1
|
Hoffman A, Zychowicz M, Wang J, Matsuura K, Kagawa F, Rzepiela J, Heczko M, Baś S, Tokoro H, Ohkoshi SI, Chorazy S. Photoluminescent, dielectric, and magnetic responsivity to the humidity variation in SHG-active pyroelectric manganese(ii)-based molecular material. Chem Sci 2025:d5sc00404g. [PMID: 40271042 PMCID: PMC12013632 DOI: 10.1039/d5sc00404g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Multifunctional response to external stimuli which engages various properties, including optical, dielectric, magnetic, or mechanical, can be the source of new generations of highly sensitive sensors and advanced switches. Such responsivity is expected for molecular materials based on metal complexes whose properties are often sensitive to even subtle changes in a particular stimulus. We present a novel hybrid organic-inorganic salt based on earth-abundant divalent manganese ions forming two types of complexes, octahedral [MnII(Me-dppmO2)3]2+ cations with methyl-functionalized bis(diphenylphosphino)methane dioxide ligands and tetrahedral [MnIICl4]2- anions. These ions crystallize with water molecules leading to the molecular material [MnII(Me-dppmO2)3][MnIICl4]·H2O (1). We show that, due to the simple methyl substituent on the diphosphine-type ligand, 1 reveals a polar crystal structure of the Cc space group as confirmed by the single-crystal X-ray diffraction, second-harmonic generation (SHG) effect, piezoelectric response, and pyroelectricity. Besides these non-centrosymmetricity-related non-linear optical and electrical features, this material combines three other physical properties, i.e., visible room-temperature (RT) photoluminescence (PL) originating from d-d electronic transitions of octahedral Mn(ii) complexes, dielectric relaxation in ca. 170-300 K range related to Bjerrum-type orientation defects of water molecules, and slow magnetic relaxation below 3 K related to spin-phonon interactions involving paramagnetic Mn(ii) centers. We demonstrate that these three physical effects detected in 1 are sensitive to humidity variation that governs the RT-PL intensity, leads to the ON/OFF switching of dielectric relaxation around RT, and non-trivially modulates the magnetic relaxation at cryogenic temperatures. Thus, we report a unique molecular material revealing broadened multifunctionality and triple physical responsivity to the humidity change exploring luminescent, dielectric, and magnetic properties.
Collapse
Affiliation(s)
- Aleksander Hoffman
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University Lojasiewicza 11 30-348 Krakow Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University Lojasiewicza 11 30-348 Krakow Poland
| | - Junhao Wang
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Keisuke Matsuura
- Department of Physics, Tokyo Institute of Technology 2-12-1 O-Okayama, Meguro Tokyo 152-8551 Japan
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako 351-0198 Japan
| | - Fumitaka Kagawa
- RIKEN Center for Emergent Matter Science (CEMS) 2-1 Hirosawa Wako 351-0198 Japan
| | - Jan Rzepiela
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University Lojasiewicza 11 30-348 Krakow Poland
| | - Michal Heczko
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Sebastian Baś
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| | - Hiroko Tokoro
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Krakow Poland
| |
Collapse
|
2
|
Li W, Ma T, Tang P, Luo Y, Zhang H, Zhao J, Ameloot R, Tu M. Nanoscale Resist-Free Patterning of Halogenated Zeolitic Imidazolate Frameworks by Extreme UV Lithography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415804. [PMID: 40040608 PMCID: PMC12021036 DOI: 10.1002/advs.202415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Advancements in patterning techniques for metal-organic frameworks (MOFs) are crucial for their integration into microelectronics. However, achieving precise nanoscale control of MOF structures remains challenging. In this work, a resist-free method for patterning MOFs is demonstrated using extreme ultraviolet (EUV) lithography with a resolution of 40 nm. The role of halogen atoms in the linker and the effect of humidity are analyzed through in situ and near-ambient pressure synchrotron X-ray photoelectron spectroscopy. In addition to facilitating the integration of MOFs, the results offer valuable insights for developing the highly sought-after positive-tone EUV photoresists.
Collapse
Affiliation(s)
- Weina Li
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianlei Ma
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Pengyi Tang
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yunhong Luo
- ShanghaiTech UniversitySchool of physical science and technologyShanghai201210China
| | - Hui Zhang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
- National Key Laboratory of Materials for Integrated CircuitsShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
| | - Jun Zhao
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Rob Ameloot
- Centre for Membrane SeparationsAdsorptionCatalysis and SpectroscopyKU LeuvenLeuven3001Belgium
| | - Min Tu
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- 2020 X‐LabShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
- School of Graduate StudyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
3
|
Manikandan V, Vinoth Kumar J, Elango D, Subash V, Jayanthi P, Dixit S, Singh S. Metal-Organic Frameworks (MOFs): Multifunctional Platforms for Environmental Sustainability. CHEM REC 2025:e202400257. [PMID: 40165715 DOI: 10.1002/tcr.202400257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Metal-Organic Frameworks (MOFs) have emerged as versatile materials bridging inorganic and organic chemistry to address critical environmental challenges. Composed of metal nodes and organic linkers, these crystalline structures offer unique properties such as high surface area, tunable pore sizes, and structural diversity. Recent advancements in MOFs synthesis, particularly innovative approaches like mechanochemical, microwave-assisted, and ultrasonic synthesis, have significantly enhanced sustainability by utilizing non-toxic solvents, renewable feedstocks, and energy-efficient processes, offering promising solutions to reduce environmental impact. This review highlights these novel methods and their contributions to improving MOFs functionality for applications in environmental remediation, gas capture, and energy storage. We examine the potential of MOFs in catalysis for pollutant degradation, water purification, and hazardous waste removal, as well as their role in next-generation energy storage technologies, such as supercapacitors, batteries, and hydrogen production. Furthermore, we address challenges including scalability, stability, and long-term performance, underscoring the need for continued innovation in synthesis techniques to enable large-scale MOFs applications. Overall, MOFs hold transformative potential as multifunctional materials, and advancements in synthesis and sustainability are critical for their successful integration into practical environmental and energy solutions.
Collapse
Affiliation(s)
- Velu Manikandan
- Department of Biomedical Engineering, Kumoh National Institute of Technology, Gumi, South Korea
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamilnadu, 600077, India
| | - Jothi Vinoth Kumar
- Centre for Applied Nanomaterials, Chennai Institute of Technology, Chennai, 600 069, Tamil Nadu, India
| | - Duraisamy Elango
- Ecotoxicology and Biomonitoring Laboratory, Department of Environmental Science, Periyar University, Salem, 636011, Tamilnadu, India
| | - Velu Subash
- Ecotoxicology and Biomonitoring Laboratory, Department of Environmental Science, Periyar University, Salem, 636011, Tamilnadu, India
| | - Palaniyappan Jayanthi
- Ecotoxicology and Biomonitoring Laboratory, Department of Environmental Science, Periyar University, Salem, 636011, Tamilnadu, India
| | - Saurav Dixit
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140417, Punjab, India
- Division of Research & Innovation, Uttaranchal University, Dehradun, India
| | - Subhav Singh
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
- Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
4
|
Liu Q, Li Q, Li Y, Su T, Hou B, Zhao Y, Xu Y. Two-Dimensional Covalent Organic Frameworks in Organic Electronics. Angew Chem Int Ed Engl 2025:e202502536. [PMID: 40052756 DOI: 10.1002/anie.202502536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Two-dimensional covalent organic frameworks (2DCOFs) are a unique class of crystalline porous materials interconnected by covalent bonds, which have attracted significant attention in recent years due to their chemical and structural diversity, as well as their applications in adsorption, separation, catalysis, and drug delivery. However, research on the electrical properties of 2DCOFs remains limited, despite their potential in organic electronics. Early studies recognized the poor electrical conductivity of 2DCOFs as a significant obstacle to their application in this field. To overcome this challenge, various strategies have been proposed to enhance conductivity. This review first introduces the concept of computational screening for 2DCOFs and explores approaches to improve their intrinsic conductivity, with a focus on four key aspects: in-plane and out-of-plane charge transport, topology, bandgap, and morphology. It then examines the application of pristine 2DCOFs in organic electronics, including applications in field-effect transistors, memristors, photodetectors, and chemiresistive gas sensors. We support these strategies with detailed statistical data, providing a comprehensive guide for the design and development of novel 2DCOFs for organic electronics. Finally, we outline future research directions, emphasizing the challenges that remain to be addressed in this emerging area.
Collapse
Affiliation(s)
- Qi Liu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475000, P.R. China
| | - Qiang Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475000, P.R. China
| | - Yu Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475000, P.R. China
| | - Taotao Su
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475000, P.R. China
| | - Binghan Hou
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475000, P.R. China
| | - Yibo Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475000, P.R. China
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475000, P.R. China
| |
Collapse
|
5
|
Roh H, Quill TJ, Chen G, Gong H, Cho Y, Kulik HJ, Bao Z, Salleo A, Gumyusenge A. Copper-Based Two-Dimensional Conductive Metal-Organic Framework Thin Films for Ultrasensitive Detection of Perfluoroalkyls in Drinking Water. ACS NANO 2025; 19:6332-6341. [PMID: 39921641 DOI: 10.1021/acsnano.4c16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Perfluoroalkyls (PFAS) continue to emerge as a global health threat making their effective detection and capture extremely important. Though metal-organic frameworks (MOFs) have stood out as a promising class of porous materials for sensing PFAS, detection limits remain insufficient and a fundamental understanding of detection mechanisms warrants further investigation. Here, we show the use of a 2D conductive MOF film based on copper hexahydroxy triphenylene (Cu-HHTP) to fabricate chemiresistive sensing devices for detecting PFAS in drinking water. We further show ultrasensitive detection using electrochemical impedance spectroscopy. Owing to excellent electrostatic attractions and electrochemical interactions between the copper-based MOF and PFAS, confirmed by high-resolution spectroscopy and theoretical simulations, the MOF-based sensor reported herein exhibits excellent affinity and sensitivity toward perfluorinated acids at concentrations as low as 0.002 ng/L.
Collapse
Affiliation(s)
- Heejung Roh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tyler J Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Gan Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Huaxin Gong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yeongsu Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Aristide Gumyusenge
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Bogdanova E, Liu M, Hodapp P, Borbora A, Wenzel W, Bräse S, Jung A, Dong Z, Levkin PA, Manna U, Hashem T, Wöll C. Functionalization of monolithic MOF thin films with hydrocarbon chains to achieve superhydrophobic surfaces with tunable water adhesion strength. MATERIALS HORIZONS 2025; 12:1274-1281. [PMID: 39589404 DOI: 10.1039/d4mh00899e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
While the accessible pores render an enormous variety of functionalities to the bulk of metal-organic frameworks (MOFs), the outer surfaces exposed by these crystalline materials also offer unique characteristics not available when using conventional substrates. By grafting hydrocarbon chains to well-defined MOF thin films (SURMOFs) prepared using layer-by-layer methods, we were able to fabricate superhydrophobic substrates with static water contact angles over 160°. A detailed theoretical modelling of the hydrocarbon chains grafted on the outer SURMOF surface with well-defined spacing between anchoring points reveals that the grafted hydrocarbon chains behave similarly to polymer brushes during wetting, where conformational entropy is traded with mixing entropy. The chains are coiled and can access many different conformations, as evidenced directly by infrared spectroscopy. The entropic contributions from the coiled state lead to a pronounced reduction of the surface free energy, rendering superhydrophobic properties to the functionalized SURMOFs. On the other side, the water adhesion strength could be decreased by increasing the surface roughness on the nanometer scale.
Collapse
Affiliation(s)
- Evgenia Bogdanova
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz Platz-1, Eggenstein-Leopoldshafen 76344, Germany.
| | - Modan Liu
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz Platz-1, Eggenstein-Leopoldshafen 76344, Germany.
| | - Patrick Hodapp
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces - Soft Matter Synthesis Laboratory (IBG3 - SML), Kaiserstrasse 12, Karlsruhe 76131, Germany
| | - Angana Borbora
- Indian Institute of Technology Guwahati (IITG), Department of Chemistry, Assam, 781039, India
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz-1, Eggenstein-Leopoldshafen 76344, Germany
| | - Stefan Bräse
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems (IBCS-FMS), Kaiserstrasse 12, Karlsruhe 76131, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Kaiserstrasse 12, Karlsruhe 76131, Germany
| | - André Jung
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems (IBCS-FMS), Kaiserstrasse 12, Karlsruhe 76131, Germany
| | - Zheqin Dong
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems (IBCS-FMS), Kaiserstrasse 12, Karlsruhe 76131, Germany
| | - Pavel A Levkin
- Karlsruhe Institute of Technology (KIT), Institute of Biological and Chemical Systems (IBCS-FMS), Kaiserstrasse 12, Karlsruhe 76131, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Kaiserstrasse 12, Karlsruhe 76131, Germany
| | - Uttam Manna
- Indian Institute of Technology Guwahati (IITG), Department of Chemistry, Assam, 781039, India
- Indian Institute of Technology Guwahati (IITG), Centre for Nanotechnology, Assam, 781039, India
| | - Tawheed Hashem
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz Platz-1, Eggenstein-Leopoldshafen 76344, Germany.
| | - Christof Wöll
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz Platz-1, Eggenstein-Leopoldshafen 76344, Germany.
| |
Collapse
|
7
|
Park M, Ju H, Oh J, Park K, Lim H, Yoon SM, Song I. Proton-electron coupling and mixed conductivity in a hydrogen-bonded coordination polymer. Nat Commun 2025; 16:1316. [PMID: 39900570 PMCID: PMC11791098 DOI: 10.1038/s41467-025-56541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
The fundamental understanding of coupled proton-electron transport in mixed protonic-electronic conductors (MPECs) remains unexplored in materials science, despite its potential significance within the broader context of mixed ionic-electronic conductors (MIECs) and the possibility of controlled diffusion of protons using hydrogen-bond networks. To address these limitations, we present a hydrogen-bonded coordination polymer Ni-BAND ({[Ni(bpy)(H2O)2(DMF)2](NO3)2·2DMF}n), which demonstrates high mixed protonic-electronic conductivity at room temperature. Through detailed analysis, we unravel the coupled transport mechanism, offering insights for the rational design of high-performance MPECs. We demonstrate the practical implications of this mechanism by examining the humidity-dependent synaptic plasticity of Ni-BAND, showcasing how MPECs can expand into traditional MIEC applications while leveraging their unique proton-mediated advantages.
Collapse
Affiliation(s)
- Minju Park
- Department of Chemical and Biological Engineering, Andong National University (ANU), 1375 Gyeongdong-ro, Andong, Gyeongbuk, 36729, Republic of Korea
| | - Huiyeong Ju
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Joohee Oh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
- Center for Quantum Conversion Research (QCR), Institute of Basic Science (IBS), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Kwangmin Park
- Department of Chemical and Biological Engineering, Andong National University (ANU), 1375 Gyeongdong-ro, Andong, Gyeongbuk, 36729, Republic of Korea
| | - Hyunseob Lim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
- Center for Quantum Conversion Research (QCR), Institute of Basic Science (IBS), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Seok Min Yoon
- Department of Chemistry, Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongnam, 52828, Republic of Korea.
- Research Institute of Advanced Chemistry, Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongnam, 52828, Republic of Korea.
| | - Intek Song
- Department of Chemical and Biological Engineering, Andong National University (ANU), 1375 Gyeongdong-ro, Andong, Gyeongbuk, 36729, Republic of Korea.
| |
Collapse
|
8
|
Oheix E, Daou TJ, Pieuchot L. Antimicrobial zeolites and metal-organic frameworks. MATERIALS HORIZONS 2024; 11:6222-6256. [PMID: 39291597 DOI: 10.1039/d4mh00259h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The current surge in antibiotic resistance and the emergence of pandemics have created an urgent need for novel antimicrobial strategies. The controlled release of antimicrobial active principles remains the most viable strategy to date, and transition metal ions currently represent the main alternative to antibiotics. In this review, we explore the potential of two types of materials, zeolites and metal-organic frameworks (MOFs), for the controlled release of antimicrobial active principles, notably transition metal ions. These materials have unique crystalline microporous structures that act as reservoirs, enabling sustained bactericidal effects in various applications such as coatings, packaging, and medical devices. However, there are currently no convenient and standardised methods for evaluating their metal ion release and antimicrobial efficacy. This work discusses analytical techniques and the proposed mechanisms of action while highlighting recent advances in film, membrane, and coating technologies. By addressing the current limitations, microporous materials can revolutionise antimicrobial approaches, offering enhanced effectiveness and long-term sustainability.
Collapse
Affiliation(s)
- Emmanuel Oheix
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| | - T Jean Daou
- Aptar CSP Technologies, 9 rue du Sandholz, Niederbronn les Bains, France.
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| |
Collapse
|
9
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024; 124:12738-12843. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
10
|
Liu J, Yang M, Zhou X, Meng Z. Solid-State Electrochemical Carbon Dioxide Capture by Conductive Metal-Organic Framework Incorporating Nickel Bis(diimine) Units. J Am Chem Soc 2024. [PMID: 39558742 DOI: 10.1021/jacs.4c10654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
This paper presents the first implementation of electrically conductive metal-organic framework (MOF) Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2) integrated with nickel bis(diimine) (Ni-BDI) units for efficient solid-state electrochemical carbon dioxide (CO2) capture. The electrochemical cell assembled using Ni3(HITP)2 as working electrodes can reversibly capture and release CO2 through potential control. A high-capacity utilization of 96% and a Faraday efficiency of 98% have been achieved. The material also exhibits excellent electrochemical stability with its capacity maintained during 50 capture-release cycles and resistance to general interferences, including O2, H2O, NO2, and SO2. Capacity utilization of up to 35% is obtained at CO2 concentrations as low as 1%. The capture of CO2 at concentrations ranging from 1% to 100% requires exceptionally low energy consumption of only 30.5-72.4 kJ mol-1. Studies combining spectroscopic experiments and computational approaches reveal that the CO2 capture and release mechanism involves reversible carbamate formation on the N atom of the Ni-BDI unit in the MOF upon its one-electron redox reaction.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mingyu Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xinyi Zhou
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zheng Meng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
11
|
Ghazy AR, Kenawy ER, Darwesh N, Shendy S, El-Shaer A, Ghazy R. Impact of molecular configuration on the photoluminescence and electrical characteristics of poly-pyrrol-thiazol-imine polymers films. Sci Rep 2024; 14:28336. [PMID: 39550446 PMCID: PMC11569217 DOI: 10.1038/s41598-024-79758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Abstract
The optical, photoluminescence, and electrical properties of Poly(Z)-PTI and Poly(E)-PTI, two Poly-Pyrrol-Thiazol-Imine polymers with comparable chemical structures but distinct configurations, were examined. Using the dip-casting method, polymer films were deposited on ITO substrates. UV-VIS spectroscopy revealed that both polymers diverged between 500 and 800 nm, showing the impact of molecular arrangement, but showed similar absorption behavior for wavelengths shorter than 500 nm. For Poly(Z)-PTI, the direct optical energy gaps were 2.06 eV, while for Poly(E)-PTI, they were 1.78 eV. Poly(Z)-PTI displayed an emission peak at 610 nm (red) according to laser photoluminescence spectra, while Poly(E)-PTI peaked at 563 nm (green-yellow). The capacitance behavior was revealed by electrochemical impedance spectroscopy. Nyquist plots suggested an equivalent circuit model of Rs (CRct)(QR)(CR) for both polymers, and the relaxation times were 15.9 ns for Poly(Z)-PTI and 89.5 ns for Poly(E)-PTI. The Mott-Schottky analysis verified the n-type conductivity, revealing 2.18 × 1016 cm- 3 carrier densities for Poly(Z)-PTI and 1.78 × 1016 cm- 3 for Poly(E)-PTI. At lower frequencies, both polymers exhibited limited conductivity and large dielectric constants. Insights into the possible uses of Poly-Pyrrol-Thiazol-Imine polymers in electrical and optoelectronic devices are provided by this study, which emphasizes the influence of molecular configuration on these polymers' characteristics.
Collapse
Affiliation(s)
- Ahmed R Ghazy
- Laser Laboratory, Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - El-Refaie Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nourhan Darwesh
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - S Shendy
- Polymer Research Group, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abdelhamid El-Shaer
- Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - R Ghazy
- Laser Laboratory, Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
12
|
Yang S, He J, Chen Z, Luo H, Wei J, Wei X, Li H, Chen J, Zhang W, Wang J, Wang S, Yu G. Buried Interface Strategies with Covalent Organic Frameworks for High-Performance Inverted Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408686. [PMID: 39240027 DOI: 10.1002/adma.202408686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Simultaneously controlling defects and film morphology at the buried interface is a promising approach to improve the power conversion efficiency (PCE) of inverted perovskite solar cells (PSCs). Here, two new donor‒acceptor type semiconductive covalent organic frameworks (COFs) are developed, COFTPA and COFICZ. The carefully designed COFs structure not only effectively regulates the morphology and defects of the buried interface film, but also realizes the alignment with the energy level of the perovskite film and enhances the extraction and transmission of the interface charge. Among them, COFICZ-treated inverted PSCs achieved a maxmum PCE of 25.68% (certified 25.14%), the inverted PCE reached a minimum PCE of 22.92% for 1 cm2 device. The efficiency of inverted PSCs with a 1.68 eV wide bandgap reached 22.92%, which is the highest datum of the reported 1.68 eV wide bandgap PSC. This lays the groundwork for the commercialization of perovskite/silicon tandem solar cells. Additionally, the unencapsulated devices demonstrated a high degree of stability during operational use and when subjected to conditions of high humidity and temperature.
Collapse
Affiliation(s)
- Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiandong He
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuyang Wei
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiadi Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jizheng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Zojer E. Electrostatically Designing Materials and Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406178. [PMID: 39194368 DOI: 10.1002/adma.202406178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Indexed: 08/29/2024]
Abstract
Collective electrostatic effects arise from the superposition of electrostatic potentials of periodically arranged (di)polar entities and are known to crucially impact the electronic structures of hybrid interfaces. Here, it is discussed, how they can be used outside the beaten paths of materials design for realizing systems with advanced and sometimes unprecedented properties. The versatility of the approach is demonstrated by applying electrostatic design not only to metal-organic interfaces and adsorbed (complex) monolayers, but also to inter-layer interfaces in van der Waals heterostructures, to polar metal-organic frameworks (MOFs), and to the cylindrical pores of covalent organic frameworks (COFs). The presented design ideas are straightforward to simulate and especially for metal-organic interfaces also their experimental implementation has been amply demonstrated. For van der Waals heterostructures, the needed building blocks are available, while the required assembly approaches are just being developed. Conversely, for MOFs the necessary growth techniques exist, but more work on advanced linker molecules is required. Finally, COF structures exist that contain pores decorated with polar groups, but the electrostatic impact of these groups has been largely ignored so far. All this suggest that the dawn of the age of electrostatic design is currently experienced with potential breakthroughs lying ahead.
Collapse
Affiliation(s)
- Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Petersgasse 16, Graz, A-8010, Austria
| |
Collapse
|
14
|
Jiang Y, Ming Y, Zhao M, Guo X, Han J, Liu S, Jiang T, Wang ZL. Self-Powered Traffic Lights Through Wind Energy Harvesting Based on High-Performance Fur-Brush Dish Triboelectric Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402661. [PMID: 38813727 DOI: 10.1002/smll.202402661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Traffic lights play vital roles in urban traffic management systems, providing clear directional guidance for vehicles and pedestrians while ensuring traffic safety. However, the vast quantity of traffic lights widely distributed in the transportation system aggravates energy consumption. Here, a self-powered traffic light system is proposed through wind energy harvesting based on a high-performance fur-brush dish triboelectric nanogenerator (FD-TENG). The FD-TENG harvests wind energy to power the traffic light system continuously without needing an external power supply. Natural rabbit furs are applied to dish structures, due to their outstanding characteristics of shallow wear, high performance, and resistance to humidity. Also, the grid pattern of the dish structure significantly impacts the TENG outputs. Additionally, the internal electric field and the influences of mechanical and structural parameters on the outputs are analyzed by finite element simulations. After optimization, the FD-TENG can achieve a peak power density of 3.275 W m-3. The portable and miniature features of FD-TENG make it suitable for other natural environment systems such as forests, oceans, and mountains, besides the traffic light systems. This study presents a viable strategy for self-powered traffic lights, establishing a basis for efficient environmental energy harvesting toward big data and Internet of Things applications.
Collapse
Affiliation(s)
- Yang Jiang
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yutong Ming
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, The Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Mohan Zhao
- Beijing 101 Middle School, Beijing, 100091, P. R. China
| | - Xin Guo
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiajia Han
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shijie Liu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Jiang
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
15
|
Saha R, Gómez García CJ. Extrinsically conducting MOFs: guest-promoted enhancement of electrical conductivity, thin film fabrication and applications. Chem Soc Rev 2024; 53:9490-9559. [PMID: 39171560 DOI: 10.1039/d4cs00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Conductive metal-organic frameworks are of current interest in chemical science because of their applications in chemiresistive sensing, electrochemical energy storage, electrocatalysis, etc. Different strategies have been employed to design conductive frameworks. In this review, we discuss the influence of different types of guest species incorporated within the pores or channels of metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) to generate charge transfer pathways and modulate their electrical conductivity. We have classified dopants or guest species into three different categories: (i) metal-based dopants, (ii) molecule and molecular entities and (iii) organic conducting polymers. Different types of metal ions, metal nano-clusters and metal oxides have been used to enhance electrical conductivity in MOFs. Metal ions and metal nano-clusters depend on the hopping process for efficient charge transfer whereas metal-oxides show charge transport through the metal-oxygen pathway. Several types of molecules or molecular entities ranging from neutral TCNQ, I2, and fullerene to ionic methyl viologen, organometallic like nickelcarborane, etc. have been used. In these cases, the charge transfer process varies with the guest species. When organic conducting polymers are the guest, the charge transport occurs through the polymer chains, mostly based on extended π-conjugation. Here we provide a comprehensive and critical review of these strategies to add electrical conductivity to the, in most cases, otherwise insulating MOFs and PCPs. We point out the guest encapsulation process, the geometry and structure of the resulting host-guest complex, the host-guest interactions and the charge transport mechanism for each case. We also present the methods for thin film fabrication of conducting MOFs (both, liquid-phase and gas-phase based methods) and their most relevant applications like electrocatalysis, sensing, charge storage, photoconductivity, photocatalysis,… We end this review with the main obstacles and challenges to be faced and the appealing perspectives of these 21st century materials.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| | - Carlos J Gómez García
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
16
|
Chen D, Cheng L, Chen W, Wang HG, Cui F, Chen L. A tricycloquinazoline based 2D conjugated metal-organic framework for robust sodium-ion batteries with co-storage of both cations and anions. Chem Sci 2024; 15:11564-11571. [PMID: 39054997 PMCID: PMC11268498 DOI: 10.1039/d4sc00932k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
There is growing interest in 2D conjugated metal-organic frameworks (2D c-MOFs) for batteries due to their reversible redox chemistry. Nevertheless, currently reported 2D c-MOFs based on n-type ligands are mostly focused on the storage of cations for batteries. Herein, we successfully synthesize nitrogen-rich and electron-deficient p-type ligand-based Ni3(HATQ)2 assembled from 2,3,7,8,12,13-hexaaminotricycloquinazoline (HATQ), and the ion co-storage feature of cations and anions in sodium ion batteries (SIBs) is demonstrated for 2D c-MOFs for the first time. The redox chemistry from the p-type ligand and π-d hybridization center endows the Ni3(HATQ)2 cathode with high capacity and good rate performance, especially excellent capacity retention of 95% after 1000 cycles. These findings provide a promising avenue for the exploration of other p-type multidentate chelating ligands toward new 2D c-MOFs and expand the application of 2D c-MOFs in energy storage systems.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University Tianjin 300072 China
| | - Linqi Cheng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 China
| | - Weiben Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University Tianjin 300072 China
| | - Heng-Guo Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 China
| | - Fengchao Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
17
|
Xu H, Xia S, Li C, Li Y, Xing W, Jiang Y, Chen X. Programming Tetrathiafulvalene-Based Covalent Organic Frameworks for Promoted Photoinduced Molecular Oxygen Activation. Angew Chem Int Ed Engl 2024; 63:e202405476. [PMID: 38706228 DOI: 10.1002/anie.202405476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/07/2024]
Abstract
Despite the pivotal role of molecular oxygen (O2) activation in artificial photosynthesis, the activation efficiency is often restricted by sluggish exciton dissociation and charge transfer kinetics within polymer photocatalysts. Herein, we propose two tetrathiafulvalene (TTF)-based imine-linked covalent organic frameworks (COFs) with tailored donor-acceptor (D-A) structures, TTF-PDI-COF and TTF-TFPP-COF, to promote O2 activation. Because of enhanced electron push-pull interactions that facilitated charge separation and transfer behavior, TTF-PDI-COF exhibited superior photocatalytic activity in electron-induced O2 activation reactions over TTF-TFPP-COF under visible light irradiation, including the photosynthesis of (E)-3-amino-2-thiocyano-α,β-unsaturated compounds and H2O2. These findings highlight the significant potential of the rational design of COFs with D-A configurations as suitable candidates for advanced photocatalytic applications.
Collapse
Affiliation(s)
- Hetao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shuling Xia
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Chunlei Li
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yang Li
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yi Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
18
|
Bai J, Wu M, He Q, Wang H, Liao Y, Chen L, Chen S. Emerging Doped Metal-Organic Frameworks: Recent Progress in Synthesis, Applications, and First-Principles Calculations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306616. [PMID: 38342672 DOI: 10.1002/smll.202306616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/14/2024] [Indexed: 02/13/2024]
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials with a long-range ordered structure and excellent specific surface area and have found a wide range of applications in diverse fields, such as catalysis, energy storage, sensing, and biomedicine. However, their poor electrical conductivity and chemical stability, low capacity, and weak adhesion to substrates have greatly limited their performance. Doping has emerged as a unique strategy to mitigate the issues. In this review, the concept, classification, and characterization methods of doped MOFs are first introduced, and recent progress in the synthesis and applications of doped MOFs, as well as the rapid advancements and applications of first-principles calculations based on the density functional theory (DFT) in unraveling the mechanistic origin of the enhanced performance are summarized. Finally, a perspective is included to highlight the key challenges in doping MOF materials and an outlook is provided on future research directions.
Collapse
Affiliation(s)
- Jie Bai
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Mengcheng Wu
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Yanxin Liao
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95060, United States
| |
Collapse
|
19
|
Mishra S, Patel C, Pandey D, Mukherjee S, Raghuvanshi A. Semiconducting 2D Copper(I) Iodide Coordination Polymer as a Potential Chemiresistive Sensor for Methanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311448. [PMID: 38326094 DOI: 10.1002/smll.202311448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The development of a cost-effective, ultra-selective, and room temperature gas sensor is the need of an hour, owing to the rapid industrialization. Here, a new 2D semiconducting Cu(I) coordination polymer (CP) with 1,4-di(1H-1,2,4-triazol-1-yl)benzene (1,4-TzB) ligand is reported. The CP1 consists of a Cu2I2 secondary building unit bridged by 1,4-TzB, and has high stability as well as semiconducting properties. The chemiresistive sensor, developed by a facile drop-casting method derived from CP1, demonstrates a response value of 66.7 at 100 ppm on methanol exposure, accompanied by swift transient (response and recovery time 17.5 and 34.2 s, respectively) behavior. In addition, the developed sensor displays ultra-high selectivity toward methanol over other volatile organic compounds , boasting LOD and LOQ values of 1.22 and 4.02 ppb, respectively. The CP is found to be a state-of-the-art chemiresistive sensor with ultra-high sensitivity and selectivity toward methanol at room temperature.
Collapse
Affiliation(s)
- Shivendu Mishra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Chandrabhan Patel
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Dilip Pandey
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Shaibal Mukherjee
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
- Centre for Advance Electronics (CAE), Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Abhinav Raghuvanshi
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
20
|
Pallasch SM, Bhosale M, Smales GJ, Schmidt C, Riedel S, Zhao-Karger Z, Esser B, Dumele O. Porous Azatruxene Covalent Organic Frameworks for Anion Insertion in Battery Cells. J Am Chem Soc 2024; 146:17318-17324. [PMID: 38869185 DOI: 10.1021/jacs.4c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Covalent organic frameworks (COFs) containing well-defined redox-active groups have become competitive materials for next-generation batteries. Although high potentials and rate performance can be expected, only a few examples of p-type COFs have been reported for charge storage to date with even fewer examples on the use of COFs in multivalent ion batteries. Herein, we report the synthesis of a p-type highly porous and crystalline azatruxene-based COF and its application as a positive electrode material in Li- and Mg-based batteries. When this material is used in Li-based half cells as a COF/carbon nanotube (CNT) electrode, a discharge potential of 3.9 V is obtained with discharge capacities of up to 70 mAh g-1 at a 2 C rate. In Mg batteries using a tetrakis(hexafluoroisopropyloxy)borate electrolyte, cycling proceeds with an average discharge voltage of 2.9 V. Even at a fast current rate of 5 C, the capacity retention amounts to 84% over 1000 cycles.
Collapse
Affiliation(s)
- Sebastian M Pallasch
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
| | - Manik Bhosale
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| | - Caroline Schmidt
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Sibylle Riedel
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
| | - Zhirong Zhao-Karger
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Birgit Esser
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Oliver Dumele
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| |
Collapse
|
21
|
Yang M, Zhang Y, Zhu R, Tan J, Liu J, Zhang W, Zhou M, Meng Z. Two-Dimensional Conjugated Metal-Organic Frameworks with a Ring-in-Ring Topology and High Electrical Conductance. Angew Chem Int Ed Engl 2024; 63:e202405333. [PMID: 38623864 DOI: 10.1002/anie.202405333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Electrically conducting two-dimensional (2D) metal-organic frameworks (MOFs) have garnered significant interest due to their remarkable structural tunability and outstanding electrical properties. However, the design and synthesis of high-performance materials face challenges due to the limited availability of specific ligands and pore structures. In this study, we have employed a novel highly branched D3h symmetrical planar conjugated ligand, dodechydroxylhexabenzotrinaphthylene (DHHBTN) to fabricate a series of 2D conductive MOFs, named M-DHHBTN (M=Co, Ni, and Cu). This new family of MOFs offers two distinct types of pores, elevating the structural complexity of 2D conductive MOFs to a more advanced level. The intricate tessellation patterns of the M-DHHBTN are elucidated through comprehensive analyses involving powder X-ray diffraction, theoretical simulations, and high-resolution transmission electron microscope. Optical-pump terahertz-probe spectroscopic measurements unveiled carrier mobility in DHHBTN-based 2D MOFs spanning from 0.69 to 3.10 cm2 V-1 s-1. Among M-DHHBTN famility, Cu-DHHBTN displayed high electrical conductivity reaching 0.21 S cm-1 at 298 K with thermal activation behavior. This work leverages the "branched conjugation" of the ligand to encode heteroporosity into highly conductive 2D MOFs, underscoring the significant potential of heterogeneous double-pore structures for future applications.
Collapse
Affiliation(s)
- Mingyu Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Yi Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, P.R. China
| | - Jinxin Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Zheng Meng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
22
|
Srivastava D, Mishra V, Mir SH, Dey J, Singh JK, Chandra M, Gopakumar TG. Large Area Film of Highly Crystalline, Cleavable, and Transferable Semi-Conducting 2D-Imine Covalent Organic Framework on Dielectric Glass Substrate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30485-30495. [PMID: 38815005 DOI: 10.1021/acsami.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Two dimensional (2D) imine-based covalent organic framework (COF), 2D-COF, is a newly emerging molecular 2D polymer with potential applications in thin film electronics, sensing, and catalysis. It is considered an ideal candidate due to its robust 2D nature and precise tunability of the electronic and functional properties. Herein, we report a scalable facile synthesis of 2D imine-COF with control over film thickness (ranging from 100 nm to a few monolayers) and film dimension reaching up to 2 cm on a dielectric (glass) substrate. Highly crystalline 2D imine polymer films are formed by maintaining a quasi-equilibrium (very slow, ∼15 h) in Schiff base condensation reaction between p-phenylenediamine (PDA) and benzene-1,3,5-tricarboxaldehyde (TCA) molecules. Free-standing thin and ultrathin films of imine-COF are obtained using sonication exfoliation of 2D-COF polymer. Insights into the microstructure of thin/ultrathin imine-COF are obtained using scanning and transmission electron microscopy (SEM and TEM) and atomic force microscopy (AFM), which shows high crystallinity and 2D layered structure in both thin and ultrathin films. The chemical nature of the 2D polymer was established using X-ray photoelectron spectroscopy (XPS). Optical band gap measurements also reveal a semiconducting gap. This is further established by electronic structure calculation using density functional theory (DFT), which reveals a semiconductor-like band structure with strong dispersion in bands near conduction and valence band edges. The structural characteristics (layered morphology and microscopic structure) of 2D imine-COF show significant potential for its application in thin film device fabrication. In addition, the electronic structure shows strong dispersion in the frontier bands, making it a potential semiconducting material for charge carrier transportation in electronic devices.
Collapse
Affiliation(s)
- Diksha Srivastava
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vipin Mishra
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Showkat H Mir
- Department of Physics, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir
| | - Jyotirban Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Thiruvancheril G Gopakumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
23
|
Huang X, Li Y, Fu S, Ma C, Lu Y, Wang M, Zhang P, Li Z, He F, Huang C, Liao Z, Zou Y, Zhou S, Helm M, Petkov PS, Wang HI, Bonn M, Li J, Xu W, Dong R, Feng X. Control of the Hydroquinone/Benzoquinone Redox State in High-Mobility Semiconducting Conjugated Coordination Polymers. Angew Chem Int Ed Engl 2024; 63:e202320091. [PMID: 38488855 DOI: 10.1002/anie.202320091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 04/11/2024]
Abstract
Conjugated coordination polymers (c-CPs) are unique organic-inorganic hybrid semiconductors with intrinsically high electrical conductivity and excellent charge carrier mobility. However, it remains a challenge in tailoring electronic structures, due to the lack of clear guidelines. Here, we develop a strategy wherein controlling the redox state of hydroquinone/benzoquinone (HQ/BQ) ligands allows for the modulation of the electronic structure of c-CPs while maintaining the structural topology. The redox-state control is achieved by reacting the ligand TTHQ (TTHQ=1,2,4,5-tetrathiolhydroquinone) with silver acetate and silver nitrate, yielding Ag4TTHQ and Ag4TTBQ (TTBQ=1,2,4,5-tetrathiolbenzoquinone), respectively. In spite of sharing the same topology consisting of a two-dimensional Ag-S network and HQ/BQ layer, they exhibit different band gaps (1.5 eV for Ag4TTHQ and 0.5 eV for Ag4TTBQ) and conductivities (0.4 S/cm for Ag4TTHQ and 10 S/cm for Ag4TTBQ). DFT calculations reveal that these differences arise from the ligand oxidation state inhibiting energy band formation near the Fermi level in Ag4TTHQ. Consequently, Ag4TTHQ displays a high Seebeck coefficient of 330 μV/K and a power factor of 10 μW/m ⋅ K2, surpassing Ag4TTBQ and the other reported silver-based c-CPs. Furthermore, terahertz spectroscopy demonstrates high charge mobilities exceeding 130 cm2/V ⋅ s in both Ag4TTHQ and Ag4TTBQ.
Collapse
Affiliation(s)
- Xing Huang
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Max Planck Institute of Microstructure Physics, Halle (Saale), 06120, Germany
| | - Yang Li
- Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Shuai Fu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Chao Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Lu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Peng Zhang
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Ze Li
- Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Feng He
- Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Dresden, 01109, Germany
| | - Ye Zou
- Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Shengqiang Zhou
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, 01328, Germany
| | - Manfred Helm
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, 01328, Germany
| | - Petko St Petkov
- Faculty of Chemistry and Pharmacy, University of Sofia, Sofia, 1164, Bulgaria
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Mainz, 55128, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584, CC Utrecht, The Netherlands
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Jian Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei Xu
- Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Renhao Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Max Planck Institute of Microstructure Physics, Halle (Saale), 06120, Germany
| |
Collapse
|
24
|
Ben H, Yan G, Wang Y, Zeng H, Wu Y, Lin F, Zhao J, Du W, Zhang S, Zhou S, Pu J, Ye M, Ji H, Lv L. Self-Assembly Behavior, Aggregation Structure, and the Charge Carrier Transport Properties of S-Heterocyclic Annulated Perylene Diimide Derivatives. Molecules 2024; 29:1964. [PMID: 38731456 PMCID: PMC11085381 DOI: 10.3390/molecules29091964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The construction of high-performance n-type semiconductors is crucial for the advancement of organic electronics. As an attractive n-type semiconductor, molecular systems based on perylene diimide derivatives (PDIs) have been extensively investigated over recent years. Owing to the fascinating aggregated structure and high performance, S-heterocyclic annulated PDIs (SPDIs) are receiving increasing attention. However, the relationship between the structure and the electrical properties of SPDIs has not been deeply revealed, restricting the progress of PDI-based organic electronics. Here, we developed two novel SPDIs with linear and dendronized substituents in the imide position, named linear SPDI and dendronized SPDI, respectively. A series of structural and property characterizations indicated that linear SPDI formed a long-range-ordered crystalline structure based on helical supramolecular columns, while dendronized SPDI, with longer alkyl side chains, formed a 3D-ordered crystalline structure at a low temperature, which transformed into a hexagonal columnar liquid crystal structure at a high temperature. Moreover, no significant charge carrier transport signal was examined for linear SPDI, while dendronized SPDI had a charge carrier mobility of 3.5 × 10-3 cm2 V-1 s-1 and 2.1 × 10-3 cm2 V-1 s-1 in the crystalline and liquid crystalline state, respectively. These findings highlight the importance of the structure-function relationship in PDIs, and also offer useful roadmaps for the design of high-performance organic electronics for down-to-earth applications.
Collapse
Affiliation(s)
- Haijie Ben
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China; (H.B.); (Y.W.); (H.Z.); (Y.W.); (F.L.); (J.Z.); (S.Z.); (M.Y.)
| | - Gaojie Yan
- Shenzhen Research Institute of Nankai University, Nankai University, Shenzhen 518083, China;
| | - Yulin Wang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China; (H.B.); (Y.W.); (H.Z.); (Y.W.); (F.L.); (J.Z.); (S.Z.); (M.Y.)
| | - Huiming Zeng
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China; (H.B.); (Y.W.); (H.Z.); (Y.W.); (F.L.); (J.Z.); (S.Z.); (M.Y.)
| | - Yuechao Wu
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China; (H.B.); (Y.W.); (H.Z.); (Y.W.); (F.L.); (J.Z.); (S.Z.); (M.Y.)
| | - Feng Lin
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China; (H.B.); (Y.W.); (H.Z.); (Y.W.); (F.L.); (J.Z.); (S.Z.); (M.Y.)
| | - Junhua Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China; (H.B.); (Y.W.); (H.Z.); (Y.W.); (F.L.); (J.Z.); (S.Z.); (M.Y.)
| | - Wanglong Du
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shaojie Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China; (H.B.); (Y.W.); (H.Z.); (Y.W.); (F.L.); (J.Z.); (S.Z.); (M.Y.)
| | - Shijia Zhou
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China; (H.B.); (Y.W.); (H.Z.); (Y.W.); (F.L.); (J.Z.); (S.Z.); (M.Y.)
| | - Jingyu Pu
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China; (H.B.); (Y.W.); (H.Z.); (Y.W.); (F.L.); (J.Z.); (S.Z.); (M.Y.)
| | - Milan Ye
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China; (H.B.); (Y.W.); (H.Z.); (Y.W.); (F.L.); (J.Z.); (S.Z.); (M.Y.)
| | - Haifeng Ji
- Shenzhen Research Institute of Nankai University, Nankai University, Shenzhen 518083, China;
| | - Liang Lv
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China; (H.B.); (Y.W.); (H.Z.); (Y.W.); (F.L.); (J.Z.); (S.Z.); (M.Y.)
| |
Collapse
|
25
|
Vijayakanth T, Dasgupta S, Ganatra P, Rencus-Lazar S, Desai AV, Nandi S, Jain R, Bera S, Nguyen AI, Gazit E, Misra R. Peptide hydrogen-bonded organic frameworks. Chem Soc Rev 2024; 53:3640-3655. [PMID: 38450536 DOI: 10.1039/d3cs00648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Hydrogen-bonded porous frameworks (HPFs) are versatile porous crystalline frameworks with diverse applications. However, designing chiral assemblies or biocompatible materials poses significant challenges. Peptide-based hydrogen-bonded porous frameworks (P-HPFs) are an exciting alternative to conventional HPFs due to their intrinsic chirality, tunability, biocompatibility, and structural diversity. Flexible, ultra-short peptide-based P-HPFs (composed of 3 or fewer amino acids) exhibit adaptable porous topologies that can accommodate a variety of guest molecules and capture hazardous greenhouse gases. Longer, folded peptides present challenges and opportunities in designing P-HPFs. This review highlights recent developments in P-HPFs using ultra-short peptides, folded peptides, and foldamers, showcasing their utility for gas storage, chiral recognition, chiral separation, and medical applications. It also addresses design challenges and future directions in the field.
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Sneha Dasgupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| | - Pragati Ganatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Sigal Rencus-Lazar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Aamod V Desai
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Shyamapada Nandi
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, 600127, Chennai, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| | - Santu Bera
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Rajkumar Misra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| |
Collapse
|
26
|
Wang X, Jin Y, Li N, Zhang H, Liu X, Yang X, Pan H, Wang T, Wang K, Qi D, Jiang J. 12 Connecting Sites Linked Three-dimensional Covalent Organic Frameworks with Intrinsic Non-interpenetrated shp Topology for Photocatalytic H 2O 2 Synthesis. Angew Chem Int Ed Engl 2024; 63:e202401014. [PMID: 38334002 DOI: 10.1002/anie.202401014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
Developing high connectivity (>8) three-dimensional (3D) covalent organic frameworks (COFs) towards new topologies and functions remains a great challenge owing to the difficulty in getting high connectivity organic building blocks. This however represents the most important step towards promoting the diversity of COFs due to the still limited dynamic covalent bonds available for constructing COFs at this stage. Herein, highly connected phthalocyanine-based (Pc-based) 3D COFs MPc-THHI-COFs (M=H2, Ni) were afforded from the reaction between 2,3,9,10,16,17,23,24-octacarboxyphthalocyanine M(TAPc) (M=H2, Ni) and 5,5',5'',5''',5'''',5'''''-(triphenylene-2,3,6,7,10,11-hexayl)hexa(isophthalohydrazide) (THHI) with 12 connecting sites. Powder X-ray diffraction analysis together with theoretical simulations and transmission electron microscopy reveals their crystalline nature with an unprecedented non-interpenetrated shp topology. Experimental and theoretical investigations disclose the broadened visible light absorption range and narrow optical band gap of MPc-THHI-COFs. This in combination with their 3D nanochannels endows them with efficient photocatalysis performance for H2O2 generation from O2 and H2O via 2e- oxygen reduction reaction and 2e- water oxidation reaction under visible-light irradiation (λ >400 nm). This work provides valuable result for the development of high connectivity functional COFs towards diverse application potentials.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Houhe Pan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
27
|
Tian X, Li F, Tang Z, Wang S, Weng K, Liu D, Lu S, Liu W, Fu Z, Li W, Qiu H, Tu M, Zhang H, Li J. Crosslinking-induced patterning of MOFs by direct photo- and electron-beam lithography. Nat Commun 2024; 15:2920. [PMID: 38575569 PMCID: PMC10995132 DOI: 10.1038/s41467-024-47293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) with diverse chemistry, structures, and properties have emerged as appealing materials for miniaturized solid-state devices. The incorporation of MOF films in these devices, such as the integrated microelectronics and nanophotonics, requires robust patterning methods. However, existing MOF patterning methods suffer from some combinations of limited material adaptability, compromised patterning resolution and scalability, and degraded properties. Here we report a universal, crosslinking-induced patterning approach for various MOFs, termed as CLIP-MOF. Via resist-free, direct photo- and electron-beam (e-beam) lithography, the ligand crosslinking chemistry leads to drastically reduced solubility of colloidal MOFs, permitting selective removal of unexposed MOF films with developer solvents. This enables scalable, micro-/nanoscale (≈70 nm resolution), and multimaterial patterning of MOFs on large-area, rigid or flexible substrates. Patterned MOF films preserve their crystallinity, porosity, and other properties tailored for targeted applications, such as diffractive gas sensors and electrochromic pixels. The combined features of CLIP-MOF create more possibilities in the system-level integration of MOFs in various electronic, photonic, and biomedical devices.
Collapse
Affiliation(s)
- Xiaoli Tian
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Fu Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenyuan Tang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Song Wang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Kangkang Weng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Dan Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Shaoyong Lu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Wangyu Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Zhong Fu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Wenjun Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Hengwei Qiu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Min Tu
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
- Beijing Institute of Life Science and Technology, Beijing, 102206, China
- Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
28
|
Zhou S, Liu T, Strømme M, Xu C. Electrochemical Doping and Structural Modulation of Conductive Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202318387. [PMID: 38349735 DOI: 10.1002/anie.202318387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 02/29/2024]
Abstract
In this study, we introduce an electrochemical doping strategy aimed at manipulating the structure and composition of electrically conductive metal-organic frameworks (c-MOFs). Our methodology is exemplified through a representative c-MOF, Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene), synthesized into porous thin films supported by nanocellulose. While the c-MOF exhibits characteristic capacitive behavior in neutral electrolyte; it manifests redox behaviors in both acidic and alkaline electrolytes. Evidence indicates that the organic ligands within c-MOF undergo oxidation (p-doping) and reduction (n-doping) when exposed to specific electrochemical potentials in acidic and alkaline electrolyte, respectively. Interestingly, the p-doping process proves reversible, with the c-MOF structure remaining stable across cyclic p-doping/de-doping. In contrast, the n-doping is irreversible, leading to the gradual decomposition of the framework into inorganic species over a few cycles. Drawing on these findings, we showcase the versatile electrochemical applications of c-MOFs and their derived composites, encompassing electrochemical energy storage, electrocatalysis, and ultrafast actuation. This study provides profound insights into the doping of c-MOFs, offering a new avenue for modulating their chemical and electronic structure, thereby broadening their potential for diverse electrochemical applications.
Collapse
Affiliation(s)
- Shengyang Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
- Division of Nanotechnology and Functional Materials, Department of Materials Sciences and Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 751 03, Sweden
| | - Tianqi Liu
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, 100 44, Sweden
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Materials Sciences and Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 751 03, Sweden
| | - Chao Xu
- Division of Nanotechnology and Functional Materials, Department of Materials Sciences and Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 751 03, Sweden
| |
Collapse
|
29
|
Saha R, Gupta K, Gómez García CJ. Strategies to Improve Electrical Conductivity in Metal-Organic Frameworks: A Comparative Study. CRYSTAL GROWTH & DESIGN 2024; 24:2235-2265. [PMID: 38463618 PMCID: PMC10921413 DOI: 10.1021/acs.cgd.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Metal-organic frameworks (MOFs), formed by the combination of both inorganic and organic components, have attracted special attention for their tunable porous structures, chemical and functional diversities, and enormous applications in gas storage, catalysis, sensing, etc. Recently, electronic applications of MOFs like electrocatalysis, supercapacitors, batteries, electrochemical sensing, etc., have become a major research topic in MOF chemistry. However, the low electrical conductivity of most MOFs represents a major handicap in the development of these emerging applications. To overcome these limitations, different strategies have been developed to enhance electrical conductivity of MOFs for their implementation in electronic devices. In this review, we outline all these strategies employed to increase the electronic conduction in both intrinsically (framework-modulated) and extrinsically (guests-modulated) conducting MOFs.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento
de Química Inorgánica, Universidad
de Valencia, C/Dr. Moliner
50, 46100 Burjasot, Valencia, Spain
| | - Kajal Gupta
- Department
of Chemistry, Nistarini College, Purulia, 723101, WB India
| | - Carlos J. Gómez García
- Departamento
de Química Inorgánica, Universidad
de Valencia, C/Dr. Moliner
50, 46100 Burjasot, Valencia, Spain
| |
Collapse
|
30
|
Chen JY, Weng YX, Han YH, Ye RH, Huang DH. A novel pencil graphite electrode modified with an iron-based conductive metal-organic framework exhibited good ability in simultaneous sensing bisphenol A and bisphenol S. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116065. [PMID: 38330872 DOI: 10.1016/j.ecoenv.2024.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Bisphenol A (BPA) and its substitute bisphenol S (BPS) are desirable materials widely used in manufacturing plastic products but can pose carcinogenic risks to humans. A new conductive iron-based metal-organic framework (Fe-HHTP)-modified pencil graphite electrode (PGE) for electrochemically sensing BPA and BPS was prepared and fully characterized by SEM, TEM, FT-IR, XRD, and XPS. Results showed that the optimal conditions for preparing Fe-HHTP/PGE were a pH of 6.5, a Fe-HHTP concentration of 2 mg·mL-1, a deposition potential of 0 V, and a deposition time of 100 s. The Fe-HHTP/PGE prepared under such conditions harbored a significant electrocatalytic activity with a detection limit of 0.8 nM for BPA and 1.7 nM for BPS (S/N = 3). Correspondingly, the electrochemical response current was linearly correlated to BPA and BPS, ranging from 0.01 to 100 μM. Fe-HHTP/PGE also obtained satisfactory recoveries by 93.8-102.1% and 96.0-101.3% for detecting BPA and BPS in plastic food packaging samples. Our work has provided a novel electrochemical tool to simultaneously detect BPA and BPS in food packaging samples and environmental matrixes.
Collapse
Affiliation(s)
- Jin-Yang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China; Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, China
| | - Ying-Xin Weng
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, China
| | - Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, Fujian, China.
| | - Rui-Hong Ye
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, China
| | - Di-Hui Huang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, Fujian, China.
| |
Collapse
|
31
|
Rubio-Giménez V, Carraro F, Hofer S, Fratschko M, Stassin T, Rodríguez-Hermida S, Schrode B, Barba L, Resel R, Falcaro P, Ameloot R. Polymorphism and orientation control of copper-dicarboxylate metal-organic framework thin films through vapour- and liquid-phase growth. CrystEngComm 2024; 26:1071-1076. [PMID: 38384732 PMCID: PMC10877460 DOI: 10.1039/d3ce01296d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Precise control over the crystalline phase and crystallographic orientation within thin films of metal-organic frameworks (MOFs) is highly desirable. Here, we report a comparison of the liquid- and vapour-phase film deposition of two copper-dicarboxylate MOFs starting from an oriented metal hydroxide precursor. X-ray diffraction revealed that the vapour- or liquid-phase reaction of the linker with this precursor results in different crystalline phases, morphologies, and orientations. Pole figure analysis showed that solution-based growth of the MOFs follows the axial texture of the metal hydroxide precursor, resulting in heteroepitaxy. In contrast, the vapour-phase method results in non-epitaxial growth with uniplanar texture only.
Collapse
Affiliation(s)
- Víctor Rubio-Giménez
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9/Z2 8010 Graz Austria
| | - Sebastian Hofer
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 8010 Graz Austria
| | - Mario Fratschko
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 8010 Graz Austria
| | - Timothée Stassin
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Sabina Rodríguez-Hermida
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Benedikt Schrode
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 8010 Graz Austria
| | - Luisa Barba
- Istituto di Cristallografia - Sincrotrone Elettra, Consiglio Nazionale delle Ricerche Area Science Park 34142 Basovizza Italy
| | - Roland Resel
- Institute of Solid State Physics, Graz University of Technology Petersgasse 16 8010 Graz Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology Stremayrgasse 9/Z2 8010 Graz Austria
| | - Rob Ameloot
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS), KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
32
|
Panigrahi PK, Chandu B, Puvvada N. Recent Advances in Nanostructured Materials for Application as Gas Sensors. ACS OMEGA 2024; 9:3092-3122. [PMID: 38284032 PMCID: PMC10809240 DOI: 10.1021/acsomega.3c06533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Many different industries, including the pharmaceutical, medical engineering, clinical diagnostic, public safety, and food monitoring industries, use gas sensors. The inherent qualities of nanomaterials, such as their capacity to chemically or physically adsorb gas, and their great ratio of surface to volume make them excellent candidates for use in gas sensing technology. Additionally, the nanomaterial-based gas sensors have excellent selectivity, reproducibility, durability, and cost-effectiveness. This Review article offers a summary of the research on gas sensor devices based on nanomaterials of various sizes. The numerous nanomaterial-based gas sensors, their manufacturing procedures and sensing mechanisms, and most recent advancements are all covered in detail. In addition, evaluations and comparisons of the key characteristics of gas sensing systems made from various dimensional nanomaterials were done.
Collapse
Affiliation(s)
- Pravas Kumar Panigrahi
- Department
of Basic Science, Government College of
Engineering, Kalahandi, Odisha 766003, India
| | - Basavaiah Chandu
- Department
of Nanotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522510, India
| | - Nagaprasad Puvvada
- Department
of Chemistry, School of Advanced Sciences, VIT-AP University, Vijayawada, Andhra Pradesh522237, India
| |
Collapse
|
33
|
Yue Y, Ji D, Liu Y, Wei D. Chemical Sensors Based on Covalent Organic Frameworks. Chemistry 2024; 30:e202302474. [PMID: 37843045 DOI: 10.1002/chem.202302474] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline porous polymer composed of light elements through strong covalent bonds. COFs have attracted considerable attention due to their unique designable structures and excellent material properties. Currently, COFs have shown outstanding potential in various fields, including gas storage, pollutant removal, catalysis, adsorption, optoelectronics, and their research in the sensing field is also increasingly flourishing. In this review, we focus on COF-based sensors. Firstly, we elucidate the fundamental principles of COF-based sensors. Then, we present the primary application areas of COF-based sensors and their recent advancements, encompassing gas, ions, organic compounds, and biomolecules sensing. Finally, we discuss the future trends and challenges faced by COF-based sensors, outlining their promising prospects in the field of sensing.
Collapse
Affiliation(s)
- Yang Yue
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
34
|
Shoaib Ahmad Shah S, Altaf Nazir M, Mahmood A, Sohail M, Ur Rehman A, Khurram Tufail M, Najam T, Sufyan Javed M, Eldin SM, Rezaur Rahman M, Rahman MM. Synthesis of Electrical Conductive Metal-Organic Frameworks for Electrochemical Applications. CHEM REC 2024; 24:e202300141. [PMID: 37724006 DOI: 10.1002/tcr.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Electrical conductivity is very important property of nanomaterials for using wide range of applications especially energy applications. Metal-organic frameworks (MOFs) are notorious for their low electrical conductivity and less considered for usage in pristine forms. However, the advantages of high surface area, porosity and confined catalytic active sites motivated researchers to improve the conductivity of MOFs. Therefore, 2D electrical conductive MOFs (ECMOF) have been widely synthesized by developing the effective synthetic strategies. In this article, we have summarized the recent trends in developing the 2D ECMOFs, following the summary of potential applications in the various fields with future perspectives.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of natural sciences, National University of sciences and technology, 44000, Islamabad, Pakistan
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Azhar Mahmood
- Department of Chemistry, School of natural sciences, National University of sciences and technology, 44000, Islamabad, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of natural sciences, National University of sciences and technology, 44000, Islamabad, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | | | - Tayyaba Najam
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Muhammad Sufyan Javed
- School of Physical Sciences and Technology, Lanzhou University, 730000, Lanzhou, China
| | - Sayed M Eldin
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Md Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) &, Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
35
|
Hu F, Hu Z, Liu Y, Tam KC, Liang R, Xie Q, Fan Z, Pan C, Tang J, Yu G, Zhang W. Aqueous Sol-Gel Synthesis and Shaping of Covalent Organic Frameworks. J Am Chem Soc 2023; 145:27718-27727. [PMID: 38083846 DOI: 10.1021/jacs.3c10053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The intrinsic fragility and insoluble nature of covalent organic frameworks (COFs) have strongly impeded their processability for practical applications. Herein, an aqueous-based sol-gel synthetic strategy is reported for the synthesis and shaping of COFs with task-specific applications that satisfy the principles of green chemistry for gram-scale production of crystalline materials. Our successful approach involves three pivotal aspects: the "prodrug mimic" design of water-soluble monomers, the utilization of hydrolyzable bonds, and the manipulation of reaction kinetics. The generality of the method is demonstrated by the successful preparation of representative high-surface area two-dimensional (2D) COFs with several commonly used amines. By virtue of this strategy, a COF colloidal dispersion is achieved and can be formulated into processable fluids, structured films, and COF monoliths. Remarkably, the obtained lightweight (∼0.020 g cm-3) and robust aerogels displayed outstanding adsorption capacity (exceeding 57 times its own weight) toward a variety of organic solvents and exhibited superior thermal insulating properties compared to the widely used sponge and cotton. This work demonstrates a versatile strategy for the synthesis and shaping of processable COF materials in water that will contribute to the development of COF monoliths for advanced applications.
Collapse
Affiliation(s)
- Fan Hu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha 410083, China
| | - Zeyou Hu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha 410083, China
| | - Yufei Liu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha 410083, China
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Rongran Liang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Qiujian Xie
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha 410083, China
| | - Zhiwen Fan
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha 410083, China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha 410083, China
| | - Juntao Tang
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha 410083, China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha 410083, China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
36
|
Diao Y, Zhang Y, Li Y, Jiang J. Metal-Oxide Heterojunction: From Material Process to Neuromorphic Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:9779. [PMID: 38139625 PMCID: PMC10747618 DOI: 10.3390/s23249779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
As technologies like the Internet, artificial intelligence, and big data evolve at a rapid pace, computer architecture is transitioning from compute-intensive to memory-intensive. However, traditional von Neumann architectures encounter bottlenecks in addressing modern computational challenges. The emulation of the behaviors of a synapse at the device level by ionic/electronic devices has shown promising potential in future neural-inspired and compact artificial intelligence systems. To address these issues, this review thoroughly investigates the recent progress in metal-oxide heterostructures for neuromorphic applications. These heterostructures not only offer low power consumption and high stability but also possess optimized electrical characteristics via interface engineering. The paper first outlines various synthesis methods for metal oxides and then summarizes the neuromorphic devices using these materials and their heterostructures. More importantly, we review the emerging multifunctional applications, including neuromorphic vision, touch, and pain systems. Finally, we summarize the future prospects of neuromorphic devices with metal-oxide heterostructures and list the current challenges while offering potential solutions. This review provides insights into the design and construction of metal-oxide devices and their applications for neuromorphic systems.
Collapse
Affiliation(s)
| | | | | | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, 932 South Lushan Road, Changsha 410083, China
| |
Collapse
|
37
|
Song M, Jia J, Li P, Peng J, Pang X, Qi M, Xu Y, Chen L, Chi L, Lu G. Ligand-Oxidation-Based Anodic Synthesis of Oriented Films of Conductive M-Catecholate Metal-Organic Frameworks with Controllable Thickness. J Am Chem Soc 2023; 145:25570-25578. [PMID: 37967022 DOI: 10.1021/jacs.3c05606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Effective control over the crystallization of metal-organic framework (MOF) films is of great importance not only for the performance study and optimization in related applications but also for the fundamental understanding of the involved reticular chemistry. Featuring many technological advantages, electrochemical synthesis has been extensively reported for many MOF materials but is still challenged by the production of dense oriented films with a large-range tuning of thickness. Here, we report a ligand-oxidation-based anodic strategy capable of synthesizing oriented films of two-dimensional (2D) and three-dimensional (3D) conductive M-catecholate MOFs (2D Cu3(HHTP)2, 2D Zn3(HHTP)2, 2D Co3(HHTP)2, 3D YbHHTP, and 2D Cu2TBA) with tunable thicknesses up to tens of micrometers on commonly used electrodes. This anodic strategy relies on the oxidation of redox-active catechol ligands and follows a stepwise electrochemical-chemical reaction mechanism to achieve effective control over crystallizing M-catecholate MOFs into films oriented in the [001] direction. Benefiting from the electrically conductive nature, Cu3(HHTP)2 films could be thickened at a steady rate (17.4 nm·min-1) from ∼90 nm to 10.7 μm via a growth mechanism differing from those adopted in previous electrochemical synthesis of dense MOF films with limited thickness due to the self-inhibition effect. This anodic synthesis could be further combined with a templating strategy to fabricate not only films with well-defined 2D features in sizes from micrometers to millimeters but also high aspect ratio mesostructures, such as nanorods, of Cu3(HHTP)2.
Collapse
Affiliation(s)
- Min Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingjing Jia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Pingping Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jiahao Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xinghan Pang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Meiling Qi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yulong Xu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Guang Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
38
|
Keppler NC, Hannebauer A, Hindricks KDJ, Zailskas S, Schaate A, Behrens P. Transmission Porosimetry Study on High-quality Zr-fum-MOF Thin Films. Chem Asian J 2023; 18:e202300699. [PMID: 37713072 DOI: 10.1002/asia.202300699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Crystalline Zr-fum-MOF (MOF-801) thin films of high quality are prepared on glass and silicon substrates by direct growth under solvothermal conditions. The synthesis is described in detail and the influence of different synthesis parameters such as temperature, precursor concentration, and the substrate type on the quality of the coatings is illustrated. Zr-fum-MOF thin films are characterized in terms of crystallinity, porosity, and homogeneity. Dense films of optical quality are obtained. The sorption behavior of the thin films is studied with various adsorptives. It can be easily monitored by measuring the transmission of the films in gas flows of different compositions. This simple transmission measurement at only one wavelength allows a very fast evaluation of the adsorption properties of thin films as compared to traditional sorption methods. The sorption behavior of the thin films is compared with the sorption properties of Zr-fum-MOF powder samples.
Collapse
Affiliation(s)
- Nils Christian Keppler
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
- Leibniz University Hannover Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines), Welfengarten 1, 30167, Hannover, Germany
| | - Adrian Hannebauer
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
| | - Karen Deli Josephine Hindricks
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
- Leibniz University Hannover Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines), Welfengarten 1, 30167, Hannover, Germany
| | - Saskia Zailskas
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
| | - Andreas Schaate
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
- Leibniz University Hannover Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines), Welfengarten 1, 30167, Hannover, Germany
| | - Peter Behrens
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
- Leibniz University Hannover Cluster of Excellence PhoenixD (Photonics, Optics and Engineering - Innovation Across Disciplines), Welfengarten 1, 30167, Hannover, Germany
| |
Collapse
|
39
|
Liu JY, Zhang XH, Fang H, Zhang SQ, Chen Y, Liao Q, Chen HM, Chen HP, Lin MJ. Novel Semiconductive Ternary Hybrid Heterostructures for Artificial Optoelectronic Synapses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302197. [PMID: 37403302 DOI: 10.1002/smll.202302197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/12/2023] [Indexed: 07/06/2023]
Abstract
Synaptic devices that mimic biological synapses are considered as promising candidates for brain-inspired devices, offering the functionalities in neuromorphic computing. However, modulation of emerging optoelectronic synaptic devices has rarely been reported. Herein, a semiconductive ternary hybrid heterostructure is prepared with a D-D'-A configuration by introducing polyoxometalate (POM) as an additional electroactive donor (D') into a metalloviologen-based D-A framework. The obtained material features an unprecedented porous 8-connected bcu-net that accommodates nanoscale [α-SiW12 O40 ]4- counterions, displaying uncommon optoelectronic responses. Besides, the fabricated synaptic device based on this material can achieve dual-modulation of synaptic plasticity due to the synergetic effect of electron reservoir POM and photoinduced electron transfer. And it can successfully simulate learning and memory processes similar to those in biological systems. The result provides a facile and effective strategy to customize multi-modality artificial synapses in the field of crystal engineering, which opens a new direction for developing high-performance neuromorphic devices.
Collapse
Affiliation(s)
- Jing-Yan Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiang-Hong Zhang
- Institure of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Hua Fang
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Yong Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Qing Liao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hong-Ming Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hui-Peng Chen
- Institure of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, P. R. China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery, and Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
40
|
Kundu S, Haldar R. A roadmap to enhance gas permselectivity in metal-organic framework-based mixed-matrix membranes. Dalton Trans 2023; 52:15253-15276. [PMID: 37603374 DOI: 10.1039/d3dt01878d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Performing gas separation at high efficiency with minimum energy input and reduced carbon footprint is a major challenge. While several separation methods exist at various technology readiness levels, porous membrane-based separation is considered as a disruptive technology. To attain sustainability and required efficiency, different approaches of membrane design have been explored. However, the selectivity-permeation trade-off and membrane aging have restricted further advancement. In this regard, a new generation composite made of organic polymers and metal-organic framework (MOF) fillers shows substantial promise. Organic polymer matrix allows easy processibility, but it has poor permselectivity for gas molecules. Metal-organic frameworks are excellent sieving materials; however, they suffer from poor processibility issues. A combination of these two components makes an ideal sieving membrane, which can potentially outnumber the existing energy intensive distillation strategies. In this perspective, we have discussed key indices that regulate gas permselectivity by a careful selection of the existing literature. While the target gas flux and selectivity values have been a part of many previous reviews and articles, we have presented a concise discussion on the interface design of the MOF-polymer membrane, morphology, and orientation control of MOF fillers in the matrix. Following this, a future roadmap to overcome challenges related to MOF-polymer interfacial defects is outlined.
Collapse
Affiliation(s)
- Susmita Kundu
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India.
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India.
| |
Collapse
|
41
|
Yu YH, Lin XY, Teng KL, Lai WF, Hu CC, Tsai CH, Liu CP, Lee HL, Su CH, Liu YH, Lu KL, Chien SY. Synthesis of Two-Dimensional (Cu-S) n Metal-Organic Framework Nanosheets Applied as Peroxidase Mimics for Detection of Glutathione. Inorg Chem 2023; 62:17126-17135. [PMID: 37819788 PMCID: PMC10598880 DOI: 10.1021/acs.inorgchem.3c02023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 10/13/2023]
Abstract
Facilely synthesized peroxidase-like nanozymes with high catalytic activity and stability may serve as effective biocatalysts. The present study synthesizes peroxidase-like nanozymes with multinuclear active sites using two-dimensional (2D) metal-organic framework (MOF) nanosheets and evaluates them for their practical applications. A simple method involving a one-pot bottom-up reflux reaction is developed for the mass synthesis of (Cu-S)n MOF 2D nanosheets, significantly increasing production quantity and reducing reaction time compared to traditional autoclave methods. The (Cu-S)n MOF 2D nanosheets with the unique coordination of Cu(I) stabilized in Cu-based MOFs demonstrate impressive activity in mimicking natural peroxidase. The active sites of the peroxidase-like activity of (Cu-S)n MOF 2D nanosheets were predominantly verified as Cu(I) rather than Cu(II) of other Cu-based MOFs. The cost-effective and long-term stability of (Cu-S)n MOF 2D nanosheets make them suitable for practical applications. Furthermore, the inhibition of the peroxidase-like activity of (Cu-S)n MOF nanosheets by glutathione (GSH) could provide a simple strategy for colorimetric detection of GSH against other amino acids. This work remarkably extends the utilization of (Cu-S)n MOF 2D nanosheets in biosensing, revealing the potential for 2D (Cu-S)n MOFs.
Collapse
Affiliation(s)
- Yuan-Hsiang Yu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Xiao-Yuan Lin
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Kun-Ling Teng
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Wei-Fan Lai
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Chia-Chi Hu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Chia-Hsuan Tsai
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Ching-Ping Liu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Hui-Ling Lee
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Cing-Huei Su
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yen-Hsiang Liu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Kuang-Lieh Lu
- Department
of Chemistry, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Su-Ying Chien
- Instrumentation
Center, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
42
|
Ghosh P, Banerjee P. Drug delivery using biocompatible covalent organic frameworks (COFs) towards a therapeutic approach. Chem Commun (Camb) 2023; 59:12527-12547. [PMID: 37724444 DOI: 10.1039/d3cc01829f] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Covalent organic frameworks (COFs) are constructed exclusively with lightweight organic scaffolds, which can have a 2D or 3D architecture. The ease of synthesis, robust skeleton and tunable properties of COFs make them superior candidates among their counterparts for a wide range of uses including biomedical applications. In the biomedical field, drug delivery or photodynamic-photothermal (PDT-PTT) therapy can be individually considered a potential parameter to be investigated. Therefore, this comprehensive review is focused on drug delivery using COFs, highlighting the encapsulation and decapsulation of drugs by COF scaffolds and their delivery in biological media including live cells. Versatile COF scaffolds together with the delivery of several drug molecules are considered. We attempted to incorporate the status of drug encapsulation and decapsulation considering a wide range of recent publications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamilnadu, India.
| | - Priyabrata Banerjee
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad 201002, Uttarpradesh, India
| |
Collapse
|
43
|
Kim SW, Jung H, Okyay MS, Noh HJ, Chung S, Kim YH, Jeon JP, Wong BM, Cho K, Seo JM, Yoo JW, Baek JB. Hexaazatriphenylene-Based Two-Dimensional Conductive Covalent Organic Framework with Anisotropic Charge Transfer. Angew Chem Int Ed Engl 2023; 62:e202310560. [PMID: 37654107 DOI: 10.1002/anie.202310560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Abstract
The development of covalent organic frameworks (COFs) with efficient charge transport is of immense interest for applications in optoelectronic devices. To enhance COF charge transport properties, electroactive building blocks and dopants can be used to induce extended conduction channels. However, understanding their intricate interplay remains challenging. We designed and synthesized a tailor-made COF structure with electroactive hexaazatriphenylene (HAT) core units and planar dioxin (D) linkages, denoted as HD-COF. With the support of theoretical calculations, we found that the HAT units in the HD-COF induce strong, eclipsed π-π stacking. The unique stacking of HAT units and the weak in-plane conjugation of dioxin linkages leads to efficient anisotropic charge transport. We fabricated HD-COF films to minimize the grain boundary effect of bulk COFs, which resulted in enhanced conductivity. As a result, the HD-COF films showed an electrical conductivity as high as 1.25 S cm-1 after doping with tris(4-bromophenyl)ammoniumyl hexachloroantimonate.
Collapse
Affiliation(s)
- Seong-Wook Kim
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyeonjung Jung
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Mahmut Sait Okyay
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, 92521, USA
| | - Hyuk-Jun Noh
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Young Hyun Kim
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jong-Pil Jeon
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Bryan M Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, 92521, USA
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeong-Min Seo
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jung-Woo Yoo
- School of Materials Science and Engineering/, Graduate School of Semiconductor Materials and Devices, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jong-Beom Baek
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
44
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
45
|
Hindricks KDJ, Schaate A, Behrens P. Postsynthetic Photochemical Modification and 2D Structuring of Zr-MOF Thin Films Containing Benzophenone Linker Molecules. Angew Chem Int Ed Engl 2023; 62:e202303753. [PMID: 37154383 DOI: 10.1002/anie.202303753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
For the fabrication of next-generation MOF-based devices the availability of highly adaptable materials in suitable shapes is crucial. Here, we present thin films of a metal-organic framework (MOF) containing photoreactive benzophenone units. Crystalline, oriented and porous films of the zirconium-based bzpdc-MOF (bzpdc=benzophenone-4-4'-dicarboxylate) are prepared by direct growth on silicon or glass substrates. Via a subsequent photochemical modification of the Zr-bzpdc-MOF films, various properties can be tuned postsynthetically by covalent attachment of modifying agents. Apart from the modification with small molecules, also grafting-from polymerization reactions are possible. In a further extension, 2D structuring and photo-writing of defined structures is also possible, for example by using a photolithographic approach, paving the way towards micro-patterned MOF surfaces.
Collapse
Affiliation(s)
- Karen D J Hindricks
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1A, 30167, Hannover, Germany
| | - Andreas Schaate
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1A, 30167, Hannover, Germany
| | - Peter Behrens
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1A, 30167, Hannover, Germany
| |
Collapse
|
46
|
Naskar S, Fan D, Ghoufi A, Maurin G. Microscopic insight into the shaping of MOFs and its impact on CO 2 capture performance. Chem Sci 2023; 14:10435-10445. [PMID: 37799984 PMCID: PMC10548504 DOI: 10.1039/d3sc04218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
The traditional synthesis method produces microcrystalline powdered MOFs, which prevents direct implementation in real-world applications which demand strict control of shape, morphology and physical properties. Therefore, shaping of MOFs via the use of binders is of paramount interest for their practical use in gas adsorption/separation, catalysis, sensors, etc. However, so far, the binders have been mostly selected by trial-and-error without anticipating the adhesion between the MOF and binder components to ensure the processability of homogeneous and mechanically stable shaped MOFs and the impact of the shaping on the intrinsic properties of the MOFs has been overlooked. Herein, we deliver a first systematic multiscale computational exploration of MOF/binder composites by selecting CALF-20, a prototypical MOF for real application in the field of CO2 capture, and a series of binders that cover a rather broad spectrum of properties in terms of rigidity/flexibility, porosity, and chemical functionality. The adhesion between the two components and hence the effectiveness of the shaping as well as the impact of the overall porosity of the CALF-20/binder on the CO2/N2 selectivity, CO2 sorption capacity and kinetics was analyzed. Shaping of CALF-20 by carboxymethyl cellulose was predicted to enable a fair compromise between excellent adhesion between the two components, whilst maintaining high CO2/N2 selectivity, large CO2 uptake and CO2 transport as fast as in the CALF-20. This multiscale computational tool paves the way towards the selection of an appropriate binder to achieve an optimum shaping of a given MOF in terms of processability whilst maintaining its high level of performance.
Collapse
Affiliation(s)
- Supriyo Naskar
- ICGM, Université de Montpellier, CNRS, ENSCM Montpellier 34293 France
| | - Dong Fan
- ICGM, Université de Montpellier, CNRS, ENSCM Montpellier 34293 France
| | - Aziz Ghoufi
- Institut de Physique de Rennes, IPR, UMR CNRS 6251 263 Avenue du Général Leclerc 35042 Rennes France
- Univ Paris-East Creteil, CNRS, ICMPE (UMR 7182) 2 rue Henri Dunant Thiais F-94320 France
| | - Guillaume Maurin
- ICGM, Université de Montpellier, CNRS, ENSCM Montpellier 34293 France
| |
Collapse
|
47
|
Yao MS, Otake KI, Koganezawa T, Ogasawara M, Asakawa H, Tsujimoto M, Xue ZQ, Li YH, Flanders NC, Wang P, Gu YF, Honma T, Kawaguchi S, Kubota Y, Kitagawa S. Growth mechanisms and anisotropic softness-dependent conductivity of orientation-controllable metal-organic framework nanofilms. Proc Natl Acad Sci U S A 2023; 120:e2305125120. [PMID: 37748051 PMCID: PMC10556592 DOI: 10.1073/pnas.2305125120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
Conductive metal-organic frameworks (cMOFs) manifest great potential in modern electrical devices due to their porous nature and the ability to conduct charges in a regular network. cMOFs applied in electrical devices normally hybridize with other materials, especially a substrate. Therefore, the precise control of the interface between cMOF and a substrate is particularly crucial. However, the unexplored interface chemistry of cMOFs makes the controlled synthesis and advanced characterization of high-quality thin films, particularly challenging. Herein, we report the development of a simplified synthesis method to grow "face-on" and "edge-on" cMOF nanofilms on substrates, and the establishment of operando characterization methodology using atomic force microscopy and X-ray, thereby demonstrating the relationship between the soft structure of surface-mounted oriented networks and their characteristic conductive functions. As a result, crystallinity of cMOF nanofilms with a thickness down to a few nanometers is obtained, the possible growth mechanisms are proposed, and the interesting anisotropic softness-dependent conducting properties (over 2 orders of magnitude change) of the cMOF are also illustrated.
Collapse
Affiliation(s)
- Ming-Shui Yao
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
- State Key Laboratory of Mesoscience and Low Carbon Processes (State Key Laboratory of Multi-phase Complex Systems), Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
| | - Ken-ichi Otake
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| | | | - Moe Ogasawara
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa920-1192, Japan
| | - Hitoshi Asakawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa920-1192, Japan
- Nanomaterials Research Institute, Kanazawa University, Kanazawa920-1192, Japan
| | - Masahiko Tsujimoto
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| | - Zi-Qian Xue
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| | - Yan-Hong Li
- State Key Laboratory of Mesoscience and Low Carbon Processes (State Key Laboratory of Multi-phase Complex Systems), Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
| | - Nathan C. Flanders
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| | - Ping Wang
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| | - Yi-Fan Gu
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute, Kouto, Hyogo679-5198, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Institute, Kouto, Hyogo679-5198, Japan
| | - Yoshiki Kubota
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, Osaka558-8585, Japan
| | - Susumu Kitagawa
- World Premier International Research Center Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
48
|
Liu H, Yao Y, Samorì P. Taming Multiscale Structural Complexity in Porous Skeletons: From Open Framework Materials to Micro/Nanoscaffold Architectures. SMALL METHODS 2023; 7:e2300468. [PMID: 37431215 DOI: 10.1002/smtd.202300468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Recent developments in the design and synthesis of more and more sophisticated organic building blocks with controlled structures and physical properties, combined with the emergence of novel assembly modes and nanofabrication methods, make it possible to tailor unprecedented structurally complex porous systems with precise multiscale control over their architectures and functions. By tuning their porosity from the nanoscale to microscale, a wide range of functional materials can be assembled, including open frameworks and micro/nanoscaffold architectures. During the last two decades, significant progress is made on the generation and optimization of advanced porous systems, resulting in high-performance multifunctional scaffold materials and novel device configurations. In this perspective, a critical analysis is provided of the most effective methods for imparting controlled physical and chemical properties to multifunctional porous skeletons. The future research directions that underscore the role of skeleton structures with varying physical dimensions, from molecular-level open frameworks (<10 nm) to supramolecular scaffolds (10-100 nm) and micro/nano scaffolds (>100 nm), are discussed. The limitations, challenges, and opportunities for potential applications of these multifunctional and multidimensional material systems are also evaluated in particular by addressing the greatest challenges that the society has to face.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Yifan Yao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
49
|
Yao MS, Otake KI, Zheng J, Tsujimoto M, Gu YF, Zheng L, Wang P, Mohana S, Bonneau M, Koganezawa T, Honma T, Ashitani H, Kawaguchi S, Kubota Y, Kitagawa S. Integrated Soft Porosity and Electrical Properties of Conductive-on-Insulating Metal-Organic Framework Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202303903. [PMID: 37211927 DOI: 10.1002/anie.202303903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal-organic frameworks (MOFs) into a single material involves the design of conductive-on-insulating MOF (cMOF-on-iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF-on-iMOF heterostructures using a seeded layer-by-layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF-on-iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, SCO 2 / H 2 ${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}}}$ from 15.4 of ZIF-7 to 43.2-152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF-on-iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical "shape memory" toward acetone and CO2 . This behavior was observed through the guest-induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide-angle X-ray scattering measurements.
Collapse
Affiliation(s)
- Ming-Shui Yao
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian District, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jiajia Zheng
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiko Tsujimoto
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yi-Fan Gu
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Lu Zheng
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Ping Wang
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shivanna Mohana
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mickaele Bonneau
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoyuki Koganezawa
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Hirotaka Ashitani
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
50
|
Zhou K, Jia Z, Zhou Y, Ding G, Ma XQ, Niu W, Han ST, Zhao J, Zhou Y. Covalent Organic Frameworks for Neuromorphic Devices. J Phys Chem Lett 2023; 14:7173-7192. [PMID: 37540588 DOI: 10.1021/acs.jpclett.3c01711] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Neuromorphic computing could enable the potential to break the inherent limitations of conventional von Neumann architectures, which has led to widespread research interest in developing novel neuromorphic memory devices, such as memristors and bioinspired artificial synaptic devices. Covalent organic frameworks (COFs), as crystalline porous polymers, have tailorable skeletons and pores, providing unique platforms for the interplay with photons, excitons, electrons, holes, ions, spins, and molecules. Such features encourage the rising research interest in COF materials in neuromorphic electronics. To develop high-performance COF-based neuromorphic memory devices, it is necessary to comprehensively understand materials, devices, and applications. Therefore, this Perspective focuses on discussing the use of COF materials for neuromorphic memory devices in terms of molecular design, thin-film processing, and neuromorphic applications. Finally, we provide an outlook for future directions and potential applications of COF-based neuromorphic electronics.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Ziqi Jia
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Yao Zhou
- College of Materials Science and Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Guanglong Ding
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Xin-Qi Ma
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Wenbiao Niu
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Jiyu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| |
Collapse
|