1
|
Polonio CM, McHale KA, Sherr DH, Rubenstein D, Quintana FJ. The aryl hydrocarbon receptor: a rehabilitated target for therapeutic immune modulation. Nat Rev Drug Discov 2025:10.1038/s41573-025-01172-x. [PMID: 40247142 DOI: 10.1038/s41573-025-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2025] [Indexed: 04/19/2025]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor originally identified as the target mediating the toxic effects of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and dioxins. For years, AHR activation was actively avoided during drug development. However, the AHR was later identified as an important physiological regulator of the immune response. These findings triggered a paradigm shift that resulted in identification of the AHR as a regulator of both innate and adaptive immunity and outlined a pathway for its modulation by the diet, commensal flora and metabolism in the context of autoimmunity, cancer and infection. Moreover, the AHR was revealed as a candidate target for the therapeutic modulation of the immune response. Indeed, the first AHR-activating drug (tapinarof) was recently approved for the treatment of psoriasis. Clinical trials are underway to evaluate the effects of tapinarof and other AHR-targeting therapeutics in inflammatory diseases, cancer and infections. This Review outlines the molecular mechanism of AHR action, and describes how it regulates the immune response. We also discuss links to disease and AHR-targeting therapeutics that have been tested in past and ongoing clinical trials.
Collapse
Affiliation(s)
- Carolina M Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Luo X, Dai X, Wei Q, Tan X, Wang S, Xiao H, Yao X, Deng Y, Zhong Z. MicroRNA-767-5p promotes metastasis but improves chemotherapeutic and radiotherapeutic sensitivity of osteosarcoma. BMC Cancer 2025; 25:702. [PMID: 40234802 PMCID: PMC12001555 DOI: 10.1186/s12885-025-14114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/08/2025] [Indexed: 04/17/2025] Open
Abstract
The aim of this study was to explore the role of microRNA-767-5p (miR-767-5p) in regulating the osteosarcoma (OS) prognosis, metastasis and sensitivity to chemotherapeutic and radiotherapeutic sensitivity. We observed that miR-767-5p expression in the specimens of patients with metastatic OS was higher than in healthy individuals and was also negatively correlated with the overall survival of patients with OS. Functional assays (CCK-8, transwell, colony formation) and a tumor xenograft model demonstrated that miR-767-5p over-expression in both U2OS and 143B OS cell lines promoted cell invasion and migration without affecting proliferation, whereas its knockdown had opposite effects. Notably, miR-767-5p over-expression enhanced the sensitivity of both U2OS and 143B cells to chemotherapy or radiotherapy. Combing target gene prediction, RNA-sequencing and overall survival analysis, we identified aryl hydrocarbon receptor (AHR) as the potential target gene of miR-767-5p. Luciferase assay confirmed that miR-767-5p promoted the 3'-UTR activity of AHR through direct binding. Strikingly, AHR over-expression in both U2OS and 143B cells suppressed invasion, migration while reduced therapeutic sensitivity to chemotherapy and radiotherapy-thereby reversing miR-767-5p's phenotypic impact. Therefore, this study suggested that miR-767-5p promotes OS metastasis but improves its sensitivity to radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Xuelian Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University (Fangda Hospital), Chongqing, 401120, China
| | - Xiaoyan Dai
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Qingsong Wei
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Xiaorong Tan
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Shuai Wang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Hanxi Xiao
- Department of Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xuan Yao
- Department of Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Youcai Deng
- Department of Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Zhaoyang Zhong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Sahoo R, Pattnaik S, Mohanty B, Mir SA, Behera B. Aryl hydrocarbon receptor (AHR) signalling: A double-edged sword guiding both cancer progression and cancer therapy. Biochim Biophys Acta Gen Subj 2025; 1869:130805. [PMID: 40222634 DOI: 10.1016/j.bbagen.2025.130805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Aryl Hydrocarbon Receptor (AHR) reported to be associated with major carcinogenic signalling cascades which cause cell proliferations, metastasis and invasion as well as immune imbalance. AHR Participates in cellular processes not only through genomic pathways to cause genomic alterations but also via nongenomic pathways to alter various cytoplasmic proteins. In addition, AHR senses a wide range of ligands that modulate its downstream mechanisms that are intricated in cancer induction and prevention. Thus, AHR functions as a two-sided sword where some AHR ligands contribute to enhance cancer whereas few are useful for cancer treatment. Therefore, AHR represent as a regulatory point in cancer progression and treatment. There is a need to reinvestigate the regulatory role of AHR in major intracellular pathways and to explore the potential of AHR ligand for the design of cancer therapeutics. This review emphasizes the interaction of AHR with pro-carcinogenic signalling pathways that modulate cancer induction and progression. Furthermore, it also discusses about the current discovery of AHR ligands for cancer initiation or inhibition. This information could be useful for development of therapeutic strategies for the management of cancer by targeting AHR.
Collapse
Affiliation(s)
- Rahul Sahoo
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Sriya Pattnaik
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Biswajit Mohanty
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| | - Birendra Behera
- Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India.
| |
Collapse
|
4
|
Xiao X, Liu Y, Qu X, Liu L, Li GQ, Chen H, Zhou L, Liu Y. Aryl hydrocarbon receptor-regulated long non-coding RNAs: implications for glycolipid metabolism and prognosis in hepatocellular carcinoma. Front Oncol 2025; 15:1537481. [PMID: 40248203 PMCID: PMC12003141 DOI: 10.3389/fonc.2025.1537481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/21/2025] [Indexed: 04/19/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths with limited treatment options. Tumor metabolic disorder is elevated in HCC and activates the aryl hydrocarbon receptor (AHR), a transcription factor implicated in cancer progression. However, the role of AHR in regulating long non-coding RNAs (lncRNAs) and their impact on glycolipid metabolism remains underexplored. Materials and methods We investigated AHR's influence on several HCC cell lines treated with the AHR ligand. RNA sequencing was performed to identify the differentially expressed (DE) lncRNAs and mRNAs. We analyzed the differences and then conducted functional pathway enrichment of the identified DE lncRNAs and mRNAs. Furthermore, we constructed co-expression networks of lncRNAs and mRNAs and performed survival analysis using The Cancer Genome Atlas (TCGA) data. Results RNA sequencing identified a substantial number of lncRNAs and mRNAs. DEG analysis identified the significant differences between them related to cancer progression, with pathways such as PI3K-Akt, VEGF, and PPAR signaling highlighted. A co-expression network was utilized to elucidate the lncRNA-mRNA interactions and their regulation of glycolipid metabolism.Survival analysis identified the AHR-regulated lncRNAs associated with poor prognosis, like ASAP1-IT1 and RMDN2-AS1. Conclusion This study clarifies AHR's role in regulating gene expression and metabolism in HCC, revealing novel lncRNA biomarkers and potential therapeutic targets that could aid HCC. Further research is needed to explore AHR's effects on the regulation of glucose-lipid metabolism in HCC.
Collapse
Affiliation(s)
- Xiaoli Xiao
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Gastroenterology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yao Liu
- Department of Gastroenterology, the First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China
| | - Xiaoyong Qu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Gastroenterology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo-Qing Li
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Gastroenterology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Honghui Chen
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Gastroenterology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linlin Zhou
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Gastroenterology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yanping Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, Department of Gastroenterology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Archer D, Pérez-Muñoz ME, Tollenaar S, Veniamin S, Hotte N, Cheng CC, Nieves K, Oh JH, Morceli L, Muncner S, Barreda DR, Krishnamoorthy G, Power C, van Pijkeren JP, Walter J. A secondary metabolite of Limosilactobacillusreuteri R2lc drives strain-specific pathology in a spontaneous mouse model of multiple sclerosis. Cell Rep 2025; 44:115321. [PMID: 39985770 DOI: 10.1016/j.celrep.2025.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 01/27/2025] [Indexed: 02/24/2025] Open
Abstract
Limosilactobacillus reuteri is an immunomodulatory bacterium enriched in non-industrialized microbiomes, making it a therapeutic candidate for chronic diseases. However, effects of L. reuteri strains in mouse models of multiple sclerosis have been contradictory. Here, we show that treatment of spontaneous relapsing-remitting experimental autoimmune encephalomyelitis (EAE) mice with L. reuteri R2lc, a strain that activates the aryl hydrocarbon receptor (AhR) through the pks gene cluster, resulted in severe pathology. In contrast, a pks mutant and a pks-negative strain (PB-W1) failed to exacerbate EAE and exhibited reduced pathology compared to R2lc despite earlier disease onset in PB-W1 mice. Differences in pathology occurred in parallel with a pks-dependent downregulation of AhR-related genes, reduced occludin expression in the forebrain, and altered concentrations of immune cells. This work establishes a molecular foundation for strain-specific effects on autoimmunity, which has implications for our understanding of how microbes contribute to chronic conditions and the selection of microbial therapeutics.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/microbiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Mice
- Disease Models, Animal
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Multiple Sclerosis/microbiology
- Limosilactobacillus reuteri/metabolism
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Mice, Inbred C57BL
- Female
- Occludin/metabolism
Collapse
Affiliation(s)
- Dale Archer
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - María Elisa Pérez-Muñoz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Simona Veniamin
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Christopher C Cheng
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada; Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kristoff Nieves
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, County Cork, Ireland; School of Microbiology, University College Cork, Cork T12 K8AF, County Cork, Ireland; Department of Medicine, University College Cork, Cork T12 K8AF, County Cork, Ireland
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lilian Morceli
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Susan Muncner
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; APC Microbiome Ireland, University College Cork, Cork T12 K8AF, County Cork, Ireland; School of Microbiology, University College Cork, Cork T12 K8AF, County Cork, Ireland; Department of Medicine, University College Cork, Cork T12 K8AF, County Cork, Ireland.
| |
Collapse
|
6
|
Minacori M, Fiorini S, Perugini M, Iannetta A, Meschiari G, Chichiarelli S, Altieri F, Natali PG, Eufemi M. AhR and STAT3: A Dangerous Duo in Chemical Carcinogenesis. Int J Mol Sci 2025; 26:2744. [PMID: 40141386 PMCID: PMC11943011 DOI: 10.3390/ijms26062744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Human chemical carcinogenesis is a multistage process where chemicals or their metabolites cause irreversible changes in normal cell physiology, eventually leading to uncontrolled proliferation, transforming a normal cell into a cancerous one. Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic transcription factor that regulates cell proliferation, differentiation, apoptosis, angiogenesis, inflammation, and immune responses. Its aberrant activation triggers tumor progression by promoting the expression of oncogenic genes; thus, STAT3 is classified as an oncoprotein. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that responds to a wide variety of chemicals, including carcinogens like dioxins, inducing genes associated with detoxification, proliferation, and immune regulation. Recent reports show that AhR plays a critical role in cancer development and maintenance. AhR may interact with signaling pathways, like the STAT3 pathway, which mediates the carcinogenic effects of several pollutants. Various chemical agents, such as industrial waste and hydrocarbon compounds, can alter the expression or signaling activity of AhR and STAT3 pathways, leading to different types of cancers. Understanding the complex STAT3-AhR network in the regulation of chemical carcinogenesis could open new avenues for cancer prevention or treatment, particularly in personalized medicine, aiming to improve life expectancy and achieving a complete cure.
Collapse
Affiliation(s)
- Marco Minacori
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.M.); (S.F.); (G.M.); (S.C.); (F.A.); (M.E.)
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Campus “Aurelio Saliceti”, Via R. Balzarini 1, 64100 Teramo, Italy; (M.P.); (A.I.)
| | - Sara Fiorini
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.M.); (S.F.); (G.M.); (S.C.); (F.A.); (M.E.)
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Campus “Aurelio Saliceti”, Via R. Balzarini 1, 64100 Teramo, Italy; (M.P.); (A.I.)
| | - Annamaria Iannetta
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Campus “Aurelio Saliceti”, Via R. Balzarini 1, 64100 Teramo, Italy; (M.P.); (A.I.)
| | - Giorgia Meschiari
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.M.); (S.F.); (G.M.); (S.C.); (F.A.); (M.E.)
| | - Silvia Chichiarelli
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.M.); (S.F.); (G.M.); (S.C.); (F.A.); (M.E.)
| | - Fabio Altieri
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.M.); (S.F.); (G.M.); (S.C.); (F.A.); (M.E.)
| | - Pier Giorgio Natali
- Collegium Ramazzini, Castello di Bentivoglio, Via Saliceto, 3, 40010 Bologna, Italy
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.M.); (S.F.); (G.M.); (S.C.); (F.A.); (M.E.)
| |
Collapse
|
7
|
Barreira-Silva P, Lian Y, Kaufmann SHE, Moura-Alves P. The role of the AHR in host-pathogen interactions. Nat Rev Immunol 2025; 25:178-194. [PMID: 39415055 DOI: 10.1038/s41577-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
Host-microorganism encounters take place in many different ways and with different types of outcomes. Three major types of microorganisms need to be distinguished: (1) pathogens that cause harm to the host and must be controlled; (2) environmental microorganisms that can be ignored but must be controlled at higher abundance; and (3) symbiotic microbiota that require support by the host. Recent evidence indicates that the aryl hydrocarbon receptor (AHR) senses and initiates signalling and gene expression in response to a plethora of microorganisms and infectious conditions. It was originally identified as a receptor that binds xenobiotics. However, it was subsequently found to have a critical role in numerous biological processes, including immunity and inflammation and was recently classified as a pattern recognition receptor. Here we review the role of the AHR in host-pathogen interactions, focusing on AHR sensing of different microbial classes, the ligands involved, responses elicited and disease outcomes. Moreover, we explore the therapeutic potential of targeting the AHR in the context of infection.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
8
|
Dawe HR, Di Meglio P. The Aryl Hydrocarbon Receptor (AHR): Peacekeeper of the Skin. Int J Mol Sci 2025; 26:1618. [PMID: 40004095 PMCID: PMC11855870 DOI: 10.3390/ijms26041618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
In the last decade, the aryl hydrocarbon receptor (AHR) has emerged as a critical peacekeeper for the maintenance of healthy skin. The evolutionary conservation of AHR implied physiological functions for this receptor, beyond the detoxification of man-made compounds, a notion further supported by the existence of physiological AHR ligands, notably derivates of tryptophan by the host and host microbiome. The UV light-derived ligand, 6-formylindolo[3,2-b]carbazole (FICZ), anticipated a role for AHR in skin, a UV light-exposed organ, where physiological AHR activation promotes a healthy skin barrier and constrains inflammation. The clinical development of tapinarof, the first topical AHR modulating drug for inflammatory skin disease, approved by the FDA for mild-to-moderate psoriasis and poised for approval in atopic dermatitis, supports the therapeutic targeting of the AHR pathway to harness its beneficial effect in skin inflammation. Here, we describe how a tightly controlled, physiological activation of the AHR pathway maintains skin homeostasis, and discuss how the pathway is dysregulated in psoriasis and atopic dermatitis, identifying areas offering opportunities for alternative therapeutic approaches, for further investigation.
Collapse
Affiliation(s)
- Hannah R. Dawe
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK;
- KHP Centre for Translational Medicine, London SE1 9RT, UK
| | - Paola Di Meglio
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK;
- KHP Centre for Translational Medicine, London SE1 9RT, UK
| |
Collapse
|
9
|
Yang J, Qiao P, Wang G, Dang E. The Role of Aryl Hydrocarbon Receptor in Skin Homeostasis: Implications for Therapeutic Strategies in Skin Disorders. Cell Biochem Funct 2025; 43:e70047. [PMID: 39866071 DOI: 10.1002/cbf.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is extensively expressed in diverse human organs and plays a pivotal role in mediating the onset, progression, and severity of numerous diseases. Recent research has explored the substantial impact of AhR on skin homeostasis and related pathologies. As a multi-layered organ, the skin comprises multiple cell populations that express AhR. In this review, we introduce the role of AhR in various skin cells and its impact on skin barrier function. Furthermore, we explore the involvement of AhR in the development of various skin diseases, highlighting its potential as a therapeutic target for skin disorders. By targeting AhR, we may open new avenues for the development of novel and efficient skin disease treatments.
Collapse
Affiliation(s)
- Jundan Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Shukla V, Iqbal K, Okae H, Arima T, Soares MJ. Aryl Hydrocarbon Receptor Activation Drives 2-Methoxy Estradiol Secretion in Human Trophoblast Stem Cell Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.27.609205. [PMID: 39253430 PMCID: PMC11383004 DOI: 10.1101/2024.08.27.609205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
STUDY QUESTION How does activation of AHR signaling affect human trophoblast cell development and differentiation? SUMMARY ANSWER AHR activation leads to altered gene expression but does not hinder the ability of trophoblast cells to remain in a stem cell state or differentiate into essential cell types, such as extravillous trophoblast cells (EVT) or syncytiotrophoblast (ST). It also promotes the production of 2 methoxy estradiol (2ME), a compound that could influence placental development. WHAT IS KNOWN ALREADY The placenta serves both as a nutrient delivery system and a protective barrier against environmental toxins. AHR signaling is known to mediate cellular responses to environmental pollutants, potentially affecting trophoblast cell functions, but the specific impacts of AHR activation on these cells were not fully understood. STUDY DESIGN SIZE DURATION This study utilized an in vitro model of human trophoblast stem (TS) cells to investigate the downstream effects of AHR activation. The study focused on both undifferentiated TS cells and cells undergoing differentiation. PARTICIPANTS/MATERIALS SETTING METHODS Human trophoblast stem (TS) cells were used as the model system. Researchers examined the effects of TCDD exposure in both TS cells maintained in their stem state and those induced to differentiate into EVT or ST. The study assessed changes in gene expression, particularly focusing on CYP1A1 and CYP1B1, as well as the production of 2ME. MAIN RESULTS AND THE ROLE OF CHANCE AHR activation stimulated the expression of CYP1A1 and CYP1B1, key genes associated with AHR signaling, in both undifferentiated and differentiating trophoblast cells. While AHR activation did not impact the cells ability to remain in a stem state or differentiate, it increased the production of 2ME, which may influence placental function. These effects were dependent on AHR signaling. LIMITATIONS REASONS FOR CAUTION This study was conducted in vitro, which may not fully replicate human conditions. Further research is needed to confirm whether these findings apply to actual placental development in humans. WIDER IMPLICATIONS OF THE FINDINGS The results suggest that AHR signaling activated by environmental pollutants could have a subtle but significant impact on placental development through mechanisms involving AHR activation. These findings may have broader implications for understanding how environmental factors affect fetal development. STUDY FUNDING/COMPETING INTERESTS This work was funded by the National Institutes of Health: ES028957, HD020676, ES029280, HD105734 and the Sosland Foundation. The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 661602
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 661602
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 661602
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO 64108
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
11
|
Meng X, Du W, Sun Z. Fine particulate matter‑induced cardiac developmental toxicity (Review). Exp Ther Med 2025; 29:6. [PMID: 39534282 PMCID: PMC11552469 DOI: 10.3892/etm.2024.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Fine particulate matter (PM2.5) has become an important risk factor threatening human health. Epidemiological and toxicological investigations have revealed that PM2.5 not only leads to cardiovascular dysfunction, but it also gives rise to various adverse health effects on the human body, such as cardiovascular and cerebrovascular diseases, cancers, neurodevelopmental disorders, depression and autism. PM2.5 is able to penetrate both respiratory and placental barriers, thereby resulting in negative effects on fetal development. A large body of epidemiological evidences has suggested that gestational exposure to PM2.5 increases the incidence of congenital diseases in offspring, including congenital heart defects. In addition, animal model studies have revealed that gestational exposure to PM2.5 can disrupt normal heart development in offspring, although the potential molecular mechanisms have yet to be fully elucidated. The aim of the present review was to provide a brief overview of what is currently known regarding the molecular mechanisms underlying cardiac developmental toxicity in offspring induced by gestational exposure to PM2.5.
Collapse
Affiliation(s)
- Xiangjiang Meng
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| | - Weiyuan Du
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| | - Zongli Sun
- Department of Cardiovascular Medicine, Changle People's Hospital, Shandong Second Medical University, Weifang, Shandong 262400, P.R. China
| |
Collapse
|
12
|
Huang FC. Therapeutic Potential of Nutritional Aryl Hydrocarbon Receptor Ligands in Gut-Related Inflammation and Diseases. Biomedicines 2024; 12:2912. [PMID: 39767818 PMCID: PMC11673835 DOI: 10.3390/biomedicines12122912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
A solid scientific foundation is required to build the concept of personalized nutrition developed to promote health and a vision of disease prevention. Growing evidence indicates that nutrition can modulate the immune system through metabolites, which are either generated via microbiota metabolism or host digestion. The aryl hydrocarbon receptor (AhR) plays a crucial role in regulating immune responses, particularly in the gut, and has emerged as a key modulator of gut-mediated inflammation and related diseases. AhR is a ligand-activated transcription factor that responds to environmental, dietary, and microbial-derived signals, influencing immune balance and maintaining intestinal homeostasis. Nutritional AhR ligands play a significant role in modulating intestinal immunity and the function of mucosal immune cells, thereby exerting clinical effects on colitis and innate immunity. Additionally, they have the capacity to orchestrate autophagy, phagocytic cell function, and intestinal epithelial tight junctions. Therapeutic strategies aimed at enhancing AhR activity, restoring gut integrity, and optimizing immune responses hold promise as avenues for future research and potential treatments for critically ill patients.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| |
Collapse
|
13
|
Hepditch SLJ, Ahad JME, Martel R, To TA, Gutierrez-Villagomez JM, Larocque È, Vander Meullen IJ, Headley JV, Xin Q, Langlois VS. Behavior and toxicological impact of spilled diluted bitumen and conventional heavy crude oil in the unsaturated zone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124875. [PMID: 39233269 DOI: 10.1016/j.envpol.2024.124875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Demand for unconventional crude oils continues to drive the production of diluted bitumen (dilbit) within Western Canada, promoting increased transport volumes across the extensive 700,000 km pipeline system of Canada and the USA. Despite this vast extent of terrestrial transport, the current understanding of the behavior and fate of spilled dilbit within shallow groundwater systems is limited. To this end, oil spill experiments with a dilbit (Cold Lake Blend) and a physicochemically similar conventional heavy crude oil (Conventional Heavy Blend) were conducted for 104 days in large soil columns (1 m height × 0.6 m diameter) engineered to model contaminant transport in the unsaturated (vadose) zone. Around two-fold greater concentrations and 6-41 % faster rates of vadose zone transport of benzene, toluene, ethylbenzene and xylenes (BTEX) and polycyclic aromatic compounds (PACs) were observed in the dilbit- compared to conventional heavy crude-contaminated columns. As determined by Orbitrap mass spectrometry, the OxSx species abundances in the acid extractable organics (AEOs) fraction of column leachate from both oil types increased over time, ostensibly due to microbial degradation of petroleum. Bioaccumulation of petroleum constituents in fathead minnow (Pimephales promelas) larvae exposed to contaminated leachate was confirmed through the induction of developmental malformations lasting up to 34 days and increased abundance of cyp1a mRNA observed throughout the experiment. Toxicity was comparable between the two oils but could not be fully attributed to metals, BTEX, PACs or AEOs, implying the presence of uncharacterized teratogens capable of being transported within the vadose zone following terrestrial dilbit and conventional heavy crude oil surface spills.
Collapse
Affiliation(s)
- Scott L J Hepditch
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la lutte contre les changements climatiques, de la faune et des forêts (MELCCFP), Québec, QC, H7C 2M7, Canada
| | - Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada (NRCan), Québec, QC, G1K 9A9, Canada.
| | - Richard Martel
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Tuan Anh To
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | | | - Ève Larocque
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Ian J Vander Meullen
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 3H5, Canada; Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - John V Headley
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 3H5, Canada
| | - Qin Xin
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB, T9G 1A8, Canada
| | - Valerie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| |
Collapse
|
14
|
Wojtyło PA, Łapińska N, Bellagamba L, Camaioni E, Mendyk A, Giovagnoli S. Initial Development of Automated Machine Learning-Assisted Prediction Tools for Aryl Hydrocarbon Receptor Activators. Pharmaceutics 2024; 16:1456. [PMID: 39598579 PMCID: PMC11597659 DOI: 10.3390/pharmaceutics16111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The aryl hydrocarbon receptor (AhR) plays a crucial role in immune and metabolic processes. The large molecular diversity of ligands capable of activating AhR makes it impossible to determine the structural features useful for the design of new potent modulators. Thus, in the field of drug discovery, the intricate nature of AhR activation necessitates the development of novel tools to address related challenges. Methods: In this study, quantitative structure-activity relationship (QSAR) models of classification and regression were developed with the objective of identifying the most effective method for predicting AhR activity. The initial dataset was obtained by combining the ChEMBL and WIPO databases which contained 978 molecules with EC50 values. The predictive models were developed using the automated machine learning platform mljar according to a 10-fold cross validation (10-CV) testing procedure. Results: The classification model demonstrated an accuracy value of 0.760 and F1 value of 0.789 for the test set. The root-mean-squared error (RMSE) was 5444, and the coefficient of determination (R2) was 0.208 for the regression model. The Shapley Additive Explanations (SHAP) method was then employed for a deeper comprehension of the impact of the variables on the model's predictions. As a practical application for scientific purposes, the best performing classification model was then used to develop an AhR web application. This application is accessible online and has been implemented in Streamlit. Conclusions: The findings may serve as a foundation in prompting further research into the development of a QSAR model, which could enhance comprehension of the influence of ligand structure on the modulation of AhR activity.
Collapse
Affiliation(s)
- Paulina Anna Wojtyło
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (L.B.); (E.C.); (S.G.)
| | - Natalia Łapińska
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland; (N.Ł.); (A.M.)
| | - Lucia Bellagamba
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (L.B.); (E.C.); (S.G.)
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (L.B.); (E.C.); (S.G.)
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland; (N.Ł.); (A.M.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (L.B.); (E.C.); (S.G.)
| |
Collapse
|
15
|
Im S, Kang S, Son WJ, Son M, Oh SJ, Yoon HJ, Pak YK. Dioxin-Induced PAI-1 Expression: A Novel Pathway to Pancreatic β-Cell Failure in Type 2 Diabetes. Int J Mol Sci 2024; 25:11974. [PMID: 39596044 PMCID: PMC11594116 DOI: 10.3390/ijms252211974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Exposure to environment-polluting chemicals (EPCs), which are ligands of the aryl hydrocarbon receptor (AhR), is associated with the development of type 2 diabetes (T2D). This study explores the mechanisms by which AhR ligands contribute to β-cell failure in T2D. Incubation of RINm5F rat pancreatic β-cells with low-dose 2,3,7,8-tetrachlorodibenzodioxin (TCDD), the most potent AhR ligand, inhibited glucose-stimulated insulin secretion (GSIS). A single injection of TCDD in wild type mice reduced the size of Langerhans islets, but not in AhR liver knock-out mice (AhR-LKO). RNA-seq database analysis identified Serpine1, encoding for plasminogen activator inhibitor type-1 (PAI-1) as a TCDD-mediated secretory protein that is synthesized in an AhR-dependent manner in the liver. Elevated PAI-1 levels were shown to induce Caspase-3/7-dependent apoptosis in RINm5F cells, suggesting a novel pathway through which EPCs exacerbate T2D. These findings support the hypothesis that chronic exposure to AhR ligands may directly inhibit GSIS in pancreatic β-cells and indirectly induce β-cell apoptosis through increased PAI-1. This study provides new insights into the EPC-PAI-1 axis as a missing link between pancreatic β-cell failure and the progression of T2D and offers a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Suyeol Im
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.I.); (S.K.); (W.J.S.); (S.J.O.)
- Department of Physiology, School of Medicine, Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sora Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.I.); (S.K.); (W.J.S.); (S.J.O.)
- Department of Physiology, School of Medicine, Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo Jung Son
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.I.); (S.K.); (W.J.S.); (S.J.O.)
| | - Minuk Son
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.S.); (H.J.Y.)
| | - Seung Jun Oh
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.I.); (S.K.); (W.J.S.); (S.J.O.)
| | - Hye Ji Yoon
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.S.); (H.J.Y.)
| | - Youngmi Kim Pak
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.I.); (S.K.); (W.J.S.); (S.J.O.)
- Department of Physiology, School of Medicine, Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (M.S.); (H.J.Y.)
| |
Collapse
|
16
|
Sink WJ, Fling R, Yilmaz A, Nault R, Goniwiecha D, Harkema JR, Graham SF, Zacharewski T. 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) elicited dose-dependent shifts in the murine urinary metabolome associated with hepatic AHR-mediated differential gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619714. [PMID: 39484576 PMCID: PMC11526911 DOI: 10.1101/2024.10.22.619714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Epidemiological evidence suggests an association between dioxin and dioxin-like compound (DLC) exposure and human liver disease. The prototypical DLC, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been shown to induce the progression of reversible hepatic steatosis to steatohepatitis with periportal fibrosis and biliary hyperplasia in mice. Although the effects of TCDD toxicity are mediated by aryl hydrocarbon receptor (AHR) activation, the underlying mechanisms of TCDD-induced hepatotoxicity are unresolved. In the present study, male C57BL/6NCrl mice were gavaged every 4 days for 28 days with 0.03 - 30 μg/kg TCDD and evaluated for liver histopathology and gene expression as well as complementary 1-dimensional proton magnetic resonance (1D- 1H NMR) urinary metabolic profiling. Urinary trimethylamine (TMA), trimethylamine N-oxide (TMAO), and 1-methylnicotinamide (1MN) levels were altered by TCDD at doses ≤ 3 μg/kg; other urinary metabolites, like glycolate, urocanate, and 3-hydroxyisovalerate, were only altered at doses that induced moderate to severe steatohepatitis. Bulk liver RNA-seq data suggested altered urinary metabolites correlated with hepatic differential gene expression corresponding to specific metabolic pathways. In addition to evaluating whether altered urinary metabolites were liver-dependent, published single-nuclear RNA-seq (snRNA-seq), AHR ChIP-seq, and AHR knockout gene expression datasets provide further support for hepatic cell-type and AHR-regulated dependency, respectively. Overall, TCDD-induced liver effects were preceded by and occurred with changes in urinary metabolite levels due to AHR-mediated changes in hepatic gene expression.
Collapse
Affiliation(s)
- Warren J Sink
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| | - Russell Fling
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| | - Ali Yilmaz
- Corewell Health Research Institute, Royal Oak, MI 48073, USA
| | - Rance Nault
- Michigan State University, Department of Pharmacology and Toxicology, East Lansing, MI 48824, USA
| | - Delanie Goniwiecha
- Middlebury College, Neuroscience Faculty, 14 Old Chapel Rd, Middlebury, VT 05753, USA
| | - Jack R Harkema
- Michigan State University, Pathobiology & Diagnostic Investigation, East Lansing, MI, United States of America
| | - Stewart F Graham
- Corewell Health Research Institute, Royal Oak, MI 48073, USA
- Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Timothy Zacharewski
- Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48823, USA
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Dexheimer TS, Coussens NP, Silvers T, Jones EM, Chen L, Fang J, Morris J, Moscow JA, Doroshow JH, Teicher BA. Combination screen in multi-cell type tumor spheroids reveals interaction between aryl hydrocarbon receptor antagonists and E1 ubiquitin-activating enzyme inhibitor. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100186. [PMID: 39362362 PMCID: PMC11562894 DOI: 10.1016/j.slasd.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates genes of drug transporters and metabolic enzymes to detoxify small molecule xenobiotics. It has a complex role in cancer biology, influencing both the progression and suppression of tumors by modulating malignant properties of tumor cells and anti-tumor immunity, depending on the specific tumor type and developmental stage. This has led to the discovery and development of selective AhR modulators, including BAY 2416964 which is currently in clinical trials. To identify small molecule anticancer agents that might be combined with AhR antagonists for cancer therapy, a high-throughput combination screen was performed using multi-cell type tumor spheroids grown from malignant cells, endothelial cells, and mesenchymal stem cells. The AhR selective antagonists BAY 2416964, GNF351, and CH-223191 were tested individually and in combination with twenty-five small molecule anticancer agents. As single agents, BAY 2416964 and CH-223191 showed minimal activity, whereas GNF351 reduced the viability of some spheroid models at concentrations greater than 1 µM. The activity of most combinations aligned well with the single agent activity of the combined agent, without apparent contributions from the AhR antagonist. All three AhR antagonists sensitized tumor spheroids to TAK-243, an E1 ubiquitin-activating enzyme inhibitor. These combinations were active in spheroids containing bladder, breast, ovary, kidney, pancreas, colon, and lung tumor cell lines. The AhR antagonists also potentiated pevonedistat, a selective inhibitor of the NEDD8-activating enzyme E1 regulatory subunit, in several tumor spheroid models. In contrast, the AhR antagonists did not enhance the cytotoxicity of the proteasome inhibitor bortezomib.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Target Validation and Screening Laboratory, Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA.
| | - Nathan P Coussens
- Target Validation and Screening Laboratory, Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Thomas Silvers
- Target Validation and Screening Laboratory, Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Eric M Jones
- Target Validation and Screening Laboratory, Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Li Chen
- Molecular Characterization Laboratory, Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jianwen Fang
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel Morris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey A Moscow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Wang Z, Zhang Y, Huang S, Liao Z, Huang M, Lei W, Shui X. UA influences the progression of breast cancer via the AhR/p27 Kip1/cyclin E pathway. FASEB J 2024; 38:e70058. [PMID: 39320969 DOI: 10.1096/fj.202400938r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Uric acid (UA) is the end product of purine metabolism. In recent years, UA has been found to be associated with the prognosis of clinical cancer patients. However, the intricate mechanisms by which UA affects the development and prognosis of tumor patients has not been well elucidated. In this study, we explored the role of UA in breast cancer, scrutinizing its impact on breast cancer cell function by treating two types of breast cancer cell lines with UA. The role of UA in the cell cycle and proliferation of tumors and the underlying mechanisms were further investigated. We found that the antioxidant effect of UA facilitated the scavenging of reactive oxygen species (ROS) in breast cancer, thereby reducing aryl hydrocarbon receptor (AhR) expression and affecting the breast cancer cell cycle, driving the proliferation of breast cancer cells through the AhR/p27Kip1/cyclin E1 pathway. Moreover, in breast cancer patients, the expression of AhR and its downstream genes may be closely associated with cancer progression in patients. Therefore, an increase in UA could promote the proliferation of breast cancer cells through the AhR/p27Kip1/cyclin E1 pathway axis.
Collapse
Affiliation(s)
- Zhiying Wang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuanqi Zhang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shengchao Huang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhihong Liao
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Mingzhang Huang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Precision Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
19
|
Badawy AAB, Dawood S. Molecular Insights into the Interaction of Tryptophan Metabolites with the Human Aryl Hydrocarbon Receptor in Silico: Tryptophan as Antagonist and no Direct Involvement of Kynurenine. FRONT BIOSCI-LANDMRK 2024; 29:333. [PMID: 39344334 DOI: 10.31083/j.fbl2909333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND A direct link between the tryptophan (Trp) metabolite kynurenine (Kyn) and the aryl hydrocarbon receptor (AhR) is not supported by metabolic considerations and by studies demonstrating the failure of Kyn concentrations of up to 100 μM to activate the receptor in cell culture systems using the proxy system of cytochrome P-450-dependent metabolism. The Kyn metabolite kynurenic acid (KA) activates the AhR and may mediate the Kyn link. Recent studies demonstrated down regulation and antagonism of activation of the AhR by Trp. We have addressed the link between Kyn and the AhR by looking at their direct molecular interaction in silico. METHODS Molecular docking of Kyn, KA, Trp and a range of Trp metabolites to the crystal structure of the human AhR was performed under appropriate docking conditions. RESULTS Trp and 30 of its metabolites docked to the AhR to various degrees, whereas Kyn and 3-hydroxykynurenine did not. The strongest docking was observed with the Trp metabolite and photooxidation product 6-Formylindolo[3,2-b]carbazole (FICZ), cinnabarinic acid, 5-hydroxytryptophan, N-acetyl serotonin and indol-3-yllactic acid. Strong docking was also observed with other 5-hydroxyindoles. CONCLUSIONS We propose that the Kyn-AhR link is mediated by KA. The strong docking of Trp and its recently reported down regulation of the receptor suggest that Trp is an AhR antagonist and may thus play important roles in body homeostasis beyond known properties or simply being the precursor of biologically active metabolites. Differences in AhR activation reported in the literature are discussed.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, CF5 2YB Wales, UK
| | - Shazia Dawood
- Pharmacy and Allied Health Sciences, Iqra University, 7580 Karachi, Pakistan
| |
Collapse
|
20
|
Halawani D, Wang Y, Estill M, Sefiani A, Ramakrishnan A, Li J, Ni H, Halperin D, Shen L, Geoffroy CG, Friedel RH, Zou H. Aryl hydrocarbon receptor restricts axon regeneration of DRG neurons in response to injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.04.565649. [PMID: 37961567 PMCID: PMC10635160 DOI: 10.1101/2023.11.04.565649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Injured neurons sense environmental cues to balance neural protection and axon regeneration, but the mechanisms are unclear. Here, we unveil aryl hydrocarbon receptor (AhR), a ligand-activated bHLH-PAS transcription factor, as a molecular sensor and key regulator of acute stress response at the expense of axon regeneration. We demonstrate responsiveness of DRG sensory neurons to AhR signaling, which functions to inhibit axon regeneration. Conditional Ahr deletion in neurons accelerates axon regeneration after sciatic nerve injury. Ahr deletion partially mimics the conditioning lesion in priming DRG to initiate axonogenesis gene programs; upon peripheral axotomy, Ahr ablation suppresses inflammation and stress signaling while augmenting pro-growth pathways. Moreover, comparative transcriptomics revealed signaling interactions between AhR and HIF-1α, two structurally related bHLH-PAS α units that share the dimerization partner Arnt/HIF-1β. Functional assays showed that the growth advantage of AhR-deficient DRG neurons requires HIF-1α; but in the absence of Arnt, DRG neurons can still mount a regenerative response. We further unveil a link between bHLH-PAS transcription factors and DNA hydroxymethylation in response to peripheral axotomy, while RNA-seq of DRG neurons and neuronal single cell RNA-seq analysis revealed a link of AhR regulon to RNA regulation and integrated stress response (ISR). Altogether, AhR activation favors stress coping and inflammation at the expense of axon regeneration; targeting AhR has the potential to enhance nerve repair.
Collapse
Affiliation(s)
- Dalia Halawani
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yiqun Wang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Sport Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arthur Sefiani
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jiaxi Li
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Haofei Ni
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Daniel Halperin
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Cédric G. Geoffroy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, USA
| | - Roland H. Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
21
|
Ranhotra HS. Discrete interplay of gut microbiota L-tryptophan metabolites in host biology and disease. Mol Cell Biochem 2024; 479:2273-2290. [PMID: 37861881 DOI: 10.1007/s11010-023-04867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
The gut microbiota and the host maintain a conjoint relationship and together achieve optimal physiology via a multitude of interactive signalling cues. Dietary-derived L-tryptophan (L-trp) is enzymatically metabolized by the resident symbiotic gut microbiota to indole and various indole derivatives. Indole and indole metabolites secreted by the gut bacteria act locally in the intestinal cells as well as distally and modulate tissue-specific functions which are beneficial to the host. Functions attributed to these microbial indole metabolites in the host include regulation of intestinal permeability, immunity and mucosal roles, inflammation, and insulin sensitivity. On the other hand, dysregulation of gut microbiota L-trp metabolism compromises the optimal availability of indole and indole metabolites and can induce the onset of metabolic disorders, inflammation, liver steatosis, and decrease gut barrier integrity. Gut dysbiosis is regarded as one of the prime reasons for this deregulated microbial-derived indole metabolites. A number of indole metabolites from the gut bacteria have been identified recently displaying variable affinity towards xenobiotic nuclear receptors. Microbial metabolite mimicry concept can be used to design and develop novel indole-moiety-containing compounds with higher affinity towards the receptors and efficacy in preclinical studies. Such compounds may serve as therapeutic drugs in clinical trials in the future. In this article, I review L-trp metabolism in the host and gut microbiota and the various physiological functions, patho-physiologies associated with the microbial-released indole metabolites in the host, including the metabolite mimicry-based concept to develop tailored indole-containing novel experimental drugs.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
22
|
Haarmann-Stemmann T. The aryl hydrocarbon receptor in environmentally induced cancers. Biochem Pharmacol 2024; 225:116304. [PMID: 38768762 DOI: 10.1016/j.bcp.2024.116304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Thomas Haarmann-Stemmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany.
| |
Collapse
|
23
|
Vyavahare S, Ahluwalia P, Gupta SK, Kolhe R, Hill WD, Hamrick M, Isales CM, Fulzele S. The Role of Aryl Hydrocarbon Receptor in Bone Biology. Int J Tryptophan Res 2024; 17:11786469241246674. [PMID: 38757095 PMCID: PMC11097734 DOI: 10.1177/11786469241246674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is crucial in maintaining the skeletal system. Our study focuses on encapsulating the role of AhR in bone biology and identifying novel signaling pathways in musculoskeletal pathologies using the GEO dataset. The GEO2R analysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the AhR pathway, which play a pivotal role in bone remodeling. The AhR knockout in hematopoietic stem cells showed alteration in several novel bone-related transcriptomes (eg, Defb14, ZNF 51, and Chrm5). Gene Ontology Enrichment Analysis demonstrated 54 different biological processes associated with bone homeostasis. Mainly, these processes include bone morphogenesis, bone development, bone trabeculae formation, bone resorption, bone maturation, bone mineralization, and bone marrow development. Employing Functional Annotation and Clustering through DAVID, we further uncovered the involvement of the xenobiotic metabolic process, p450 pathway, oxidation-reduction, and nitric oxide biosynthesis process in the AhR signaling pathway. The conflicting evidence of current research of AhR signaling on bone (positive and negative effects) homeostasis may be due to variations in ligand binding affinity, binding sites, half-life, chemical structure, and other unknown factors. In summary, our study provides a comprehensive understanding of the underlying mechanisms of the AhR pathway in bone biology.
Collapse
Affiliation(s)
- Sagar Vyavahare
- Department of Medicine, Augusta University, Augusta, GA, USA
| | | | | | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - William D Hill
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, USA
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| |
Collapse
|
24
|
Monteiro V, Dias da Silva D, Martins M, Guedes de Pinho P, Pinto J. Metabolomics perspectives of the ecotoxicological risks of polycyclic aromatic hydrocarbons: A scoping review. ENVIRONMENTAL RESEARCH 2024; 249:118394. [PMID: 38307181 DOI: 10.1016/j.envres.2024.118394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) represent persistent environmental pollutants ubiquitously distributed in the environment. Their presence alongside various other contaminants gives rise to intricate interactions, culminating in profound deleterious consequences. The combination effects of different PAH mixtures on biota remains a relatively unexplored domain. Recent studies have harnessed the exceptional sensitivity of metabolomic techniques to unveil the significant ecotoxicological perils of PAH pollution confronting both human populations and ecosystems. This article furnishes a comprehensive overview of current literature focused on the metabolic repercussions stemming from exposure to complex mixtures of PAHs or PAH-pollution sources using metabolomics approaches. These insights are obtained through a wide range of models, including in vitro assessments, animal studies, investigations on human subjects, botanical specimens, and soil environments. The findings underscore that PAH mixtures induce cellular stress responses and systemic effects, leading to metabolic dysregulations in amino acids, carbohydrates, lipids, and other key metabolites (e.g., organic acids, purines), with specific variations observed based on the organism and PAH compounds involved. Additionally, the ecological consequences of PAH pollutants on plant and soil microbial responses are emphasized, revealing significant changes in stress-related metabolites and nutrient cycling in soil ecosystems. The complex interplay of various PAHs and their metabolic effects on several models, as elucidated through metabolomics, highlight the urgency of further research and the need for comprehensive strategies to mitigate the risks posed by these widespread environmental pollutants.
Collapse
Affiliation(s)
- Vânia Monteiro
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Diana Dias da Silva
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Rua Central de Gandra, 4585-116 Gandra, Portugal
| | - Marta Martins
- MARE ‒ Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
25
|
Tain YL, Hsu CN. The Impact of the Aryl Hydrocarbon Receptor on Antenatal Chemical Exposure-Induced Cardiovascular-Kidney-Metabolic Programming. Int J Mol Sci 2024; 25:4599. [PMID: 38731818 PMCID: PMC11083012 DOI: 10.3390/ijms25094599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
26
|
Thome T, Vugman NA, Stone LE, Wimberly K, Scali ST, Ryan TE. A tryptophan-derived uremic metabolite/Ahr/Pdk4 axis governs skeletal muscle mitochondrial energetics in chronic kidney disease. JCI Insight 2024; 9:e178372. [PMID: 38652558 PMCID: PMC11141944 DOI: 10.1172/jci.insight.178372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology and
| | | | | | - Keon Wimberly
- Department of Applied Physiology and Kinesiology and
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, USA
- Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology and
- Center for Exercise Science and
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
27
|
Veroni C, Olla S, Brignone MS, Siguri C, Formato A, Marra M, Manzoli R, Macario MC, Ambrosini E, Moro E, Agresti C. The Antioxidant Drug Edaravone Binds to the Aryl Hydrocarbon Receptor (AHR) and Promotes the Downstream Signaling Pathway Activation. Biomolecules 2024; 14:443. [PMID: 38672460 PMCID: PMC11047889 DOI: 10.3390/biom14040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention because of being able to enhance remyelination in experimental in vitro and in vivo disease models. While its beneficial effects are greatly supported by experimental evidence, there is a current paucity of information regarding its mechanism of action and main molecular targets. By using high-throughput RNA-seq and biochemical experiments in murine oligodendrocyte progenitors and SH-SY5Y neuroblastoma cells combined with molecular docking and molecular dynamics simulation, we here provide evidence that Edaravone triggers the activation of aryl hydrocarbon receptor (AHR) signaling by eliciting AHR nuclear translocation and the transcriptional-mediated induction of key cytoprotective gene expression. We also show that an Edaravone-dependent AHR signaling transduction occurs in the zebrafish experimental model, associated with a downstream upregulation of the NRF2 signaling pathway. We finally demonstrate that its rapid cytoprotective and antioxidant actions boost increased expression of the promyelinating Olig2 protein as well as of an Olig2:GFP transgene in vivo. We therefore shed light on a still undescribed potential mechanism of action for this drug, providing further support to its therapeutic potential in the context of debilitating demyelinating conditions.
Collapse
Affiliation(s)
- Caterina Veroni
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.V.); (M.S.B.); (E.A.)
| | - Stefania Olla
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), Monserrato, 09042 Cagliari, Italy; (S.O.); (C.S.)
| | - Maria Stefania Brignone
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.V.); (M.S.B.); (E.A.)
| | - Chiara Siguri
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), Monserrato, 09042 Cagliari, Italy; (S.O.); (C.S.)
| | - Alessia Formato
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus Adriano Buzzati Traverso, Monterotondo Scalo, 00015 Rome, Italy;
| | - Manuela Marra
- Core Facilities Technical-Scientific Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Rosa Manzoli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (R.M.); (M.C.M.)
| | - Maria Carla Macario
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (R.M.); (M.C.M.)
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.V.); (M.S.B.); (E.A.)
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (R.M.); (M.C.M.)
| | - Cristina Agresti
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.V.); (M.S.B.); (E.A.)
| |
Collapse
|
28
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Chen J, Zhang M, Aniagu S, Jiang Y, Chen T. PM 2.5 induces cardiac defects via AHR-SIRT1-PGC-1α mediated mitochondrial damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104393. [PMID: 38367920 DOI: 10.1016/j.etap.2024.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Recent evidence indicates that PM2.5 poses a risk for congenital heart diseases, but the mechanisms remain unclear. We hypothesized that AHR activated by PM2.5 might cause mitochondrial damage via PGC-1α dysregulation, leading to heart defects. We initially discovered that the PGC-1α activator ZLN005 counteracted cardiac defects in zebrafish larvae exposed to EOM (extractable organic matter) from PM2.5. Moreover, ZLN005 attenuated EOM-induced PGC-1α downregulation, mitochondrial dysfunction/biogenesis, and apoptosis. EOM exposure not only decreased PGC-1α expression levels, but suppressed its activity via deacetylation, and SIRT1 activity is required during both processes. We then found that SIRT1 expression levels and NAD+/NADH ratio were reduced in an AHR-dependent way. We also demonstrated that AHR directly suppressed the transcription of SIRT1 while promoted the transcription of TiPARP which consumed NAD+. In conclusion, our study suggests that PM2.5 induces mitochondrial damage and heart defects via AHR/SIRT1/PGC-1α signal pathway.
Collapse
Affiliation(s)
- Jin Chen
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Mingxuan Zhang
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin TX, USA
| | - Yan Jiang
- Suzhou medical college, Soochow University, Suzhou, China.
| | - Tao Chen
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China.
| |
Collapse
|
30
|
Bonati L, Motta S, Callea L. The AhR Signaling Mechanism: A Structural Point of View. J Mol Biol 2024; 436:168296. [PMID: 37797832 DOI: 10.1016/j.jmb.2023.168296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
The Aryl hydrocarbon Receptor (AhR) is a well-known sensor of xenobiotics; moreover, it is considered a promising drug target as it is involved in the regulation of many patho-physiological processes. For these reasons the study of its ligand-activated transcription mechanism has stimulated several studies for over twenty years. In this review we highlight the key role of molecular structural information in understanding the different steps of the signaling mechanism. The architecture of the AhR cytosolic complex, encompassing the hsp90 chaperone protein and the XAP2 and p23 co-chaperones, has become available in the last year thanks to Cryo-EM experiments. The structure of the AhR ligand-binding (PAS-B) domain has remained elusive for a long time; it has been predicted by homology modelling, based on known PAS systems, and its ligand-bound forms were modelled through ligand molecular docking. Although very recently some structural information on this domain has become available, considerable efforts are still needed to determine the binding geometries of the AhR key ligands by experimental high-resolution studies. On the other hand, the dimeric structure of AhR with the ARNT protein, bound to the specific DNA responsive element, was partially determined by X-ray crystallography and it was completed by homology modelling. On the whole the current structural knowledge of the main protein complexes that form over the AhR mechanism opens the way to confirm and further investigate the main steps of the proposed ligand-activated transcription mechanism of the AhR.
Collapse
Affiliation(s)
- Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Lara Callea
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| |
Collapse
|
31
|
Neamah WH, Rutkovsky A, Abdullah O, Wilson K, Bloomquist R, Nagarkatti P, Nagarkatti M. Resveratrol Attenuates 2,3,7,8-Tetrachlorodibenzo-p-dioxin-Mediated Induction of Myeloid-Derived Suppressor Cells (MDSC) and Their Functions. Nutrients 2023; 15:4667. [PMID: 37960320 PMCID: PMC10650545 DOI: 10.3390/nu15214667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Previously, we showed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR) ligand and a potent and persistent toxicant and carcinogenic agent, induces high levels of murine myeloid-derived suppressor cell (MDSC) when injected into mice. In the current study, we demonstrate that Resveratrol (3,4,5-trihydroxy-trans-stilbene; RSV), an AhR antagonist, reduces TCDD-mediated MDSC induction. RSV decreased the number of MDSCs induced by TCDD in mice but also mitigated the immunosuppressive function of TCDD-induced MDSCs. TCDD caused a decrease in F4/80+ macrophages and an increase in CD11C+ dendritic cells, while RSV reversed these effects. TCDD caused upregulation in CXCR2, a critical molecule involved in TCDD-mediated induction of MDSCs, and Arginase-1 (ARG-1), involved in the immunosuppressive functions of MDSCs, while RSV reversed this effect. Transcriptome analysis of Gr1+ MDSCs showed an increased gene expression profile involved in the metabolic pathways in mice exposed to TCDD while RSV-treated mice showed a decrease in such pathways. The bio-energetic profile of these cells showed that RSV treatment decreased the energetic demands induced by TCDD. Overall, the data demonstrated that RSV decreased TCDD-induced MDSC induction and function by altering the dynamics of various myeloid cell populations involving their numbers, phenotype, and immunosuppressive potency. Because MDSCs play a critical role in tumor growth and metastasis, our studies also support the potential use of RSV to attenuate the immunosuppressive properties of MDSC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29228, USA; (W.H.N.); (A.R.); (O.A.); (K.W.); (R.B.); (P.N.)
| |
Collapse
|
32
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
33
|
Tumova S, Dolezel D, Jindra M. Conserved and Unique Roles of bHLH-PAS Transcription Factors in Insects - From Clock to Hormone Reception. J Mol Biol 2023; 436:168332. [PMID: 39491146 DOI: 10.1016/j.jmb.2023.168332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
A dozen bHLH-PAS transcription factors have evolved since the dawn of the animal kingdom; nine of them have mutual orthologs between arthropods and vertebrates. These proteins are master regulators in a range of developmental processes from organogenesis, nervous system formation and functioning, to cell fate decisions defining identity of limbs or photoreceptors for color vision. Among the functionally best conserved are bHLH-PAS proteins acting in the animal circadian clock. On the other side of the spectrum are fundamental physiological mechanisms such as those underlying xenobiotic detoxification, oxygen homeostasis, and metabolic adaptation to hypoxia, infection or tumor progression. Predictably, malfunctioning of bHLH-PAS regulators leads to pathologies. Performance of the individual bHLH-PAS proteins is modulated at multiple levels including dimerization and other protein-protein interactions, proteasomal degradation, and by binding low-molecular weight ligands. Despite the vast evolutionary gap dividing arthropods and vertebrates, and the differences in their anatomy, many functions of orthologous bHLH-PAS proteins are remarkably similar, including at the molecular level. Our phylogenetic analysis shows that one bHLH-PAS protein type has been lost during vertebrate evolution. This protein has a unique function as a receptor of the sesquiterpenoid juvenile hormones of insects and crustaceans. Although some other bHLH-PAS proteins are regulated by binding small molecules, the juvenile hormone receptor presents an unprecedented case, since all other non-peptide animal hormones activate members of the nuclear receptor family. The purpose of this review is to compare and highlight parallels and differences in functioning of bHLH-PAS proteins between insects and vertebrates.
Collapse
Affiliation(s)
- Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
34
|
Peng B, Dong Q, Li F, Wang T, Qiu X, Zhu T. A Systematic Review of Polycyclic Aromatic Hydrocarbon Derivatives: Occurrences, Levels, Biotransformation, Exposure Biomarkers, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15314-15335. [PMID: 37703436 DOI: 10.1021/acs.est.3c03170] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) derivatives constitute a significant class of emerging contaminants that have been ubiquitously detected in diverse environmental matrixes, with some even exhibiting higher toxicities than their corresponding parent PAHs. To date, compared with parent PAHs, fewer systematic summaries and reanalyses are available for PAH derivatives with great environmental concerns. This review summarizes the current knowledge on the chemical species, levels, biotransformation patterns, chemical analytical methods, internal exposure routes with representative biomarkers, and toxicity of PAH derivatives, primarily focusing on nitrated PAHs (NPAHs), oxygenated PAHs (OPAHs), halogenated PAHs (XPAHs), and alkylated PAHs (APAHs). A collection of 188 compounds from four categories, 44 NPAHs, 36 OPAHs, 56 APAHs, and 52 XPAHs, has been compiled from 114 studies that documented the environmental presence of PAH derivatives. These compounds exhibited weighted average air concentrations that varied from a lower limit of 0.019 pg/m3 to a higher threshold of 4060 pg/m3. Different analytical methods utilizing comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC × GC-TOF-MS), gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF-MS), comprehensive two-dimensional gas chromatography coupled to quadrupole mass spectrometry (GC × GC-QQQ-MS), and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), that adopted untargeted strategies for the identification of PAH derivatives are also reviewed here. Additionally, an in-depth analysis of biotransformation patterns for each category is provided, including the likelihood of specific biotransformation reaction types. For the toxicity, we primarily summarized key metabolic activation pathways, which could result in the formation of reactive metabolites capable of covalently bonding with DNA and tissue proteins, and potential health outcomes such as carcinogenicity and genotoxicity, oxidative stress, inflammation and immunotoxicity, and developmental toxicity that might be mediated by the aryl hydrocarbon receptor (AhR). Finally, we pinpoint research challenges and emphasize the need for further studies on identifying PAH derivatives, tracking external exposure levels, evaluating internal exposure levels and associated toxicity, clarifying exposure routes, and considering mixture exposure effects. This review aims to provide a broad understanding of PAH derivatives' identification, environmental occurrence, human exposure, biotransformation, and toxicity, offering a valuable reference for guiding future research in this underexplored area.
Collapse
Affiliation(s)
- Bo Peng
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Qianli Dong
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Fangzhou Li
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Teng Wang
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC and College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Piwarski SA, Salisbury TB. The effects of environmental aryl hydrocarbon receptor ligands on signaling and cell metabolism in cancer. Biochem Pharmacol 2023; 216:115771. [PMID: 37652105 DOI: 10.1016/j.bcp.2023.115771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Dioxin and dioxin-like compounds are chlorinated organic pollutants formed during the manufacturing of other chemicals. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), that induce AHR-mediated biochemical and toxic responses and are persistent in the environment. 2,3,7,8- tetrachlorodibenzo para dioxin (TCDD) is the prototypical AHR ligand and its effects represent dioxins. TCDD induces toxicity, immunosuppression and is a suspected tumor promoter. The role of TCDD in cancer however is debated and context-dependent. Environmental particulate matter, polycyclic aromatic hydrocarbons, perfluorooctane sulfonamide, endogenous AHR ligands, and cAMP signaling activate AHR through TCDD-independent pathways. The effect of activated AHR in cancer is context-dependent. The ability of FDA-approved drugs to modulate AHR activity has sparked interest in their repurposing for cancer therapy. TCDD by interfering with endogenous pathways, and overstimulating other endogenous pathways influences all stages of cancer. Herein we review signaling mechanisms that activate AHR and mechanisms by which activated AHR modulates signaling in cancer including affected metabolic pathways.
Collapse
Affiliation(s)
- Sean A Piwarski
- Duke Cancer Institute, Department of GU Oncology, Duke University Medical Center, 905 South Lasalle Street, Durham, NC 27710, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
36
|
Bhalla D, van Noort V. Molecular Evolution of Aryl Hydrocarbon Receptor Signaling Pathway Genes. J Mol Evol 2023; 91:628-646. [PMID: 37392220 DOI: 10.1007/s00239-023-10124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
The Aryl hydrocarbon receptor is an ancient transcriptional factor originally discovered as a sensor of dioxin. In addition to its function as a receptor of environmental toxicants, it plays an important role in development. Although a significant amount of research has been carried out to understand the AHR signal transduction pathway and its involvement in species' susceptibility to environmental toxicants, none of them to date has comprehensively studied its evolutionary origins. Studying the evolutionary origins of molecules can inform ancestral relationships of genes. The vertebrate genome has been shaped by two rounds of whole-genome duplications (WGD) at the base of vertebrate evolution approximately 600 million years ago, followed by lineage-specific gene losses, which often complicate the assignment of orthology. It is crucial to understand the evolutionary origins of this transcription factor and its partners, to distinguish orthologs from ancient non-orthologous homologs. In this study, we have investigated the evolutionary origins of proteins involved in the AHR pathway. Our results provide evidence of gene loss and duplications, crucial for understanding the functional connectivity of humans and model species. Multiple studies have shown that 2R-ohnologs (genes and proteins that have survived from the 2R-WGD) are enriched in signaling components relevant to developmental disorders and cancer. Our findings provide a link between the AHR pathway's evolutionary trajectory and its potential mechanistic involvement in pathogenesis.
Collapse
Affiliation(s)
- Diksha Bhalla
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium.
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
37
|
Sládeková L, Mani S, Dvořák Z. Ligands and agonists of the aryl hydrocarbon receptor AhR: Facts and myths. Biochem Pharmacol 2023; 213:115626. [PMID: 37247746 DOI: 10.1016/j.bcp.2023.115626] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The aryl hydrocarbon receptor (AhR) belongs to the essential helix-loop-helix transcription factors family. This receptor has a central role in determining host physiology and a variety of pathophysiologies ranging from inflammation and metabolism to cancer. AhR is a ligand-driven receptor with intricate pharmacology of activation depending on the type and quantity of ligand present. Therefore, a better understanding of AhR ligands per se is critical to move the field forward. In this minireview, we clarify some facts and myths about AhR ligands and how further studies could shed light on the true nature of AhR activation by these ligands. The review covers select chemical classes and explores parameters that qualify them as true receptor ligands.
Collapse
Affiliation(s)
- Lucia Sládeková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Sridhar Mani
- Department of Genetics and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
38
|
Orlowska K, Fling RR, Nault R, Schilmiller AL, Zacharewski TR. Cystine/Glutamate Xc - Antiporter Induction Compensates for Transsulfuration Pathway Repression by 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) to Ensure Cysteine for Hepatic Glutathione Biosynthesis. Chem Res Toxicol 2023; 36:900-915. [PMID: 37184393 PMCID: PMC10284067 DOI: 10.1021/acs.chemrestox.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 05/16/2023]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been associated with the induction of oxidative stress and the progression of steatosis to steatohepatitis with fibrosis. It also disrupts metabolic pathways including one-carbon metabolism (OCM) and the transsulfuration pathway with possible consequences on glutathione (GSH) levels. In this study, complementary RNAseq and metabolomics data were integrated to examine the hepatic transsulfuration pathway and glutathione biosynthesis in mice following treatment with TCDD every 4 days for 28 days. TCDD dose-dependently repressed hepatic cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH) mRNA and protein levels. Reduced CBS and CTH levels are also correlated with dose-dependent decreases in hepatic extract hydrogen sulfide (H2S). In contrast, cysteine levels increased consistent with the induction of Slc7a11, which encodes for the cystine/glutamate Xc- antiporter. Cotreatment of primary hepatocytes with sulfasalazine, a cystine/glutamate Xc- antiporter inhibitor, decreased labeled cysteine incorporation into GSH with a corresponding increase in TCDD cytotoxicity. Although reduced and oxidized GSH levels were unchanged following treatment due to the induction of GSH/GSSG efflux transporter by TCDD, the GSH:GSSG ratio decreased and global protein S-glutathionylation levels in liver extracts increased in response to oxidative stress along with the induction of glutamate-cysteine ligase catalytic subunit (Gclc), glutathione synthetase (Gss), glutathione disulfide reductase (Gsr), and glutathione transferase π (Gstp). Furthermore, levels of ophthalmic acid, a biomarker of oxidative stress indicating GSH consumption, were also increased. Collectively, the data suggest that increased cystine transport due to cystine/glutamate Xc- antiporter induction compensated for decreased cysteine production following repression of the transsulfuration pathway to support GSH synthesis in response to TCDD-induced oxidative stress.
Collapse
Affiliation(s)
- Karina Orlowska
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Russ R. Fling
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rance Nault
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Anthony L. Schilmiller
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Timothy R. Zacharewski
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
39
|
Ji C, Tao Y, Li X, Wang J, Chen J, Aniagu S, Jiang Y, Chen T. AHR-mediated m 6A RNA methylation contributes to PM 2.5-induced cardiac malformations in zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131749. [PMID: 37270964 DOI: 10.1016/j.jhazmat.2023.131749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
A growing body of evidence indicates that ambient fine particle matter (PM2.5) exposure inhibits heart development, but the underlying mechanisms remain elusive. We hypothesized that m6A RNA methylation plays an important role in the cardiac developmental toxicity of PM2.5. In this study, we demonstrated that extractable organic matter (EOM) from PM2.5 significantly decreased global m6A RNA methylation levels in the heart of zebrafish larvae, which were restored by the methyl donor, betaine. Betaine also attenuated EOM-induced ROS overgeneration, mitochondrial damage, apoptosis and heart defects. Furthermore, we found that the aryl hydrocarbon receptor (AHR), which was activated by EOM, directly repressed the transcription of methyltransferases mettl14 and mettl3. EOM also induced genome-wide m6A RNA methylation changes, which led us to focus more on the aberrant m6A methylation changes that were subsequently alleviated by the AHR inhibitor, CH223191. In addition, we found that the expression levels of traf4a and bbc3, two apoptosis related genes, were upregulated by EOM but restored to control levels by the forced expression of mettl14. Moreover, knockdown of either traf4a or bbc3 attenuated EOM-induced ROS overproduction and apoptosis. In conclusion, our results indicate that PM2.5 induces m6A RNA methylation changes via AHR-mediated mettl14 downregulation, which upregulates traf4a and bbc3, leading to apoptosis and cardiac malformations.
Collapse
Affiliation(s)
- Cheng Ji
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Yizhou Tao
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Xiaoxiao Li
- Suzhou Medical College, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jin Wang
- Suzhou Medical College, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jin Chen
- Suzhou Medical College, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Suzhou Medical College, Soochow University, Suzhou, China.
| | - Tao Chen
- Suzhou Medical College, Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
40
|
Grishanova AY, Klyushova LS, Perepechaeva ML. AhR and Wnt/β-Catenin Signaling Pathways and Their Interplay. Curr Issues Mol Biol 2023; 45:3848-3876. [PMID: 37232717 DOI: 10.3390/cimb45050248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
As evolutionarily conserved signaling cascades, AhR and Wnt signaling pathways play a critical role in the control over numerous vital embryonic and somatic processes. AhR performs many endogenous functions by integrating its signaling pathway into organ homeostasis and into the maintenance of crucial cellular functions and biological processes. The Wnt signaling pathway regulates cell proliferation, differentiation, and many other phenomena, and this regulation is important for embryonic development and the dynamic balance of adult tissues. AhR and Wnt are the main signaling pathways participating in the control of cell fate and function. They occupy a central position in a variety of processes linked with development and various pathological conditions. Given the importance of these two signaling cascades, it would be interesting to elucidate the biological implications of their interaction. Functional connections between AhR and Wnt signals take place in cases of crosstalk or interplay, about which quite a lot of information has been accumulated in recent years. This review is focused on recent studies about the mutual interactions of key mediators of AhR and Wnt/β-catenin signaling pathways and on the assessment of the complexity of the crosstalk between the AhR signaling cascade and the canonical Wnt pathway.
Collapse
Affiliation(s)
- Alevtina Y Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Maria L Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| |
Collapse
|
41
|
Helm EY, Zhou L. Transcriptional regulation of innate lymphoid cells and T cells by aryl hydrocarbon receptor. Front Immunol 2023; 14:1056267. [PMID: 37056785 PMCID: PMC10089284 DOI: 10.3389/fimmu.2023.1056267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor and facilitates immune cell environmental sensing through its activation by cellular, dietary, and microbial metabolites, as well as environmental toxins. Although expressed in various cell types, Ahr in innate lymphoid cells (ILCs) and their adaptive T cell counterparts regulates essential aspects of their development and function. As opposed to T cells, ILCs exclusively rely on germ-line encoded receptors for activation, but often share expression of core transcription factors and produce shared effector molecules with their T cell counterparts. As such, core modules of transcriptional regulation are both shared and diverge between ILCs and T cells. In this review, we highlight the most recent findings regarding Ahr’s transcriptional regulation of both ILCs and T cells. Furthermore, we focus on insights elucidating the shared and distinct mechanisms by which Ahr regulates both innate and adaptive lymphocytes.
Collapse
|
42
|
Cholico GN, Orlowska K, Fling RR, Sink WJ, Zacharewski NA, Fader KA, Nault R, Zacharewski T. Consequences of reprogramming acetyl-CoA metabolism by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the mouse liver. Sci Rep 2023; 13:4138. [PMID: 36914879 PMCID: PMC10011583 DOI: 10.1038/s41598-023-31087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that induces the progression of steatosis to steatohepatitis with fibrosis in mice. Furthermore, TCDD reprograms hepatic metabolism by redirecting glycolytic intermediates while inhibiting lipid metabolism. Here, we examined the effect of TCDD on hepatic acetyl-coenzyme A (acetyl-CoA) and β-hydroxybutyrate levels as well as protein acetylation and β-hydroxybutyrylation. Acetyl-CoA is not only a central metabolite in multiple anabolic and catabolic pathways, but also a substrate used for posttranslational modification of proteins and a surrogate indicator of cellular energy status. Targeted metabolomic analysis revealed a dose-dependent decrease in hepatic acetyl-CoA levels coincident with the phosphorylation of pyruvate dehydrogenase (E1), and the induction of pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase phosphatase, while repressing ATP citrate lyase and short-chain acyl-CoA synthetase gene expression. In addition, TCDD dose-dependently reduced the levels of hepatic β-hydroxybutyrate and repressed ketone body biosynthesis gene expression. Moreover, levels of total hepatic protein acetylation and β-hydroxybutyrylation were reduced. AMPK phosphorylation was induced consistent with acetyl-CoA serving as a cellular energy status surrogate, yet subsequent targets associated with re-establishing energy homeostasis were not activated. Collectively, TCDD reduced hepatic acetyl-CoA and β-hydroxybutyrate levels eliciting starvation-like conditions despite normal levels of food intake.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Karina Orlowska
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Russell R Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Warren J Sink
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Nicholas A Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
| | - Kelly A Fader
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Rance Nault
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, Biochemistry Building, 603 Wilson Road, East Lansing, MI, 48824, USA.
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
43
|
Tanabe P, Schlenk D. Role of Aryl Hydrocarbon Receptor and Oxidative Stress in the Regioselective Toxicities of Hydroxychrysenes in Embryonic Japanese Medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:698-706. [PMID: 36636887 DOI: 10.1002/etc.5560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are environmental contaminants that can be created through oxidation of parent PAHs. Previous studies have found that 2-hydroxychrysene (2-OHCHR) caused anemia in embryonic Japanese medaka whereas 6-hydroxychrysene (6-OHCHR) did not, an example of regioselective toxicity. Anemia was prevented by cytochrome P450 (CYP) inhibition, which reduced the formation of the potential oxidatively active metabolite, 1,2-catechol, from 2-OHCHR. 2-OHCHR has also been found to be a four-fold more potent aryl hydrocarbon receptor (AhR) agonist compared with 6-OHCHR. These findings led us to hypothesize that AhR activation and/or oxidative stress play an important role in 2-OHCHR toxicity. Although treatments with the AhR agonists polychlorinated biphenyl (PCB)126 and 2-methoxychrysene (2-MeOCHR) did not cause significant toxicity, pretreatments with the AhR antagonist, CH-223191, reduced anemia by 97.2 ± 0.84% and mortality by 96.6 ± 0.69%. Aryl hydrocarbon receptor inhibition by the antagonist was confirmed by significant reductions (91.0 ± 9.94%) in induced ethoxyresorufin-O-deethylase activity. Thiobarbituric acid reactive substances concentrations were 32.9 ± 3.56% higher (p < 0.05) in 2-OHCHR treatments at 100 hours postfertilization compared with controls. Staining 2-OHCHR-treated embryos with the reactive oxygen species (ROS) scavenger 2',7'-dichlorofluorescin diacetate revealed 32.6 ± 2.69% of 2-OHCHR-treated embryos exhibiting high concentrations of ROS in caudal tissues, which is a site for embryonic hematopoiesis in medaka. Pretreatment with antioxidants, N-acetylcysteine (NAC) or vitamin E (Vit E) significantly reduced 2-OHCHR-induced anemia (NAC: 80.7 ± 1.12% and Vit E: 99.1 ± 0.43%) and mortality (NAC: 67.1 ± 1.69% and Vit E: 98.9 ± 0.66%). These results indicate that AhR may mediate 2-OHCHR toxicity through canonical signaling by up-regulating CYP1, enhancing the formation of reactive metabolites of 2-OHCHR that generate ROS within caudal hematopoietic tissues, potentially disrupting hematopoiesis, leading to anemia and subsequent mortality. Environ Toxicol Chem 2023;42:698-706. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Philip Tanabe
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California, USA
| |
Collapse
|
44
|
Alvik K, Shao P, Hutin D, Baglole C, Grant DM, Matthews J. Increased sensitivity to chemically induced colitis in mice harboring a DNA-binding deficient aryl hydrocarbon receptor. Toxicol Sci 2023; 191:321-331. [PMID: 36519841 PMCID: PMC9936212 DOI: 10.1093/toxsci/kfac132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR), a transcription factor best known for mediating toxic responses of environmental pollutants, also integrates metabolic signals to promote anti-inflammatory responses, intestinal homeostasis, and maintain barrier integrity. AHR regulates its target genes through direct DNA-binding to aryl hydrocarbon response elements (AHREs) but also through tethering to other transcription factors in a DNA-binding independent manner. However, it is not known if AHR's anti-inflammatory role in the gut requires its ability to bind to AHREs. To test this, we determined the sensitivity of Ahrdbd/dbd mice, a genetically modified mouse line that express an AHR protein incapable of binding to AHREs, to dextran sulfate sodium (DSS)-induced colitis. Ahrdbd/dbd mice exhibited more severe symptoms of intestinal inflammation than Ahr+/+ mice. None of the Ahrdbd/dbd mice survived after the 5-day DSS followed by 7-day washout period. By day 6, the Ahrdbd/dbd mice had severe body weight loss, shortening of the colon, higher disease index scores, enlarged spleens, and increased expression of several inflammation genes, including interleukin 1b (Il-1b), Il-6, Il-17, C-x-c motif chemokine ligand 1 (Cxcl1), Cxcl2, Prostaglandin-endoperoxide synthase (Ptgs2), and lipocalin-2. Our findings show that AHR's DNA-binding domain and ability to bind to AHREs are required to reduce inflammation, maintain a healthy intestinal environment, and protect against DSS-induced colitis.
Collapse
Affiliation(s)
- Karoline Alvik
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peng Shao
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - Carolyn Baglole
- Department of Medicine, McGill University, Montreal H4A3J1, Canada.,Department of Pathology, McGill University, Montreal H4A3J1, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| |
Collapse
|
45
|
Human Chorionic Gonadotropin-Stimulated Interleukin-4-Induced-1 (IL4I1) Promotes Human Decidualization via Aryl Hydrocarbon Receptor. Int J Mol Sci 2023; 24:ijms24043163. [PMID: 36834576 PMCID: PMC9959871 DOI: 10.3390/ijms24043163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Decidualization is necessary for the successful establishment of early pregnancy in rodents and humans. Disturbed decidualization results in recurrent implantation failure, recurrent spontaneous abortion, and preeclampsia. Tryptophan (Trp), one of the essential amino acids in humans, has a positive effect on mammalian pregnancy. Interleukin 4-induced gene 1 (IL4I1) is a recently identified enzyme that can metabolize L-Trp to activate aryl hydrocarbon receptor (AHR). Although IDO1-catalyzed kynurenine (Kyn) from Trp has been shown to enhance human in vitro decidualization via activating AHR, whether IL4I1-catalyzed metabolites of Trp are involved in human decidualization is still unknown. In our study, human chorionic gonadotropin stimulates IL4I1 expression and secretion from human endometrial epithelial cells through ornithine decarboxylase-induced putrescine production. Either IL4I1-catalyzed indole-3-pyruvic acid (I3P) or its metabolite indole-3-aldehyde (I3A) from Trp is able to induce human in vitro decidualization by activating AHR. As a target gene of AHR, Epiregulin induced by I3P and I3A promotes human in vitro decidualization. Our study indicates that IL4I1-catalyzed metabolites from Trp can enhance human in vitro decidualization through AHR-Epiregulin pathway.
Collapse
|
46
|
Sondermann NC, Faßbender S, Hartung F, Hätälä AM, Rolfes KM, Vogel CFA, Haarmann-Stemmann T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem Pharmacol 2023; 208:115371. [PMID: 36528068 PMCID: PMC9884176 DOI: 10.1016/j.bcp.2022.115371] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sonja Faßbender
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anna M Hätälä
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
47
|
In-depth analysis of the interactions of various aryl hydrocarbon receptor ligands from a computational perspective. J Mol Graph Model 2023; 118:108339. [PMID: 36183684 DOI: 10.1016/j.jmgm.2022.108339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022]
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that acts as a machinery that controls the expression of many genes, including cytochrome P450 CYP1A1, CYP1A2 and CYP1B1. It plays a principal role in numerous biological and toxicological functions, making it a promising target for developing therapeutic agents. Several novel small molecules targeting the AhR signaling pathway are currently under investigation as antitumor agents. Some have already advanced into clinical trials in patients with various tumors. Activation of AhR by diverse chemicals either endogenous or exogenous is initiated by the binding of these ligands to the PAS-B domain, which modulates AhR functions. There is, however, limited information about how various ligands interact with the PAS-B domain for activating or inhibiting the AhR. To better understand the mode of action of AhR agonists/antagonists. The current work proposes a combination of several computational tools to build dynamical models for the PAS-B domain bound to different ligands in mouse and human. Our findings reveal the essential roles of specific PAS-B residues (e.g., S365, V381& Q383), which mediate the AhR ligand-binding process. Our results also explain how these residues regulate the promiscuity of AhR in accommodating various chemicals in its binding PAS-B ligand-binding pocket.
Collapse
|
48
|
The Role of the Aryl Hydrocarbon Receptor (AhR) and Its Ligands in Breast Cancer. Cancers (Basel) 2022; 14:cancers14225574. [PMID: 36428667 PMCID: PMC9688153 DOI: 10.3390/cancers14225574] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a complex disease which is defined by numerous cellular and molecular markers that can be used to develop more targeted and successful therapies. The aryl hydrocarbon receptor (AhR) is overexpressed in many breast tumor sub-types, including estrogen receptor -positive (ER+) tumors; however, the prognostic value of the AhR for breast cancer patient survival is not consistent between studies. Moreover, the functional role of the AhR in various breast cancer cell lines is also variable and exhibits both tumor promoter- and tumor suppressor- like activity and the AhR is expressed in both ER-positive and ER-negative cells/tumors. There is strong evidence demonstrating inhibitory AhR-Rα crosstalk where various AhR ligands induce ER degradation. It has also been reported that different structural classes of AhR ligands, including halogenated aromatics, polynuclear aromatics, synthetic drugs and other pharmaceuticals, health promoting phytochemical-derived natural products and endogenous AhR-active compounds inhibit one or more of breast cancer cell proliferation, survival, migration/invasion, and metastasis. AhR-dependent mechanisms for the inhibition of breast cancer by AhR agonists are variable and include the downregulation of multiple genes/gene products such as CXCR4, MMPs, CXCL12, SOX4 and the modulation of microRNA levels. Some AhR ligands, such as aminoflavone, have been investigated in clinical trials for their anticancer activity against breast cancer. In contrast, several publications have reported that AhR agonists and antagonists enhance and inhibit mammary carcinogenesis, respectively, and differences between the anticancer activities of AhR agonists in breast cancer may be due in part to cell context and ligand structure. However, there are reports showing that the same AhR ligand in the same breast cancer cell line gives opposite results. These differences need to be resolved in order to further develop and take advantage of promising agents that inhibit mammary carcinogenesis by targeting the AhR.
Collapse
|
49
|
Dai S, Qu L, Li J, Zhang Y, Jiang L, Wei H, Guo M, Chen X, Chen Y. Structural insight into the ligand binding mechanism of aryl hydrocarbon receptor. Nat Commun 2022; 13:6234. [PMID: 36266304 PMCID: PMC9585082 DOI: 10.1038/s41467-022-33858-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/04/2022] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR), a member of the basic helix-loop-helix (bHLH) Per-Arnt-Sim (PAS) family of transcription factors, plays important roles in regulating xenobiotic metabolism, cellular differentiation, stem cell maintenance, as well as immunity. More recently, AHR has gained significant interest as a drug target for the development of novel cancer immunotherapy drugs. Detailed understanding of AHR-ligand binding has been hampered for decades by the lack of a three-dimensional structure of the AHR PAS-B domain. Here, we present multiple crystal structures of the Drosophila AHR PAS-B domain, including its apo, ligand-bound, and AHR nuclear translocator (ARNT) PAS-B-bound forms. Together with biochemical and cellular assays, our data reveal structural features of the AHR PAS-B domain, provide insights into the mechanism of AHR ligand binding, and provide the structural basis for the future development of AHR-targeted therapeutics.
Collapse
Affiliation(s)
- Shuyan Dai
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Lingzhi Qu
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Jun Li
- grid.461579.8Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001 China
| | - Ye Zhang
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Longying Jiang
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Hudie Wei
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Ming Guo
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Xiaojuan Chen
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Yongheng Chen
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| |
Collapse
|
50
|
Wang L, Hou Y, Yuan H, Chen H. The role of tryptophan in Chlamydia trachomatis persistence. Front Cell Infect Microbiol 2022; 12:931653. [PMID: 35982780 PMCID: PMC9378776 DOI: 10.3389/fcimb.2022.931653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
Chlamydia trachomatis (C. trachomatis) is the most common etiological agent of bacterial sexually transmitted infections (STIs) and a worldwide public health issue. The natural course with C. trachomatis infection varies widely between individuals. Some infections clear spontaneously, others can last for several months or some individuals can become reinfected, leading to severe pathological damage. Importantly, the underlying mechanisms of C. trachomatis infection are not fully understood. C. trachomatis has the ability to adapt to immune response and persist within host epithelial cells. Indoleamine-2,3-dioxygenase (IDO) induced by interferon-gamma (IFN-γ) degrades the intracellular tryptophan pool, to which C. trachomatis can respond by converting to a non-replicating but viable state. C. trachomatis expresses and encodes for the tryptophan synthase (TS) genes (trpA and trpB) and tryptophan repressor gene (trpR). Multiple genes interact to regulate tryptophan synthesis from exogenous indole, and persistent C. trachomatis can recover its infectivity by converting indole into tryptophan. In this review, we discuss the characteristics of chlamydial infections, biosynthesis and regulation of tryptophan, the relationship between tryptophan and C. trachomatis, and finally, the links between the tryptophan/IFN-γ axis and C. trachomatis persistence.
Collapse
Affiliation(s)
- Li Wang
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - YingLan Hou
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - HongXia Yuan
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - Hongliang Chen
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
- *Correspondence: Hongliang Chen,
| |
Collapse
|