MS proved to be suitable for the determination of NAs in medicines, whether through direct tablet analysis or solution analysis. The analytical performance demonstrated linearity in the range from 1.00 to 200.00 ng mL-1, limits of quantification about 1.00 ng mL-1, precision and accuracy lower than 15%, and no significant matrix effect for six drug-related NAs. In conclusion, the DART-MS technique demonstrated to be an alternative method to determine NAs in medicines, aligning with the principles of green chemistry.
Collapse
Affiliation(s)
| | - Ricardo Alves Bernardo
- Federal University of Goiás, Institute of Chemistry, Goiânia, Goiás 74690-900, Brazil
- Federal University of Paraná, Department of Chemistry, Curitiba, Paraná 80060-140, Brazil
| | - Yuri Arrates Rocha
- Federal University of Goiás, Institute of Chemistry, Goiânia, Goiás 74690-900, Brazil
| | - Boniek Gontijo Vaz
- Federal University of Goiás, Institute of Chemistry, Goiânia, Goiás 74690-900, Brazil
| | - Marc Yves Chalom
- SENS Advanced Mass Spectrometry, 05319-000 São Paulo, SP, Brazil
| | | | | |
Collapse
|
15
|
Göller AH, Johanssen S, Zalewski A, Ziegler V. Quantum chemical calculations of nitrosamine activation and deactivation pathways for carcinogenicity risk assessment. Front Pharmacol 2024; 15:1415266. [PMID: 39086387 PMCID: PMC11288830 DOI: 10.3389/fphar.2024.1415266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
N-nitrosamines and nitrosamine drug substance related impurities (NDSRIs) became a critical topic for the development and safety of small molecule medicines following the withdrawal of various pharmaceutical products from the market. To assess the mutagenic and carcinogenic potential of different N-nitrosamines lacking robust carcinogenicity data, several approaches are in use including the published carcinogenic potency categorization approach (CPCA), the Enhanced Ames Test (EAT), in vivo mutagenicity studies as well as read-across to analogue molecules with robust carcinogenicity data. We employ quantum chemical calculations as a pivotal tool providing insights into the likelihood of reactive ion formation and subsequent DNA alkylation for a selection of molecules including e.g., carcinogenic N-nitrosopiperazine (NPZ), N-nitrosopiperidine (NPIP), together with N-nitrosodimethylamine (NDMA) as well as non-carcinogenic N-nitrosomethyl-tert-butylamine (NTBA) and bis (butan-2-yl) (nitros)amine (BBNA). In addition, a series of nitroso-methylaminopyridines is compared side-by-side. We draw comparisons between calculated reaction profiles for structures representing motifs common to NDSRIs and those of confirmed carcinogenic and non-carcinogenic molecules with in vivo data from cancer bioassays. Furthermore, our approach enables insights into reactivity and relative stability of intermediate species that can be formed upon activation of several nitrosamines. Most notably, we reveal consistent differences between the free energy profiles of carcinogenic and non-carcinogenic molecules. For the former, the intermediate diazonium ions mostly react, kinetically controlled, to the more stable DNA adducts and less to the water adducts via transition-states of similar heights. Non-carcinogenic molecules yield stable carbocations as intermediates that, thermodynamically controlled, more likely form the statistically preferred water adducts. In conclusion, our data confirm that quantum chemical calculations can contribute to a weight of evidence approach for the risk assessment of nitrosamines.
Collapse
Affiliation(s)
- Andreas H. Göller
- Computational Molecular Design, Bayer AG, Pharmaceuticals, Wuppertal, Germany
| | - Sandra Johanssen
- Industrial Chemicals and Marketed Products, Bayer AG, Pharmaceuticals, Berlin, Germany
| | - Adam Zalewski
- Genetic and Computational Toxicology, Bayer AG, Pharmaceuticals, Berlin, Germany
| | - Verena Ziegler
- Genetic and Computational Toxicology, Bayer AG, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
16
|
Cheung J, Dobo K, Zhang S, Nudelman R, Schmidt F, Wenzel J, Czich A, Schuler M. Evaluation of the nitrosamine impurities of ACE inhibitors using computational, in vitro, and in vivo methods demonstrate no genotoxic potential. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:203-221. [PMID: 39180320 DOI: 10.1002/em.22618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
Evaluation and mitigation of the potential carcinogenic risks associated with nitrosamines in marketed pharmaceutical products are areas of interest for pharmaceutical companies and health authorities alike. Significant progress has been made to establish acceptable intake (AI) levels for N-nitrosamine drug substance-related impurities (NDSRIs) using SAR, however some compounds require experimental data to support derivation of a recommended AI. Many angiotensin-converting enzyme inhibitors, identified by the suffix "pril," have secondary amines that can potentially react to form nitrosamines. Here we consider a structural assessment and metabolism data, coupled with comprehensive in vitro and in vivo (mouse) genotoxicity testing to evaluate this particular class of nitrosamines. N-nitroso ramipril and N-nitroso quinapril, both of which are predicted to have inhibited nitrosamine bioactivation due to steric hinderance and branching at the α-position were non-genotoxic in the in vivo liver comet assay and non-mutagenic in the in vivo Big Blue® mutation and duplex sequencing assays. Predicted metabolism along with in vitro metabolism data and quantum chemical calculations related to DNA interactions offer a molecular basis for the negative results observed in both in vitro and in vivo testing. These nitrosamines are concluded to be non-mutagenic and non-carcinogenic; therefore, they should be controlled according to ICH Q3B guidance. Furthermore, these results for N-nitroso ramipril and N-nitroso quinapril should be considered when evaluating the appropriate AI and control strategy for other structurally similar "pril" NDSRIs.
Collapse
Affiliation(s)
- Jennifer Cheung
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | - Krista Dobo
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | - Shaofei Zhang
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | | | | | - Jan Wenzel
- Sanofi, R&D Preclinical Safety, Frankfurt, Germany
| | | | - Maik Schuler
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| |
Collapse
|
17
|
De S, Thapa B, Sayyed FB, Frank SA, Cornwell PD, Jolly RA. Quantum Mechanical Assessment of Nitrosamine Potency. Chem Res Toxicol 2024; 37:1011-1022. [PMID: 38804898 DOI: 10.1021/acs.chemrestox.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nitrosamines are in the cohort of concern (CoC) as determined by regulatory guidance. CoC compounds are considered highly potent carcinogens that need to be limited below the threshold of toxicological concern, 1.5 μg/day. Nitrosamines like NDMA and NDEA require strict control, while novel nitrosamine drug substance-related impurities (NDSRIs) may or may not be characterized as potent carcinogens. A risk assessment based on the structural features of NDSRIs is important in order to predict potency because they lack substance-specific carcinogenicity. Herein, we present a quantum mechanical (QM)-based analysis on structurally diverse sets of nitrosamines to better understand how structure influences the reactivity that could result in carcinogenicity. We describe the potency trend through activation energies corresponding to α-hydroxylation, aldehyde formation, diazonium intermediate formation, reaction with DNA base, and hydrolysis reactions, and other probable metabolic pathways associated with the carcinogenicity of nitrosamines. We evaluated activation energies for selected cases such as N-nitroso pyrrolidines, N-nitroso piperidines, N-nitroso piperazines, N-nitroso morpholines, N-nitroso thiomorpholine, N-methyl nitroso aromatic, fluorine-substituted nitrosamines, and substituted aliphatic nitrosamines. We compare these results to the recent framework of the carcinogenic potency characterization approach (CPCA) proposed by health authorities which is meant to give guidance on acceptable intakes (AI) for NDSRIs lacking substance-specific carcinogenicity data. We show examples where QM modeling and CPCA are aligned and examples where CPCA both underestimates and overestimates the AI. In cases where CPCA predicts high potency for NDSRIs, QM modeling can help better estimate an AI. Our results suggest that a combined mechanistic understanding of α-hydroxylation, aldehyde formation, hydrolysis, and reaction with DNA bases could help identify the structural features that underpin the potency of nitrosamines. We anticipate this work will be a valuable addition to the CPCA and provide a more analytical way to estimate AI for novel NDSRIs.
Collapse
Affiliation(s)
- Sriman De
- Synthetic Molecule Design and Development, Eli Lilly Services India Pvt Ltd, Devarabeesanahalli , Bengaluru 560103, India
| | - Bishnu Thapa
- Discovery Chemistry Research and Technology, LRL, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Fareed Bhasha Sayyed
- Synthetic Molecule Design and Development, Eli Lilly Services India Pvt Ltd, Devarabeesanahalli , Bengaluru 560103, India
| | - Scott A Frank
- Synthetic Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Paul D Cornwell
- Toxicology, LRL, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Robert A Jolly
- Toxicology, LRL, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
18
|
Kruhlak NL, Schmidt M, Froetschl R, Graber S, Haas B, Horne I, Horne S, King ST, Koval IA, Kumaran G, Langenkamp A, McGovern TJ, Peryea T, Sanh A, Siqueira Ferreira A, van Aerts L, Vespa A, Whomsley R. Determining recommended acceptable intake limits for N-nitrosamine impurities in pharmaceuticals: Development and application of the Carcinogenic Potency Categorization Approach (CPCA). Regul Toxicol Pharmacol 2024; 150:105640. [PMID: 38754805 DOI: 10.1016/j.yrtph.2024.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
N-Nitrosamine impurities, including nitrosamine drug substance-related impurities (NDSRIs), have challenged pharmaceutical industry and regulators alike and affected the global drug supply over the past 5 years. Nitrosamines are a class of known carcinogens, but NDSRIs have posed additional challenges as many lack empirical data to establish acceptable intake (AI) limits. Read-across analysis from surrogates has been used to identify AI limits in some cases; however, this approach is limited by the availability of robustly-tested surrogates matching the structural features of NDSRIs, which usually contain a diverse array of functional groups. Furthermore, the absence of a surrogate has resulted in conservative AI limits in some cases, posing practical challenges for impurity control. Therefore, a new framework for determining recommended AI limits was urgently needed. Here, the Carcinogenic Potency Categorization Approach (CPCA) and its supporting scientific rationale are presented. The CPCA is a rapidly-applied structure-activity relationship-based method that assigns a nitrosamine to 1 of 5 categories, each with a corresponding AI limit, reflecting predicted carcinogenic potency. The CPCA considers the number and distribution of α-hydrogens at the N-nitroso center and other activating and deactivating structural features of a nitrosamine that affect the α-hydroxylation metabolic activation pathway of carcinogenesis. The CPCA has been adopted internationally by several drug regulatory authorities as a simplified approach and a starting point to determine recommended AI limits for nitrosamines without the need for compound-specific empirical data.
Collapse
Affiliation(s)
- Naomi L Kruhlak
- US Food and Drug Administration (US FDA), Silver Spring, MD, USA.
| | | | - Roland Froetschl
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Stefan Graber
- Swiss Agency for Therapeutic Products (Swissmedic), Bern, Switzerland
| | - Bodo Haas
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Irene Horne
- Therapeutic Goods Administration (TGA), Canberra, Australia
| | - Stephen Horne
- Pharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Sruthi T King
- US Food and Drug Administration (US FDA), Silver Spring, MD, USA
| | - Iryna A Koval
- Medicines Evaluation Board (MEB), Utrecht, Netherlands
| | | | - Anja Langenkamp
- Swiss Agency for Therapeutic Products (Swissmedic), Bern, Switzerland
| | | | - Tyler Peryea
- US Food and Drug Administration (US FDA), Silver Spring, MD, USA
| | - Alan Sanh
- French National Agency for Medicines and Health Products Safety (ANSM), Saint-Denis, France
| | | | | | - Alisa Vespa
- Pharmaceutical Drugs Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Rhys Whomsley
- European Medicines Agency (EMA), Amsterdam, Netherlands
| |
Collapse
|
19
|
Kulkarni CP, Yang J, Koleske ML, Lara G, Alam K, Raw A, Rege B, Zhao L, Lu D, Zhang L, Yu LX, Lionberger RA, Giacomini KM, Kroetz DL, Yee SW. Effect of Antioxidants in Medicinal Products on Intestinal Drug Transporters. Pharmaceutics 2024; 16:647. [PMID: 38794309 PMCID: PMC11124870 DOI: 10.3390/pharmaceutics16050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The presence of mutagenic and carcinogenic N-nitrosamine impurities in medicinal products poses a safety risk. While incorporating antioxidants in formulations is a potential mitigation strategy, concerns arise regarding their interference with drug absorption by inhibiting intestinal drug transporters. Our study screened thirty antioxidants for inhibitory effects on key intestinal transporters-OATP2B1, P-gp, and BCRP in HEK-293 cells (OATP2B1) or membrane vesicles (P-gp, BCRP) using 3H-estrone sulfate, 3H-N-methyl quinidine, and 3H-CCK8 as substrates, respectively. The screen identified that butylated hydroxyanisole (BHA) and carnosic acid inhibited all three transporters (OATP2B1, P-gp, and BCRP), while ascorbyl palmitate (AP) inhibited OATP2B1 by more than 50%. BHA had IC50 values of 71 ± 20 µM, 206 ± 14 µM, and 182 ± 49 µM for OATP2B1, BCRP, and P-gp, respectively. AP exhibited IC50 values of 23 ± 10 µM for OATP2B1. The potency of AP and BHA was tested with valsartan, an OATP2B1 substrate, and revealed IC50 values of 26 ± 17 µM and 19 ± 11 µM, respectively, in HEK-293-OATP2B1 cells. Comparing IC50 values of AP and BHA with estimated intestinal concentrations suggests an unlikely inhibition of intestinal transporters at clinical concentrations of drugs formulated with antioxidants.
Collapse
Affiliation(s)
- Chetan P. Kulkarni
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Jia Yang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Megan L. Koleske
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Giovanni Lara
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Khondoker Alam
- Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Andre Raw
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Bhagwant Rege
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Liang Zhao
- Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Dongmei Lu
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Lei Zhang
- Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Lawrence X. Yu
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Robert A. Lionberger
- Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
20
|
Nakka S, Katari NK, Muchakayala SK, Jonnalagadda SB, Manabolu Surya SB. Synthesis and Trace-Level Quantification of Mutagenic and Cohort-of-Concern Ciprofloxacin Nitroso Drug Substance-Related Impurities (NDSRIs) and Other Nitroso Impurities Using UPLC-ESI-MS/MS-Method Optimization Using I-Optimal Mixture Design. ACS OMEGA 2024; 9:8773-8788. [PMID: 38434810 PMCID: PMC10905725 DOI: 10.1021/acsomega.3c05170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/06/2023] [Indexed: 03/05/2024]
Abstract
Globally, the pharmaceutical industry has been facing challenges from nitroso drug substance-related impurities (NDSRIs). In the current study, we synthesized and developed a rapid new UPLC-MS/MS method for the trace-level quantification of ciprofloxacin NDSRIs and a couple of N-nitroso impurities simultaneously. (Q)-SAR methodology was employed to assess and categorize the genotoxicity of all ciprofloxacin N-nitroso impurities. The projected results were positive, and the cohort of concern (CoC) for all three N-nitroso impurities indicates potential genotoxicity. AQbD-driven I-optimal mixture design was used to optimize the mixture of solvents in the method. The chromatographic resolution was accomplished using an Agilent Poroshell 120 Aq-C18 column (150 mm × 4.6 mm, 2.7 μm) in isocratic elution mode with 0.1% formic acid in a mixture of water, acetonitrile, and methanol in the ratio of 475:500:25 v/v/v at a flow rate of 0.5 mL/min. Quantification was carried out using triple quadrupole mass detection with electrospray ionization (ESI) in a multiple reaction monitoring technique. The finalized method was validated successfully, affording ICH guidelines. All N-nitroso impurities revealed excellent linearity over the concentration range of 0.00125-0.0250 ppm. The Pearson correlation coefficient of each N-nitroso impurity was >0.999. The method accuracy recoveries ranged from 93.98 to 108.08% for the aforementioned N-nitrosamine impurities. Furthermore, the method was effectively applied to quantify N-nitrosamine impurities simultaneously in commercially available formulated samples, with its efficiency recurring at trace levels. Thus, the current method is capable of determining the trace levels of three N-nitroso ciprofloxacin impurities simultaneously from the marketed tablet dosage forms for commercial release and stability testing.
Collapse
Affiliation(s)
- Srinivas Nakka
- Department
of Chemistry, School of Science, GITAM Deemed
to be University, Hyderabad 502329, India
| | - Naresh Kumar Katari
- Department
of Chemistry, School of Science, GITAM Deemed
to be University, Hyderabad 502329, India
- School
of Chemistry & Physics, College of Agriculture, Engineering &
Science, Westville Campus, University of
KwaZulu-Natal, P Bag X 54001, Durban 4000, South Africa
| | - Siva Krishna Muchakayala
- Department
of Chemistry, School of Science, GITAM Deemed
to be University, Hyderabad 502329, India
| | - Sreekantha Babu Jonnalagadda
- School
of Chemistry & Physics, College of Agriculture, Engineering &
Science, Westville Campus, University of
KwaZulu-Natal, P Bag X 54001, Durban 4000, South Africa
| | | |
Collapse
|
21
|
Snodin DJ, Trejo-Martin A, Ponting DJ, Smith GF, Czich A, Cross K, Custer L, Elloway J, Greene N, Kalgutkar AS, Stalford SA, Tennant RE, Vock E, Zalewski A, Ziegler V, Dobo KL. Mechanisms of Nitrosamine Mutagenicity and Their Relationship to Rodent Carcinogenic Potency. Chem Res Toxicol 2024; 37:181-198. [PMID: 38316048 DOI: 10.1021/acs.chemrestox.3c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A thorough literature review was undertaken to understand how the pathways of N-nitrosamine transformation relate to mutagenic potential and carcinogenic potency in rodents. Empirical and computational evidence indicates that a common radical intermediate is created by CYP-mediated hydrogen abstraction at the α-carbon; it is responsible for both activation, leading to the formation of DNA-reactive diazonium species, and deactivation by denitrosation. There are competing sites of CYP metabolism (e.g., β-carbon), and other reactive species can form following initial bioactivation, although these alternative pathways tend to decrease rather than enhance carcinogenic potency. The activation pathway, oxidative dealkylation, is a common reaction in drug metabolism and evidence indicates that the carbonyl byproduct, e.g., formaldehyde, does not contribute to the toxic properties of N-nitrosamines. Nitric oxide (NO), a side product of denitrosation, can similarly be discounted as an enhancer of N-nitrosamine toxicity based on carcinogenicity data for substances that act as NO-donors. However, not all N-nitrosamines are potent rodent carcinogens. In a significant number of cases, there is a potency overlap with non-N-nitrosamine carcinogens that are not in the Cohort of Concern (CoC; high-potency rodent carcinogens comprising aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds), while other N-nitrosamines are devoid of carcinogenic potential. In this context, mutagenicity is a useful surrogate for carcinogenicity, as proposed in the ICH M7 (R2) (2023) guidance. Thus, in the safety assessment and control of N-nitrosamines in medicines, it is important to understand those complementary attributes of mechanisms of mutagenicity and structure-activity relationships that translate to elevated potency versus those which are associated with a reduction in, or absence of, carcinogenic potency.
Collapse
Affiliation(s)
| | - Alejandra Trejo-Martin
- Gilead Sciences Inc. Nonclinical Safety and Pathobiology (NSP), Foster City, California 94404, United States
| | | | - Graham F Smith
- AstraZeneca, Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Research and Development, CB2 0AA Cambridge, U.K
| | - Andreas Czich
- Sanofi, Research and Development, Preclinical Safety, 65926 Frankfurt, Germany
| | - Kevin Cross
- Instem, Conshohocken, Pennsylvania 19428, United States
| | - Laura Custer
- Bristol-Myers Squibb, Nonclinical Safety, New Brunswick, New Jersey 08903, United States
| | - Joanne Elloway
- AstraZeneca, Safety Sciences, Clinical Pharmacology and Safety Sciences Research and Development, CB2 0AA Cambridge, U.K
| | - Nigel Greene
- AstraZeneca, Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Research and Development, Waltham, Massachusetts 02451, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, Cambridge, Massachusetts 02139, United States
| | | | | | - Esther Vock
- Boehringer-Ingelheim Pharma GmbH & Co., KG, 88397 Biberach an der Riss, Germany
| | - Adam Zalewski
- Bayer AG, Pharmaceuticals, Genetic and Computational Toxicology, 13342 Berlin, Germany
| | - Verena Ziegler
- Bayer AG, Pharmaceuticals, Genetic and Computational Toxicology, 13342 Berlin, Germany
| | - Krista L Dobo
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Groton, Connecticut 06340, United States
| |
Collapse
|
22
|
Buschmann H, Handler N, Holzgrabe U. The quality of drugs and drug products - Always guaranteed? J Pharm Biomed Anal 2024; 239:115880. [PMID: 38103416 DOI: 10.1016/j.jpba.2023.115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023]
Abstract
To ensure the efficacy, safety, and quality of drugs, several national and international guidelines and regulatory requirements exist. The most important international regulatory framework for quality is the collection of the guidelines ICH Q1-Q14 (International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use), which form the basis for the development and approval of medicinal products. Additionally, international and national pharmacopoeias and national regulatory authorities like Food and Drug Administration (FDA) and European Directory for the Quality of Medicines and HealthCare (EDQM) have to be considered during the lifecycle of a drug. Further, regular updates and optimization of processes and methods together with periodic audits and inspections of the manufacturing plants help to ensure compliance with the complex regulatory requirements for medicinal products. Although the pharmaceutical world seems to be very well regulated and controlled, several drug recalls per year have to be announced and conducted to remove defect products from the market and protect the patient from any potential health risk. This review article provides an overview of the most common reasons for such recalls presenting several historical and current cases with a detailed discussion of root causes. A specific focus lies on quality issues like drug degradation, impurity and nitrosamine contamination, lack of drug stability, occurrence and transformation of polymorphs, contamination with particulates and foreign matters, amongst others. The role of APIs, excipients and packaging will be discussed as well as the analytical challenges to detect, control and mitigate such quality issues. A final chapter will discuss the current situation and an outlook on emerging topics and future challenges for drug quality.
Collapse
Affiliation(s)
- Helmut Buschmann
- RD&C Research, Development & Consulting GmbH, Neuwaldegger Strasse 35/2/3, Vienna 1170, Austria
| | - Norbert Handler
- RD&C Research, Development & Consulting GmbH, Neuwaldegger Strasse 35/2/3, Vienna 1170, Austria
| | - Ulrike Holzgrabe
- University of Wuerzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, Wuerzburg 97074, Germany.
| |
Collapse
|
23
|
Bhirud D, Agrawal G, Shah H, Patel A, Palkar MB, Bhattacharya S, Prajapati BG. Nitrosamine Impurities in Pharmaceuticals: An Empirical Review of their Detection, Mechanisms, and Regulatory Approaches. Curr Top Med Chem 2024; 24:503-522. [PMID: 38321910 DOI: 10.2174/0115680266278636240125113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Since their discovery in valsartan-containing drugs, nitrosamine impurities have emerged as a significant safety problem in pharmaceutical products, prompting extensive recalls and suspensions. Valsartan, candesartan, irbesartan, olmesartan, and other sartans have been discovered to have additional nitrosamine impurities, such as N-nitroso-N-methyl-4-aminobutyric acid (NMBA), N-nitroso-Di-isopropyl amine (NDIPA), N-nitroso-Ethyl-Isopropyl amine (NEIPA), and N-nitroso-Diethyl amine (NDEA). Concerns about drug safety have grown in response to reports of nitrosamine contamination in pharmaceuticals, such as pioglitazone, rifampin, rifapentine, and varenicline. This review investigates the occurrence and impact of nitrosamine impurities in sartans and pharmaceutical goods, as well as their underlying causes. The discussion emphasizes the significance of comprehensive risk assessment and mitigation approaches at various phases of medication development and manufacturing. The link between amines and nitrosamine impurities is also investigated, with an emphasis on pH levels and the behaviour of primary, secondary, tertiary, and quaternary amines. Regulations defining standards for nitrosamine assessment and management, such as ICH Q3A-Q3E and ICH M7, are critical in resolving impurity issues. Furthermore, the Global Substance Registration System (GSRS) is underlined as being critical for information sharing and product safety in the pharmaceutical industry. The review specifically focuses on the relationship between ranitidine and N-nitroso dimethyl amine (NDMA) in the context of the implications of nitrosamine contamination on patient safety and medicine supply. The importance of regulatory authorities in discovering and correcting nitrosamine impurities is highlighted in order to improve patient safety, product quality, and life expectancy. Furthermore, the significance of ongoing study and attention to nitrosamine-related repercussions for increasing pharmaceutical safety and overall public health is emphasized.
Collapse
Affiliation(s)
- Darshan Bhirud
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Gyan Agrawal
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Harshil Shah
- Department of Bioequivalence, Cosette Pharmaceuticals INC, 200 Crossing Blvd Fl 4, Bridgewater, New Jersey, 08807, United States
| | - Artiben Patel
- Department of Regulatory Affairs, Cosette Pharmaceuticals Inc., 200 Crossing Blvd Fl 4, Bridgewater, New Jersey, 08807, United States
| | - Mahesh B Palkar
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India
| |
Collapse
|
24
|
Tsuji G, Kurohara T, Shoda T, Yokoo H, Ito T, Masada S, Uchiyama N, Yamamoto E, Demizu Y. In Silico Prediction of N-Nitrosamine Formation Pathways of Pharmaceutical Products. Chem Pharm Bull (Tokyo) 2024; 72:166-172. [PMID: 38296559 DOI: 10.1248/cpb.c23-00550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The recent discovery of N-nitrosodimethylamine (NDMA), a mutagenic N-nitrosamine, in pharmaceuticals has adversely impacted the global supply of relevant pharmaceutical products. Contamination by N-nitrosamines diverts resources and time from research and development or pharmaceutical production, representing a bottleneck in drug development. Therefore, predicting the risk of N-nitrosamine contamination is an important step in preventing pharmaceutical contamination by DNA-reactive impurities for the production of high-quality pharmaceuticals. In this study, we first predicted the degradation pathways and impurities of model pharmaceuticals, namely gliclazide and indapamide, in silico using an expert-knowledge software. Second, we verified the prediction results with a demonstration test, which confirmed that N-nitrosamines formed from the degradation of gliclazide and indapamide in the presence of hydrogen peroxide, especially under alkaline conditions. Furthermore, the pathways by which degradation products formed were determined using ranitidine, a compound previously demonstrated to generate NDMA. The prediction indicated that a ranitidine-related compound served as a potential source of nitroso groups for NDMA formation. In silico software is expected to be useful for developing methods to assess the risk of N-nitrosamine formation from pharmaceuticals.
Collapse
|
25
|
Felter SP, Ponting DJ, Mudd AM, Thomas R, Oliveira AAF. Maximizing use of existing carcinogenicity data to support acceptable intake levels for mutagenic impurities in pharmaceuticals: Learnings from N-nitrosamine case studies. Regul Toxicol Pharmacol 2023; 143:105459. [PMID: 37474097 DOI: 10.1016/j.yrtph.2023.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
The unexpected finding of N-nitrosamine (NA) impurities in many pharmaceutical products raised significant challenges for industry and regulators. In addition to well-studied small molecular weight NAs, many of which are potent rodent carcinogens, novel NAs associated with active pharmaceutical ingredients have been found, many of which have limited or no safety data. A tiered approach to establishing Acceptable Intake (AI) limits for NA impurities has been established using chemical-specific data, read-across, or a class-specific TTC limit. There are ∼140 NAs with some rodent carcinogenicity data, but much of it is older and does not meet current guidelines for what constitutes a 'robust' bioassay. Nevertheless, these data are an important source of information to ensure the best science is used for assessing NA impurities and assuring consumer safety while minimizing impact that can lead to drug shortages. We present several strategies to maximize the use of imperfect data including using a lower confidence limit on a rodent TD50, and leveraging data from multiple NAs. Information on the chemical structure known to impact potency can also support development of an AI or potentially conclude that a particular NA does not fall in the cohort of concern for potent carcinogenicity.
Collapse
Affiliation(s)
- S P Felter
- Procter & Gamble, Central Product Safety, 8700 Mason-Montgomery Rd, Mason, OH, USA.
| | - D J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - A M Mudd
- Procter & Gamble, Central Product Safety, 8700 Mason-Montgomery Rd, Mason, OH, USA
| | - R Thomas
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - A A F Oliveira
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| |
Collapse
|
26
|
Tennant RE, Ponting DJ, Thresher A. A deep dive into historical Ames study data for N-nitrosamine compounds. Regul Toxicol Pharmacol 2023; 143:105460. [PMID: 37495012 DOI: 10.1016/j.yrtph.2023.105460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Mutagenicity data is a core component of the safety assessment data required by regulatory agencies for acceptance of new drug compounds, with the OECD-471 bacterial reverse mutation (Ames) assay most widely used as a primary screen to assess drug impurities for potential mutagenic risk. N-Nitrosamines are highly potent mutagenic carcinogens in rodent bioassays and their recent detection as impurities in pharmaceutical products has sparked increased interest in their safety assessment. Previous literature reports indicated that the Ames test might not be sensitive enough to detect the mutagenic potential of N-nitrosamines in order to accurately predict a risk of carcinogenicity. To explore this hypothesis, public Ames and rodent carcinogenicity data pertaining to the N-nitrosamine class of compounds was collated for analysis. Here we present how variations to the OECD 471-compliant Ames test, including strain, metabolic activation, solvent type and pre-incubation/plate incorporation methods, may impact the predictive performance for carcinogenicity. An understanding of optimal conditions for testing of N-nitrosamines may improve both the accuracy and confidence in the ability of the Ames test to identify potential carcinogens.
Collapse
Affiliation(s)
- Rachael E Tennant
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, West Yorkshire, LS11 5PS, UK.
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, West Yorkshire, LS11 5PS, UK
| | - Andrew Thresher
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, West Yorkshire, LS11 5PS, UK
| |
Collapse
|
27
|
Chakravarti S. Computational Prediction of Metabolic α-Carbon Hydroxylation Potential of N-Nitrosamines: Overcoming Data Limitations for Carcinogenicity Assessment. Chem Res Toxicol 2023. [PMID: 37267457 DOI: 10.1021/acs.chemrestox.3c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent withdrawal of several drugs from the market due to elevated levels of N-nitrosamine impurities underscores the need for computational approaches to assess the carcinogenicity risk of nitrosamines. However, current approaches are limited because robust animal carcinogenicity data are only available for a few simple nitrosamines, which do not represent the structural diversity of the many possible nitrosamine drug substance related impurities (NDSRIs). In this paper, we present a novel method that uses data on CYP-mediated metabolic hydroxylation of CH2 groups in non-nitrosamine xenobiotics to identify structural features that may also help in predicting the likelihood of metabolic α-carbon hydroxylation in N-nitrosamines. Our approach offers a new avenue for tapping into potentially large experimental data sets on xenobiotic metabolism to improve risk assessment of nitrosamines. As α-carbon hydroxylation is the crucial rate-limiting step in nitrosamine metabolic activation, identifying and quantifying the influence of various structural features on this step can provide valuable insights into their carcinogenic potential. This is especially important considering the scarce information available on factors that affect NDSRI metabolic activation. We have identified hundreds of structural features and calculated their impact on hydroxylation, a significant advancement compared to the limited findings from the small nitrosamine carcinogenicity data set. While relying solely on α-carbon hydroxylation prediction is insufficient for forecasting carcinogenic potency, the identified features can help in the selection of relevant structural analogues in read across studies and assist experts who, after considering other factors such as the reactivity of the resulting electrophilic diazonium species, can establish the acceptable intake (AI) limits for nitrosamine impurities.
Collapse
Affiliation(s)
- Suman Chakravarti
- MultiCASE Inc., 23811 Chagrin Blvd, Suite 305, Beachwood, Ohio 44122, United States
| |
Collapse
|
28
|
Bercu JP, Masuda-Herrera M, Trejo-Martin A, Sura P, Jolly R, Kenyon M, Thomas R, Ponting DJ, Snodin D, Tuschl G, Simon S, De Vlieger K, Hutchinson R, Czich A, Glowienke S, Reddy MV, Johanssen S, Vock E, Claude N, Weaver RJ. Acceptable Intakes (AIs) for 11 Small molecule N-nitrosamines (NAs). Regul Toxicol Pharmacol 2023:105415. [PMID: 37257751 DOI: 10.1016/j.yrtph.2023.105415] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 06/02/2023]
Abstract
Low levels of N-nitrosamines (NAs) were detected in pharmaceuticals and, as a result, health authorities (HAs) have published acceptable intakes (AIs) in pharmaceuticals to limit potential carcinogenic risk. The rationales behind the AIs have not been provided to understand the process for selecting a TD50 or read-across analog. In this manuscript we evaluated the toxicity data for eleven common NAs in a comprehensive and transparent process consistent with ICH M7. This evaluation included substances which had datasets that were robust, limited but sufficient, and substances with insufficient experimental animal carcinogenicity data. In the case of robust or limited but sufficient carcinogenicity information, AIs were calculated based on published or derived TD50s from the most sensitive organ site. In the case of insufficient carcinogenicity information, available carcinogenicity data and structure activity relationships (SARs) were applied to categorical-based AIs of 1500 ng/day, 150 ng/day or 18 ng/day; however additional data (such as biological or additional computational modelling) could inform an alternative AI. This approach advances the methodology used to derive AIs for NAs.
Collapse
Affiliation(s)
- Joel P Bercu
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology (NSP), Foster City, CA, USA.
| | - Melisa Masuda-Herrera
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology (NSP), Foster City, CA, USA
| | | | - Priyanka Sura
- Gilead Sciences, Inc., Nonclinical Safety and Pathobiology (NSP), Foster City, CA, USA
| | | | - Michelle Kenyon
- Pfizer Worldwide Research, Development and Medical, Drug Safety Research and Development, Eastern Point Road, Groton, CT, USA
| | - Rob Thomas
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, UK
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, UK
| | | | - Gregor Tuschl
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | - Stephanie Simon
- Merck KGaA, Global Chemical and Preclinical Safety, Darmstadt, Germany
| | | | | | | | | | | | - Sandra Johanssen
- Bayer AG, Pharmaceuticals, Research & Development, Berlin, Germany
| | - Esther Vock
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str., Biberach an der Riss, Germany
| | - Nancy Claude
- Servier Paris-Saclay R&D Institute, Gif-sur-Yvette, France
| | | |
Collapse
|
29
|
Snodin DJ. Mutagenic impurities in pharmaceuticals: A critical assessment of the cohort of concern with a focus on N-nitrosamines. Regul Toxicol Pharmacol 2023; 141:105403. [PMID: 37116739 DOI: 10.1016/j.yrtph.2023.105403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
The TTC (Threshold of Toxicological Concern; set at 1.5 μg/day for pharmaceuticals) defines an acceptable patient intake for any unstudied chemical posing a negligible risk of carcinogenicity or other toxic effects. A group of high potency mutagenic carcinogens, defined solely by the presence of particular structural alerts, are referred to as the "cohort of concern" (CoC); aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds are considered to pose a significant carcinogenic risk at intakes below the TTC. Kroes et al.2004, derived values for the TTC and CoC in the context of food components, employing a non-transparent dataset never placed in the public domain. Using a reconstructed all-carcinogen dataset from relevant publications, it is now clear that there are exceptions for all three CoC structural classes. N-Nitrosamines represent 62% of the N-nitroso class in the reconstructed dataset. Employing a contemporary dataset, 20% are negative in rodent carcinogenicity bioassays with less than 50% of N-nitrosamines estimated to fall into the highest risk category. It is recommended that CoC nitrosamines are identified by compound-specific data rather than structural alerts. Thus, it should be possible to distinguish CoC from non-CoC N-nitrosamines in the context of mutagenic impurities described in ICH M7 (R1).
Collapse
Affiliation(s)
- David J Snodin
- Xiphora Biopharma Consulting, 9 Richmond Apartments, Redland Court Road, Bristol, BS6 7BG, UK.
| |
Collapse
|
30
|
Ponting DJ, Foster RS. Drawing a Line: Where Might the Cohort of Concern End? Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- David J. Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Robert S. Foster
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| |
Collapse
|
31
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Romualdo B, Cristina F, Stephen H, Marco I, Mosbach‐Schulz O, Riolo F, Christodoulidou A, Grasl‐Kraupp B. Risk assessment of N-nitrosamines in food. EFSA J 2023; 21:e07884. [PMID: 36999063 PMCID: PMC10043641 DOI: 10.2903/j.efsa.2023.7884] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
EFSA was asked for a scientific opinion on the risks to public health related to the presence of N-nitrosamines (N-NAs) in food. The risk assessment was confined to those 10 carcinogenic N-NAs occurring in food (TCNAs), i.e. NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP and NPYR. N-NAs are genotoxic and induce liver tumours in rodents. The in vivo data available to derive potency factors are limited, and therefore, equal potency of TCNAs was assumed. The lower confidence limit of the benchmark dose at 10% (BMDL10) was 10 μg/kg body weight (bw) per day, derived from the incidence of rat liver tumours (benign and malignant) induced by NDEA and used in a margin of exposure (MOE) approach. Analytical results on the occurrence of N-NAs were extracted from the EFSA occurrence database (n = 2,817) and the literature (n = 4,003). Occurrence data were available for five food categories across TCNAs. Dietary exposure was assessed for two scenarios, excluding (scenario 1) and including (scenario 2) cooked unprocessed meat and fish. TCNAs exposure ranged from 0 to 208.9 ng/kg bw per day across surveys, age groups and scenarios. 'Meat and meat products' is the main food category contributing to TCNA exposure. MOEs ranged from 3,337 to 48 at the P95 exposure excluding some infant surveys with P95 exposure equal to zero. Two major uncertainties were (i) the high number of left censored data and (ii) the lack of data on important food categories. The CONTAM Panel concluded that the MOE for TCNAs at the P95 exposure is highly likely (98-100% certain) to be less than 10,000 for all age groups, which raises a health concern.
Collapse
|
32
|
Charoo NA, Dharani S, Khan MA, Rahman Z. Nitroso Impurities in Drug Products: An Overview of Risk Assessment, Regulatory Milieu, and Control Strategy. AAPS PharmSciTech 2023; 24:60. [PMID: 36759424 DOI: 10.1208/s12249-023-02523-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Many nitrosamines have been recognized to be carcinogenic for many decades. Despite the fact that several nitrosamine precursors are frequently used in the manufacturing of pharmaceutical products, their potential presence in pharmaceutical products has previously been overlooked due to a lack of understanding on how they form during the manufacturing process. From the risk assessment, it is clear that nitrosamines or their precursors may be present in any component of the finished dosage form. As a risk mitigation strategy, components with a high potential to form nitrosamine should be avoided. In the absence of suitable alternatives, sufficient measures to maintain nitrosamines below acceptable intake levels must be applied. Excipient manufacturing pathways must be extensively studied in order to identify probable excipient components that may contribute to nitrosamine formation. The manufacturers must not solely rely on pharmacopeial specifications for APIs and excipients, rather, they should also develop and implement additional strategies to control nitrosamine impurities. The formulation can be supplemented with nitrosating inhibitors, such as vitamin C, to stop the generation of nitrosamine. The purpose of this review is to identify key risk factors with regard to nitrosamine formation in pharmaceutical dosage forms and provide an effective control strategy to contain them below acceptable daily intake limits.
Collapse
Affiliation(s)
- Naseem A Charoo
- Succor Pharma Solutions, Laboratory Complex, 216, Dubai Science Park, Dubai, UAE
| | - Sathish Dharani
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA
| | - Mansoor A Khan
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
33
|
Wichitnithad W, Nantaphol S, Noppakhunsomboon K, Rojsitthisak P. An update on the current status and prospects of nitrosation pathways and possible root causes of nitrosamine formation in various pharmaceuticals. Saudi Pharm J 2023; 31:295-311. [PMID: 36942272 PMCID: PMC10023554 DOI: 10.1016/j.jsps.2022.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
Over the last two years, global regulatory authorities have raised safety concerns on nitrosamine contamination in several drug classes, including angiotensin II receptor antagonists, histamine-2 receptor antagonists, antimicrobial agents, and antidiabetic drugs. To avoid carcinogenic and mutagenic effects in patients relying on these medications, authorities have established specific guidelines in risk assessment scenarios and proposed control limits for nitrosamine impurities in pharmaceuticals. In this review, nitrosation pathways and possible root causes of nitrosamine formation in pharmaceuticals are discussed. The control limits of nitrosamine impurities in pharmaceuticals proposed by national regulatory authorities are presented. Additionally, a practical and science-based strategy for implementing the well-established control limits is notably reviewed in terms of an alternative approach for drug product N-nitrosamines without published AI information from animal carcinogenicity testing. Finally, a novel risk evaluation strategy for predicting and investigating the possible nitrosation of amine precursors and amine pharmaceuticals as powerful prevention of nitrosamine contamination is addressed.
Collapse
Key Words
- AI, acceptable intake
- APIs, active pharmaceutical ingredients
- ARBs, angiotensin II receptor blockers
- AZBC, 4′-(azidomethyl)-[1.1′-biphenyl]-2-carbonitile
- AZBT, 5-(4′-(azidomethyl)-[1,1′-biphenyl]-2-yl)-1H-tetrazole
- AZTT, 5-(4′-((5-(azidomethyl)-2-butyl-4-chloro-1H-imidazol-1-yl) methyl)-[1,1′-biphenyl]-2-yl)-1H-tetrazole
- CDER, center for drug evaluation and research
- CPNP, 1-cyclopentyl-4-nitrosopiperazine
- Control limits
- DBA, N,N-dibutylamine
- DEA, N,N-diethylamine
- DIPEA, N,N-diisopropylethylamine
- DMA, dimethylamine
- DMF, N,N-dimethyl formamide
- DPA, N,N-dipropylamine
- EMA, European Medicines Agency
- EPA, Environmental Protection Agency
- FDA, Food and Drug Administration
- HSA, Health Sciences Authority
- IARC, International Agency for Research on Cancer
- ICH, International Council for Harmonisation
- LD50, median lethal dose
- MBA, N-methylamino-N-butyric acid
- MDD, maximum daily dose
- MNP, 1-methyl-4-nitrosopiperazine
- NAP, nitrosation assay procedure
- NDBA, N-nitrosodibutylamine
- NDEA, N-nitrosodiethylamine
- NDIPA, N-nitrosodiisopropylamine
- NDMA, N-nitrosodimethylamine
- NDSRIs, Nitrosamine drug substance-related impurities
- NEIPA, N-nitroso ethylisopropylamine
- NMBA, N-nitroso-N-methyl-4-aminobutyric acid
- NMP, N-methyl pyrrolidinone
- NOCs, N-nitroso compounds
- Nitrosamines
- Nitrosation
- PPRs, proportionate reporting ratios
- Ranitidine
- SARs, structure–activity relationships
- Sartans
- TD50, median toxic dose
- TEA, triethylamine
- TMA, trimethylamine
- TTC, threshold of toxicological concern
- USFDA, United States Food Drug and Administration
- USP, United States Pharmacopoeia
- WHO, World Health Organization
Collapse
Affiliation(s)
- Wisut Wichitnithad
- Department of Analytical Development, Pharma Nueva Co., Ltd, Bangkok 10900, Thailand
- Department of Clinical Development, Pharma Nueva Co., Ltd, Bangkok 10900, Thailand
| | - Siriwan Nantaphol
- Department of Clinical Development, Pharma Nueva Co., Ltd, Bangkok 10900, Thailand
| | | | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Corresponding author at: Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330 Thailand.
| |
Collapse
|
34
|
Holzgrabe U. Nitrosated Active Pharmaceutical Ingredients - Lessons Learned? J Pharm Sci 2023; 112:1210-1215. [PMID: 36720391 DOI: 10.1016/j.xphs.2023.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
The occurrence of N-nitrosodialkylamines in active pharmaceutical ingredients (APIs) and drug products in the last years was a kind of eye opener with regard to quality of drugs. We became aware of the fact that quality control tests described in the international pharmacopoeias might not be sufficient. The N-nitrosodialkylamines found were neither so-called (structurally) related substances, nor residual solvents or heavy metals; hence they were not limited by a compendial test, but by the ICH guideline M7 of mutagenic impurities. Additionally, nitrosamine drug-substance-related impurities (NDSRIs) were detected, mostly within the process of risk assessment required by regulatory authorities. Here, the APIs containing a vulnerable amino moiety had reacted with nitrites being a contaminant of an excipient. This review deals with the formation, toxicity, and mitigation of NDSRISs.
Collapse
Affiliation(s)
- U Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg Am Hubland, 97074 Wuerzburg, Germany.
| |
Collapse
|
35
|
Paglialunga S, van Haarst A. The Impact of N-nitrosamine Impurities on Clinical Drug Development. J Pharm Sci 2023; 112:1183-1191. [PMID: 36706834 DOI: 10.1016/j.xphs.2023.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Over the past few years, an increasing number of commercially available drugs have been reported to contain N-nitrosamine impurities above acceptable intake limits. Consequent interruption or discontinuation of the manufacturing and distribution of several marketed drugs has culminated into shortages of marketed drugs, including the antidiabetic drug metformin and the potentially life-saving drug rifampin for the treatment of tuberculosis. Alarmingly, the clinical development of new investigational products has been complicated as well by the presence of N-nitrosamine impurities in batches of marketed drug. In particular, rifampin is a key clinical index drug employed in drug-drug interaction (DDI) studies, and as a result of nitrosamine impurities regulatory bodies no longer accept the administration of rifampin in DDI studies involving healthy subjects. Drug developers are now forced to look at alternative approaches for commonly employed perpetrators, which will be discussed in this review.
Collapse
|
36
|
Khan HS, Despres-Gnis F, Stults CLM, Mullis J, Nugara N, Sen A, Nagao L. An Overview and Discussion of N-nitrosamine Considerations for Orally Inhaled Drug Products and Relevance to Other Dosage Forms. AAPS PharmSciTech 2023; 24:37. [PMID: 36653673 DOI: 10.1208/s12249-022-02491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
The presence of N-nitrosamines in drug products are currently an area of high regulatory and industry scrutiny, having been detected above acceptable regulatory levels in several solid oral drug products. For over 20 years, there has been an expectation that N-nitrosamines be eliminated or controlled to acceptable levels in orally inhaled and nasal drug products (OINDP). As a result, the OINDP industry has developed and implemented risk management processes and considerations to address N-nitrosamines in final drug product, including management and understanding of upstream supply particularly for OINDP device and container closure systems. We provide an overview of N-nitrosamine formation, discuss key current regulatory expectations worldwide for N-nitrosamines in drug products, discuss risk management approaches relevant for drug device combination products, and share analytical "tips" with respect to handling N-nitrosamines chemical assessments.
Collapse
Affiliation(s)
| | | | | | - James Mullis
- PPD, Part of Thermo Fisher Scientific, Middleton, WI, USA
| | | | - Atish Sen
- AstraZeneca, Research Triangle Park, North Carolina, USA
| | - Lee Nagao
- Faegre Drinker Biddle & Reath LLP, 1500 K Street, NW, Suite 1100, Washington, DC, 20002, USA.
| |
Collapse
|
37
|
Trampuž M, Žnidarič M, Gallou F, Časar Z. Does the Red Shift in UV-Vis Spectra Really Provide a Sensing Option for Detection of N-Nitrosamines Using Metalloporphyrins? ACS OMEGA 2023; 8:1154-1167. [PMID: 36643536 PMCID: PMC9835193 DOI: 10.1021/acsomega.2c06615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
N-nitrosamines are widespread cancerogenic compounds in human environment, including water, tobacco products, food, and medicinal products. Their presence in pharmaceuticals has recently led to several recalls of important medicines from the market, and strict controls and tight limits of N-nitrosamines are now required. Analytical determination of N-nitrosamines is expensive, laborious, and time-inefficient making development of simpler and faster techniques for their detection crucial. Several reports published in the previous decade have demonstrated that cobalt porphyrin-based chemosensors selectively bind N-nitrosamines, which produces a red shift of characteristic Soret band in UV-Vis spectra. In this study, a thorough re-evaluation of metalloporphyrin/N-nitrosamine adducts was performed using various characterization methods. Herein, we demonstrate that while N-nitrosamines can interact directly with cobalt-based porphyrin complexes, the red shift in UV-Vis spectra is not selectively assured and might also result from the interaction between impurities in N-nitrosamines and porphyrin skeleton or interaction of other functional groups within the N-nitrosamine structure and the metal ion within the porphyrin. We show that pyridine nitrogen is the interacting atom in tobacco-specific N-nitrosamines (TSNAs), as pyridine itself is an active ligand and not the N-nitrosamine moiety. When using Co(II) porphyrins as chemosensors, acidic and basic impurities in dialkyl N-nitrosamines (e.g., formic acid, dimethylamine) are also UV-Vis spectra red shift-producing species. Treatment of these N-nitrosamines with K2CO3 prevents the observed UV-Vis phenomena. These results imply that cobalt-based metalloporphyrins cannot be considered as selective chemosensors for UV-Vis detection of N-nitrosamine moiety-containing species. Therefore, special caution in interpretation of UV-Vis red shift for chemical sensors is suggested.
Collapse
Affiliation(s)
- Marko Trampuž
- Lek
Pharmaceuticals d.d., Sandoz Development
Center Slovenia, Kolodvorska
27, 1234 Mengeš, Slovenia
| | - Mateja Žnidarič
- Lek
Pharmaceuticals d.d., Sandoz Development
Center Slovenia, Kolodvorska
27, 1234 Mengeš, Slovenia
| | - Fabrice Gallou
- Chemical
and Analytical Development, Novartis Pharma
AG, Basel 4056, Switzerland
| | - Zdenko Časar
- Lek
Pharmaceuticals d.d., Sandoz Development
Center Slovenia, Kolodvorska
27, 1234 Mengeš, Slovenia
- Chair
of Medicinal Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Horne S, Vera MD, Nagavelli LR, Sayeed VA, Heckman L, Johnson D, Berger D, Yip YY, Krahn CL, Sizukusa LO, Rocha NFM, Bream RN, Ludwig J, Keire DA, Condran G. Regulatory Experiences with Root Causes and Risk Factors for Nitrosamine Impurities in Pharmaceuticals. J Pharm Sci 2023; 112:1166-1182. [PMID: 36599405 DOI: 10.1016/j.xphs.2022.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/02/2023]
Abstract
N-Nitrosamines (also referred to as nitrosamines) are a class of substances, many of which are highly potent mutagenic agents which have been classified as probable human carcinogens. Nitrosamine impurities have been a concern within the pharmaceutical industry and by regulatory authorities worldwide since June 2018, when regulators were informed of the presence of N-nitrosodimethylamine (NDMA) in the angiotensin-II receptor blocker (ARB) medicine, valsartan. Since that time, regulatory authorities have collaborated to share information and knowledge on issues related to nitrosamines with a goal of promoting convergence on technical issues and reducing and mitigating patient exposure to harmful nitrosamine impurities in human drug products. This paper shares current scientific information from a quality perspective on risk factors and potential root causes for nitrosamine impurities, as well as recommendations for risk mitigation and control strategies.
Collapse
Affiliation(s)
| | - Matthew D Vera
- US Food and Drug Administration (US FDA), Silver Spring, MD, 20993, USA
| | - Laxma R Nagavelli
- US Food and Drug Administration (US FDA), Silver Spring, MD, 20993, USA
| | - Vilayat A Sayeed
- US Food and Drug Administration (US FDA), Silver Spring, MD, 20993, USA
| | - Laurel Heckman
- US Food and Drug Administration (US FDA), Silver Spring, MD, 20993, USA
| | - Deborah Johnson
- US Food and Drug Administration (US FDA), Silver Spring, MD, 20993, USA
| | - Dan Berger
- US Food and Drug Administration (US FDA), Silver Spring, MD, 20993, USA
| | | | | | | | | | - Robert N Bream
- European Medicines Agency (EMA, EU), Amsterdam, the Netherlands
| | - Joachim Ludwig
- Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM), Bonn, Germany
| | - David A Keire
- US Food and Drug Administration (US FDA), St Louis, MO, 63110, USA
| | | |
Collapse
|
39
|
Ponting DJ, Dobo KL, Kenyon MO, Kalgutkar AS. Strategies for Assessing Acceptable Intakes for Novel N-Nitrosamines Derived from Active Pharmaceutical Ingredients. J Med Chem 2022; 65:15584-15607. [PMID: 36441966 DOI: 10.1021/acs.jmedchem.2c01498] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The detection of N-nitrosamines, derived from solvents and reagents and, on occasion, the active pharmaceutical ingredient (API) at higher than acceptable levels in drug products, has led regulators to request a detailed review for their presence in all medicinal products. In the absence of rodent carcinogenicity data for novel N-nitrosamines derived from amine-containing APIs, a conservative class limit of 18 ng/day (based on the most carcinogenic N-nitrosamines) or the derivation of acceptable intakes (AIs) using structurally related surrogates with robust rodent carcinogenicity data is recommended. The guidance has implications for the pharmaceutical industry given the vast number of marketed amine-containing drugs. In this perspective, the rate-limiting step in N-nitrosamine carcinogenicity, involving cytochrome P450-mediated α-carbon hydroxylation to yield DNA-reactive diazonium or carbonium ion intermediates, is discussed with reference to the selection of read-across analogs to derive AIs. Risk-mitigation strategies for managing putative N-nitrosamines in the preclinical discovery setting are also presented.
Collapse
Affiliation(s)
- David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Krista L Dobo
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michelle O Kenyon
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Thomas R, Tennant RE, Oliveira AAF, Ponting DJ. What Makes a Potent Nitrosamine? Statistical Validation of Expert-Derived Structure-Activity Relationships. Chem Res Toxicol 2022; 35:1997-2013. [PMID: 36302501 PMCID: PMC9682520 DOI: 10.1021/acs.chemrestox.2c00199] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/09/2023]
Abstract
The discovery of carcinogenic nitrosamine impurities above the safe limits in pharmaceuticals has led to an urgent need to develop methods for extending structure-activity relationship (SAR) analyses from relatively limited datasets, while the level of confidence required in that SAR indicates that there is significant value in investigating the effect of individual substructural features in a statistically robust manner. This is a challenging exercise to perform on a small dataset, since in practice, compounds contain a mixture of different features, which may confound both expert SAR and statistical quantitative structure-activity relationship (QSAR) methods. Isolating the effects of a single structural feature is made difficult due to the confounding effects of other functionality as well as issues relating to determining statistical significance in cases of concurrent statistical tests of a large number of potential variables with a small dataset; a naïve QSAR model does not predict any features to be significant after correction for multiple testing. We propose a variation on Bayesian multiple linear regression to estimate the effects of each feature simultaneously yet independently, taking into account the combinations of features present in the dataset and reducing the impact of multiple testing, showing that some features have a statistically significant impact. This method can be used to provide statistically robust validation of expert SAR approaches to the differences in potency between different structural groupings of nitrosamines. Structural features that lead to the highest and lowest carcinogenic potency can be isolated using this method, and novel nitrosamine compounds can be assigned into potency categories with high accuracy.
Collapse
Affiliation(s)
- Robert Thomas
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, LeedsLS11 5PS, United Kingdom
| | - Rachael E. Tennant
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, LeedsLS11 5PS, United Kingdom
| | | | - David J. Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, LeedsLS11 5PS, United Kingdom
| |
Collapse
|
41
|
Wenzel J, Schmidt F, Blumrich M, Amberg A, Czich A. Predicting DNA-Reactivity of N-Nitrosamines: A Quantum Chemical Approach. Chem Res Toxicol 2022; 35:2068-2084. [PMID: 36302168 DOI: 10.1021/acs.chemrestox.2c00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
N-Nitrosamines (NAs) are a class of reactive organic chemicals that humans may be exposed to from environmental sources, food but also impurities in pharmaceutical preparations. Some NAs were identified as DNA-reactive mutagens and many of those have been classified as probable human carcinogens. Beyond high-potency mutagenic carcinogens that need to be strictly controlled, NAs of low potency need to be considered for risk assessment as well. NA impurities and nitrosylated products of active pharmaceutical ingredients (APIs) often arise from production processes or degradation. Most NAs require metabolic activation to ultimately become carcinogens, and their activation can be appropriately described by first-principles computational chemistry approaches. To this end, we treat NA-induced DNA alkylation as a series of subsequent association and dissociation reaction steps that can be calculated stringently by density functional theory (DFT), including α-hydroxylation, proton transfer, hydroxyl elimination, direct SN2/SNAr DNA alkylation, competing hydrolysis and SN1 reactions. Both toxification and detoxification reactions are considered. The activation reactions are modeled by DFT at a high level of theory with an appropriate solvent model to compute Gibbs free energies of the reactions (thermodynamical effects) and activation barriers (kinetic effects). We study congeneric series of aliphatic and cyclic NAs to identify trends. Overall, this work reveals detailed insight into mechanisms of activation for NAs, suggesting that individual steric and electronic factors have directing and rate-determining influence on the formation of carbenium ions as the ultimate pro-mutagens and thus carcinogens. Therefore, an individual risk assessment of NAs is suggested, as exemplified for the complex API-like 4-(N-nitroso-N-methyl)aminoantipyrine which is considered as low-potency NA by in silico prediction.
Collapse
Affiliation(s)
- Jan Wenzel
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Friedemann Schmidt
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Matthias Blumrich
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Alexander Amberg
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| | - Andreas Czich
- Sanofi, R&D, Preclinical Safety, Industriepark Höchst, Industriepark Höchst, 65926Frankfurt am Main, Germany
| |
Collapse
|
42
|
Xie B, Guo D, Mai B, Fan J. Determination of Genotoxic Impurity N-Nitroso- N-methyl-4-aminobutyric Acid in Four Sartan Substances through Using Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2022; 27:7498. [PMID: 36364326 PMCID: PMC9654383 DOI: 10.3390/molecules27217498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 10/09/2023] Open
Abstract
N-nitroso-N-methyl-4-aminobutyric acid (NMBA) is the third N-nitrosamine impurity found in sartans. Herein, a sensitive and stable LC-MS/MS method with multiple reactions monitoring mode has been developed for the quantitative determination of NMBA in four sartan substances. The effective separation of NMBA and sartan substances was achieved on a C18 column under gradient elution conditions. The mass spectrometry method of the atmospheric pressure chemical ionization source and internal standard method was selected as the quantitative analysis method of NMBA. Then, this proposed LC-MS/MS analysis method was validated in terms of specificity, sensitivity, linearity, accuracy, precision and stability. Good linearity with correlation coefficient over 0.99 was obtained at the NMBA concentration of 3-45 ng/mL, and the limit of quantification was 3 ng/mL. Additionally, the recoveries of NMBA in four sartan substances ranged from 89.9% to 115.7%. The intra-day and inter-day relative standard deviation values were less than 5.0%. In conclusion, this developed determination method for NMBA through liquid chromatography-tandem mass spectrometry showed the characteristics of good sensitivity, high accuracy and precision, which will be of great help for the quantitative analysis of NMBA in sartan products.
Collapse
Affiliation(s)
- Bin Xie
- Zhuhai Rundu Pharmaceutical Co., Ltd., Zhuhai 519041, China
| | - Dong Guo
- Department of Chemistry, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Binliang Mai
- Department of Chemistry, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Jun Fan
- Department of Chemistry, School of Chemistry, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
43
|
Santos CEMD, Dorta DJ, de Oliveira DP. Setting limits for N-nitrosamines in drugs: A defined approach based on read-across and structure-activity relationship for N-nitrosopiperazine impurities. Regul Toxicol Pharmacol 2022; 136:105288. [DOI: 10.1016/j.yrtph.2022.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/14/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2022]
|
44
|
Schlingemann J, Burns MJ, Ponting DJ, Avila CM, Romero NE, Jaywant MA, Smith GF, Ashworth IW, Simon S, Saal C, Wilk A. The Landscape of Potential Small and Drug Substance Related Nitrosamines in Pharmaceuticals. J Pharm Sci 2022; 112:1287-1304. [PMID: 36402198 DOI: 10.1016/j.xphs.2022.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
This article reports the outcome of an in silico analysis of more than 12,000 small molecule drugs and drug impurities, identifying the nitrosatable structures, assessing their potential to form nitrosamines under relevant conditions and the challenges to determine compound-specific AIs based on data available or read-across approaches for these nitrosamines and their acceptance by health authorities. Our data indicate that the presence of nitrosamines in pharmaceuticals is likely more prevalent than originally expected. In total, 40.4 % of the analyzed APIs and 29.6 % of the API impurities are potential nitrosamine precursors. Most structures identified through our workflow could form complex API-related nitrosamines, so-called nitrosamine drug substance related impurities (NDSRIs), although we also found structures that could release the well-known small and potent nitrosamines NDMA, NDEA, and others. Due to common structural motifs including secondary or tertiary amine moieties, whole essential drug classes such as beta blockers and ACE inhibitors are at risk. To avoid the risk of drug shortages or even the complete loss of therapeutic options, it will be essential that the well-established ICH M7 principles remain applicable for nitrosamines and that that the industry and regulatory authorities keep an open communication not only about the science but also to make sure there is a good balance between risk and benefit to patients.
Collapse
|