1
|
Chen K, Gao S, Gu X, Zhao L, Lu Y, Bai J, Huang L, Yang H, Qin Y, Zhou F, Huang Y, Lv Y, Zheng Y. A metal-semimetal Zn-Ge alloy with modified biodegradation behavior and enhanced osteogenic activity mediated by eutectic Ge phases-induced microgalvanic cells. Biomaterials 2025; 321:123343. [PMID: 40245458 DOI: 10.1016/j.biomaterials.2025.123343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/19/2025]
Abstract
Implants with strong osteogenic properties are crucial for effective bone repair in clinical settings. Recently, biodegradable zinc (Zn)-based metals have shown significant potential as orthopedic implants. However, pure Zn is prone to pitting corrosion and exhibits insufficient osteogenic activity in vivo. To enhance the degradation behavior and osteogenic potential of Zn-based implants, this study developed metal-semimetal Zn-Ge alloys with varying Ge content. The addition of Ge significantly promotes the formation of eutectic Ge phases, refines the microstructure, and improves the mechanical properties of the implants. Incorporating ∼3 wt% Ge into the matrix also facilitates enhanced Zn2+ release and ensures uniform biodegradation. Besides, the formation of uniformly distributed heteroid Zn-Ge microgalvanic cells provides a balance between osteogenic and bacteriostatic effects. In vivo tests using a femoral condyle defect model demonstrate that Zn-3Ge implants have favorable osteogenic property and excellent biosafety; the enhanced osteogenic activity of the alloy is attributed to intracellular Zn2+ activation of the Wnt signaling pathway, which promotes osteoblast differentiation, cell proliferation, survival, as well as extracellular matrix mineralization and osteogenesis. The incorporation of eutectic Ge phases and effective creation of microgalvanic cells offer a promising strategy for optimizing the biological function of Zn-based implants.
Collapse
Affiliation(s)
- Kai Chen
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, Shenzhen, 518036, China; School of Materials Science and Engineering, Peking University, Beijing, 100871, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Shan Gao
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Xuenan Gu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Li Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yunan Lu
- Department of Pediatric Orthopedics, Fuzhou Second General Hospital, The Third Clinical Medicine College of Fujian Medical University, Fuzhou, 350007, China
| | - Jinwu Bai
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Linjun Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, Shenzhen, 518036, China
| | - Hongtao Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu Qin
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, Shenzhen, 518036, China; School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yongcan Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, Shenzhen, 518036, China.
| | - Yang Lv
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China; Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
2
|
Lu Y, Zhang T, Chen K, Canavese F, Huang C, Yang H, Shi J, He W, Zheng Y, Chen S. Application of biodegradable implants in pediatric orthopedics: shifting from absorbable polymers to biodegradable metals. Bioact Mater 2025; 50:189-214. [PMID: 40256329 PMCID: PMC12008652 DOI: 10.1016/j.bioactmat.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025] Open
Abstract
Over the past two decades, advances in pediatric orthopedics and closed reduction combined with percutaneous internal fixation techniques have led to significant growth in pediatric orthopedics surgery. Implants such as Kirschner-wires, cannulated screws and elastic stabilization intramedullary nails are commonly used in these procedures. However, traditional implants made of metal or inert materials are not absorbable, leading to complications that affect treatment outcomes. To address this issue, absorbable materials with excellent mechanical properties, good biocompatibility, and controlled degradation rates have been developed and applied in clinical practice. These materials include absorbable polymers and biodegradable metals. This article provides a comprehensive summary of these resorbable materials from a clinician's perspective. In addition, an in-depth discussion of the feasibility of their clinical applications and related research in pediatric orthopedics is included. We found that the applications of absorbable implants in pediatric orthopedics are shifting from absorbable polymers to biodegradable metals and emphasize that the functional characteristics of resorbable materials must be coordinated and complementary to the treatment in pediatric orthopedics.
Collapse
Affiliation(s)
- Yunan Lu
- Department of Pediatric Orthopedics, Fuzhou Second General Hospital, The Third Clinical Medicine College of Fujian Medical University, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, Fujian, China
- Department of Emergency Trauma Surgery, Shengli Clinical Medical College of Fujian Medical University, Shengli Hospital affiliated to Fuzhou University, Fuzhou, 350001, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kai Chen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China
| | - Federico Canavese
- Orthopedic and Traumatology Department, IRCCS Istituto Giannina Gaslini, DISC-Dipartimento di scienze chirurgiche e diagnostiche integrate, University of Genova, Genova, Italy
| | - Chenyang Huang
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hongtao Yang
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jiahui Shi
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wubing He
- Department of Emergency Trauma Surgery, Shengli Clinical Medical College of Fujian Medical University, Shengli Hospital affiliated to Fuzhou University, Fuzhou, 350001, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shunyou Chen
- Department of Pediatric Orthopedics, Fuzhou Second General Hospital, The Third Clinical Medicine College of Fujian Medical University, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, Fujian, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedic Trauma (2020Y2014), Fuzhou, 350007, China
- Key Clinical Specialty of Fujian Province and Fuzhou City (20220104), Fuzhou, China
| |
Collapse
|
3
|
Luo C, Kang C, Qiu S, Wang W, Lou Y, Wang X, Zhu T. Fabrication of polydopamine-altered PCL/PLGA nanofibrous scaffolds on cerium to enhance cytocompatibility, microbial inhibition, and improved osteogenic properties for tissue regeneration in orofacial treatment. Biochem Biophys Res Commun 2025; 766:151852. [PMID: 40300337 DOI: 10.1016/j.bbrc.2025.151852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/21/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025]
Abstract
Biodegradable scaffolds have significant potential for directed tissue regeneration in craniofacial and oral applications and bone regeneration. We designed an innovative cerium-altered/collagen-clacked polycaprolactone/poly-lactic-co-glycolic acid (PC/PL) electrospun scaffolds (PC/PL-PD-Ce-CL) to address the deficiencies of existing scaffold materials regarding osteogenic and antimicrobial characteristics. Novel scaffolds were developed by electrospinning a fundamental PCL/PLGA matrix, impregnating in situ reduction with cerium nanoparticles (CeNPs), applying a polydopamine coating, and clacking with collagen. The mechanical tests and scanning electron microscope demonstrated that the distinctive NSs preserved their tensile strength and elasticity modulus post-modification. The cell proliferation CCK-8 assay indicated that the PC/PL-PD-Ce-CL NSs exhibited a superior MG63 cell proliferation and cell adhesion ratio compared to the rest of the NSs. The alkaline phosphatase (ALP) activity and the expression levels of BMP2 and RUNX2 in MG63 cells cultivated on PC/PL-PD-Ce-CL NSs for 7 and 14 days were considerably elevated compared to the controls. The PC/PL-PD-Ce-CL and PC/PL-PD-Ce NSs exhibited a broader antibacterial zone compared to the control NSs, and bacterial fluorescence diminished on the Ce-altered NSs of incubation with S. mutans and S. aureus. Our innovative PC/PL-PD-Ce-CL NSs improved cytocompatibility, osteogenesis, and antibacterial capabilities, demonstrating their promising therapeutic applications for orofacial treatment.
Collapse
Affiliation(s)
- Chang Luo
- Oral and Maxillofacial Surgery Department, Shaoxing Stomatological Hospital, Shaoxing, 51000, China
| | - Cheng Kang
- Oral and Maxillofacial Surgery Department, Shaoxing Stomatological Hospital, Shaoxing, 51000, China
| | - Shi Qiu
- Oral and Maxillofacial Surgery Department, Shaoxing Stomatological Hospital, Shaoxing, 51000, China
| | - Weiming Wang
- Pathology Department, Shaoxing People's Hospital, Shaoxing, 51000, China
| | - Yiyi Lou
- Oral and Maxillofacial Surgery Department, Shaoxing Stomatological Hospital, Shaoxing, 51000, China
| | - Xiaofei Wang
- Oral and Maxillofacial Surgery Department, Shaoxing Stomatological Hospital, Shaoxing, 51000, China
| | - Ting Zhu
- Oral and Maxillofacial Surgery Department, Shaoxing Stomatological Hospital, Shaoxing, 51000, China.
| |
Collapse
|
4
|
Valizadeh R, Amirazad H, Fayeghi T, Mousazadeh H, Zarghami N, Ebrahimi-Kalan A, Alizadeh E. An update on the effect of metals on stemness properties of mesenchymal stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:44. [PMID: 40392257 PMCID: PMC12092507 DOI: 10.1007/s10856-025-06865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/27/2025] [Indexed: 05/22/2025]
Abstract
The metal-based devices may corrode, degrade, or release metal ions and fragments after being implanted in the body, exhibiting their own consequences on hosting organs/tissues. The biocompatibility of metal implants has been investigated in various studies using a number of cell types. Mesenchymal stem cells (MSCs) are more relevant cells than others for evaluating the cytocompatibility of metal-based orthopedic implants because they are essential cells for bone regeneration and a promising cell population in regenerative medicine. In this regard, stemness preservation of MSCs is a key property in both body's own repair process and success of renewing/compensating approaches. In general, MSCs adhesion, viability, and function at the cell-metal interface is directly dependent on the metal alloys composing elements, which, along with consideration of compatibility, could guarantee the success of implants. This review scrutinizes the effects of orthopedic metal materials on the biocompatibility and stemness of MSCs at metal interface. Additionally, in vivo, host responses to metal implants are investigated.
Collapse
Affiliation(s)
- Roya Valizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Amirazad
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahura Fayeghi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Mousazadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Lyu Z, Wu Y, Hu F, Zheng X, Ma D, Xu Z, Ding Y, Liu X, Huo S. Controlled release of ionic carrier hydrogels for sequential immunomodulation to facilitate stage-specific treatment of infectious wound. Biomaterials 2025; 322:123376. [PMID: 40349534 DOI: 10.1016/j.biomaterials.2025.123376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
Infected wounds present a significant clinical challenge, exacerbated by antibiotic resistance, which complicates effective treatment. This study introduces a hydrogel (CC/AP@CM) embedded with core-shell bioactive glass nanoparticles designed for the controlled, sequential release of copper (Cu2+) and magnesium (Mg2+) ions. The hydrogel is crosslinked via a Schiff base reaction, endowing it with injectable, self-healing, and adhesive properties. Notably, the bilayer structure of the bioactive glass within the hydrogel allows an initial release of Cu2+ ions to trigger an early-stage pro-inflammatory and antimicrobial response, followed by Mg2+ ions that support tissue repair and an anti-inflammatory environment. This design aligns with natural wound healing stages, promoting a shift in macrophage polarization from the M1 to M2 phenotype, effectively balancing antibacterial defense with tissue regeneration. The hydrogel demonstrated robust antibacterial efficacy against MRSA, increased angiogenesis, and enhanced fibroblast proliferation and migration in vitro. In a murine wound model, it significantly accelerated wound closure and immune activation, including responses from dendritic cells and T cells. These findings suggest that this hydrogel, through its stage-specific immunomodulatory properties and temporally controlled ion release, offers a promising strategy for treating complex wound infections, supporting both immune defense and tissue healing.
Collapse
Affiliation(s)
- Zhuocheng Lyu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuezhou Wu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fei Hu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xu Zheng
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dajun Ma
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhenjiang Xu
- Department of Orthopedic Surgery Spine Center Changzheng Hospital Navy Medical University, Shanghai, China
| | - Yurun Ding
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Xuesong Liu
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China.
| | - Shicheng Huo
- Department of Orthopedic Surgery Spine Center Changzheng Hospital Navy Medical University, Shanghai, China.
| |
Collapse
|
6
|
Osman H, Wang F, Zou G, Zhang D, Bai X, Jiang T, Wang Y. Antibacterial and osteogenic gain strategy on titanium surfaces for preventing implant-related infections. Colloids Surf B Biointerfaces 2025; 249:114489. [PMID: 39787742 DOI: 10.1016/j.colsurfb.2024.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
Infection and insufficient osseointegration are the primary factors leading to the failure of titanium-based implants. Surface coating modifications that combine both antibacterial and osteogenic properties are commonly employed strategies. However, the challenge of achieving rapid antibacterial action and consistent osteogenesis with these coatings remains unresolved. In this study, a functional composite coating (PDA/PPy@Cu/Dex) was prepared on titanium surfaces using layer-by-layer self-assembly and electrochemical deposition techniques. The hydroxyl groups grafted by polydopamine's (PDA) self-polymerization and the enhanced conductivity and uniform electric field distribution provided by polypyrrole (PPy) allowed for the even dispersion of copper nanoparticles and dexamethasone (Dex) on the titanium surface. This synergistically coupled the photothermal ion antibacterial properties of copper nanoparticles with the osteogenic promotion of dexamethasone. In vitro antibacterial experiments revealed that the heat generated by photothermal effects and reactive oxygen species enhanced the antibacterial activity of copper ions, reducing the antibacterial time to six h and achieving antibacterial enhancement. In vitro cell experiments showed that the long-term slow release of copper ions and dexamethasone enhanced the osteogenic differentiation of stem cells, thereby achieving osteogenic benefits. Moreover, in vivo toxicity experiments demonstrated that the composite coating had no adverse effects on normal tissues. Therefore, the antibacterial and osteogenic enhancement strategy for titanium surfaces presented in this study offers a new potential approach for preventing implant-associated infections.
Collapse
Affiliation(s)
- Henigul Osman
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, P.R. China
| | - Fan Wang
- Department of Orthopaedics, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| | - Guoming Zou
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, P.R. China
| | - Dong Zhang
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, P.R. China
| | - Xi Bai
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, P.R. China
| | - Tao Jiang
- Laboratory Animal Center of Xinjiang Medcial University, 393 Xinyi Road, Urumqi 830011, P.R. China.
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, P.R. China.
| |
Collapse
|
7
|
Wang Y, Yang C, Zhang W, Wang X, Zhao Z, Wang Z, Zhang L. Multifunctional self-healing and pH-responsive hydrogel dressing based on cationic guar gum and hyaluronic acid for on-demand drug release. Int J Biol Macromol 2025; 301:140326. [PMID: 39864699 DOI: 10.1016/j.ijbiomac.2025.140326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Pathogen invasion and persistent inflammatory storms caused by bacterial infections are the main challenges to the healing of infected wounds. Herein, this study proposed a pH-responsive polysaccharide hydrogel dressing (CG-HA) composed of cationic guar gum (CG) and hyaluronic acid (HA). Additionally, Zn2+ and ferulic acid (FA)/β-cyclodextrin (β-CD) inclusion complexes (FA/β-CD) were co-introduced into the CG-HA hydrogel to form the desired FA/β-CD@CG-HA-Zn hydrogel. The FA/β-CD@CG-HA-Zn hydrogel was constructed based on multiple non-covalent interactions, including electrostatic interactions, coordination bonds and hydrogen bonds, allowing it to conform to irregular wound shapes. Notably, the release rates of FA and Zn2+ at pH 7.5 were faster than those at pH 5.5, indicating that the FA/β-CD@CG-HA-Zn hydrogel exhibited excellent pH responsiveness and enabled intelligent drug release. Moreover, the inclusion of FA and Zn2+ endowed the hydrogel with robust antibacterial activity against S. aureus (97 %), MRSA (94 %), and E. coli (95 %). Finally, the FA/β-CD@CG-HA-Zn hydrogel demonstrated efficacy in promoting wound healing by modulating the immune microenvironment and accelerating vascularization. Thus, the developed self-healing FA/β-CD@CG-HA-Zn hydrogel with pH-triggered on-demand drug release is a promising wound dressing for the management of infected wounds.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Chufan Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Weigang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China.
| | - Zhenyu Wang
- Key Laboratory of Biodiversity Conservation and Bioresources Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330000, China.
| | - Lingling Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
8
|
Zhai Y, Liang Z, Liu X, Zhang W. Employing Copper-Based Nanomaterials to Combat Multi-Drug-Resistant Bacteria. Microorganisms 2025; 13:708. [PMID: 40284546 PMCID: PMC12029963 DOI: 10.3390/microorganisms13040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 04/29/2025] Open
Abstract
The rise of multi-drug-resistant (MDR) bacteria poses a severe global threat to public health, necessitating the development of innovative therapeutic strategies to overcome these challenges. Copper-based nanomaterials have emerged as promising agents due to their intrinsic antibacterial properties, cost-effectiveness, and adaptability for multifunctional therapeutic approaches. These materials exhibit exceptional potential in advanced antibacterial therapies, including chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT). Their unique physicochemical properties, such as controlled ion release, reactive oxygen species (ROS) generation, and tunable catalytic activity, enable them to target MDR bacteria effectively while minimizing off-target effects. This paper systematically reviews the mechanisms through which Cu-based nanomaterials enhance antibacterial efficiency and emphasizes their specific performance in the antibacterial field. Key factors influencing their antibacterial properties-such as electronic interactions, photothermal characteristics, size effects, ligand effects, single-atom doping, and geometric configurations-are analyzed in depth. By uncovering the potential of copper-based nanomaterials, this work aims to inspire innovative approaches that improve patient outcomes, reduce the burden of bacterial infections, and enhance global public health initiatives.
Collapse
Affiliation(s)
- Yujie Zhai
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China;
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China;
| | - Zhuxiao Liang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China;
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China;
| | - Weiqing Zhang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China;
| |
Collapse
|
9
|
Wang F, Wang X, Li S, Yang Q, Mu H, Li J, Yang Y. Chitosan and gelatin based sprayable hydrogels incorporating photothermal and long-acting antibiotic sterilization for infected wound management with shape adaptability. Carbohydr Polym 2025; 350:123046. [PMID: 39647949 DOI: 10.1016/j.carbpol.2024.123046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Severe skin damage resulting from acute trauma is often accompanied by uncontrolled bleeding, microbial infections, and delayed wound healing. Herein, multifunctional sprayable hydrogels (CT-CS-ZIF@CIP Gel) were developed for wound management by incorporating antibacterial nanoplatforms (CT-CS-ZIF@CIP) into photocurable gels consisting of chitosan methacrylate and gallic acid grafted gelatin. The nanoplatform was initially constructed by sequentially loading Cu2Se (CS) and ciprofloxacin-decorated zeolitic imidazolate framework-8 (ZIF@CIP) onto Cu-doped Ti MOF (CT), in which CS served as a photothermal agent, ZIF enabled pH-responsive release of CIP, and CT acted as carriers for CS and ZIF@CIP. The hydrogel precursor can be sprayed onto wound surface and photocured quickly, allowing hydrogel to fit the wound shape and form a protective barrier onsite. The resultant hydrogel exhibited excellent hemostatic ability, adhesion properties, cytocompatibility and toxin adsorption capacity. By integrating CS for short-term photothermal therapy with CIP for long-acting chemotherapy, the CT-CS-ZIF@CIP Gel demonstrated 100 % sterilization of three bacterial strains. Furthermore, moderate release of zinc and copper ions promoted wound healing. The therapeutic efficacy of hydrogel was validated in an infected cutaneous mouse model. Overall, this work presents a versatile sprayable hydrogel that can be flexibly applied to irregular dynamic wounds for safe and effective wound management.
Collapse
Affiliation(s)
- Fei Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China; College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xing Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siwei Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qisen Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haibo Mu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| | - Yu Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| |
Collapse
|
10
|
Teng Y, Wang X, Song L, Yang J, Hou S, Lv Q, Jiang L, Guan Y, Shi J. 3D printed polycaprolactone/poly (L-lactide-co- ϵ-caprolactone) composite ureteral stent with biodegradable and antibacterial properties. Biomed Mater 2025; 20:025026. [PMID: 39908677 DOI: 10.1088/1748-605x/adb2ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
The clinical application of biodegradable ureteral stents holds significant potential. There is an urgent need to develop new materials for ureteral stents to address the limitations related to performance degradation and antibacterial properties observed in current designs. Here, we developed a Polycaprolactone (PCL)/Poly (L-lactide-co-ϵ-caprolactone) (PLCL) composite ureteral stent by three-dimensional (3D) printing, which exhibits biodegradable and antibacterial properties. Silver nanoparticles (AgNPs) were bonded to the surface of the stent through the polymerization of dopamine (PDA) and coating with type I collagen (Col I). The ureteral stent (PP-PDA-Ag-Col) had a densely spiraled structure and higher hydrophilicity. The release behavior of silver ions from the stent was found to be slow and continuous when coated with AgNPs, which can enable long-term antibacterial effects after being implantedin vivo. Additionally,in vitrodegradation experiments demonstrated that the different ratios of ureteral stents degraded slowly in artificial urine over 6 weeks without compromising functionality. The stent exhibits excellent hemocompatibility and cell compatibility. The subcutaneous implantation experiment in Sprague-Dawley rats showed that the PP-PDA-Ag-Col stent degraded slowlyin vivoand had good biocompatibility. The stent PCL5/PLCL5 was the most promising ureteral stent regarding antibacterial, mechanical properties, and degradation. The novel 3D-printed PP-PDA-Ag-Col stent exhibits biocompatibility for safein vivotransplantation and antibacterial properties that reduce reliance on antibiotics. Additionally, its biodegradability eliminates the need for secondary surgical removal, making it a promising option for the clinical application of ureteral stents.
Collapse
Affiliation(s)
- Yanjiao Teng
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, People's Republic of China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, People's Republic of China
| | - Xinyan Wang
- Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin 300074, People's Republic of China
- Department of Urology, Dalian Women and Children's Medical Group, Dalian 116037, People's Republic of China
| | - Lin Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210000, People's Republic of China
| | - Jianing Yang
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, People's Republic of China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, People's Republic of China
| | - Shike Hou
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, People's Republic of China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, People's Republic of China
| | - Qi Lv
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, People's Republic of China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, People's Republic of China
| | - Li Jiang
- Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin 300021, People's Republic of China
| | - Yong Guan
- Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin 300074, People's Republic of China
| | - Jie Shi
- School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, People's Republic of China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, People's Republic of China
| |
Collapse
|
11
|
Anand A, Sengupta S, Galusek D, Beltrán AM, Galusková D, Boccaccini AR. A new approach to overcome cytotoxic effects of Cu by delivering dual therapeutic ions (Sr, Cu). J Trace Elem Med Biol 2025; 87:127565. [PMID: 39675135 DOI: 10.1016/j.jtemb.2024.127565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION The incorporation of trace elements such as strontium (Sr) and copper (Cu) in the composition of mesoporous bioactive glass (MBG) is widely known to enhance its biological functionality for bone tissue regeneration METHODS: Two MBG powders with the composition 80SiO2-11CaO-5P2O5-xCuO/SrO, one doped with 4 mol.% of CuO, the second with 4 mol.% of SrO were blended in the weight ratios of Cu-MBG: Sr-MBG; 100:0, 70: 30, 50: 50, 30: 70 and 0:100 aiming at minimizing Cu to minimize the cytotoxicity of Cu while preserving its antimicrobial activity. The synergistic effects of Sr and Cu ions on bioactivity, cytotoxicity, and antimicrobial activity were studied. RESULTS Transmission electron microscopy (TEM) examination of Cu-MBG and Sr-MBG showed fringes related to the development of a mesoporous structure. The specific surface area values of the Cu-MBG and Sr-MBG powders were 287 and 349 m2/g, respectively. A characteristic compact layer consisting of particles with platelet-like morphology commonly associated with HAp crystals was confirmed after 7 days soaking in simulated body fluid (SBF). Mouse preosteoblast cells (MC3T3-E1) exhibited higher cell viability when exposed to a 1 % w/v eluate from blended Cu-MBG powders compared to pure Cu-MBG. Notably, the Cu-MBG: Sr-MBG ratio of 30:70 exhibited cell viability of around 85 % at this concentration. A higher cell viability (above 100 %) towards MC3T3-E1 cells was observed for all powders when tested with the 0.1 % w/v eluate. With progressive increase in the amount of Cu-MBG in the blended system the bacterial inhibitory effects were more pronounced. The Cu ions released from Cu-MBG generate hydroxyl ions and increase the pH leading to disruption of the cellular membrane of microbes, resulting in enhanced antimicrobial activity. CONCLUSION This newly developed blended system composed of Cu and Sr doped MBGs is expected to be more effective as bioactive filler in comparison to single ion doped MBGs for bone tissue engineering applications.
Collapse
Affiliation(s)
- Akrity Anand
- Centre for Functional and Surface Functionalized Glass, TnUAD, Trenčín 911 50, Slovakia; Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen 91058, Germany.
| | - Susanta Sengupta
- Centre for Functional and Surface Functionalized Glass, TnUAD, Trenčín 911 50, Slovakia; Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Dušan Galusek
- Centre for Functional and Surface Functionalized Glass, TnUAD, Trenčín 911 50, Slovakia; Joint Glass Centre of the IIC SAS, TnUAD, and FChPT STU, Trenčín 91150, Slovakia
| | - Ana M Beltrán
- Departamento de Ingenieria y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Uni-versidad de Sevilla, Seville 41011, Spain
| | - Dagmar Galusková
- Centre for Functional and Surface Functionalized Glass, TnUAD, Trenčín 911 50, Slovakia.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen 91058, Germany.
| |
Collapse
|
12
|
Yu Z, Wang Z, Chen Y, Wang Y, Tang L, Xi Y, Lai K, Zhang Q, Li S, Xu D, Tian A, Wu M, Wang Y, Yang G, Gao C, Huang T. Programmed surface platform orchestrates anti-bacterial ability and time-sequential bone healing for implant-associated infection. Biomaterials 2025; 313:122772. [PMID: 39190942 DOI: 10.1016/j.biomaterials.2024.122772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Implant-associated infection (IAI) has become an intractable challenge in clinic. The healing of IAI is a complex physiological process involving a series of spatiotemporal connected events. However, existing titanium-based implants in clinic suffer from poor antibacterial effect and single function. Herein, a versatile surface platform based on the presentation of sequential function is developed. Fabrication of titania nanotubes and poly-γ-glutamic acid (γ-PGA) achieves the efficient incorporation of silver ions (Ag+) and the pH-sensitive release in response to acidic bone infection microenvironment. The optimized PGA/Ag platform exhibits satisfactory biocompatibility and converts macrophages from pro-inflammatory M1 to pro-healing M2 phenotype during the subsequent healing stage, which creates a beneficial osteoimmune microenvironment and promotes angio/osteogenesis. Furthermore, the PGA/Ag platform mediates osteoblast/osteoclast coupling through inhibiting CCL3/CCR1 signaling. These biological effects synergistically improve osseointegration under bacterial infection in vivo, matching the healing process of IAI. Overall, the novel integrated PGA/Ag surface platform proposed in this study fulfills function cascades under pathological state and shows great potential in IAI therapy.
Collapse
Affiliation(s)
- Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Zhaolong Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yitong Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Yuchen Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Like Tang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Yue Xi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Qi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Shuangyang Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Danyu Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Anrong Tian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Mengjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Tingben Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
13
|
Oheix E, Daou TJ, Pieuchot L. Antimicrobial zeolites and metal-organic frameworks. MATERIALS HORIZONS 2024; 11:6222-6256. [PMID: 39291597 DOI: 10.1039/d4mh00259h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The current surge in antibiotic resistance and the emergence of pandemics have created an urgent need for novel antimicrobial strategies. The controlled release of antimicrobial active principles remains the most viable strategy to date, and transition metal ions currently represent the main alternative to antibiotics. In this review, we explore the potential of two types of materials, zeolites and metal-organic frameworks (MOFs), for the controlled release of antimicrobial active principles, notably transition metal ions. These materials have unique crystalline microporous structures that act as reservoirs, enabling sustained bactericidal effects in various applications such as coatings, packaging, and medical devices. However, there are currently no convenient and standardised methods for evaluating their metal ion release and antimicrobial efficacy. This work discusses analytical techniques and the proposed mechanisms of action while highlighting recent advances in film, membrane, and coating technologies. By addressing the current limitations, microporous materials can revolutionise antimicrobial approaches, offering enhanced effectiveness and long-term sustainability.
Collapse
Affiliation(s)
- Emmanuel Oheix
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| | - T Jean Daou
- Aptar CSP Technologies, 9 rue du Sandholz, Niederbronn les Bains, France.
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| |
Collapse
|
14
|
Li XM, Shi ZZ, Tuoliken A, Gou W, Li CH, Wang LN. Highly plastic Zn-0.3Ca alloy for guided bone regeneration membrane: Breaking the trade-off between antibacterial ability and biocompatibility. Bioact Mater 2024; 42:550-572. [PMID: 39308544 PMCID: PMC11416609 DOI: 10.1016/j.bioactmat.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
A common problem for Zn alloys is the trade-off between antibacterial ability and biocompatibility. This paper proposes a strategy to solve this problem by increasing release ratio of Ca2+ ions, which is realized by significant refinement of CaZn13 particles through bottom circulating water-cooled casting (BCWC) and rolling. Compared with conventionally fabricated Zn-0.3Ca alloy, the BCWC-rolled alloy shows higher antibacterial abilities against E. coli and S. aureus, meanwhile much less toxicity to MC3T3-E1 cells. Additionally, plasticity, degradation uniformity, and ability to induce osteogenic differentiation in vitro of the alloy are improved. The elongation up to 49 %, which is the highest among Zn alloys with Ca, and is achieved since the sizes of CaZn13 particles and Zn grains are small and close. As a result, the long-standing problem of low formability of Zn alloys containing Ca has also been solved due to the elimination of large CaZn13 particles. The BCWC-rolled alloy is a promising candidate of making GBR membrane.
Collapse
Affiliation(s)
- Xiang-Min Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhang-Zhi Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| | - Ayisulu Tuoliken
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Gou
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chang-Heng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lu-Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advance Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China
| |
Collapse
|
15
|
Zhong W, Handschuh-Wang S, Uthappa UT, Shen J, Qiu M, Du S, Wang B. Miniature Robots for Battling Bacterial Infection. ACS NANO 2024; 18:32335-32363. [PMID: 39527542 DOI: 10.1021/acsnano.4c11430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Micro/nanorobots have shown great promise for minimally invasive bacterial infection therapy. However, bacterial infections usually form biofilms inside the body by aggregation and adhesion, preventing antibiotic penetration and increasing the likelihood of recurrence. Moreover, a substantial portion of the infection happens in those hard-to-access regions, making delivery of antibiotics to infected sites or tissues difficult and exacerbating the challenge of addressing bacterial infections. Micro/nanorobots feature exceptional mobility and controllability, are able to deliver drugs to specific sites (targeted delivery), and enhance drug penetration. In particular, the emergence of bioinspired microrobot surface design strategies have provided effective alternatives for treating infections, thereby preventing the possible development of bacterial resistance. In this paper, we review the recent advances in design, mechanism, and actuation modalities of micro/nanorobots with exceptional antimicrobial features, highlighting active therapy strategies for bacterial infections and derived complications at various organs, from the laboratory bench to in vivo applications. The current challenges and future research directions in this field are summarized. Those breakthroughs in micro/nanorobots offer a huge potential for clinical translation for bacterial infection therapy.
Collapse
Affiliation(s)
- Weijie Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
16
|
Chen J, Xing X, Liu D, Gao L, Liu Y, Wang Y, Cheng H. Copper nanoparticles incorporated visible light-curing chitosan-based hydrogel membrane for enhancement of bone repair. J Mech Behav Biomed Mater 2024; 158:106674. [PMID: 39088942 DOI: 10.1016/j.jmbbm.2024.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Alveolar bone defects caused by tumor, trauma and inflammation can lead to the loss of oral function and complicate denture restoration. Currently, guided bone regeneration (GBR) barrier membranes for repairing bone defect cannot effectively promote bone regeneration due to their unstable degradation rate and poor antibacterial properties. Furthermore, they require additional tailoring before implantation. Therefore, this study developed a visible light-curing hydrogel membrane (CF-Cu) comprising methacrylated carboxymethyl chitosan (CMCS-MA), silk fibroin (SF), and copper nanoparticles (Cu NPs) to address these shortcomings of commercial membranes. The CF-Cu hydrogel, characterized by scanning electron microscopy (SEM), a universal testing machine, and swelling and degradation tests, demonstrated a smooth porous network structure, suitable swelling ratio, biodegradability, and enhanced mechanical strength. Cytotoxicity and hemolysis tests in vitro demonstrated excellent cyto- and hemo-compatibility of the CF-Cu hydrogel extracts. Additionally, evaluation of antibacterial properties in vitro, including colony forming unit (CFU) counts, MTT assays, and live/dead fluorescence staining, showed that the CF-Cu hydrogel exhibited excellent antibacterial properties, inhibiting over 80% of S. aureus, S. mutans, and P. gingivalis with CF-1Cu hydrogel compared to the control group. Moreover, evaluation of osteogenic differentiation of rBMSCs in vitro suggested that the CF-1Cu hydrogel significantly improved alkaline phosphatase (ALP) activity and the mineralization of extracellular matrix, up-regulating the expressions of osteogenesis-related genes (Runx2, ALP, Col-1, OPN and BSP). In summary, these results indicated that CF-1Cu hydrogel exhibited excellent cytocompatibility, antibacterial and osteogenic properties in vitro. Therefore, the CF-1Cu hydrogel holds potential as a viable material for application in GBR procedures aimed at addressing bone defects.
Collapse
Affiliation(s)
- Jinbing Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Xiaojie Xing
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Dingkun Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Linjuan Gao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Yuan Liu
- Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian, 350002, China
| | - Yinghui Wang
- Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian, 350002, China.
| | - Hui Cheng
- Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
17
|
Behjat A, Sanaei S, Mosallanejad MH, Atapour M, Sheikholeslam M, Saboori A, Iuliano L. A novel titanium alloy for load-bearing biomedical implants: Evaluating the antibacterial and biocompatibility of Ti536 produced via electron beam powder bed fusion additive manufacturing process. BIOMATERIALS ADVANCES 2024; 163:213928. [PMID: 38941776 DOI: 10.1016/j.bioadv.2024.213928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Additive manufacturing (AM) of Ti-based biomedical implants is a pivotal research topic because of its ability to produce implants with complicated geometries. Despite desirable mechanical properties and biocompatibility of Ti alloys, one major drawback is their lack of inherent antibacterial properties, increasing the risk of postoperative infections. Hence, this research focuses on the Ti536 (Ti5Al3V6Cu) alloy, developed through Electron Beam Powder Bed Fusion (EB-PBF), exploring bio-corrosion, antibacterial features, and cell biocompatibility. The microstructural characterization revealed grain refinement and the formation of Ti2Cu precipitates with different morphologies and sizes in the Ti matrix. Electrochemical tests showed that Cu content minimally influenced the corrosion current density, while it slightly affected the stability, defect density, and chemical composition of the passive film. According to the findings, the Ti536 alloy demonstrated enhanced antibacterial properties without compromising its cell biocompatibility and corrosion behavior, thanks to Ti2Cu precipitates. This can be attributed to both the release of Cu ions and the Ti2Cu precipitates. The current study suggests that the EB-PBF fabricated Ti536 sample is well-suited for use in load-bearing applications within the medical industry. This research also offers an alloy design roadmap for novel biomedical Ti-based alloys with superior biological performance using AM methods.
Collapse
Affiliation(s)
- Amir Behjat
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Saber Sanaei
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Hossein Mosallanejad
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Masoud Atapour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Abdollah Saboori
- Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Luca Iuliano
- Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
18
|
Pryjmaková J, Vokatá B, Šlouf M, Hubáček T, Martínez-García P, Rebollar E, Slepička P, Siegel J. Silver-enriched microdomain patterns as advanced bactericidal coatings for polymer-based medical devices. Colloids Surf B Biointerfaces 2024; 242:114067. [PMID: 38981327 DOI: 10.1016/j.colsurfb.2024.114067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Today, it would be difficult for us to live a full life without polymers, especially in medicine, where its applicability is constantly expanding, giving satisfactory results without any harm effects on health. This study focused on the formation of hexagonal domains doped with AgNPs using a KrF excimer laser (λ=248 nm) on the polyetheretherketone (PEEK) surface that acts as an unfailing source of the antibacterial agent - silver. The hexagonal structure was formed with a grid placed in front of the incident laser beam. Surfaces with immobilized silver nanoparticles (AgNPs) were observed by AFM and SEM. Changes in surface chemistry were studied by XPS. To determine the concentration of released Ag+ ions, ICP-MS analysis was used. The antibacterial tests proved the antibacterial efficacy of Ag-doped PEEK composites against Escherichia coli and Staphylococcus aureus as the most common pathogens. Because AgNPs are also known for their strong toxicity, we also included cytotoxicity tests in this study. The findings presented here contribute to the advancement of materials design in the biomedical field, offering a novel starting point for combating bacterial infections through the innovative integration of AgNPs into inert synthetic polymers.
Collapse
Affiliation(s)
- Jana Pryjmaková
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic.
| | - Barbora Vokatá
- Department of Microbiology, University of Chemistry and Technology Prague, Prague 166 28, Czech Republic.
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, Prague 162 06, Czech Republic.
| | - Tomáš Hubáček
- Biology Centre of the Czech Academy of Sciences, SoWa National Research Infrastructure, Na Sádkách 7, České Budějovice 370 05, Czech Republic.
| | - Patricia Martínez-García
- Depto. Física Interdisciplinar, Universidad Nacional de Educación a Distancia (UNED), Las Rozas de Madrid 28232, Spain; NANOesMAT, UNED, Unidad Asociada al CSIC por el IEM y el IQF, Las Rozas de Madrid 28232, Spain.
| | - Esther Rebollar
- Instituto de Química Física Blas Cabrera, IQF-CSIC, Calle de Serrano 119, Madrid 28006, Spain.
| | - Petr Slepička
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic.
| | - Jakub Siegel
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 166 28, Czech Republic.
| |
Collapse
|
19
|
Li Y, Lu J, Shi J, Zhang L, Mu H, Cui T. Carboxymethyl chitosan nanoparticle-modulated cationic hydrogels doped with copper ions for combating bacteria and facilitating wound healing. Front Bioeng Biotechnol 2024; 12:1429771. [PMID: 39372435 PMCID: PMC11449867 DOI: 10.3389/fbioe.2024.1429771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
The simultaneous administration of antibacterial treatment and acceleration of tissue regeneration are crucial for the effective healing of infected wounds. In this work, we developed a facile hydrogel (PCC hydrogel) through coordination and hydrogen interactions by polymerizing acrylamide monomers in the presence of carboxymethyl chitosan nanoparticles and copper ions. The prepared PCC hydrogel demonstrated effective bacterial capture from wound exudation and exhibited a potent bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Furthermore, slow release of copper ions from the hydrogel facilitated wound healing by promoting cell migration, collagen deposition and angiogenesis. Additionally, the PCC hydrogel possessed excellent biocompatibility and hemostatic properties. The practical effectiveness of PCC hydrogel in addressing bacterial infections and facilitating wound healing was verified using a mouse model of MRSA-induced wound infections. Overall, this work presents a simple yet efficient multifunctional hydrogel platform that integrates antibacterial activity, promotion of wound healing, and hemostasis for managing bacteria-associated wounds.
Collapse
Affiliation(s)
- Yaqin Li
- Xinjiang Xinhe Zhitong Technology Service Co. Ltd., Urumqi, China
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianping Lu
- Xinjiang Xinhe Zhitong Biotechnology Co. Ltd., Urumqi, China
| | - Jingru Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingjiao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Haibo Mu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Cui
- Karamay Central Hospital of Xinjiang, Karamay, China
| |
Collapse
|
20
|
Meng F, Du Y. Research Progress on Laser Powder Bed Fusion Additive Manufacturing of Zinc Alloys. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4309. [PMID: 39274701 PMCID: PMC11395926 DOI: 10.3390/ma17174309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
Zinc, along with magnesium and iron, is considered one of the most promising biodegradable metals. Compared with magnesium and iron, pure Zn exhibits poor mechanical properties, despite its mild biological corrosion behavior and beneficial biocompatibility. Laser powder bed fusion (LPBF), unlike traditional manufacturing techniques, has the capability to rapidly manufacture near-net-shape components. At present, although the combination of LPBF and Zn has made great progress, it is still in its infancy. Element loss and porosity are common processing problems for LPBF Zn, mainly due to evaporation during melting under a high-energy beam. The formation quality and properties of the final material are closely related to the alloy composition, design and processing. This work reviews the state of research and future perspective on LPBF zinc from comprehensive assessments such as powder characteristics, alloy composition, processing, formation quality, microstructure, and properties. The effects of powder characteristics, process parameters and evaporation on formation quality are introduced. The mechanical, corrosion, and biocompatibility properties of LPBF Zn and their test methodologies are introduced. The effects of microstructure on mechanical properties and corrosion properties are analyzed in detail. The practical medical application of Zn is introduced. Finally, current research status is summarized together with suggested directions for advancing knowledge about LPBF Zn.
Collapse
Affiliation(s)
- Fuxiang Meng
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yulei Du
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
21
|
Popova A, Advakhova DY, Sheveyko AN, Kuptsov KA, Slukin P, Ignatov SG, Ilnitskaya A, Timoshenko RV, Erofeev AS, Kuchmizhak AA, Subramanian B, Shtansky DV. Synergistic Bactericidal Effect of Zn 2+ Ions and Reactive Oxygen Species Generated in Response to Either UV or X-ray Irradiation of Zn-Doped Plasma Electrolytic Oxidation TiO 2 Coatings. ACS APPLIED BIO MATERIALS 2024; 7:5579-5596. [PMID: 39012035 DOI: 10.1021/acsabm.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Zn-containing TiO2-based coatings with Na, Ca, Si, and K additives were obtained by plasma electrolytic oxidation (PEO) of Ti in order to achieve an effective and broad bactericidal protection without compromising biocompatibility. A protocol has been developed for cleaning the coating surface from electrolyte residues, ensuring the preservation of the microstructure and composition of the surface layer. Using high-resolution transmission electron microscopy, three characteristic microstructural zones in the PEO-Zn coating are well documented: zone 1 with a TiO2-based nanocrystalline structure, zone 2 with an amorphous structure, and zone 3 around pores with an amorphous-nanocrystalline structure. The excellent cytocompatibility of PEO-Zn samples was confirmed by three different methods: monitoring the proliferation of MC3T3-E1 cells, assessing the viability of sheep osteoblast cells using calcein-AM staining and fluorescence microscopy, and incubation with spheroids based on primary osteoblast cells and mouse embryonic fibroblast NIH3T3 cells. The PEO-Zn coatings absorb >60% of the incident light over the UV and Vis-NIR spectral ranges. After 24 h, the PEO-Zn coatings completely inactivate four types of strains: Gram-positive Staphylococcus aureus CSA154 and ATCC29213 and Gram-negative Escherichia coli K261 and U20, and also prevent E. coli U20 and K261 biofilm formation. The superior antibacterial activity is associated with the synergistic effect of Zn2+ ions in safe concentration and reactive oxygen species (ROS) generated in response to either UV irradiation or soft short-term X-ray irradiation. The X-ray irradiation-induced ROS formation by a PEO coating is reported for the first time. The enhanced bactericidal activity after X-ray irradiation compared to UV illumination is attributed to the more intense ROS generation in the first few hours. The results obtained significantly expand the possibilities of using PEO coatings on the surfaces of titanium implants.
Collapse
Affiliation(s)
- Anastasiya Popova
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Darya Yu Advakhova
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | | | | | - Pavel Slukin
- National University of Science and Technology "MISIS", Moscow 119049, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia
| | - Sergei G Ignatov
- National University of Science and Technology "MISIS", Moscow 119049, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk 142279, Russia
| | - Alla Ilnitskaya
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Roman V Timoshenko
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Alexander S Erofeev
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Aleksandr A Kuchmizhak
- Institute for Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
- Pacific Quantum Center, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Balasubramanian Subramanian
- Electroplating and Metal Finishing Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow 119049, Russia
| |
Collapse
|
22
|
Li Y, Wang Y, Ding Y, Fan X, Ye L, Pan Q, Zhang B, Li P, Luo K, Hu B, He B, Pu Y. A Double Network Composite Hydrogel with Self-Regulating Cu 2+/Luteolin Release and Mechanical Modulation for Enhanced Wound Healing. ACS NANO 2024; 18:17251-17266. [PMID: 38907727 DOI: 10.1021/acsnano.4c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Designing adaptive and smart hydrogel wound dressings to meet specific needs across different stages of wound healing is crucial. Here, we present a composite hydrogel, GSC/PBE@Lut, that offers self-regulating release of cupric ions and luteolin and modulates mechanical properties to promote chronic wound healing. The double network hydrogel, GSC, is fabricated through photo-cross-linking of gelatin methacrylate, followed by Cu2+-alginate coordination cross-linking. On one hand, GSC allows for rapid Cu2+ release to eliminate bacteria in the acidic pH environment during inflammation and reduces the hydrogel's mechanical strength to minimize tissue trauma during early dressing changes. On the other hand, GSC enables slow Cu2+ release during the proliferation stage, promoting angiogenesis and biocompatibility. Furthermore, the inclusion of pH- and reactive oxygen species (ROS)-responsive luteolin nanoparticles (PBE@Lut) in the hydrogel matrix allows for controlled release of luteolin, offering antioxidant and anti-inflammatory effects and promoting anti-inflammatory macrophage polarization. In a murine model of Staphylococcus aureus infected wounds, GSC/PBE@Lut demonstrates exceptional therapeutic benefits in antibacterial, anti-inflammatory, angiogenic, and tissue regeneration. Overall, our results suggest that smart hydrogels with controlled bioactive agent release and mechanical modulation present a promising solution for treating chronic wounds.
Collapse
Affiliation(s)
- Yue Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yunpeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Liansong Ye
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Comfort Care Dental Center, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
23
|
Cao Y, Wang H, Cao S, Liu Z, Zhang Y. Preparation and Characterization of Nanofiber Coatings on Bone Implants for Localized Antimicrobial Activity Based on Sustained Ion Release and Shape-Preserving Design. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2584. [PMID: 38893848 PMCID: PMC11173675 DOI: 10.3390/ma17112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Titanium (Ti), as a hard tissue implant, is facing a big challenge for rapid and stable osseointegration owing to its intrinsic bio-inertness. Meanwile, surface-related infection is also a serious threat. In this study, large-scale quasi-vertically aligned sodium titanate nanowire (SNW) arrayed coatings incorporated with bioactive Cu2+ ions were fabricated through a compound process involving acid etching, hydrothermal treatment (HT), and ion exchange (IE). A novel coating based on sustained ion release and a shape-preserving design is successfully obtained. Cu2+ substituted Na+ in sodium titanate lattice to generate Cu-doped SNW (CNW), which maintains the micro-structure and phase components of the original SNW, and can be efficiently released from the structure by immersing them in physiological saline (PS) solutions, ensuring superior long-term structural stability. The synergistic effects of the acid etching, bidirectional cogrowth, and solution-strengthening mechanisms endow the coating with higher bonding strengths. In vitro antibacterial tests demonstrated that the CNW coatings exhibited effective good antibacterial properties against both Gram-positive and Gram-negative bacteria based on the continuous slow release of copper ions. This is an exciting attempt to achieve topographic, hydrophilic, and antibacterial activation of metal implants, demonstrating a paradigm for the activation of coatings without dissolution and providing new insights into insoluble ceramic-coated implants with high bonding strengths.
Collapse
Affiliation(s)
- Yubao Cao
- School of Machinery and Automation, Weifang University, Weifang 261061, China
| | - Hong Wang
- School of Machinery and Automation, Weifang University, Weifang 261061, China
| | - Shuyun Cao
- School of Machinery and Automation, Weifang University, Weifang 261061, China
| | - Zaihao Liu
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanni Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
24
|
Tummino ML, Cruz-Maya I, Varesano A, Vineis C, Guarino V. Keratin/Copper Complex Electrospun Nanofibers for Antibacterial Treatments: Property Investigation and In Vitro Response. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2435. [PMID: 38793501 PMCID: PMC11123490 DOI: 10.3390/ma17102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The frontiers of antibacterial materials in the biomedical field are constantly evolving since infectious diseases are a continuous threat to human health. In this work, waste-wool-derived keratin electrospun nanofibers were blended with copper by an optimized impregnation procedure to fabricate antibacterial membranes with intrinsic biological activity, excellent degradability and good cytocompatibility. The keratin/copper complex electrospun nanofibers were multi-analytically characterized and the main differences in their physical-chemical features were related to the crosslinking effect caused by Cu2+. Indeed, copper ions modified the thermal profiles, improving the thermal stability (evaluated by differential scanning calorimetry and thermogravimetry), and changed the infrared vibrational features (determined by infrared spectroscopy) and the chemical composition (studied by an X-ray energy-dispersive spectroscopy probe and optical emission spectrometry). The copper impregnation process also affected the morphology, leading to partial nanofiber swelling, as evidenced by scanning electron microscopy analyses. Then, the membranes were successfully tested as antibacterial materials against gram-negative bacteria, Escherichia coli. Regarding cytocompatibility, in vitro assays performed with L929 cells showed good levels of cell adhesion and proliferation (XTT assay), and no significant cytotoxic effect, in comparison to bare keratin nanofibers. Given these results, the material described in this work can be suitable for use as antibiotic-free fibers for skin wound dressing or membranes for guided tissue regeneration.
Collapse
Affiliation(s)
- Maria Laura Tummino
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), Corso Giuseppe Pella 16, 13900 Biella, Italy
| | - Iriczalli Cruz-Maya
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Mostra d’Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Napoli, Italy (V.G.)
| | - Alessio Varesano
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), Corso Giuseppe Pella 16, 13900 Biella, Italy
| | - Claudia Vineis
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), Corso Giuseppe Pella 16, 13900 Biella, Italy
| | - Vincenzo Guarino
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy (CNR), Mostra d’Oltremare, Pad. 20, V. le J.F. Kennedy 54, 80125 Napoli, Italy (V.G.)
| |
Collapse
|
25
|
Cao L, Tan L, Li L. Metal copper and silver revealed potent antimicrobial activity for treating Caenorhabditis elegans infected with carbapenemase-producing Klebsiella pneumonia. Am J Transl Res 2024; 16:2011-2023. [PMID: 38883387 PMCID: PMC11170617 DOI: 10.62347/dieo8870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES The increasing issue of bacterial resistance, coupled with inadequate progress in developing new antibiotics, necessitates exploring alternative treatments. Antibacterial biomaterials, such as silver and copper, possess advantageous properties such as heat resistance, durability, continuity, and safety. Particularly, they can effectively eliminate pathogenic bacteria while preserving cellular integrity, emphasizing the necessity of identifying optimal metal ion concentrations for practical application. Caenorhabditis elegans (C. elegans) can serve as a noteworthy model in this context. This study employed a C. elegans infection model to assess the efficacy of antibacterial metal ions. METHODS Hematoxylin-eosin (HE) staining and inductively coupled plasma mass spectrometry (ICP-MS) assay were utilized to determine the toxic levels of metal ions in mice. Additionally, RNA sequencing (RNA-seq) and assessment of reactive oxygen species (ROS) production in the C. elegans model were conducted to elucidate the mechanisms underlying metal ion toxicity. RESULTS Silver ion concentrations ranging from 10-6 to 10-7 M and copper ion concentrations ranging from 10-4 to 10-5 M exhibited antimicrobial properties without eliciting cytotoxic effects. Analysis of the transcriptome data derived from mRNA isolated from C. elegans indicated that CRKP infection activated the FoxO signaling pathway, potentially leading to ROS accumulation and C. elegans demise. CONCLUSIONS In conclusion, C. elegans serves as a comprehensive infection model for assessing antibacterial metal ions.
Collapse
Affiliation(s)
- Ling Cao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Nanchang University (The First Hospital of Nanchang) Nanchang 330008, Jiangxi, P. R. China
| | - Lili Tan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Nanchang University (The First Hospital of Nanchang) Nanchang 330008, Jiangxi, P. R. China
| | - Liping Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Nanchang University (The First Hospital of Nanchang) Nanchang 330008, Jiangxi, P. R. China
| |
Collapse
|
26
|
Qi J, Yu M, Liu Y, Zhang J, Li X, Ma Z, Sun T, Liu S, Qiu Y. Polydopamine-Coated Copper-Doped Co 3O 4 Nanosheets Rich in Oxygen Vacancy on Titanium and Multimodal Synergistic Antibacterial Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2019. [PMID: 38730825 PMCID: PMC11084916 DOI: 10.3390/ma17092019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Medical titanium-based (Ti-based) implants in the human body are prone to infection by pathogenic bacteria, leading to implantation failure. Constructing antibacterial nanocoatings on Ti-based implants is one of the most effective strategies to solve bacterial contamination. However, single antibacterial function was not sufficient to efficiently kill bacteria, and it is necessary to develop multifunctional antibacterial methods. This study modifies medical Ti foils with Cu-doped Co3O4 rich in oxygen vacancies, and improves their biocompatibility by polydopamine (PDA/Cu-Ov-Co3O4). Under near-infrared (NIR) irradiation, nanocoatings can generate •OH and 1O2 due to Cu+ Fenton-like activity and a photodynamic effect of Cu-Ov-Co3O4, and the total reactive oxygen species (ROS) content inside bacteria significantly increases, causing oxidative stress of bacteria. Further experiments prove that the photothermal process enhances the bacterial membrane permeability, allowing the invasion of ROS and metal ions, as well as the protein leakage. Moreover, PDA/Cu-Ov-Co3O4 can downregulate ATP levels and further reduce bacterial metabolic activity after irradiation. This coating exhibits sterilization ability against both Escherichia coli and Staphylococcus aureus with an antibacterial rate of ca. 100%, significantly higher than that of bare medical Ti foils (ca. 0%). Therefore, multifunctional synergistic antibacterial nanocoating will be a promising strategy for preventing bacterial contamination on medical Ti-based implants.
Collapse
Affiliation(s)
- Jinteng Qi
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Miao Yu
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China (S.L.)
| | - Yi Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China (S.L.)
| | - Junting Zhang
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China (S.L.)
| | - Xinyi Li
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China (S.L.)
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Shaoqin Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China (S.L.)
| | - Yunfeng Qiu
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China (S.L.)
| |
Collapse
|
27
|
Xie Y, Cui S, Hu J, Yu H, Xuan A, Wei Y, Lian Y, Wu J, Du W, Zhang E. Design and preparation of Ti-xFe antibacterial titanium alloys based on micro-area potential difference. Biometals 2024; 37:337-355. [PMID: 37904075 DOI: 10.1007/s10534-023-00551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Fe was selected as an alloying element for the first time to prepare a new antibacterial titanium alloy based on micro-area potential difference (MAPD) antibacterial mechanism. The microstructure, the corrosion resistance, the mechanical properties, the antibacterial properties and the cell biocompatibility have been investigated in detail by optical microscopy, scanning electron microscopy, electrochemical testing, mechanical property test, plate count method and cell toxicity measurement. It was demonstrated that heat treatment had a significant on the compressive mechanical properties and the antibacterial properties. Ti-xFe (x = 3,5 and 9) alloys after 850 °C/3 h + 550 °C/62 h heat treatment exhibited strong antimicrobial properties with an antibacterial rate of more than 90% due to the MAPD caused by the redistribution of Fe element during the aging process. In addition, the Fe content and the heat treatment process had a significant influence on the mechanical properties of Ti-xFe alloy but had nearly no effect on the corrosion resistance. All Ti-xFe alloys showed non-toxicity to the MC3T3 cell line in comparison with cp-Ti, indicating that the microzone potential difference had no adverse effect on the corrosion resistance, cell proliferation, adhesion, and spreading. Strong antibacterial properties, good cell compatibility and good corrosion resistance demonstrated that Ti-xFe alloy might be a candidate titanium alloy for medical applications.
Collapse
Affiliation(s)
- Yanchun Xie
- Northern Theater General Hospital, Shenyang, 110016, China
| | - Shenshen Cui
- Key Laboratory for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Education Ministry of China, Northeastern University, Shenyang, 110819, China
| | - Jiali Hu
- Key Laboratory for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Education Ministry of China, Northeastern University, Shenyang, 110819, China
| | - Hailong Yu
- Northern Theater General Hospital, Shenyang, 110016, China.
| | - Anwu Xuan
- Northern Theater General Hospital, Shenyang, 110016, China
| | - Yongcun Wei
- Graduate School of Dalian Medical University, Dalian, 116051, China
| | - Yi Lian
- Northern Theater General Hospital, Shenyang, 110016, China
| | - Jinhua Wu
- Zhejiang Wanfeng Precision Casting Co., Ltd, Shaoxing, 312000, China
| | - Weinan Du
- Zhejiang Wanfeng Precision Casting Co., Ltd, Shaoxing, 312000, China
| | - Erlin Zhang
- Key Laboratory for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Education Ministry of China, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
28
|
Gao Y, Wu J, Zhang D, Wang P, Wang Y, Zhu L, Li C, Wang W, Zhao J, Yang C, Yang K. The impact of alloying element Cu on corrosion and biofilms of 316L stainless steel exposed to seawater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18842-18855. [PMID: 38351355 DOI: 10.1007/s11356-024-32354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
Copper-containing stainless steel (SS) has been reported to mitigate biofilms in industrial and clinical environments. However, the impact of copper released from copper-containing SS in natural seawater on biofilms and corrosion is still unclear. In this study, three kinds of 316L SS were immersed in natural seawater for 6 months, and the pitting depth decreased in the order: 316L-Cu SS (annealed) > 316L SS > 316L-Cu SS (aged). The biofilm thickness and number of sessile cells on the surface of 316L-Cu SS (annealed) and 316L SS were similar but notably greater than those of 316L-Cu SS (aged). Furthermore, the results of the community analysis indicated that the addition of copper in 316L-Cu SS (aged) reduced the diversity and richness of the microbial community, resulting in a significant reduction in the number of genera constituting the biofilms. Copper ions exhibit a broad-spectrum bactericidal effect, effectively reducing the abundance of dominant populations and microbial genera in the biofilms, thereby mitigating pitting corrosion induced by microorganisms. In addition, the PCoA scatter plot showed that time also played an important role in the regulation of microbial community structure.
Collapse
Affiliation(s)
- Yaohua Gao
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Wu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Peng Wang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yi Wang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Liyang Zhu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ce Li
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Wang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Open Studio for Marine Corrosion and Protection, Laoshan Laboratory, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinlong Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Chunguang Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
29
|
Li B, Thebault P, Labat B, Ladam G, Alt V, Rupp M, Brochausen C, Jantsch J, Ip M, Zhang N, Cheung WH, Leung SYS, Wong RMY. Implants coating strategies for antibacterial treatment in fracture and defect models: A systematic review of animal studies. J Orthop Translat 2024; 45:24-35. [PMID: 38495742 PMCID: PMC10943307 DOI: 10.1016/j.jot.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 03/19/2024] Open
Abstract
Objective Fracture-related infection (FRI) remains a major concern in orthopaedic trauma. Functionalizing implants with antibacterial coatings are a promising strategy in mitigating FRI. Numerous implant coatings have been reported but the preventive and therapeutic effects vary. This systematic review aimed to provide a comprehensive overview of current implant coating strategies to prevent and treat FRI in animal fracture and bone defect models. Methods A literature search was performed in three databases: PubMed, Web of Science and Embase, with predetermined keywords and criteria up to 28 February 2023. Preclinical studies on implant coatings in animal fracture or defect models that assessed antibacterial and bone healing effects were included. Results A total of 14 studies were included in this systematic review, seven of which used fracture models and seven used defect models. Passive coatings with bacteria adhesion resistance were investigated in two studies. Active coatings with bactericidal effects were investigated in 12 studies, four of which used metal ions including Ag+ and Cu2+; five studies used antibiotics including chlorhexidine, tigecycline, vancomycin, and gentamicin sulfate; and the other three studies used natural antibacterial materials including chitosan, antimicrobial peptides, and lysostaphin. Overall, these implant coatings exhibited promising efficacy in antibacterial effects and bone formation. Conclusion Antibacterial coating strategies reduced bacterial infections in animal models and favored bone healing in vivo. Future studies of implant coatings should focus on optimal biocompatibility, antibacterial effects against multi-drug resistant bacteria and polymicrobial infections, and osseointegration and osteogenesis promotion especially in osteoporotic bone by constructing multi-functional coatings for FRI therapy. The translational potential of this paper The clinical treatment of FRI is complex and challenging. This review summarizes novel orthopaedic implant coating strategies applied to FRI in preclinical studies, and offers a perspective on the future development of orthopaedic implant coatings, which can potentially contribute to alternative strategies in clinical practice.
Collapse
Affiliation(s)
- Baoqi Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pascal Thebault
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Béatrice Labat
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Guy Ladam
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | | | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology, and Hygiene, and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ning Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
30
|
Huang Y, Wan X, Su Q, Zhao C, Cao J, Yue Y, Li S, Chen X, Yin J, Deng Y, Zhang X, Wu T, Zhou Z, Wang D. Ultrasound-activated piezo-hot carriers trigger tandem catalysis coordinating cuproptosis-like bacterial death against implant infections. Nat Commun 2024; 15:1643. [PMID: 38388555 PMCID: PMC10884398 DOI: 10.1038/s41467-024-45619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Implant-associated infections due to the formation of bacterial biofilms pose a serious threat in medical healthcare, which needs effective therapeutic methods. Here, we propose a multifunctional nanoreactor by spatiotemporal ultrasound-driven tandem catalysis to amplify the efficacy of sonodynamic and chemodynamic therapy. By combining piezoelectric barium titanate with polydopamine and copper, the ultrasound-activated piezo-hot carriers transfer easily to copper by polydopamine. It boosts reactive oxygen species production by piezoelectrics, and facilitates the interconversion between Cu2+ and Cu+ to promote hydroxyl radical generation via Cu+ -catalyzed chemodynamic reactions. Finally, the elevated reactive oxygen species cause bacterial membrane structure loosening and DNA damage. Transcriptomics and metabolomics analysis reveal that intracellular copper overload restricts the tricarboxylic acid cycle, promoting bacterial cuproptosis-like death. Therefore, the polyetherketoneketone scaffold engineered with the designed nanoreactor shows excellent antibacterial performance with ultrasound stimulation and promotes angiogenesis and osteogenesis on-demand in vivo.
Collapse
Affiliation(s)
- Yanli Huang
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China
| | - Xufeng Wan
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Su
- Department of Orthopedics, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Chunlin Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jian Cao
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yue
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuoyuan Li
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, 138634, Singapore
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianzeng Zhang
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China.
| | - Tianmin Wu
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350117, China.
| | - Zongke Zhou
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Duan Wang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Paul B, Kiel A, Otto M, Gemming T, Hoffmann V, Giebeler L, Kaltschmidt B, Hütten A, Gebert A, Kaltschmidt B, Kaltschmidt C, Hufenbach J. Inherent Antibacterial Properties of Biodegradable FeMnC(Cu) Alloys for Implant Application. ACS APPLIED BIO MATERIALS 2024; 7:839-852. [PMID: 38253353 PMCID: PMC10880094 DOI: 10.1021/acsabm.3c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
Implant-related infections or inflammation are one of the main reasons for implant failure. Therefore, different concepts for prevention are needed, which strongly promote the development and validation of improved material designs. Besides modifying the implant surface by, for example, antibacterial coatings (also implying drugs) for deterring or eliminating harmful bacteria, it is a highly promising strategy to prevent such implant infections by antibacterial substrate materials. In this work, the inherent antibacterial behavior of the as-cast biodegradable Fe69Mn30C1 (FeMnC) alloy against Gram-negative Pseudomonas aeruginosa and Escherichia coli as well as Gram-positive Staphylococcus aureus is presented for the first time in comparison to the clinically applied, corrosion-resistant AISI 316L stainless steel. In the second step, 3.5 wt % Cu was added to the FeMnC reference alloy, and the microbial corrosion as well as the proliferation of the investigated bacterial strains is further strongly influenced. This leads for instance to enhanced antibacterial activity of the Cu-modified FeMnC-based alloy against the very aggressive, wild-type bacteria P. aeruginosa. For clarification of the bacterial test results, additional analyses were applied regarding the microstructure and elemental distribution as well as the initial corrosion behavior of the alloys. This was electrochemically investigated by a potentiodynamic polarization test. The initial degraded surface after immersion were analyzed by glow discharge optical emission spectrometry and transmission electron microscopy combined with energy-dispersive X-ray analysis, revealing an increase of degradation due to Cu alloying. Due to their antibacterial behavior, both investigated FeMnC-based alloys in this study are attractive as a temporary implant material.
Collapse
Affiliation(s)
- Birgit Paul
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| | - Annika Kiel
- Department
of Cell Biology, Faculty of Biology, Universität
Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Martin Otto
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
- Institute
of Materials Science, Technische Universität
Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599 Freiberg, Germany
| | - Thomas Gemming
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| | - Volker Hoffmann
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| | - Lars Giebeler
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| | - Bernhard Kaltschmidt
- Department
of Thin Films and Physics of Nanostructures, Center of Spinelectronic
Materials and Devices, Faculty of Physics, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Andreas Hütten
- Department
of Thin Films and Physics of Nanostructures, Center of Spinelectronic
Materials and Devices, Faculty of Physics, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Annett Gebert
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| | - Barbara Kaltschmidt
- Department
of Cell Biology, Faculty of Biology, Universität
Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department
of Cell Biology, Faculty of Biology, Universität
Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Julia Hufenbach
- Leibniz
Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
- Institute
of Materials Science, Technische Universität
Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599 Freiberg, Germany
| |
Collapse
|
32
|
Anand A, Kaňková H, Hájovská Z, Galusek D, Boccaccini AR, Galusková D. Bio-response of copper-magnesium co-substituted mesoporous bioactive glass for bone tissue regeneration. J Mater Chem B 2024; 12:1875-1891. [PMID: 38293829 DOI: 10.1039/d3tb01568h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Mesoporous bioactive glass (MBG) is widely acknowledged in bone tissue engineering due to its mesoporous structure, large surface area, and bioactivity. Recent research indicates that introduction of metallic ions has beneficial impacts on bone metabolism and angiogenesis. Thus, the features of MBG can be modified by incorporating combinations of ions, such as magnesium (Mg) and copper (Cu), which can play a considerable role in bone formation, influencing angiogenesis, osteogenesis, as well as antibacterial properties. In this study, Mg and Cu were co-doped for the first time (in a ratio of 1 : 1) in 80SiO2-5P2O5-(15 - 2x)CaO-xMgO-xCuO glass composition with x = 0, 0.5, 1, and 2 mol%, synthesized using the sol-gel and evaporation-induced self-assembly method. X-ray diffraction analysis confirmed the amorphous nature of the powders, while inductively coupled plasma-optical emission spectrometry verified the existence of dopant ions in the respective amounts. The nitrogen sorption method indicated the formation of uniform cylindrical mesopores which are open at both ends and a high surface area of the powders. TEM images show fringes, indicating an ordered mesoporous structure in all MgCu co-doped systems. In vitro bioactivity was observed in all MBG powders, confirmed by the formation of an apatite phase when placed in simulated body fluid (SBF). Flake-like microstructure characteristics of HAp crystals found on the surface of MBG powders were visualized using FESEM. Cytotoxicity tests at lower concentrations (0.1 and 1 wt/vol%) of co-doped 2MC MBG (co-doping up to 2 mol%) showed cell proliferation and viability of osteoblast-like MG-63 cells and normal human dermal fibroblast (NHDF) cells similar to the basic glass 80S. Antibacterial study of MBG pellets showed an increment in the zone of inhibition with the sequential addition of doping ions. The turbidity measurement of bacterial cultures revealed that the optimal concentration for effectively inhibiting bacterial growth was 1 wt/vol% (i.e., 10 mg mL-1) concentration of MBG extracts. The result suggested that the incorporation of Mg and Cu ions in MBG in lower concentrations of up to 2 mol% can be useful in bone regeneration owing to bioactivity, cell proliferation, and antibacterial characteristics.
Collapse
Affiliation(s)
- Akrity Anand
- Centre for Functional and Surface Functionalized Glass, TnUAD, 911 01 Trenčín, Slovakia.
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Hana Kaňková
- Centre for Functional and Surface Functionalized Glass, TnUAD, 911 01 Trenčín, Slovakia.
| | - Zuzana Hájovská
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, 845 13 Bratislava, Slovakia
| | - Dušan Galusek
- Centre for Functional and Surface Functionalized Glass, TnUAD, 911 01 Trenčín, Slovakia.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Dagmar Galusková
- Centre for Functional and Surface Functionalized Glass, TnUAD, 911 01 Trenčín, Slovakia.
| |
Collapse
|
33
|
Chen K, Wang Y, Tang H, Niu X, Yang H, Bai Y, Gu X, Zheng Y. Fabrication of a Nanoscale Magnesium/Copper Metal-Organic Framework on Zn-Based Guided Bone Generation Membranes for Enhancing Osteogenesis, Angiogenesis, and Bacteriostasis Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5648-5665. [PMID: 38267388 DOI: 10.1021/acsami.3c16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Recently, zinc (Zn) and its alloys have demonstrated great potential as guided bone regeneration (GBR) membranes to treat the problems of insufficient alveolar bone volume and long-term osseointegration instability during dental implantology. However, bone regeneration is a complex process consisting of osteogenesis, angiogenesis, and antibacterial function. For now, the in vivo osteogenic performance and antibacterial activity of pure Zn are inadequate, and thus fabricating a platform to endow Zn membranes with multifunctions may be essential to address these issues. In this study, various bimetallic magnesium/copper metal-organic framework (Mg/Cu-MOF) coatings were fabricated and immobilized on pure Zn. The results indicated that the degradation rate and water stability of Mg/Cu-MOF coatings could be regulated by controlling the feeding ratio of Cu2+. As the coating and Zn substrate degraded, an alkaline microenvironment enriched with Zn2+, Mg2+, and Cu2+ was generated. It significantly improved calcium phosphate deposition, differentiation of osteoblasts, and vascularization of endothelial cells in the extracts. Among them, Mg/Cu1 showed the best comprehensive performance. The superior antibacterial activity of Mg/Cu1 was demonstrated in vitro and in vivo, which indicated significantly enhanced bacteriostatic activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli as compared to that of the bare sample. Bimetallic Mg/Cu-MOF coating could properly coordinate the multifunction on a Zn membrane and could be a promising platform for promoting its bone regeneration, which could pave the way for Zn-based materials to be used as barrier membranes in oral clinical trials.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yifan Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hongyan Tang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hongtao Yang
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Yanjie Bai
- Stomatology Department, Peking University Third Hospital, Beijing 100191, China
| | - Xuenan Gu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Hu Z, Wu K, Lin J, Tan X, Jiang X, Xiao Y, Xiang L, Yang S, Zhang M, Xu W, Chen P. Synergistic antibacterial attributes of copper-doped polydopamine nanoparticles: an insight into photothermal enhanced antibacterial efficacy. NANOTECHNOLOGY 2024; 35:155102. [PMID: 38157559 DOI: 10.1088/1361-6528/ad19ad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Antibiotic-resistant bacteria and associated infectious diseases pose a grave threat to human health. The antibacterial activity of metal nanoparticles has been extensively utilized in several biomedical applications, showing that they can effectively inhibit the growth of various bacteria. In this research, copper-doped polydopamine nanoparticles (Cu@PDA NPs) were synthesized through an economical process employing deionized water and ethanol as a solvent. By harnessing the high photothermal conversion efficiency of polydopamine nanoparticles (PDA NPs) and the inherent antibacterial attributes of copper ions, we engineered nanoparticles with enhanced antibacterial characteristics. Cu@PDA NPs exhibited a rougher surface and a higher zeta potential in comparison to PDA NPs, and both demonstrated remarkable photothermal conversion efficiency. Comprehensive antibacterial evaluations substantiated the superior efficacy of Cu@PDA NPs attributable to their copper content. These readily prepared nano-antibacterial materials exhibit substantial potential in infection prevention and treatment, owing to their synergistic combination of photothermal and spectral antibacterial features.
Collapse
Affiliation(s)
- Zhiqiong Hu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Kexian Wu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Jiahong Lin
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Xiaoqian Tan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Xinyuan Jiang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Yuhang Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Lanxin Xiang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Shuang Yang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Maolan Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Wenfeng Xu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Peixing Chen
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| |
Collapse
|
35
|
Liu Z, Wu R, Jiang Y, Qi L, Liu J, Du M, Wang J, Liu L, Feng G, Zhang L. Propelling CuCo-based nanozyme design to new heights through triple enzyme-like power for high-efficiency bacterial eradication. Colloids Surf B Biointerfaces 2024; 233:113644. [PMID: 37979479 DOI: 10.1016/j.colsurfb.2023.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Bacterial infection-related diseases are a serious issue that threatens human health, and it is highly desirable to develop a high-performance antibacterial agent to combat it. Herein, copper/cobalt-based metal sulfide nanoparticles (CCS NPs) as a new kind of antibacterial nanozyme were prepared by a facile hydrothermal method. Owing to its rich chemical states, the CCS NPs with intrinsic peroxidase- and oxidase-like activities could generate reactive oxygen species (ROS) to exert bactericidal capacity. The CCS NPs could also rapidly deplete glutathione (GSH) to aggravate the oxidative stress in bacteria, thus enhancing the sterilization effect. The results showed that, with the assistance of H2O2 at low concentrations, CCS NPs possessing peroxidase-like, oxidase-like, and GSH depletion activities could achieve remarkable antibacterial effects in vitro. The in vivo implantation demonstrated that CCS NPs with triple enzyme-like activities had efficient bacteria elimination and good biocompatibility in treating bacteria-infected wounds, indicating its wide potential application in the non-antibiotic treatment of bacteria-infected wounds.
Collapse
Affiliation(s)
- Zheng Liu
- Analytical & Testing Center, West China Hospital & Department of Orthopedics Surgery and Orthopedic Research Institute, Chengdu 610065, China
| | - Ruibang Wu
- Analytical & Testing Center, West China Hospital & Department of Orthopedics Surgery and Orthopedic Research Institute, Chengdu 610065, China
| | - Yulin Jiang
- Analytical & Testing Center, West China Hospital & Department of Orthopedics Surgery and Orthopedic Research Institute, Chengdu 610065, China
| | - Lin Qi
- Analytical & Testing Center, West China Hospital & Department of Orthopedics Surgery and Orthopedic Research Institute, Chengdu 610065, China
| | - Jiangshan Liu
- Analytical & Testing Center, West China Hospital & Department of Orthopedics Surgery and Orthopedic Research Institute, Chengdu 610065, China
| | - Meixuan Du
- Analytical & Testing Center, West China Hospital & Department of Orthopedics Surgery and Orthopedic Research Institute, Chengdu 610065, China
| | - Jing Wang
- Analytical & Testing Center, West China Hospital & Department of Orthopedics Surgery and Orthopedic Research Institute, Chengdu 610065, China
| | - Limin Liu
- Analytical & Testing Center, West China Hospital & Department of Orthopedics Surgery and Orthopedic Research Institute, Chengdu 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, West China Hospital & Department of Orthopedics Surgery and Orthopedic Research Institute, Chengdu 610065, China.
| | - Li Zhang
- Analytical & Testing Center, West China Hospital & Department of Orthopedics Surgery and Orthopedic Research Institute, Chengdu 610065, China.
| |
Collapse
|
36
|
Zhao Y, Yuan M, Yang H, Li J, Ying Y, Li J, Wang W, Wang S. Versatile Multi-Wavelength Light-Responsive Metal-Organic Frameworks Micromotor through Porphyrin Metalation for Water Sterilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305189. [PMID: 37667455 DOI: 10.1002/smll.202305189] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Indexed: 09/06/2023]
Abstract
Traditional metal-organic frameworks (MOFs) based micro/nanomotors (MOFtors) can achieve three-dimensional (3D) motion mainly depending on noble metal (e.g., Pt), toxic fuels (e.g., hydrogen peroxide), and surfactants, or under external magnetic fields. In this study, light-driven MOFtors are constructed based on PCN-224(H) and regulated their photothermal and photochemical properties responding to the light of different wavelengths through porphyrin metalation. The resulting PCN-224(Fe) MOFtors presented a strong 3D motion at a maximum speed of 1234.9 ± 367.5 µm s-1 under visible light due to the various gradient fields by the photothermal and photochemical effects. Such MOFtors exhibit excellent water sterilization performance. Under optimal conditions, the PCN-224(Cu) MOFtors presented the best antibacterial performance of 99.4%, which improved by 23.4% compared to its static counterpart and 43.7% compared to static PCN-224(H). The underlying mechanism demonstrates that metal doping could increase the production of reactive oxygen species (ROS) and result in a more positive surface charge under light, which are short-distance effective sterilizing ingredients. Furthermore, the motion of MOFtors appears very important to extend the short-distance effective sterilization and thus synergistically improve the antibacterial performance. This work provides a new idea for preparing and developing light-driven MOFtors with multi-responsive properties.
Collapse
Affiliation(s)
- Yu Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Mengge Yuan
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Haowei Yang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jie Li
- Intelligent Network Research Institute, Zhejiang Lab, Hangzhou, 311100, P. R. China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Weihao Wang
- Intelligent Network Research Institute, Zhejiang Lab, Hangzhou, 311100, P. R. China
| | - Sheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
37
|
Zhou F, Sun S, Cui C, Li X, Wu S, Ma J, Chen S, Li CM. Zinc ions and ciprofloxacin-encapsulated chitosan/poly(ɛ-caprolactone) composite nanofibers promote wound healing via enhanced antibacterial and immunomodulatory. Int J Biol Macromol 2023; 253:127086. [PMID: 37769775 DOI: 10.1016/j.ijbiomac.2023.127086] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Antibacterial and anti-inflammatory nanofibrous membranes have attracted extensive attention, especially for the cutaneous wound treatment. In this study, zinc ions and ciprofloxacin-encapsulated chitosan/poly(ɛ-caprolactone) (CS/PCL) electrospun core-shell nanofibers were prepared by employing zinc ions-coordinated chitosan as the shell, and ciprofloxacin-functionalized PCL as the core. The morphology and core-shell structure of the as-prepared composite nanofibers were examined by SEM and TEM, respectively. The physical structure and mechanical property of the electrospun membrane were explored by FTIR, swelling, porosity and tensile test. Tensile strength of the zinc ions-coordinated CS/PCL composite nanofibers was enhanced to ca. 16 MPa. Meanwhile, the composite nanofibers can rapidly release of ciprofloxacin during 11 days and effectively suppress above 98 % of S. aureus proliferation. Moreover, the composite nanofibers exhibited excellent guide cell alignment and cyto-activity, as well as significantly down-regulated the inflammation factors, IL-6 and TNF-α in vitro. Animal experiments in vivo showed that the zinc ions-coordinated CS/PCL membrane by means of the synergistic effect of ciprofloxacin and active zinc ions, could significantly alleviate macrophage infiltration, promote collagen deposition and accelerate the healing process of wounds.
Collapse
Affiliation(s)
- Fang Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China.
| | - Shibin Sun
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China
| | - Congjing Cui
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China
| | - Xueyan Li
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China
| | - Shaohua Wu
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China
| | - Jianwei Ma
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China
| | - Shaojuan Chen
- College of Textiles and Clothing, Qingdao University, Qingdao 266061, China.
| | - Chang Ming Li
- Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Shandong 266071, China; Institute of Material Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
38
|
Zeng M, Huang Z, Cen X, Zhao Y, Xu F, Miao J, Zhang Q, Wang R. Biomimetic Gradient Hydrogels with High Toughness and Antibacterial Properties. Gels 2023; 10:6. [PMID: 38275844 PMCID: PMC10815424 DOI: 10.3390/gels10010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Traditional hydrogels, as wound dressings, usually exhibit poor mechanical strength and slow drug release performance in clinical biomedical applications. Although various strategies have been investigated to address the above issues, it remains a challenge to develop a simple method for preparing hydrogels with both toughness and controlled drug release performance. In this study, a tannic acid-reinforced poly (sulfobetaine methacrylate) (TAPS) hydrogel was fabricated via free radical polymerization, and the TAPS hydrogel was subjected to a simple electrophoresis process to obtain the hydrogels with a gradient distribution of copper ions. These gradient hydrogels showed tunable mechanical properties by changing the electrophoresis time. When the electrophoresis time reached 15 min, the hydrogel had a tensile strength of 368.14 kPa, a tensile modulus of 16.17 kPa, and a compressive strength of 42.77 MPa. It could be loaded at 50% compressive strain and then unloaded for up to 70 cycles and maintained a constant compressive stress of 1.50 MPa. The controlled release of copper from different sides of the gradient hydrogels was observed. After 6 h of incubation, the hydrogel exhibited a strong bactericidal effect on Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, with low toxicity to NIH/3T3 fibroblasts. The high toughness, controlled release of copper, and enhanced antimicrobial properties of the gradient hydrogels make them excellent candidates for wound dressings in biomedical applications.
Collapse
Affiliation(s)
- Mingzhu Zeng
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Zhimao Huang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Xiao Cen
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yinyu Zhao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Fei Xu
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiru Miao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| |
Collapse
|
39
|
Aoki S, Shimabukuro M, Kishida R, Kyuno K, Noda K, Yokoi T, Kawashita M. Electrochemical Deposition of Copper on Bioactive Porous Titanium Dioxide Layer: Antibacterial and Pro-Osteogenic Activities. ACS APPLIED BIO MATERIALS 2023; 6:5759-5767. [PMID: 38008914 DOI: 10.1021/acsabm.3c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Ti surfaces must exhibit antibacterial activity without cytotoxicity to promote bone reconstruction and prevent infection simultaneously. In this study, we employed a two-step electrochemical treatment process, namely, microarc oxidation (MAO) and cathodic electrochemical deposition (CED), to modify Ti surfaces. During the MAO step, a porous TiO2 (pTiO2) layer with a surface roughness of approximately 2.0 μm was generated on the Ti surface, and in the CED step, Cu was deposited onto the pTiO2 layer on the Ti surface, forming Cu@pTiO2. Cu@pTiO2 exhibited a similar structure, adhesion strength, and crystal phase to pTiO2. Moreover, X-ray photoelectron spectroscopy (XPS) confirmed the presence of Cu in Cu@pTiO2 at an approximate concentration of 1.0 atom %. Cu@pTiO2 demonstrated a sustained release of Cu ions for a minimum of 28 days in a simulated in vivo environment. In vitro experiments revealed that Cu@pTiO2 effectively eradicated approximately 99% of Staphylococcus aureus and Escherichia coli and inhibited biofilm formation, in contrast to the Ti and pTiO2 surfaces. Moreover, Cu@pTiO2 supported the proliferation of osteoblast-like cells at a rate comparable to that observed on the Ti and pTiO2 surfaces. Similar to pTiO2, Cu@pTiO2 promoted the calcification of osteoblast-like cells compared with Ti. In summary, we successfully conferred antibacterial and pro-osteogenic activities to Ti surfaces without inducing cytotoxic effects or structural and mechanical alterations in pTiO2 through the application of MAO and CED processes. Moreover, we found that the pTiO2 layer promoted bacterial growth and biofilm formation more effectively than the Ti surface, highlighting the potential drawbacks of rough and porous surfaces. Our findings provide fundamental insights into the surface design of Ti-based medical devices for bone reconstruction and infection prevention.
Collapse
Affiliation(s)
- Shun Aoki
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Masaya Shimabukuro
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ryo Kishida
- Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kentaro Kyuno
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
- International Research Center for Green Electronics, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Kazuhiko Noda
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Taishi Yokoi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
40
|
Gao H, Jiang N, Niu Q, Mei S, Haugen HJ, Ma Q. Biocompatible Nanostructured Silver-Incorporated Implant Surfaces Show Effective Antibacterial, Osteogenic, and Anti-Inflammatory Effects in vitro and in Rat Model. Int J Nanomedicine 2023; 18:7359-7378. [PMID: 38090361 PMCID: PMC10711298 DOI: 10.2147/ijn.s435415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Titanium (Ti) and its alloys are widely utilized in endosseous implants. However, their clinical efficacy is marred by complications arising from bacterial infections owing to their inadequate antibacterial properties. Consequently, enhancing the antibacterial attributes of implant surfaces stands as a pivotal objective in the realm of implantable materials research. Methods In this study, we employed sequential anodization and plasma immersion ion implantation (PIII) technology to fabricate a silver-embedded sparsely titania nanotube array (SNT) on the near-β titanium alloy Ti-5Zr-3Sn-5Mo-15Nb (TLM) implants. The surface characteristics, antimicrobial properties, biocompatibility, and osteogenic activity of the silver-nanomodified SNT implant (SNT Ag) surface, alongside peri-implant inflammatory responses, were meticulously assessed through a combination of in vitro and in vivo analyses. Results Compared with polished TLM and SNT, the silver-embedded SNT (SNT Ag) surface retained the basic shape of nanotubes and stably released Ag+ at the ppm level for a long time, which demonstrated an effective inhibition and bactericidal activity against Staphylococcus aureus (SA) while maintaining ideal cytocompatibility. Additionally, the subtle modifications in nanotubular topography induced by silver implantation endowed SNT Ag with enhanced osteogenic activity and mitigated inflammatory capsulation in soft tissue peri-implants in a rat model. Conclusion Incorporating a silver-embedded SNT array onto the implant surface demonstrated robust antibacterial properties, impeccable cytocompatibility, exceptional osteogenic activity, and the potential to prevent inflammatory encapsulation around the implant site. The Silver-PIII modification strategy emerges as a highly promising approach for surface applications in endosseous implants and trans-gingival implant abutments.
Collapse
Affiliation(s)
- Hui Gao
- Department of Stomatology, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Nan Jiang
- Department of Community Dentistry, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Qiannan Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Shenglin Mei
- Xingrui Dental Clinic, Xi’an, Shaanxi Province, People’s Republic of China
- Department of Physics & Materials Science, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China
| |
Collapse
|
41
|
Pryjmaková J, Grossberger D, Kutová A, Vokatá B, Šlouf M, Slepička P, Siegel J. A New Promising Material for Biological Applications: Multilevel Physical Modification of AgNP-Decorated PEEK. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3079. [PMID: 38132977 PMCID: PMC10745567 DOI: 10.3390/nano13243079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
In the case of polymer medical devices, the surface design plays a crucial role in the contact with human tissue. The use of AgNPs as antibacterial agents is well known; however, there is still more to be investigated about their anchoring into the polymer surface. This study describes the changes in the surface morphology and behaviour in the biological environment of polyetheretherketone (PEEK) with immobilised AgNPs after different surface modifications. The initial composites were prepared by immobilising silver nanoparticles from a colloid solution in the upper surface layers of polyetheretherketone (PEEK). The prepared samples (Ag/PEEK) had a planar morphology and were further modified with a KrF laser, a GaN laser, and an Ar plasma. The samples were studied using the AFM method to visualise changes in surface morphology and obtain information on the height of the structures and other surface parameters. A comparative analysis of the nanoparticles and polymers was performed using FEG-SEM. The chemical composition of the surface of the samples and optical activity were studied using XPS and UV-Vis spectroscopy. Finally, drop plate antibacterial and cytotoxicity tests were performed to determine the role of Ag nanoparticles after modification and suitability of the surface, which are important for the use of the resulting composite in biomedical applications.
Collapse
Affiliation(s)
- Jana Pryjmaková
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (D.G.); (A.K.); (J.S.)
| | - Daniel Grossberger
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (D.G.); (A.K.); (J.S.)
| | - Anna Kutová
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (D.G.); (A.K.); (J.S.)
| | - Barbora Vokatá
- Department of Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Prague, Czech Republic;
| | - Petr Slepička
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (D.G.); (A.K.); (J.S.)
| | - Jakub Siegel
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (D.G.); (A.K.); (J.S.)
| |
Collapse
|
42
|
Xie LY, Xu YB, Ding XQ, Liang S, Li DL, Fu AK, Zhan XA. Itaconic acid and dimethyl itaconate exert antibacterial activity in carbon-enriched environments through the TCA cycle. Biomed Pharmacother 2023; 167:115487. [PMID: 37713987 DOI: 10.1016/j.biopha.2023.115487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Itaconic acid (IA), a metabolite generated by the tricarboxylic acid (TCA) cycle in eukaryotic immune cells, and its derivative dimethyl itaconate (DI) exert antibacterial functions in intracellular environments. Previous studies suggested that IA and DI only inhibit bacterial growth in carbon-limited environments; however, whether IA and DI maintain antibacterial activity in carbon-enriched environments remains unknown. Here, IA and DI inhibited the bacteria with minimum inhibitory concentrations of 24.02 mM and 39.52 mM, respectively, in a carbon-enriched environment. The reduced bacterial pathogenicity was reflected in cell membrane integrity, motility, biofilm formation, AI-2/luxS, and virulence. Mechanistically, succinate dehydrogenase (SDH) activity and fumaric acid levels decreased in the IA and DI treatments, while isocitrate lyase (ICL) activity was upregulated. Inhibited TCA circulation was also observed through untargeted metabolomics. In addition, energy-related aspartate metabolism and lysine degradation were suppressed. In summary, these results indicated that IA and DI reduced bacterial pathogenicity while exerting antibacterial functions by inhibiting TCA circulation. This study enriches knowledge on the inhibition of bacteria by IA and DI in a carbon-mixed environment, suggesting an alternative method for treating bacterial infections by immune metabolites.
Collapse
Affiliation(s)
- L Y Xie
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y B Xu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X Q Ding
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S Liang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - D L Li
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - A K Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - X A Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
43
|
Zhao X, Hu J, Nie J, Chen D, Qin G, Zhang E. Immunomodulatory effect of Ti-Cu alloy by surface nanostructure synergistic with Cu 2+ release. Colloids Surf B Biointerfaces 2023; 231:113586. [PMID: 37837688 DOI: 10.1016/j.colsurfb.2023.113586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/26/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
The inflammatory response induced by implant/macrophage interaction has been considered to be one of the vital factors in determining the success of implantation. In this study, TiCuNxOy coating with an immunomodulatory strategy was proposed for the first time, using nanostructured TiCuNxOy coating synthesized on Ti-Cu alloy by oxygen and nitrogen plasma-based surface modification. It was found that TiCuNxOy coating inhibited macrophage proliferation but stimulated macrophage preferential activation and presented an elongated morphology due to the surface nanostructure. The most encouraging discovery was that TiCuNxOy coating promoted the initial pro-inflammatory response of macrophages and then accelerated the M1-to-M2 transition of macrophages via a synergistic effect of fast-to-slow Cu2+ release and surface nanostructure, which was considered to contribute to initial infection elimination and tissue healing. As expected, TiCuNxOy coating released desirable Cu2+ and generated a favorable immune response that facilitated HUVEC recruitment to the coating, and accelerated proliferation, VEGF secretion and NO production of HUVECs. On the other hand, it is satisfying that TiCuNxOy coating maintained perfect long-term antibacterial activity (≥99.9%), mainly relying on Cu2O/CuO contact sterilization. These results indicated that TiCuNxOy coating might offer novel insights into the creation of a surface with immunomodulatory effects and long-term bactericidal potential for cardiovascular applications.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jingjun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China.
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China
| | - Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; Research Center for Metallic Wires, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
44
|
Chen M, Ren M, Shi Y, Liu X, Wei H. State-of-the-art polyetheretherketone three-dimensional printing and multifunctional modification for dental implants. Front Bioeng Biotechnol 2023; 11:1271629. [PMID: 37929192 PMCID: PMC10621213 DOI: 10.3389/fbioe.2023.1271629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer with an elastic modulus close to that of the jawbone. PEEK has the potential to become a new dental implant material for special patients due to its radiolucency, chemical stability, color similarity to teeth, and low allergy rate. However, the aromatic main chain and lack of surface charge and chemical functional groups make PEEK hydrophobic and biologically inert, which hinders subsequent protein adsorption and osteoblast adhesion and differentiation. This will be detrimental to the deposition and mineralization of apatite on the surface of PEEK and limit its clinical application. Researchers have explored different modification methods to effectively improve the biomechanical, antibacterial, immunomodulatory, angiogenic, antioxidative, osteogenic and anti-osteoclastogenic, and soft tissue adhesion properties. This review comprehensively summarizes the latest research progress in material property advantages, three-dimensional printing synthesis, and functional modification of PEEK in the fields of implant dentistry and provides solutions for existing difficulties. We confirm the broad prospects of PEEK as a dental implant material to promote the clinical conversion of PEEK-based dental implants.
Collapse
Affiliation(s)
- Meiqing Chen
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mei Ren
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yingqi Shi
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiuyu Liu
- Hospital of Stomatogy, Jilin University, Changchun, China
| | - Hongtao Wei
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
45
|
Bakina O, Svarovskaya N, Ivanova L, Glazkova E, Rodkevich N, Evstigneev V, Evstigneev M, Mosunov A, Lerner M. New PMMA-Based Hydroxyapatite/ZnFe 2O 4/ZnO Composite with Antibacterial Performance and Low Toxicity. Biomimetics (Basel) 2023; 8:488. [PMID: 37887619 PMCID: PMC10604293 DOI: 10.3390/biomimetics8060488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Polymethylmethacrylate (PMMA) is the most commonly used bone void filler in orthopedic surgery. However, the biocompatibility and radiopacity of PMMA are insufficient for such applications. In addition to insufficient biocompatibility, the microbial infection of medical implants is one of the frequent causes of failure in bone reconstruction. In the present work, the preparation of a novel PMMA-based hydroxyapatite/ZnFe2O4/ZnO composite with heterophase ZnFe2O4/ZnO NPs as an antimicrobial agent was described. ZnFe2O4/ZnO nanoparticles were produced using the electrical explosion of zinc and iron twisted wires in an oxygen-containing atmosphere. This simple, highly productive, and inexpensive nanoparticle fabrication approach could be readily adapted to different applications. From the findings, the presented composite material showed significant antibacterial activity (more than 99% reduction) against P. aeruginosa, S. aureus, and MRSA, and 100% antifungal activity against C. albicans, as a result of the combined use of both ZnO and ZnFe2O4. The composite showed excellent biocompatibility against the sensitive fibroblast cell line 3T3. The more-than-70% cell viability was observed after 1-3 days incubation of the sample. The developed composite material could be a potential material for the fabrication of 3D-printed implants.
Collapse
Affiliation(s)
- Olga Bakina
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Natalia Svarovskaya
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Ludmila Ivanova
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Elena Glazkova
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Nikolay Rodkevich
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Vladyslav Evstigneev
- Sevastopol State University, 33 Universitetskaya Street, 299053 Sevastopol, Russia; (V.E.); (M.E.)
| | - Maxim Evstigneev
- Sevastopol State University, 33 Universitetskaya Street, 299053 Sevastopol, Russia; (V.E.); (M.E.)
| | - Andrey Mosunov
- Sevastopol State University, 33 Universitetskaya Street, 299053 Sevastopol, Russia; (V.E.); (M.E.)
| | - Marat Lerner
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
- Sevastopol State University, 33 Universitetskaya Street, 299053 Sevastopol, Russia; (V.E.); (M.E.)
| |
Collapse
|
46
|
Linju MC, Rekha MR. Role of inorganic ions in wound healing: an insight into the various approaches for localized delivery. Ther Deliv 2023; 14:649-667. [PMID: 38014434 DOI: 10.4155/tde-2023-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Recently, the role of inorganic ions has been explored for its wound-healing applications. Ions do play key role in the normal functioning of the skin, including the epidermal barrier property, maintaining redox balance, enzymatic activities, tissue remodeling, etc. The care of chronic wounds is a concern and new cost-effective therapeutic strategies that modulate the wound microenvironment and cell behaviour are needed. First, this review illustrates the ions that play a role in wound healing and their molecular mechanisms that are accountable for modifying the wound. Further, the emerging strategies using metal ions to modulate the healing will be discussed. In this direction, localized delivery of inorganic ions of importance using advanced wound care biomaterials for wound healing applications is discussed.
Collapse
Affiliation(s)
- M C Linju
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology. Poojappura, Thiruvananthapuram, Kerala, India
| | - M R Rekha
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology. Poojappura, Thiruvananthapuram, Kerala, India
| |
Collapse
|
47
|
Lukose CC, Anestopoulos I, Panagiotidis IS, Zoppi G, Black AM, Dover LG, Bowen L, Serrano-Aroca Á, Liu TX, Mendola L, Morrone D, Panayiotidis MI, Birkett M. Biocompatible Ti 3Au-Ag/Cu thin film coatings with enhanced mechanical and antimicrobial functionality. Biomater Res 2023; 27:93. [PMID: 37749659 PMCID: PMC10521510 DOI: 10.1186/s40824-023-00435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Biofilm formation on medical device surfaces is a persistent problem that shelters bacteria and encourages infections and implant rejection. One promising approach to tackle this problem is to coat the medical device with an antimicrobial material. In this work, for the first time, we impart antimicrobial functionality to Ti3Au intermetallic alloy thin film coatings, while maintaining their superior mechanical hardness and biocompatibility. METHODS A mosaic Ti sputtering target is developed to dope controlled amounts of antimicrobial elements of Ag and Cu into a Ti3Au coating matrix by precise control of individual target power levels. The resulting Ti3Au-Ag/Cu thin film coatings are then systematically characterised for their structural, chemical, morphological, mechanical, corrosion, biocompatibility-cytotoxicity and antimicrobial properties. RESULTS X-ray diffraction patterns reveal the formation of a super hard β-Ti3Au phase, but the thin films undergo a transition in crystal orientation from (200) to (211) with increasing Ag concentration, whereas introduction of Cu brings no observable changes in crystal orientation. Scanning and transmission electron microscopy analysis show the polyhedral shape of the Ti3Au crystal but agglomeration of Ag particles between crystal grains begins at 1.2 at% Ag and develops into large granules with increasing Ag concentration up to 4.1 at%. The smallest doping concentration of 0.2 at% Ag raises the hardness of the thin film to 14.7 GPa, a 360% improvement compared to the ∼4 GPa hardness of the standard Ti6Al4V base alloy. On the other hand, addition of Cu brings a 315-330% improvement in mechanical hardness of films throughout the entire concentration range of 0.5-7.1 at%. The thin films also show good electrochemical corrosion resistance and a > tenfold reduction in wear rate compared to Ti6Al4V alloy. All thin film samples exhibit very safe cytotoxic profiles towards L929 mouse fibroblast cells when analysed with Alamar blue assay, with ion leaching concentrations lower than 0.2 ppm for Ag and 0.08 ppm for Cu and conductivity tests reveal the positive effect of increased conductivity on myogenic differentiation. Antimicrobial tests show a drastic reduction in microbial survival over a short test period of < 20 min for Ti3Au films doped with Ag or Cu concentrations as low as 0.2-0.5 at%. CONCLUSION Therefore, according to these results, this work presents a new antimicrobial Ti3Au-Ag/Cu coating material with excellent mechanical performance with the potential to develop wear resistant medical implant devices with resistance to biofilm formation and bacterial infection.
Collapse
Affiliation(s)
- Cecil Cherian Lukose
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Iraklis-Stavros Panagiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Guillaume Zoppi
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Anna M Black
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Lynn G Dover
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Leon Bowen
- Department of Physics, G.J. Russell Microscopy Facility, Durham University, Durham, DH1 3LE, UK
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001, Valencia, Spain
| | - Terence Xiaoteng Liu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | | | | | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 1683, Nicosia, Cyprus
| | - Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
48
|
Zhang Y, Li TT, Sun L, Shiu BC, Zhang L, Lin JH, Lou CW. Oriented ascorbic acid onto zeolitic metal-organic framework-8 membrane via microfluidic spinning for biomedical care. Colloids Surf B Biointerfaces 2023; 229:113442. [PMID: 37454442 DOI: 10.1016/j.colsurfb.2023.113442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Nowadays, the hydrogen dressing and electrostatic spun films widely used on wounds do not facilitate the permeability of the wound area and fail to achieve controlled drug delivery. Therefore, finding a wound dressing with both breathability and targeted drug delivery has remained an unmet challenge. Here, an oriented microstructure membrane with sustained drug release and robust antibacterial performance was constructed through the microfluidic spinning method. The multifunctional oriented membrane was prepared by loading ascorbic acid onto the zeolitic metal-organic framework-8 to develop drug delivery nanomaterial zeolitic metal-organic framework-8 @ascorbic acid (ZIF-8 @AA) and then mixing ZIF-8 @AA with polyvinyl pyrrolidone (PVP) solution via microfluidic technology, which produced an oriented microfiber member. In addition, the spinning parameters, including the fluid content, rotation speed, and flow rate, on microfiber diameter were evaluated. The constructed oriented membrane had bactericidal efficiencies of 82.94% ± 2.79% and 95.96% ± 1.54% against E. coli and S. aureus, respectively. After five days, the membrane still has a sustained release. Moreover, the fabricated membrane also has good biocompatibility and hemocompatibility in vitro. The oriented arrangement strategy provides a promising approach for wound healing materials in targeted drug delivery. Furthermore, this strategy offers a feasible idea for loading active materials into substrates for disease treatment in the biomedical field.
Collapse
Affiliation(s)
- Ying Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China.
| | - Li Sun
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China.
| | - Lu Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan; School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan.
| |
Collapse
|
49
|
Qiu Y, Tian J, Kong S, Feng Y, Lu Y, Su L, Cai Y, Li M, Chang J, Yang C, Wei X. SrCuSi 4 O 10 /GelMA Composite Hydrogel-Mediated Vital Pulp Therapy: Integrating Antibacterial Property and Enhanced Pulp Regeneration Activity. Adv Healthc Mater 2023; 12:e2300546. [PMID: 37260366 PMCID: PMC11469286 DOI: 10.1002/adhm.202300546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Indexed: 06/02/2023]
Abstract
Vital pulp therapy (VPT) is considered a conservative treatment for preserving pulp viability in caries-induced dental pulp infections. However, bacterial contamination negatively affects dentine-pulp complex repair. The common capping materials show limited antimicrobial effects against some microorganisms. To improve the VPT efficacy, capping materials with increased antibacterial properties and enhanced odontogenic and angiogenic activities are needed. Herein, a SrCuSi4 O10 /gelatin methacrylate(SC/Gel) composite hydrogel has been proposed for infected dental pulp treatment. SrCuSi4 O10 (SC) is a microscale bioceramic composed of assembled multilayered nanosheets that possesses good near-infrared photothermal conversion ability and multiple bioactivities due to sustained Sr2+ , Cu2+ , and SiO3 2- ion release. It is shown that the SC/Gel composite hydrogel efficiently eliminates Streptococcus mutans and Lactobacillus casei and inhibits biofilm formation under photothermal heating, while the ion extract from SC promotes odontogenesis of rat dental pulp stem cells and angiogenesis of human umbilical vein endothelial cells. The as-designed therapeutic effect of SC/Gel composite hydrogel-mediated VPT has been proven in a rat dental pulp infection model and yielded improved dentine-pulp complex repair compared with the commercially used iRoot® BP Plus. This study suggests that the SC/Gel composite hydrogel is a potential pulp-capping material with improved effects on dentine-pulp complex repair in infected pulp.
Collapse
Affiliation(s)
- Yu Qiu
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐Sen UniversityGuangzhouGuangdong510055P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouGuangdong510055P. R. China
| | - Jun Tian
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐Sen UniversityGuangzhouGuangdong510055P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouGuangdong510055P. R. China
| | - Siyi Kong
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐Sen UniversityGuangzhouGuangdong510055P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouGuangdong510055P. R. China
| | - Yanping Feng
- Joint Centre of Translational Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000P. R. China
| | - Yangyu Lu
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐Sen UniversityGuangzhouGuangdong510055P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouGuangdong510055P. R. China
| | - Lefeng Su
- Joint Centre of Translational Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000P. R. China
| | - Yanling Cai
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐Sen UniversityGuangzhouGuangdong510055P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouGuangdong510055P. R. China
| | - Mengjie Li
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐Sen UniversityGuangzhouGuangdong510055P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouGuangdong510055P. R. China
| | - Jiang Chang
- Joint Centre of Translational Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000P. R. China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325000P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
| | - Chen Yang
- Joint Centre of Translational Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000P. R. China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325000P. R. China
| | - Xi Wei
- Hospital of StomatologyGuanghua School of StomatologySun Yat‐Sen UniversityGuangzhouGuangdong510055P. R. China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhouGuangdong510055P. R. China
| |
Collapse
|
50
|
Aflakian F, Mirzavi F, Aiyelabegan HT, Soleimani A, Gholizadeh Navashenaq J, Karimi-Sani I, Rafati Zomorodi A, Vakili-Ghartavol R. Nanoparticles-based therapeutics for the management of bacterial infections: A special emphasis on FDA approved products and clinical trials. Eur J Pharm Sci 2023; 188:106515. [PMID: 37402428 DOI: 10.1016/j.ejps.2023.106515] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/06/2023]
Abstract
Microbial resistance has increased in recent decades as a result of the extensive and indiscriminate use of antibiotics. The World Health Organization listed antimicrobial resistance as one of ten major global public health threats in 2021. In particular, six major bacterial pathogens, including third-generation cephalosporin-resistant Escherichia coli, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Streptococcus pneumoniae, and Pseudomonas aeruginosa, were found to have the highest resistance-related death rates in 2019. To respond to this urgent call, the creation of new pharmaceutical technologies based on nanoscience and drug delivery systems appears to be the promising strategy against microbial resistance in light of recent advancements, particularly the new knowledge of medicinal biology. Nanomaterials are often defined as substances having sizes between 1 and 100 nm. If the material is used on a small scale; its properties significantly change. They come in a variety of sizes and forms to help provide distinguishing characteristics for a wide range of functions. The field of health sciences has demonstrated a strong interest in numerous nanotechnology applications. Therefore, in this review, prospective nanotechnology-based therapeutics for the management of bacterial infections with multiple medication resistance are critically examined. Recent developments in these innovative treatment techniques are described, with an emphasis on preclinical, clinical, and combinatorial approaches.
Collapse
Affiliation(s)
- Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Anvar Soleimani
- Department of Medical Microbiology, College of Health Sciences, Cihan University-Sulaimaniya, Sulaimaniya, 46001, Kurdistan Region, Iraq
| | | | - Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|