1
|
Ren H, Labidi A, Sial A, Miao Z, Zhao Y, Feng X, Luo J, Wang C. Fluid-induced piezoelectric field enhanced photocatalytic antibiotic removal over nitrogen-doped carbon quantum dots/Bi 2WO 6@polyvinylidene fluoride-co-hexafluoropropylene membrane in aqueous environments. J Colloid Interface Sci 2025; 691:137412. [PMID: 40132420 DOI: 10.1016/j.jcis.2025.137412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Enhancing the charge separation efficiency of photocatalysts is crucial to their catalytic activity, which is still challenging. Herein, nitrogen-doped carbon quantum dots (N-CQDs) were combined with Bi2WO6 to construct an N-CQDs/Bi2WO6 heterocomposite, which was loaded onto the surface of polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) membrane to design a flexible, porous and hydrophilic N-CQDs/Bi2WO6@PVDF-HFP photocatalytic membrane. Piezo-response force microscopy (PFM) and the maximum effective piezoelectric coefficient (d33) measurements demonstrate that the PVDF-HFP membrane has favorable piezoelectric properties. Besides, fluid-induced mechanical energy can generate a piezoelectric field within the PVDF-HFP membrane. Theoretical calculations indicate that the difference in work function at the N-CQDs/Bi2WO6 heterocomposite interface creates an inherent electric field. Therefore, the synergistic effect of the two electric fields improves the separation and migration efficiency of photogenerated carriers in N-CQDs/Bi2WO6 heterocomposite. The membrane effectively removed 85.3 % of oxytetracycline (OTC) under the synergistic driving of water flow (900 r/min) and visible light, surpassing the results of only water flow (34.4 %) and visible light (63.1 %). Furthermore, the degradation performance of the membrane towards OTC remains almost unchanged after multiple recycles, highlighting its favorable reusability. This work addresses the issue of powdery catalysts in recovering for practical applications and underlines the potential of integrating with natural low-frequency water flows to purify organic-contaminated wastewater.
Collapse
Affiliation(s)
- Haitao Ren
- Shaanxi Key Laboratory of Liquid Crystal Polymer Intelligent Display, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China; School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Abdelkader Labidi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Atif Sial
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zongcheng Miao
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuzhen Zhao
- Shaanxi Key Laboratory of Liquid Crystal Polymer Intelligent Display, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China
| | - Xiangbo Feng
- Shaanxi Key Laboratory of Liquid Crystal Polymer Intelligent Display, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China
| | - Jianmin Luo
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Kumar AM, Hussein MA, Abdelrahim F, Ko N, Ramakrishna S, Saravanan S, Javid M, Oh SJ. Multifunctional Polymeric Bioactive Coatings on Ti Implants through the Drug Delivery Approach: In Vitro Corrosion Resistance, Biocompatibility, and Antibacterial Characteristics. ACS APPLIED BIO MATERIALS 2025; 8:2800-2812. [PMID: 40116332 DOI: 10.1021/acsabm.4c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
In the current study, we developed a controlled drug delivery system using a polymeric matrix composed of biopolymer poly(vinylidene fluoride) (PVDF) and ciprofloxacin (CPF)-loaded titanium (Ti) nanotubes (TNTs) on Ti substrates for biomedical applications. The TNT arrays over the Ti surface were obtained through an anodization route. The PVDF coatings were dip-coated on TNT-Ti loaded with CPF. The chemical, microstructure, and surface properties of the TNTs and coated surfaces were characterized using FTIR, XRD, transmission electron microscopy (TEM), scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS), and surface hydrophilicity analyses. The performance of the implant surfaces was evaluated through in vitro corrosion studies in simulated body fluid (SBF), biocompatibility with MG63 cells, and antibacterial properties. The results revealed that the PVDF/0.1CPF coatings exhibited sustained release of CPF from the polymer matrix at a linear rate and releasing profile for 168 h. PVDF/0.1CPF coating showed decreased corrosion current density (4.457 × 10-9 A/cm2) by 2 orders of magnitude than that of the Ti substrate, indicating enhanced corrosion protection in the SBF. PVDF/0.1CPF coating showed an antibacterial efficacy of 84.44% against Escherichia coli and 88.33% against Bacillus licheniformis after 24 h. The biocompatibility result showed that after 5 days of culturing, the PVDF/0.1CPF was pointedly higher than that of the pure PVDF and uncoated specimens. Additionally, after 7 days of culture, the quantity of cells on the PVDF/0.1CPF coating continued to increase significantly, whereas the bare specimens and pristine PVDF showed a lower rate of proliferation. The proposed biocompatible polymeric coatings hold synergic antibacterial and corrosion-resistant potential for biomedical applications.
Collapse
Affiliation(s)
- A Madhan Kumar
- Interdisciplinary Research Center for Advanced Materials and Department of Aerospace Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - M A Hussein
- Interdisciplinary Research Center for Advanced Materials and Department of Aerospace Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Faisal Abdelrahim
- Interdisciplinary Research Center for Advanced Materials and Department of Aerospace Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Nare Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul 05505, South Korea
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, South Korea
- College of Medicine, Hanyang University, Seoul 04763, South Korea
| | - S Saravanan
- Department of Life Science, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mohamed Javid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| |
Collapse
|
3
|
Zhu J, Bian P, Sun G, Zhang J, Lou G, Song X, Zhao R, Liu J, Xu N, Li A, Wan X, Ma Y, Li C, Zhang H, Chen Y. Practical High-Voltage Lithium Metal Batteries Enabled by the In-Situ Fabrication of Main-Chain Fluorinated Polymer Electrolytes. Angew Chem Int Ed Engl 2025; 64:e202424685. [PMID: 39908166 DOI: 10.1002/anie.202424685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Polymer electrolytes are crucial for advancing safe, high-energy-density lithium batteries. Therefore, such electrolytes must possess stability with high-voltage cathodes and lithium metal, ensuring efficient interfacial contact and high room-temperature ionic conductivity. In this study, we present a novel main-chain fluorinated polymer electrolyte, FEOP, synthesized through cationic ring-opening polymerization. FEOP integrates high oxidative resistance of polytetrafluoroethylene with lithium metal compatibility of polyether, achieving an oxidation potential of up to 5.6 V and an anion-involved solvation structure. The exceptional stability enables NCM811 cells to deliver an impressive cycling life of 2000 cycles at 1 C up to 4.5 V. Furthermore, at ultra-high cut-off voltages of 4.7 and 4.9 V, both NCM811 and LNMO cells demonstrate stable cycling over 700 cycles, marking the longest lifespan for polymer-based batteries under these challenging conditions. Moreover, 4.7 V solid-state lithium metal pouch cells incorporating FEOP exhibit an energy density of 405.3 Wh kg-1 and maintain stable cycling over 70 cycles, while successfully passing industry-standard nail penetration tests. Moreover, FEOP demonstrate excellent compatibility with ultra-high-loading electrode (70 mg cm-2), achieving an exceptional areal capacity of 16.2 mAh cm-2. These results provide a solid foundation for designing practical electrolytes that enable next-generation high-energy-density and high-safety solid-state batteries.
Collapse
Affiliation(s)
- Jie Zhu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| | - Peiran Bian
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| | - Guolin Sun
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| | - Jinping Zhang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| | - Genglin Lou
- Tianjin Plannano Technology Company Limited, Tianjin, 300071, China
| | - Xingchen Song
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| | - Ruiqi Zhao
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| | - Jie Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| | - Nuo Xu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| | - Aihong Li
- Tianjin Plannano Technology Company Limited, Tianjin, 300071, China
| | - Xiangjian Wan
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| | - Yanfeng Ma
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| | - Chenxi Li
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| | - Hongtao Zhang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China E-mail: s
| |
Collapse
|
4
|
Wu Y, Tang CY, Wang S, Guo J, Jing Q, Liu J, Ke K, Wang Y, Yang W. Biomimetic Heteromodulus All-Fluoropolymer Piezoelectric Nanofiber Mats for Highly Sensitive Acoustic Detection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21808-21818. [PMID: 40134235 DOI: 10.1021/acsami.5c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Flexible piezoelectric pressure sensors have aroused a plethora of applications in wearable electronics, acoustic transducers, and energy harvesters thanks to many merits such as prompt response, good signal linearity, and ease of shaping. However, as all-polymer piezoelectric films have a low piezoelectric coefficient and severe stress dissipation, it is currently challenging to achieve a high piezoelectric output for the foregoing applications without introducing nanomaterials or piezoelectric ceramics. Here, we report a local stress engineering strategy to fabricate biomimetic all-fluoropolymer piezoelectric film pressure sensors with high-modulus poly(vinylidene fluoride) (PVDF) nanospheres embedded on low-modulus poly(vinylidene fluoride-trifluoride ethylene) (PVDF-TrFE) nanofibers for highly sensitive acoustic detection. High-modulus PVDF nanospheres create many local stress concentration sites on PVDF-TrFE nanofibers and increase the local deformation, leading to significantly improved force/pressure sensitivity. As such, by comparison with the force sensitivity of 60 mV/N for neat PVDF-TrFE, the heteromodulus fiber mats with 10 wt % PVDF nanospheres can achieve a force sensitivity of 145.1 mV/N over 0-25 N dynamic impact force (i.e., 0 ∼ 250 kPa pressure), together with an acoustic detection limit as low as 60 dB or 0.02 Pa.
Collapse
Affiliation(s)
- Yujie Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chun-Yan Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiaxing Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Jing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Junhong Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
5
|
Cai J, Xiao J, Du G, An Q, Tong W. Heterogeneous piezo-self-Fenton material design: an intersecting solution for pollutant degradation and tumor therapy. J Mater Chem B 2025; 13:4544-4569. [PMID: 40116672 DOI: 10.1039/d4tb02558j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Heterogeneous piezo-self-Fenton (EPSF), an integration of piezocatalysis and heterogeneous Fenton reactions, forms the foundation for efficient redox interfacial reactions in complex environments. The significant generation of reactive oxygen species (ROS) during the catalytic process and the mechanical energy-driven nature of the EPSF process provide distinct advantages in environmental remediation and biomedical applications. Numerous studies on EPSF catalysts have emerged in recent years across these fields. However, the construction approaches and design strategies for EPSF catalysts in various application scenarios remain unclear. This review synthesizes and analyzes studies on organic pollutant degradation and targeted tumor therapy. Based on the elucidation of redox processes in EPSF catalysis, the catalysts are categorized according to structural features, clarifying common material systems across different fields. The factors influencing EPSF catalytic performance are subsequently outlined, followed by an evaluation of corresponding enhancement strategies. Finally, design strategies for EPSF catalysts across applications are analyzed, emphasizing the commonalities and distinctions in catalyst design for different fields. Insights are provided to inform future catalyst development.
Collapse
Affiliation(s)
- Jiahui Cai
- School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Hai Dian District, Beijing 100083, P. R. China.
| | - Jiaying Xiao
- School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Hai Dian District, Beijing 100083, P. R. China.
| | - Gaoxiang Du
- School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Hai Dian District, Beijing 100083, P. R. China.
| | - Qi An
- School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Hai Dian District, Beijing 100083, P. R. China.
| | - Wangshu Tong
- School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Hai Dian District, Beijing 100083, P. R. China.
| |
Collapse
|
6
|
Andonegi M, Diez AG, Costa CM, Romanyuk KN, Kholkin AL, de la Caba K, Guerrero P, Lanceros-Mendez S. Piezoelectric properties of collagen films: Insights into their potential for electroactive biomedical applications. Int J Biol Macromol 2025; 309:142799. [PMID: 40188926 DOI: 10.1016/j.ijbiomac.2025.142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Electroactive biomaterials and, in particular, piezoelectric ones are gaining insight into tissue engineering and biomedical applications. Collagen is one of the most available biomaterials found in nature, and the present study focus on the evaluation of its piezoelectric response. Collagen extracted from bovine skin was used and the piezoelectric response was correlated to the physicochemical, thermal, morphological and mechanical properties. A dense fibrillar microstructure was observed and the mechanical properties, which depend on the specific amino acids composition, showed tensile strength and maximum strain values of 34 MPa and 18 %, respectively. Collagen films exhibited approximately 25 % weight loss after 1 day in PBS solution, increasing to about 30 % and 100 % at day 2 and 4, respectively. A piezoelectric response of 0.44 pm/V was obtained, demonstrating the collagen film suitability for electroactive materials in biomedical applications.
Collapse
Affiliation(s)
- Mireia Andonegi
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal.
| | - Ander G Diez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Carlos M Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| | - Konstantin N Romanyuk
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrei L Kholkin
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Hu Y, Wang F, Ma Y, Ma S, Wang L. Recent Advances in Polyvinylidene Fluoride with Multifunctional Properties in Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412476. [PMID: 40066503 DOI: 10.1002/smll.202412476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/17/2025] [Indexed: 04/17/2025]
Abstract
Amid the global energy crisis and rising emphasis on sustainability, efficient energy harvesting has become a research priority. Nanogenerators excel in converting abundant mechanical and thermal energy into electricity, offering a promising path for sustainable solutions. Among various nanogenerator's materials, Polyvinylidene fluoride (PVDF), with its distinctive molecular structure, exhibits multifunctional electrical properties including dielectric, piezoelectric and pyroelectric characteristics. These properties combined with its excellent flexibility make PVDF a prime candidate material for nanogenerators. In nanogenerators, this material is capable of efficiently collecting and converting energy. This paper discusses how PVDF's properties are manifested in three types of nanogenerators and compares the performance of these nanogenerators. In addition, strategies to improve the output performance of nanogenerators are demonstrated, including physical and chemical modification of materials, as well as structural optimization strategies such as hybrid structures and external circuits. It also introduces the application of this material in natural and human energy harvesting, as well as its promising prospects in medical technologies and smart home systems. The aim is to promote the use of PVDF in self-powered sensing, energy harvesting and smart monitoring, thereby providing valuable insights for designing more efficient and versatile nanogenerators.
Collapse
Affiliation(s)
- Yueming Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yan Ma
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shufeng Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
8
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2025; 46:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
9
|
Fernandes MP, Moreira J, Fernandes M, Zille A, Silva C, Silva FS, Fernandes MM. Piezoelectric PVDF Nanoparticles for Enhanced Antimicrobial Activity via Mechanical Stimulation: A Proof-of-Concept Study. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17270-17283. [PMID: 39993726 DOI: 10.1021/acsami.4c22219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The alarming rise of antimicrobial resistance is a public health issue, driven by the excessive and improper use of antibiotics, which are becoming less effective against an increasing number of microorganisms. There is an urgent need to find alternative antimicrobial strategies that can bypass bacterial resistance mechanisms. Using physical stimuli to sensitize bacteria to antimicrobial action is one step toward addressing this challenge. In this work, piezoelectric poly(vinylidene fluoride) (PVDF) nanoparticles were developed in an attempt to control and enhance the antimicrobial activity of materials through piezoelectric stimulation. The nanoparticles exhibited sizes ranging from 200 to 400 nm, with low polydispersity, a negative surface charge, and a spherical and smooth morphology. Using the reprecipitation methodology, the nanoparticles were synthesized through the crystallization of PVDF in the electroactive β-phase, achieving percentages of formulations greater than 80%. These nanoparticles demonstrated promising antimicrobial properties, which were considerably enhanced through dynamic conditions involving mechanical stimulation resulting in the creation of electroactive microenvironments. Notably, this dynamic approach exhibited a stronger inhibitory effect on bacterial growth, particularly against Escherichia coli. When water was used as nonsolvent for increasing the PVDF concentration to 10 mg/mL, it resulted in greater bacterial inhibition, with reductions of 1.33 log10 under static conditions and 2.21 log10 under dynamic conditions. However, this effect is less pronounced for Staphylococcus aureus. In contrast, when 50% ethanol solution is used as nonsolvent, both bacteria exhibited significant reductions: E. coli was completely eradicated under static conditions, while S. aureus showed a 1.93 log10 reduction. Under dynamic conditions, both bacteria were completely eliminated. Although these nanoparticles compromise the viability of human fibroblasts after 72 h of contact, this study provides a proof-of-concept for materials that enhance antimicrobial activity through mechanical stimulation. These findings open possibilities for developing hygienic coatings on public surfaces, leveraging pressure or touch to activate antibacterial effects.
Collapse
Affiliation(s)
- Mariana P Fernandes
- Center for Micro-Electro Mechanical Systems, University of Minho, Campus Azurém, Guimarães 4800-058, Portugal
- LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, University of Minho, 4710-057 Braga, Portugal
| | - Joana Moreira
- Centre of Chemistry, University of Minho, Campus Gualtar, Braga 4710-057, Portugal
- Centre of Physics, University of Minho, Campus Gualtar, Braga 4710-057, Portugal
| | - Marta Fernandes
- 2C2T─Centre for Textile Science and Technology, University of Minho, Campus Azurém, Guimarães 4800-058, Portugal
| | - Andrea Zille
- 2C2T─Centre for Textile Science and Technology, University of Minho, Campus Azurém, Guimarães 4800-058, Portugal
| | - Carla Silva
- LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, University of Minho, 4710-057 Braga, Portugal
- Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga 4710-057, Portugal
| | - Filipe Samuel Silva
- Center for Micro-Electro Mechanical Systems, University of Minho, Campus Azurém, Guimarães 4800-058, Portugal
- LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M Fernandes
- Center for Micro-Electro Mechanical Systems, University of Minho, Campus Azurém, Guimarães 4800-058, Portugal
- LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Wang F, Yang P, Liu W, Li Z, Wang Z, Xiang Y, Zhang Q, Hu X. Simultaneous Visualization of Dynamical and Static Tactile Perception Using Piezoelectric-Ultrasonic Bimodal Electronic Skin Based on In Situ Polarized PVDF-TrFE/2DBP Composites and the TFT Array. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16057-16071. [PMID: 40007318 DOI: 10.1021/acsami.4c21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The key to realizing completed bionic tactile perception of human skin using electronic skin relies on simultaneously distinguishing dynamic and static stimuli and restoring their characteristic information, which is realized by integration of several individual sensors but remains certain limitations including large physical size and high energy consumption. In this study, a piezoelectric-ultrasonic bimodal electronic skin (PUVE) based on in situ polarized PVDF-TrFE/2DBP composites and a thin-film transistor (TFT) array is fabricated. The incorporation of 2DBP into the PVDF-TrFE film and the in situ polarization approach provide excellent piezoelectric and ultrasonic performances of PVDF-TrFE/2DBP composites. PUVE has an ultrahigh sensitivity of 3.2 mV kPa-1 over a wide pressure (0-310 kPa) range, with excellent spatial resolution (50 μm) and response time (40 ms). Meanwhile, the PUVE demonstrated outstanding repeatability and bending stability in 1500 cycles of cyclic pressure and 4000 cycles of 180° bending. The integrated piezoelectric and ultrasonic functions of PUVE can respond individually to dynamic and static tactile stimuli to ensure perceiving and decoupling of the dynamical and static mechanical signals with one single sensor. The PVDF-TrFE/2DBP composites is further integrated with the TFT array, realizing visualization function of contacting objects and restoring their characteristic information including the texture and location. Thus, the PUVE is expected to have a wide range of applications in intelligent robots and human prostheses.
Collapse
Affiliation(s)
- Fuyang Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Pengfei Yang
- Huizhou China Eagle Electronic Technology Inc., Huizhou 516001, Guangdong, China
| | - Wei Liu
- Zhuhai Henger Microelectronic Equipment Co., Ltd., China, Zhuhai 519000, Guangdong, China
| | - Zhiqiang Li
- Zhuhai Henger Microelectronic Equipment Co., Ltd., China, Zhuhai 519000, Guangdong, China
| | - Zhao Wang
- Institute of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yong Xiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Qian Zhang
- The School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu 611731, Sichuan, China
| | - Xiaoran Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| |
Collapse
|
11
|
Guo Y, Sun X, Li L, Shi Y, Cheng W, Pan L. Deep-Learning-Based Analysis of Electronic Skin Sensing Data. SENSORS (BASEL, SWITZERLAND) 2025; 25:1615. [PMID: 40096464 PMCID: PMC11902811 DOI: 10.3390/s25051615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
E-skin is an integrated electronic system that can mimic the perceptual ability of human skin. Traditional analysis methods struggle to handle complex e-skin data, which include time series and multiple patterns, especially when dealing with intricate signals and real-time responses. Recently, deep learning techniques, such as the convolutional neural network, recurrent neural network, and transformer methods, provide effective solutions that can automatically extract data features and recognize patterns, significantly improving the analysis of e-skin data. Deep learning is not only capable of handling multimodal data but can also provide real-time response and personalized predictions in dynamic environments. Nevertheless, problems such as insufficient data annotation and high demand for computational resources still limit the application of e-skin. Optimizing deep learning algorithms, improving computational efficiency, and exploring hardware-algorithm co-designing will be the key to future development. This review aims to present the deep learning techniques applied in e-skin and provide inspiration for subsequent researchers. We first summarize the sources and characteristics of e-skin data and review the deep learning models applicable to e-skin data and their applications in data analysis. Additionally, we discuss the use of deep learning in e-skin, particularly in health monitoring and human-machine interactions, and we explore the current challenges and future development directions.
Collapse
Affiliation(s)
| | | | | | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (Y.G.); (X.S.); (L.L.)
| | - Wen Cheng
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (Y.G.); (X.S.); (L.L.)
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (Y.G.); (X.S.); (L.L.)
| |
Collapse
|
12
|
Hu J, Liu S, Huo Y, Yang B, Yin Y, Tan ML, Liu P, Cai K, Ji W. Piezoelectric Vitamin-Based Self-Assemblies for Energy Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417409. [PMID: 39838767 DOI: 10.1002/adma.202417409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/12/2025] [Indexed: 01/23/2025]
Abstract
Structural diversity of biomolecules leads to various supramolecular organizations and asymmetric architectures of self-assemblies with significant piezoelectric response. However, the piezoelectricity of biomolecular self-assemblies has not been fully explored and the relationship between supramolecular structures and piezoelectricity remains poorly understood, which hinders the development of piezoelectric biomaterials. Herein, for the first time, the piezoelectricity of vitamin-based self-assemblies for power generation is systematically explored. X-ray diffraction studies revealed that vitamin molecules can self-assemble into different supramolecular structures, which exhibited tunable piezoelectric coefficients ranging from 3.8 to 42.8 pC N-1 by density functional theory (DFT) calculations. Notably, vitamin B7 D-biotin (D-BIO) self-assemblies exhibited superior piezoelectricity due to low crystal symmetry and high polarization of supramolecular arrangements. The D-BIO assemblies-based piezoelectric nanogenerator (PENG) produced output voltages of ≈0.8 V under a mechanical force of 47 N, showing high mechanical durability after 5400 pressing-releasing cycles and high stability of at least three months. The PENG-based wearable sensor successfully detected bending motions of human limbs. Furthermore, the PENG-based insole converted biomechanical energy into stable electrical energy upon foot movement, illuminating 12 light-emitting diodes (LEDs). This work fills knowledge gaps in piezoelectricity of vitamin-based self-assemblies, providing paradigms for realizing high-performance piezoelectric biomaterials through supramolecular engineering.
Collapse
Affiliation(s)
- Jian Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuaijie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bingbing Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Mei-Ling Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
13
|
Yang B, Chen N, Tian J, Sun L, Deng C, Shang Y, Liu Z, Wu N, Zhao L, Wu F, Xia D, Chen R. Hopping-Phase Ion Bridge Enables Fast Li + Transport in Functional Garnet-Type Solid-State Battery at Room Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415966. [PMID: 39910848 DOI: 10.1002/adma.202415966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Indexed: 02/07/2025]
Abstract
Composite polymer electrolytes (CPEs) containing Li6.4La3Zr1.4Ta0.6O12 (LLZTO) is widely regarded as leading candidate for high energy density solid-state lithium-metal batteries due to its exceptional ionic conductivity and environmental stability. However, Li2CO3 and LiOH layers at LLZTO surface greatly hinder Li+ transport between LLZTO-polymer and the electrode-electrolyte interface. Herein, the surface of LLZTO is boronized to obtain functionalized LLZTO, and its conversion mechanism is clarified. By dissolving the crystal structure of cellulose to obtain hopping-phase ion bridge (HPIB), which release the Li+ transport activity of its oxygen-containing polar functional group (─OH, ─O─). Therefore, a high-throughput ion transporter (HTIT-37) with high ion transfer number (0.86) is prepared by introducing the HPIB into functionalized LLZTO and polyvinylidene fluoride interface by intermolecular hydrogen bond interaction, and it is demonstrated that the HPIB acts as a "highway" for the Li+ across this heterogeneous interface. Moreover, the HPIB is found to self-adsorb on the SEI surface, leading to fast Li+ transport kinetics at anode-CPE interface. Thus, the lifespan of Li|HTIT-37|Li is over 8000 h, and the critical current density exceeds 2.3 mA cm-2. The LiNi0.5Co0.2Mn0.3O2|Li and Li1.2Ni0.13Co0.13Mn0.54O2|Li battery remains stable with the HPIB-enhanced electrode process, proving the application potential of LLZTO-based CPE in high energy density SSLMB.
Collapse
Affiliation(s)
- Binbin Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Nan Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250300, China
| | - Jianing Tian
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lipu Sun
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenglong Deng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yanxin Shang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zixin Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ningning Wu
- Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Liyuan Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Highways in Beijing, Beijing, 100081, China
| | - Dingguo Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Renjie Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Highways in Beijing, Beijing, 100081, China
| |
Collapse
|
14
|
Aoudjit L, Queirós JM, Castro AS, Zioui D, González-Ballesteros N, Lanceros-Mendez S, Martins PM. Sunlight-Induced Photocatalytic Removal of Paracetamol Using Au-TiO 2 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:358. [PMID: 40072161 PMCID: PMC11901493 DOI: 10.3390/nano15050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Using sunlight as the driving force for photocatalytic processes holds great promise for sustainability. As a starting point for developing a material capable of degrading aquatic pollutants using solar energy as a stimulus, this work focuses on synthesizing Au-TiO2 nanocomposites using the deposition-precipitation method. Characterization of Au-TiO2 nanoparticles was performed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission Electron Microscopy (TEM). A model pollutant, paracetamol, was used to test the synergetic effect of Au (0.05 wt%) nanoparticles (NPs) with TiO2 on photocatalytic activity. The influence of the parameters pH, loading (0.4, 0.8, and 1 g/L), pollutant concentration (20, 30, 40 ppm), and contact time (30, 60, 90, 120, 150, and 180 min) was studied by exposing the NPs to solar radiation. The photocatalytic degradation was most effective at a contact time of 3 h, an initial concentration of 20 ppm, and a pH of 6.8. Under these conditions, paracetamol in 1 g/L of Au-TiO2 nanocomposites can be degraded by more than 99.17% under solar irradiation. As a result of the Au-TiO2 composite's ability to successfully serve as a photocatalyst using sun radiation, water purification processes can be more widespread, cost-effective, and environmentally friendly.
Collapse
Affiliation(s)
- Lamine Aoudjit
- Unité de Développement des Equipements Solaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail 42415, Algeria; (L.A.); (D.Z.)
| | - Joana M. Queirós
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal;
- IB-S—Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - A. S. Castro
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal;
- IB-S—Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Djamila Zioui
- Unité de Développement des Equipements Solaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail 42415, Algeria; (L.A.); (D.Z.)
| | | | - S. Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal;
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Pedro M. Martins
- Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal;
- IB-S—Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
15
|
Wang S, Li C, Ma Y, Zhang H, Shi X, Zhang L, Song D. Regulating Crystalline Phase/Plane of Polymer Electrolyte for Rapid Lithium Ion Transfer. Angew Chem Int Ed Engl 2025; 64:e202420698. [PMID: 39681765 DOI: 10.1002/anie.202420698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Electronic-rich functional groups and flexible segments have long been perceived to be the decisive factors influencing lithium-ion transfer in polymer electrolytes, while crystallinity is regarded as the great scourge. Actually, the research on the influence of crystalline phase and crystalline plane is still in scarcity. Herein, taking poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) as an example, new (111/201) crystal planes (belonged to β-phase) are regulated by dissolving process and clarified by Synchrotron radiation X-ray diffraction and X-ray diffraction. Density functional theory calculation indicates that the newly exposed (111/201) crystal planes provide higher binding energy with lithium ions and are conducive to provide more ion transport channels. 7Li nuclear magnetic resonance of new crystalline planes contained PVDF-HFP based electrolyte shows lower field and sharper peak intensity, further proves the rapid lithium ion transfer. Therefore, a high ionic conductivity of 6.42×10-4 S cm-1 and a large lithium-ion transfer number of 0.7 are achieved. This study offers a new insight into the influence of crystalline phase and crystalline plane on the transfer of lithium ion for polymer electrolytes.
Collapse
Affiliation(s)
- Su Wang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Chen Li
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yue Ma
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongzhou Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xixi Shi
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Lianqi Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Dawei Song
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
16
|
Roni MNP, Neshath TA, Hakim MA, Hasan MM, Rahman MH, Hossan MS, Zahid AASM, Alam MNE, Khatun MH. Optimizing β-Phase Content in PVDF Membranes via Modification of Dope Solution with Citric Acid/Nano-TiO 2 Using Nonsolvent-Induced Phase Separation Method. Polymers (Basel) 2025; 17:481. [PMID: 40006143 PMCID: PMC11859342 DOI: 10.3390/polym17040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The morphology of Poly (vinylidene fluoride) (PVDF) membranes prepared via the nonsolvent-induced phase separation (NIPS) method was modulated by altering the dope solution with citric acid (CA) and titanium dioxide nanoparticles (nano-TiO2) to optimize the β-phase content. Three series of dope solutions were prepared in dimethyl acetamide (DMAc): (i) TONx series contained 0.0-10% citric acid, (ii) Mx series contained 0.0-0.4% nano-TiO2, and (iii) TAx series contained 5% CA and 0.0-0.40% nano-TiO2. A field emission scanning electron microscopy (FESEM) study revealed that CA enhances pore opening, and nano-TiO2 transforms the sponge-like uneven porous structures into a compact, relatively regular honeycomb structure in the PVDF membranes. The combined effect of CA and nano-TiO2 in the dope solution made the channels and chambers of the membrane well organized, and the walls of the channels transformed from solid fibrils to cross-woven nanofiber-like entities. Porosity initially peaked at 84% in the TAx series, gradually decreasing to 72% with increasing nano-TiO2 concentrations. X-ray diffraction (XRD), Fourier-Transformed Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC) revealed the presence of a combined relative amount of the β- and γ-polymorphs of 84% in a neat PVDF membrane, 88% in an Mx, and 96% in a TAx series membrane, with the β-PVDF constituting nearly the entire portion of the combined polymorphs. The presence of 96% electroactive polymorph content in the PVDF membrane is noteworthy, highlighting its potential biomedical and industrial applications.
Collapse
Affiliation(s)
- Md. Nahid Parvez Roni
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Tanvir Ahmed Neshath
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Md. Azizul Hakim
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Md. Mahadi Hasan
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - M. Habibur Rahman
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Md. Shamim Hossan
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - A. A. S. Mostofa Zahid
- Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh; (M.N.P.R.); (T.A.N.); (M.A.H.); (M.M.H.); (M.S.H.); (A.A.S.M.Z.)
| | - Md. Nur E Alam
- Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh;
| | | |
Collapse
|
17
|
Li F, Sun S, Wan X, Sun M, Zhang SL, Xu M. A self-powered soft triboelectric-electrohydrodynamic pump. Nat Commun 2025; 16:1315. [PMID: 39900673 PMCID: PMC11790962 DOI: 10.1038/s41467-025-56679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
Soft pumps have the potential to transform industries including soft robotics, wearable devices, microfluidics and biomedical devices, but their efficiency and power supply limitations hinder prolonged operation. Here, we report a self-powered triboelectric-electrohydrodynamic pump, which combines a soft electrohydrodynamic pump driven by an electrostatic generator, specifically a triboelectric nanogenerator. The triboelectric nanogenerator collects ambient energy and converts it into high-voltage power source, allowing it to self-power an electrohydrodynamic pump and thus eliminating the need for external power supply. Using power management circuit, geometric shape optimization, and stacking methods, we achieve a maximum pressure of 4.49 kPa and a maximum flow rate of 502 mL/min. We demonstrate the pump's versatility in applications such as self-powered soft actuators, oil pumping in microfluidics, and oil purification. The triboelectric-electrohydrodynamic pump holds promising applications, and offers new insights for the development of fully self-powered systems.
Collapse
Affiliation(s)
- Fangming Li
- State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Shuowen Sun
- State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Xingfu Wan
- State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Minzheng Sun
- State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Steven L Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany.
| | - Minyi Xu
- State Key Laboratory of Maritime Technology and Safety, Marine Engineering College, Dalian Maritime University, Dalian, 116026, China.
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, China.
| |
Collapse
|
18
|
Zeng W, Luo X, Xu J, Zhang M, Liu S, Zhang Q, Zhu G. Ferroelectric/Electric-Double-Layer-Modulated Synaptic Thin Film Transistors toward an Artificial Tactile Perception System. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5086-5100. [PMID: 39791524 DOI: 10.1021/acsami.4c19092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Tactile sensation and recognition in the human brain are indispensable for interaction between the human body and the surrounding environment. It is quite significant for intelligent robots to simulate human perception and decision-making functions in a more human-like way to perform complex tasks. A combination of tactile piezoelectric sensors with neuromorphic transistors provides an alternative way to achieve perception and cognition functions for intelligent robots in human-machine interaction scenarios. To promote both long-term and short-term plasticity of the artificial synaptic transistor, a composite gate dielectric composed of ferroelectric terpolymer P(VDF-TrFE-CFE) and chitosan was intendedly developed, while amorphous metal oxide InZnO was adopted as the channel layer. The transition from short-term to long-term plasticity function was realized on the basis of the electric-double-layer effect and ferroelectric polarization. Benefiting from its low-voltage operation performance, this synaptic transistor was functionalized by connecting with a flexible piezoelectric poly(vinylidene fluoride) capacitor to exhibit tactile stimulus-excited synaptic behavior. Feedback control was further introduced into the tactile synaptic system to imitate two typical scenarios of sensation and response, including the action of a mechanical claw to pain sensation and spontaneous scratching to itch sensation. This work provides a perspective on achieving intelligent perception for soft robotics and healthcare application.
Collapse
Affiliation(s)
- Wanyu Zeng
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Xingsheng Luo
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Jiawei Xu
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Mengyun Zhang
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Shixin Liu
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Qun Zhang
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| | - Guodong Zhu
- Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
He YQ, Tang JH. Anthracene-Based Endoperoxides as Self-Sensitized Singlet Oxygen Carriers for Hypoxic-Tumor Photodynamic Therapy. Adv Healthc Mater 2025; 14:e2403009. [PMID: 39506461 DOI: 10.1002/adhm.202403009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Indexed: 11/08/2024]
Abstract
Singlet oxygen is a crucial reactive oxygen species (ROS) in photodynamic therapy (PDT). However, the hypoxic tumor microenvironment limits the production of cytotoxic singlet oxygen through the light irradiation of PDT photosensitizers (PSs). This restriction poses a major challenge in improving the effectiveness of PDT. To overcome this challenge, researchers have explored the development of singlet oxygen carriers that can capture and release singlet oxygen in physiological conditions. Among these developments, anthracene-based endoperoxides, initially discovered almost 100 years ago, have shown the ability to generate singlet oxygen controllably under thermal or photo stimuli. Recent advancements have led to the development of a new class of self-sensitized anthracene-endoperoxides, with potential applications in enhancing PDT effects for hypoxic tumors. This review discusses the current research progress in utilizing self-sensitized anthracene-endoperoxides as singlet oxygen carriers for improved PDT. It covers anthracene-conjugated small organic molecules, metal-organic complexes, polymeric structures, and other self-sensitized nano-structures. The molecular structural designs, mechanisms, and characteristics of these systems will be discussed. This review aims to provide valuable insights for developing high-performance singlet oxygen carriers for hypoxic-tumor PDT.
Collapse
Affiliation(s)
- Yan-Qin He
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Jian-Hong Tang
- School of Future technology, University of Chinese Academy of Sciences (UCAS), Beijing, 101408, P. R. China
| |
Collapse
|
20
|
Sico G, Montanino M, Loffredo F, Borriello C, Miscioscia R. Corona Poling Enabling Gravure Printing of Electroactive Flexible PVDF-TrFE Devices. MATERIALS (BASEL, SWITZERLAND) 2024; 18:22. [PMID: 39795667 PMCID: PMC11721702 DOI: 10.3390/ma18010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Polyvinylidene fluoride (PVDF)-based materials are the most researched polymers in the field of energy harvesting. Their production in thin-film form through printing technologies can potentially offer several manufacturing and performance advantages, such as low-cost, low-temperature processing, use of flexible substrates, custom design, low thermal inertia and surface-scaling performance. However, solution-based processes, like printing, miss fine control of the microstructure during film-forming, making it difficult to achieve a high level of polarization, necessary for PVDF to exhibit electroactive characteristics. Here, corona treatment is investigated for the poling of gravure-printed polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) films, as a particularly suitable poling method for printing since it is rapid, contactless and scalable, and no metal electrodes are required. Effects of corona conditioning on the functional properties of the printed films were examined and discussed. Electroactive properties of corona-poled printed films improved manyfold when they were treated at 9 kV, near room temperature (30 °C) and using very short treatment time (30 s). In particular, piezoelectric and pyroelectric coefficients improved tenfold and by two orders of magnitude, respectively. Considering the upscaling potential of roll-to-roll gravure printing and corona poling, combined with the area-scaling performance of thin-film-based generators, our results can enable the corona-printing process for mass production of future electroactive flexible PVDF-based devices.
Collapse
Affiliation(s)
- Giuliano Sico
- Portici Research Centre, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 80055 Portici, Italy; (M.M.); (F.L.); (C.B.); (R.M.)
| | | | | | | | | |
Collapse
|
21
|
Ma T, Liao G, Gao F, Duan W, Wang Y, Cui R, Wang C, Li W. Flexible Hybrid Membrane with Synergistic Exciton Dynamics for Excessive 280 h of Durably Piezo-Photocatalytic H 2O-to-H 2 Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2408056. [PMID: 39420865 DOI: 10.1002/smll.202408056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Solar-driven H2O-to-H2 conversion is a feasible artificial photoconversion technology for clean energy production. However, low photon utilization efficiency has become a major obstacle limiting the practical application of this technology. Herein, a metal atomic replacement (Sb→Ni) is conducted to disintegrate bulk Sb2S3 nanorods and synchronously grow the NiS nanolayers, and a flower-like Sb2S3-NiS nanocomposite with high BET specific surface area and synergistic exciton dynamics is constructed for simulated solar (SSL)-driven H2O-to-H2 conversion. The optimal Sb2S3-NiS nanocomposite is compounded with polyvinylidene fluoride (PVDF) to prepare a flexible PVDF/Sb2S3-NiS (PSN) hybrid membrane with stable structure and excellent recyclability via an electrospinning method. Due to the synergistically interacted organic-inorganic interface and high porosity, it is conducive to the exposure of effective active sites, exciton conduction and mass transfer and exchange, thereby an outstanding alkaline (Ph = 13.0) H2O-to-H2 conversion activity with a 0.06% of solar-to-hydrogen efficiency and over 280 h (70 cycles) of durable recycling is achieved under the collaborative drives of SSL and weak ultrasound (40 Hz). This study raises a state-of-the-art membrane material for solar-driven panel reaction technology.
Collapse
Affiliation(s)
- Tenghao Ma
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Guocheng Liao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Fanfan Gao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Wen Duan
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yusen Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Rongxia Cui
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Chuanyi Wang
- School of Environmental Sciences and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| |
Collapse
|
22
|
Pinto RS, Serra JP, Barbosa JC, Silva MM, Salado M, Fidalgo Marijuan A, Amayuelas E, Grosu Y, Gonçalves R, Lanceros-Mendez S, Costa CM. Tailoring poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) membrane microstructure for lithium-ion battery separator applications. J Colloid Interface Sci 2024; 680:714-724. [PMID: 39536548 DOI: 10.1016/j.jcis.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Novel battery separators based on poly(vinylidene fluoride-co-trifluoroethylene-chlorofluoroethylene)- P(VDF-TrFE-CFE)- were produced by different processing techniques (non-solvent and thermally induced phase separation, salt leaching and electrospinning), in order to evaluate their effect on separator morphology, degree of porosity and pore size, electrochemical parameters and battery cycling behavior. It has been demonstrated that the different processing techniques have a significant influence on the morphology and mechanical properties of membranes. The degree of porosity varies between 23 % and 66 %, for membranes obtained by salt leaching and thermally induced phase separation, respectively. The membranes present a high ionic conductivity value ranging between 1.8 mS.cm-1 for the electrospun membrane and 0.20 mS.cm-1 for the membrane processed by thermally induced phase separator. The lithium transference number value for all membranes is above 0.20, the highest value of 0.55 being obtained for samples prepared by salt leaching and thermally induced phase separation. For all membranes, battery capacity values have been obtained at different C-rates with excellent reversibility. P(VDF-TrFE-CFE) samples present an excellent battery performance at 1C-rate after 100 cycles with 74 mAh.g-1 and excellent coulombic efficiency, for membrane processed by the salt leaching technique. This work demonstrates that P(VDF-TrFE-CFE) terpolymer can be used as a porous membrane in lithium-ion battery separator application, the membrane processing technique allowing to tailor its morphology and, consequently, battery performance.
Collapse
Affiliation(s)
- Rafael S Pinto
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho,4710-057 Braga, Portugal; Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - João P Serra
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho,4710-057 Braga, Portugal
| | - João C Barbosa
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Maria M Silva
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Manuel Salado
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Arkaitz Fidalgo Marijuan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Eder Amayuelas
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Yaroslav Grosu
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain; Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Renato Gonçalves
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho,4710-057 Braga, Portugal; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Carlos M Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho,4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
23
|
Zhao A, Zhao T, Ye Y, Yu T, Chen G, Wang K, Tang W, Wu F, Chen R. Dendrite-Free Lithium Batteries Enabled by an Artificial High-Dielectric Biopolymer Interface Layer. NANO LETTERS 2024; 24:13972-13980. [PMID: 39440864 DOI: 10.1021/acs.nanolett.4c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Lithium (Li) metal batteries face challenges, such as dendrite growth and electrolyte interface instability. Artificial interface layers alleviate these issues. Here, cellulose nanocrystal (CNC) nanomembranes, with excellent mechanical properties and high specific surface areas, combine with polyvinylidene-hexafluoropropylene (PVDF-HFP) porous membranes to form an artificial solid electrolyte interphase (SEI) layer. The porous structure of PVDF-HFP equalizes the electric field near metallic lithium surfaces. The high mechanical modulus of CNC (6.2 GPa) effectively inhibits dendrite growth, ensures the uniform flow of lithium ions to the lithium metal electrode, and inhibits the growth of lithium dendrites during cycling. The synergy of high polarity β-phase poly(vinylidene fluoride) (PVDF) and CNC provides over 1000 h of stability for Li//Li batteries. Moreover, Li//LiFePO4 (LFP) full cells with this artificial protective layer perform well at 5 C, showcasing the potential of this film in lithium metal batteries.
Collapse
Affiliation(s)
- Anqi Zhao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Zhao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China
| | - Yusheng Ye
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tianyang Yu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guoshuai Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ke Wang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wangming Tang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| |
Collapse
|
24
|
Carvalho EO, Fernandes MM, Ivanova K, Rodriguez-Lejarraga P, Tzanov T, Ribeiro C, Lanceros-Mendez S. Multifunctional piezoelectric surfaces enhanced with layer-by-layer coating for improved osseointegration and antibacterial performance. Colloids Surf B Biointerfaces 2024; 243:114123. [PMID: 39079183 DOI: 10.1016/j.colsurfb.2024.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/17/2024]
Abstract
Implant failure is primarily caused by poor osseointegration and bacterial colonization, which demands readmissions and revision surgeries to correct it. A novel approach involves engineering multifunctional interfaces using piezoelectric polyvinylidene fluoride (PVDF) materials, which mimic bone tissue's electroactive properties to promote bone integration and provide antibacterial functionality when mechanically stimulated. In this study, PVDF films were coated with antibacterial essential oil nanoparticles and antibiofilm enzymes using a layer-by-layer (LBL) approach to ensure antibacterial properties even without mechanical stimulation. The experimental results confirmed the LBL build-up and demonstrated notable antibiofilm properties against Pseudomonas aeruginosa and Staphylococcus aureus while enhancing pre-osteoblast cell proliferation under mechanical dynamic conditions in a bioreactor that replicated the real-life environment of implants within the body. The findings highlight the potential of PVDF-coated surfaces to prevent biofilm formation and boost cell proliferation through the piezoelectric effect, paving the way for advanced implantable devices with improved osseointegration and antibacterial performance.
Collapse
Affiliation(s)
- E O Carvalho
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga, 4710-057, Portugal.
| | - M M Fernandes
- LABBELS-Associate Laborator, Braga, Guimarães, Portugal; Centre for MicroElectroMechanics Systems (CMEMS), University of Minho, Guimarães 4710-057, Portugal
| | - K Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - P Rodriguez-Lejarraga
- BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - T Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - C Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga, 4710-057, Portugal
| | - S Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal; BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain.
| |
Collapse
|
25
|
Carvalho EO, Marques-Almeida T, Cruz BDD, Correia DM, Esperança JMSS, Irastorza I, Silvan U, Fernandes MM, Lanceros-Mendez S, Ribeiro C. Piezoelectric biomaterials with embedded ionic liquids for improved orthopedic interfaces through osseointegration and antibacterial dual characteristics. BIOMATERIALS ADVANCES 2024; 164:213970. [PMID: 39106539 DOI: 10.1016/j.bioadv.2024.213970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Orthopedic implant failures, primarily attributed to aseptic loosening and implant site infections, pose significant challenges to patient recovery and lead to revision surgeries. Combining piezoelectric materials with ionic liquids as interfaces for orthopedic implants presents an innovative approach to addressing both issues simultaneously. In this study, films of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) incorporated with 1-ethyl-3-methylimidazolium hydrogen sulfate ([Emim][HSO4]) ionic liquid were developed. These films exhibited strong antibacterial properties, effectively reducing biofilm formation, thereby addressing implant-related infections. Furthermore, stem cell-based differentiation assays exposed the potential of the composite materials to induce osteogenesis. Interestingly, our findings also revealed the upregulation of calcium channel expression as a result of electromechanical stimulation, pointing to a mechanistic basis for the observed biological effects. This work highlights the potential of piezoelectric materials with ionic liquids to improve the longevity and biocompatibility of orthopedic implants. Offering dual-functionality for infection prevention and bone integration, these advancements hold significant potential for advancing orthopedic implant technologies and improving patient outcomes.
Collapse
Affiliation(s)
- E O Carvalho
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - T Marques-Almeida
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - B D D Cruz
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; Centre of Chemistry, University of Minho, Braga 4710-057, Portugal; Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - D M Correia
- Centre of Chemistry, University of Minho, Braga 4710-057, Portugal
| | - J M S S Esperança
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, 2829-516 Caparica, Portugal
| | - I Irastorza
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - U Silvan
- BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - M M Fernandes
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; Centre for MicroElectroMechanics Systems (CMEMS), University of Minho, 4710-057 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - S Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - C Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
26
|
Sun X, Guo X, Gao J, Wu J, Huang F, Zhang JH, Huang F, Lu X, Shi Y, Pan L. E-Skin and Its Advanced Applications in Ubiquitous Health Monitoring. Biomedicines 2024; 12:2307. [PMID: 39457619 PMCID: PMC11505155 DOI: 10.3390/biomedicines12102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
E-skin is a bionic device with flexible and intelligent sensing ability that can mimic the touch, temperature, pressure, and other sensing functions of human skin. Because of its flexibility, breathability, biocompatibility, and other characteristics, it is widely used in health management, personalized medicine, disease prevention, and other pan-health fields. With the proposal of new sensing principles, the development of advanced functional materials, the development of microfabrication technology, and the integration of artificial intelligence and algorithms, e-skin has developed rapidly. This paper focuses on the characteristics, fundamentals, new principles, key technologies, and their specific applications in health management, exercise monitoring, emotion and heart monitoring, etc. that advanced e-skin needs to have in the healthcare field. In addition, its significance in infant and child care, elderly care, and assistive devices for the disabled is analyzed. Finally, the current challenges and future directions of the field are discussed. It is expected that this review will generate great interest and inspiration for the development and improvement of novel e-skins and advanced health monitoring systems.
Collapse
Affiliation(s)
- Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jiansong Gao
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jing Wu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Fengchang Huang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot 010021, China;
| | - Fuhua Huang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Xiao Lu
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210093, China;
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; (X.S.); (X.G.); (J.G.); (J.W.); (F.H.)
| |
Collapse
|
27
|
Andrey V, Koshevaya E, Mstislav M, Parfait K. Piezoelectric PVDF and its copolymers in biomedicine: innovations and applications. Biomater Sci 2024; 12:5164-5185. [PMID: 39258881 DOI: 10.1039/d4bm00904e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In recent years, poly(vinylidene fluoride) (PVDF) has emerged as a versatile polymer with a wide range of applications across various fields. PVDF's piezosensitivity, versatility, crystalline structure, and tunable parameters have established it as a highly sought-after material. Furthermore, PVDF and its copolymers exhibit excellent processability and chemical resistance to a diverse array of substances. Of particular significance is its remarkable structural stability in physiological media, which highlights its potential for use in the development of biomedical products. This review offers a comprehensive overview of the latest advancements in PVDF-based biomedical systems. It examines the fabrication of stimulus-responsive delivery systems, bioelectric therapy devices, and tissue-regenerating scaffolds, all of which harness the piezosensitivity of PVDF. Moreover, the potential of PVDF in the fabrication of both invasive and non-invasive diagnostic tools is investigated, with particular emphasis on its flexibility, transparency, and piezoelectric efficiency. The material's high biocompatibility and physiological stability are of paramount importance in the development of implantable sensors for long-term health monitoring, which is crucial for the management of chronic diseases and postoperative care. Additionally, we discuss a novel approach to photoacoustic microscopy that employs a PVDF sensor, thereby eliminating the necessity for external contrast agents. This technique provides a new avenue for non-invasive imaging in biomedical applications. Finally, we explore the challenges and prospects for the development of PVDF-based systems for a range of biomedical applications. This review is distinctive in comparison to other reviews on PVDF due to its concentrated examination of biomedical applications, including pioneering imaging techniques, long-term health monitoring, and a detailed account of advancements in the field. Collectively, these elements illustrate the potential of PVDF to markedly influence biomedical engineering and patient care, distinguishing it from existing literature. By leveraging the distinctive attributes of PVDF and its copolymers, researchers can continue to advance the frontiers of biomedical engineering, with the potential to transform patient care and treatment outcomes.
Collapse
Affiliation(s)
| | - Ekaterina Koshevaya
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, 123182, Russia
| | - Makeev Mstislav
- Bauman Moscow State Technical University, Moscow, 141005, Russia.
| | - Kezimana Parfait
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
28
|
Sarac B, Soprunyuk V, Herwig G, Gümrükçü S, Kaplan E, Yüce E, Schranz W, Eckert J, Boesel LF, Sarac AS. Thermomechanical properties of confined magnetic nanoparticles in electrospun polyacrylonitrile nanofiber matrix exposed to a magnetic environment: structure, morphology, and stabilization (cyclization). NANOSCALE ADVANCES 2024:d4na00631c. [PMID: 39391626 PMCID: PMC11459439 DOI: 10.1039/d4na00631c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Electrospun metal oxide-polymer nanofiber composites hold promise for revolutionizing biomedical applications due to their unique combination of electronic and material properties and tailorable functionalities. An investigation into the incorporation of Fe-based nanofillers for optimizing the polyacrylonitrile matrix was conducted, where the systematic and organized arrangement of inorganic components was achieved through non-covalent bonding. These carefully dispersed nanomaterials exhibit the intrinsic electronic characteristics of the polymers and concurrently respond to external magnetic fields. Electrospinning was utilized to fabricate polyacrylonitrile nanofibers blended with Fe2O3 and MnZn ferrite nanoparticles, which were thermomechanically, morphologically, and spectroscopically characterized in detail. With the application of an external magnetic field in the course of dynamic mechanical measurements under tension, the storage modulus of the glass transition T g of PAN/Fe2O3 rises at the expense of the loss modulus, and a new peak emerges at ∼350 K. For the PAN/MnZn ferrite nanofibers a relatively larger shift in T g (from ∼367 K to ∼377 K) is observed, emphasizing that in comparison to Fe2O3, Mn2+ ions in particular enhance the material's magnetic response in MnZn Ferrite. The magnetic oxide particles are homogenously dispersed in polyacrylonitrile, corroborated by high-resolution scanning electron microscopy. Both nanopowder additions lead to a slight shift of the peak towards larger angles, related to the shrinkage of the polymer. Produced nanofibers with high mechanical and heating efficiency can optimize the influence of the intracellular environment, magnetic refrigeration systems and sensors/actuators by their magnetic behavior and heat generation.
Collapse
Affiliation(s)
- Baran Sarac
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences 8700 Leoben Austria
| | - Viktor Soprunyuk
- Faculty of Physics, Physics of Functional Materials, University of Vienna 1090 Vienna Austria
| | - Gordon Herwig
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles 9014 St. Gallen Switzerland
| | - Selin Gümrükçü
- Department of Chemistry, Istanbul Technical University 34469 Istanbul Turkiye
| | - Ekrem Kaplan
- Department of Chemistry, Istanbul Technical University 34469 Istanbul Turkiye
- Faculty of Engineering, Doğuş University 34775 Istanbul Turkiye
| | - Eray Yüce
- Department of Materials Science, Montanuniversität Leoben 8700 Leoben Austria
| | - Wilfried Schranz
- Faculty of Physics, Physics of Functional Materials, University of Vienna 1090 Vienna Austria
| | - Jürgen Eckert
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences 8700 Leoben Austria
- Department of Materials Science, Montanuniversität Leoben 8700 Leoben Austria
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles 9014 St. Gallen Switzerland
| | - A Sezai Sarac
- Polymer Science & Technology, Istanbul Technical University 34469 Istanbul Turkiye
| |
Collapse
|
29
|
Fernández Maestu J, Pereira N, Lanceros-Méndez S. AC/DC Magnetic Field Sensing Based on a Piezoelectric Polymer and a Fully Printed Planar Spiral Coil. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48547-48555. [PMID: 39186730 PMCID: PMC11403604 DOI: 10.1021/acsami.4c09409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Additive manufacturing (AM) is emerging as an eco-friendly method for minimizing waste, as the demand for responsive materials in IoT and Industry 4.0 is on the rise. Magnetoactive composites, which are manufactured through AM, facilitate nonintrusive remote sensing and actuation. Printed magnetoelectric composites are an innovative method that utilizes the synergies between magnetic and electric properties. The study of magnetoelectric effects, including the recently validated piezoinductive effect, demonstrates the generation of electric voltage through external AC and DC magnetic fields. This shift in magnetic sensors, utilizing piezoinductive effect of the piezoelectric polymer poly(vinylidene fluoride), PVDF, eliminates the need for magnetic fillers in printed devices, aligning with sustainability principles, essential for the deployment of IoT and Industry 4.0. The achieved sensitivity surpasses other studies by 100 times, showcasing linear outputs for both applied AC and DC magnetic fields. Additionally, the sensor capitalizes on the linear phase shift of the generated signal with an applied DC magnetic field, an unprecedented effect. Thus, this work introduces a remarkable magnetoactive device with a sensitivity of ST = 95.1 ± 0.9 μV Oe-1 mT-1, a significantly improved performance compared to magnetoelectric devices using polymer composites. As a functional proof of concept of the developed system, a magnetic position sensor has been demonstrated.
Collapse
Affiliation(s)
- Josu Fernández Maestu
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Nelson Pereira
- Physics Center of Minho and Porto Universities (CF-UM-UP) and LaPMET─Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga 4710-057, Portugal
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Physics Center of Minho and Porto Universities (CF-UM-UP) and LaPMET─Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga 4710-057, Portugal
- IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
30
|
Cui J, Du L, Meng Z, Gao J, Tan A, Jin X, Zhu X. Ingenious Structure Engineering to Enhance Piezoelectricity in Poly(vinylidene fluoride) for Biomedical Applications. Biomacromolecules 2024; 25:5541-5591. [PMID: 39129463 DOI: 10.1021/acs.biomac.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The future development of wearable/implantable sensing and medical devices relies on substrates with excellent flexibility, stability, biocompatibility, and self-powered capabilities. Enhancing the energy efficiency and convenience is crucial, and converting external mechanical energy into electrical energy is a promising strategy for long-term advancement. Poly(vinylidene fluoride) (PVDF), known for its piezoelectricity, is an outstanding representative of an electroactive polymer. Ingeniously designed PVDF-based polymers have been fabricated as piezoelectric devices for various applications. Notably, the piezoelectric performance of PVDF-based platforms is determined by their structural characteristics at different scales. This Review highlights how researchers can strategically engineer structures on microscopic, mesoscopic, and macroscopic scales. We discuss advanced research on PVDF-based piezoelectric platforms with diverse structural designs in biomedical sensing, disease diagnosis, and treatment. Ultimately, we try to give perspectives for future development trends of PVDF-based piezoelectric platforms in biomedicine, providing valuable insights for further research.
Collapse
Affiliation(s)
- Jiwei Cui
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Joint Research and Development Center of Fluorine Materials of Shanghai Jiao Tong University and Huayi 3F, 1391 Humin Road, Shanghai 200240, People's Republic of China
| | - Lijun Du
- Shanghai Huayi 3F New Materials Co., Ltd., No. 560 Xujiahui Road, Shanghai 200025, People's Republic of China
- Joint Research and Development Center of Fluorine Materials of Shanghai Jiao Tong University and Huayi 3F, 1391 Humin Road, Shanghai 200240, People's Republic of China
| | - Zhiheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiayin Gao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Anning Tan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Joint Research and Development Center of Fluorine Materials of Shanghai Jiao Tong University and Huayi 3F, 1391 Humin Road, Shanghai 200240, People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Joint Research and Development Center of Fluorine Materials of Shanghai Jiao Tong University and Huayi 3F, 1391 Humin Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
31
|
Hefayathullah M, Singh S, Ganesan V, Maduraiveeran G. Metal-organic frameworks for biomedical applications: A review. Adv Colloid Interface Sci 2024; 331:103210. [PMID: 38865745 DOI: 10.1016/j.cis.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Metal-organic frameworks (MOFs) are emergent materials in diverse prospective biomedical uses, owing to their inherent features such as adjustable pore dimension and volume, well-defined active sites, high surface area, and hybrid structures. The multifunctionality and unique chemical and biological characteristics of MOFs allow them as ideal platforms for sensing numerous emergent biomolecules with real-time monitoring towards the point-of-care applications. This review objects to deliver key insights on the topical developments of MOFs for biomedical applications. The rational design, preparation of stable MOF architectures, chemical and biological properties, biocompatibility, enzyme-mimicking materials, fabrication of biosensor platforms, and the exploration in diagnostic and therapeutic systems are compiled. The state-of-the-art, major challenges, and the imminent perspectives to improve the progressions convoluted outside the proof-of-concept, especially for biosensor platforms, imaging, and photodynamic therapy in biomedical research are also described. The present review may excite the interdisciplinary studies at the juncture of MOFs and biomedicine.
Collapse
Affiliation(s)
- Mohamed Hefayathullah
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Smita Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
32
|
Rodriguez-Lejarraga P, Martin-Iglesias S, Moneo-Corcuera A, Colom A, Redondo-Morata L, Giannotti MI, Petrenko V, Monleón-Guinot I, Mata M, Silvan U, Lanceros-Mendez S. The surface charge of electroactive materials governs cell behaviour through its effect on protein deposition. Acta Biomater 2024; 184:201-209. [PMID: 38950807 DOI: 10.1016/j.actbio.2024.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
The precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them. These findings highlight the importance of surface charge in the establishment of the material-protein interface and ultimately in the biological response to the material. STATEMENT OF SIGNIFICANCE: The development of new tissue engineering strategies relies heavily on the understanding of how biomaterials interact with biological tissues. Although several factors drive this process and their driving principles have been identified, the relevance and mechanism by which the surface potential influences cell behaviour is still unknown. In our study, we investigate the interaction between collagen, the most abundant component of the extracellular matrix, and poly(vinylidene fluoride) with varying surface charges. Our findings reveal substantial variations in the binding forces, structure and adhesion of collagen on the different surfaces, which collectively explain the differential cellular responses. By exposing these differences, our research fills a critical knowledge gap and paves the way for innovations in material design for advanced tissue regeneration strategies.
Collapse
Affiliation(s)
| | - Sara Martin-Iglesias
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Andrea Moneo-Corcuera
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Adai Colom
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain; Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Campus Universitario, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lorena Redondo-Morata
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; CIBER-BBN, ISCIII, 08028 Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 10, 08028 Barcelona, Spain
| | - Viktor Petrenko
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Irene Monleón-Guinot
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Unai Silvan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
33
|
Lin D, Zhou Z, Zhang M, Yao S, Yuan L, Xu M, Zhang X, Hu X. Electrical Stimulations Generated by P(VDF-TrFE) Films Enhance Adhesion Forces and Odontogenic Differentiation of Dental Pulp Stem Cells (DPSCs). ACS APPLIED MATERIALS & INTERFACES 2024; 16:28029-28040. [PMID: 38775012 DOI: 10.1021/acsami.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Biophysical and biochemical cues of biomaterials can regulate cell behaviors. Dental pulp stem cells (DPSCs) in pulp tissues can differentiate to odontoblast-like cells and secrete reparative dentin to form a barrier to protect the underlying pulp tissues and enable complete pulp healing. Promotion of the odontogenic differentiation of DPSCs is essential for dentin regeneration. The effects of the surface potentials of biomaterials on the adhesion and odontogenic differentiation of DPSCs remain unclear. Here, poly(vinylidene fluoride-trifluoro ethylene) (P(VDF-TrFE)) films with different surface potentials were prepared by the spin-coating technique and the contact poling method. The cytoskeletal organization of DPSCs grown on P(VDF-TrFE) films was studied by immunofluorescence staining. Using atomic force microscopy (AFM), the lateral detachment forces of DPSCs from P(VDF-TrFE) films were quantified. The effects of electrical stimulation generated from P(VDF-TrFE) films on odontogenic differentiation of DPSCs were evaluated in vitro and in vivo. The unpolarized, positively polarized, and negatively polarized films had surface potentials of -52.9, +902.4, and -502.2 mV, respectively. DPSCs on both negatively and positively polarized P(VDF-TrFE) films had larger cell areas and length-to-width ratios than those on the unpolarized films (P < 0.05). During the detachment of DPSCs from P(VDF-TrFE) films, the average magnitudes of the maximum detachment forces were 29.4, 72.1, and 53.9 nN for unpolarized, positively polarized, and negatively polarized groups, respectively (P < 0.05). The polarized films enhanced the mineralization activities and increased the expression levels of the odontogenic-related proteins of DPSCs compared to the unpolarized films (P < 0.05). The extracellular signal-regulated kinase (ERK) signaling pathway was involved in the odontogenic differentiation of DPSCs as induced by surface charge. In vivo, the polarized P(VDF-TrFE) films enhanced adhesion of DPSCs and promoted the odontogenic differentiation of DPSCs by electrical stimulation, demonstrating a potential application of electroactive biomaterials for reparative dentin formation in direct pulp capping.
Collapse
Affiliation(s)
- Danle Lin
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Department of Stomatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
| | - Ziyu Zhou
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Mengdan Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Songyou Yao
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Lingling Yuan
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Meng Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaoyue Zhang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoli Hu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
34
|
Zarandona A, Salazar H, Insausti M, Lanceros-Méndez S, Zhang Q. Sonophotocatalytic removal of organic dyes in real water environments using reusable BiSI@PVDF-HFP nanocomposite membranes. CHEMOSPHERE 2024; 357:142069. [PMID: 38648986 DOI: 10.1016/j.chemosphere.2024.142069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Focusing on the uncontrolled discharge of organic dyes, a known threat to human health and aquatic ecosystems, this work employs a dual-functional catalyst approach, by immobilizing a synthesized bismuth sulfur iodide (BiSI) into a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymeric matrix for multifunctional water remediation. The resulting BiSI@PVDF nanocomposite membrane (NCM), with 20 wt% filler content, maintains a highly porous structure without compromising morphology or thermal properties. Demonstrating efficiency in natural pH conditions, the NCM removes nearly all Rhodamine B (RhB) within 1 h, using a combined sonophotocatalytic process. Langmuir and pseudo-second-order models describe the remediation process, achieving a maximum removal capacity (Qmax) of 72.2 mg/g. In addition, the combined sonophotocatalysis achieved a degradation rate ten and five times higher (0.026 min-1) than photocatalysis (0.002 min-1) and sonocatalysis (0.010 min-1). Furthermore, the NCM exhibits notable reusability over five cycles without efficiency losses and efficiencies always higher than 90%, highlighting its potential for real water matrices. The study underscores the suitability of BiSI@PVDF as a dual-functional catalyst for organic dye degradation, showcasing synergistic adsorption, photocatalysis, and sonocatalysis for water remediation.
Collapse
Affiliation(s)
- Amaia Zarandona
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain.
| | - Hugo Salazar
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain.
| | - Maite Insausti
- Departamento Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940, Leioa, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Qi Zhang
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
35
|
Meira RM, Ribeiro S, Irastorza I, Silván U, Lanceros-Mendez S, Ribeiro C. Electroactive poly(vinylidene fluoride-trifluoroethylene)/graphene composites for cardiac tissue engineering applications. J Colloid Interface Sci 2024; 663:73-81. [PMID: 38394819 DOI: 10.1016/j.jcis.2024.02.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Electroactive materials are increasingly being used in strategies to regenerate cardiac tissue. These materials, particularly those with electrical conductivity, are used to actively recreate the electromechanical nature of the cardiac tissue. In the present work, we describe a novel combination of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), a highly electroactive polymer, with graphene (G), exhibiting high electrical conductivity. G/P(VDF-TrFE) films have been characterized in terms of topographical, physico-chemical, mechanical, electrical, and thermal properties, and studied the response of cardiomyocytes adhering to them. The results indicate that the crystallinity and the wettability of the composites remain almost unaffected after G incorporation. In turn, surface roughness, Young modulus, and electric properties are higher in G/P(VDF-TrFE). Finally, the composites are highly biocompatible and able to support cardiomyocyte adhesion and proliferation, particularly surface treated ones, demonstrating the suitability of these materials for cardiac tissue engineering applications.
Collapse
Affiliation(s)
- R M Meira
- CF-UM-UP - Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - S Ribeiro
- CF-UM-UP - Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - I Irastorza
- CF-UM-UP - Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal; Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - U Silván
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - S Lanceros-Mendez
- CF-UM-UP - Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - C Ribeiro
- CF-UM-UP - Physics Centre of Minho and Porto Universities, University of Minho, 4710-057 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
36
|
Edwards TR, Shankar R, Smith PGH, Cross JA, Lequeux ZAB, Kemp LK, Qiang Z, Iacano ST, Morgan SE. β-Phase Crystallinity, Printability, and Piezoelectric Characteristics of Polyvinylidene Fluoride (PVDF)/Poly(methyl methacrylate) (PMMA)/Cyclopentyl-Polyhedral Oligomeric Silsesquioxane (Cp-POSS) Melt-Compounded Blends. ACS APPLIED POLYMER MATERIALS 2024; 6:5803-5813. [PMID: 38807951 PMCID: PMC11129178 DOI: 10.1021/acsapm.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Poly(vinylidene fluoride) (PVDF) is a semicrystalline polymer that exhibits unique piezoelectric characteristics along with good chemical resistance and high thermal stability. Layer-based material extrusion (MEX) 3D printing of PVDF is desired to create complex structures with piezoelectric properties; however, the melt processing of PVDF typically directs the formation of the α crystalline allomorph, which does not contribute to the piezoelectric response. In this work, PVDF was compounded with poly(methyl methacrylate) (PMMA) and cyclopentyl-polyhedral oligomeric silsesquioxane (Cp-POSS) nanostructured additives in binary and ternary blends to improve MEX printability while maintaining piezoelectric performance. Overall crystallinity and β phase content were evaluated and quantified using a combination of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC). Enhancement of MEX printability was measured by quantifying the interlayer adhesion and warpage of printed parts. All blends studied contained a significant percentage of β allomorph, but it could be detected by ATR-FTIR only after the removal of a thin surface layer. Inclusion of 1% Cp-POSS and up to 10% PMMA in blends with PVDF improved interlayer adhesion (2.3-3.6x) and lowered warpage of MEX printed parts compared to neat PVDF. The blend of 1% Cp-POSS/1% PMMA/PVDF was demonstrated to significantly improve the quality of MEX printed parts while showing similar piezoelectric performance to that of neat PVDF (average piezoelectric coefficient 24 pC/N). MEX printing of PVDF blends directly into usable parts with significant piezoelectric performance while reducing the challenges of printing the semicrystalline polymer opens the potential for application in a number of high value sectors.
Collapse
Affiliation(s)
- Toby R. Edwards
- School
of Polymer Science and Engineering, University
of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, Mississippi 39406, United States
| | - Rahul Shankar
- School
of Polymer Science and Engineering, University
of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, Mississippi 39406, United States
| | - Paul G. H. Smith
- School
of Polymer Science and Engineering, University
of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, Mississippi 39406, United States
| | - Jacob A. Cross
- School
of Polymer Science and Engineering, University
of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, Mississippi 39406, United States
| | - Zoe A. B. Lequeux
- School
of Polymer Science and Engineering, University
of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, Mississippi 39406, United States
| | - Lisa K. Kemp
- School
of Polymer Science and Engineering, University
of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, Mississippi 39406, United States
| | - Zhe Qiang
- School
of Polymer Science and Engineering, University
of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, Mississippi 39406, United States
| | - Scott T. Iacano
- Department
of Chemistry and Chemistry Research Center, United States Air Force Academy, 2355 Fairchild Drive, Suite 2N225, Colorado Springs, Colorado 80840, United States
| | - Sarah E. Morgan
- School
of Polymer Science and Engineering, University
of Southern Mississippi, 118 College Drive, #5050, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
37
|
Pinho TS, Cibrão JR, Silva D, Barata-Antunes S, Campos J, Afonso JL, Sampaio-Marques B, Ribeiro C, Macedo AS, Martins P, Cunha CB, Lanceros-Mendez S, Salgado AJ. In vitro neuronal and glial response to magnetically stimulated piezoelectric poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/cobalt ferrite (CFO) microspheres. BIOMATERIALS ADVANCES 2024; 159:213798. [PMID: 38364446 DOI: 10.1016/j.bioadv.2024.213798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Polymer biomaterials are being considered for tissue regeneration due to the possibility of resembling different extracellular matrix characteristics. However, most current scaffolds cannot respond to physical-chemical modifications of the cell microenvironment. Stimuli-responsive materials, such as electroactive smart polymers, are increasingly gaining attention once they can produce electrical potentials without external power supplies. The presence of piezoelectricity in human tissues like cartilage and bone highlights the importance of electrical stimulation in physiological conditions. Although poly(vinylidene fluoride) (PVDF) is one of the piezoelectric polymers with the highest piezoelectric response, it is not biodegradable. Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a promising copolymer of poly(hydroxybutyrate) (PHB) for tissue engineering and regeneration applications. It offers biodegradability, piezoelectric properties, biocompatibility, and bioactivity, making it a superior option to PVDF for biomedical purposes requiring biodegradability. Magnetoelectric polymer composites can be made by combining magnetostrictive particles and piezoelectric polymers to further tune their properties for tissue regeneration. These composites convert magnetic stimuli into electrical stimuli, generating local electrical potentials for various applications. Cobalt ferrites (CFO) and piezoelectric polymers have been combined and processed into different morphologies, maintaining biocompatibility for tissue engineering. The present work studied how PHBV/CFO microspheres affected neural and glial response in spinal cord cultures. It is expected that the electrical signals generated by these microspheres due to their magnetoelectric nature could aid in tissue regeneration and repair. PHBV/CFO microspheres were not cytotoxic and were able to impact neurite outgrowth and promote neuronal differentiation. Furthermore, PHBV/CFO microspheres led to microglia activation and induced the release of several bioactive molecules. Importantly, magnetically stimulated microspheres ameliorated cell viability after an in vitro ROS-induced lesion of spinal cord cultures, which suggests a beneficial effect on tissue regeneration and repair.
Collapse
Affiliation(s)
- Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Jorge Ribeiro Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - João L Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-058 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - André S Macedo
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-058 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Martins
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-058 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Cristiana B Cunha
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-058 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal.
| |
Collapse
|
38
|
Janićijević A, Filipović S, Sknepnek A, Salević-Jelić A, Jančić-Heinemann R, Petrović M, Petronijević I, Stamenović M, Živković P, Potkonjak N, Pavlović VB. Structural, Mechanical, and Barrier Properties of the Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Hybrid Composite. Polymers (Basel) 2024; 16:1033. [PMID: 38674953 PMCID: PMC11054639 DOI: 10.3390/polym16081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This study presents an analysis of films which consist of two layers; one layer is PVDF as the matrix, along with fillers BaTiO3 (BT), and the second is one bacterial nanocellulose (BNC) filled with Fe3O4. The mass fraction of BT in PVDF was 5%, and the samples were differentiated based on the duration of the mechanical activation of BT. This innovative PVDF laminate polymer with environmentally friendly fillers aligns with the concept of circular usage, resulting in a reduction in plastic content and potential improvement of the piezoelectric properties of the entire composite. This work presents new, multifunctional "green" packaging materials that potentially could be a good alternative to specific popular materials used for this purpose. The synthesis of the films was carried out using the hot press method. Tensile tests, water vapor permeability examination, and structural analyses using SEM-EDS and FTIR have been conducted. The sample PVDF/BT20/BNC/Fe3O4 exhibited the best barrier properties (impermeability to water vapor), while the highest tensile strength and toughness were exhibited by the PVDF/BT5/BNC/Fe3O4 sample.
Collapse
Affiliation(s)
| | - Suzana Filipović
- Institute of Technical Sciences of SASA, 11000 Belgrade, Serbia;
| | - Aleksandra Sknepnek
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia; (A.S.); (A.S.-J.); (V.B.P.)
| | - Ana Salević-Jelić
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia; (A.S.); (A.S.-J.); (V.B.P.)
| | - Radmila Jančić-Heinemann
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (R.J.-H.); (M.P.); (P.Ž.)
| | - Miloš Petrović
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (R.J.-H.); (M.P.); (P.Ž.)
| | | | - Marina Stamenović
- The Academy of Applied Technical Studies Belgrade, 11000 Belgrade, Serbia;
| | - Predrag Živković
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (R.J.-H.); (M.P.); (P.Ž.)
| | - Nebojša Potkonjak
- Vinča Institute of Nuclear Sciences—Nation Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Vladimir B. Pavlović
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia; (A.S.); (A.S.-J.); (V.B.P.)
| |
Collapse
|
39
|
Savelev DV, Burdin DA, Fetisov LY, Fetisov YK, Perov NS, Makarova LA. Low-Frequency Resonant Magnetoelectric Effect in a Piezopolymer-Magnetoactive Elastomer Layered Structure at Different Magnetization Geometries. Polymers (Basel) 2024; 16:928. [PMID: 38611186 PMCID: PMC11013160 DOI: 10.3390/polym16070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The search for novel materials with enhanced characteristics for the advancement of flexible electronic devices and energy harvesting devices is currently a significant concern. Multiferroics are a prominent example of energy conversion materials. The magnetoelectric conversion in a flexible composite based on a piezopolymer layer and a magnetic elastomer layer was investigated. The study focused on investigating the dynamic magnetoelectric effect in various configurations of external alternating and constant homogeneous magnetic fields (L-T and T-T configurations). The T-T geometry exhibited a two orders of magnitude higher coefficient of the magnetoelectric effect compared to the L-T geometry. Mechanisms of structure bending in both geometries were proposed and discussed. A theory was put forward to explain the change in the resonance frequency in a uniform external field. A giant value of frequency tuning in a magnetic field of up to 362% was demonstrated; one of the highest values of the magnetoelectric effect yet recorded in polymer multiferroics was observed, reaching up to 134.3 V/(Oe∙cm).
Collapse
Affiliation(s)
- Dmitrii V. Savelev
- Research and Educational Center “Magnetoelectric Materials and Devices”, MIREA–Russian Technological University, 119454 Moscow, Russia; (D.V.S.); (D.A.B.); (L.Y.F.); (Y.K.F.)
| | - Dmitri A. Burdin
- Research and Educational Center “Magnetoelectric Materials and Devices”, MIREA–Russian Technological University, 119454 Moscow, Russia; (D.V.S.); (D.A.B.); (L.Y.F.); (Y.K.F.)
| | - Leonid Y. Fetisov
- Research and Educational Center “Magnetoelectric Materials and Devices”, MIREA–Russian Technological University, 119454 Moscow, Russia; (D.V.S.); (D.A.B.); (L.Y.F.); (Y.K.F.)
| | - Yuri K. Fetisov
- Research and Educational Center “Magnetoelectric Materials and Devices”, MIREA–Russian Technological University, 119454 Moscow, Russia; (D.V.S.); (D.A.B.); (L.Y.F.); (Y.K.F.)
| | - Nikolai S. Perov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Institute of Physics, Mathematics & IT, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Liudmila A. Makarova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Institute of Physics, Mathematics & IT, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| |
Collapse
|
40
|
Wu L, Lv H, Zhang R, Ding P, Tang M, Liu S, Wang L, Liu F, Guo X, Yu H. Ferroelectric BaTiO 3 Regulating the Local Electric Field for Interfacial Stability in Solid-State Lithium Metal Batteries. ACS NANO 2024. [PMID: 38314720 DOI: 10.1021/acsnano.3c10870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Solid-state Li metal batteries (SSLMBs) are widely investigated since they possess promising energy density and high safety. However, the poor interfacial compatibility between the electrolyte and electrodes limits their promising development. Herein, a robust composite electrolyte (poly(vinyl ethylene carbonate) electrolyte with 3 wt % of BaTiO3, PVEC-3BTO) with excellent interfacial performance is rationally designed by incorporating ferroelectric BaTiO3 (BTO) nanoparticles into the poly(vinyl ethylene carbonate) (PVEC) electrolyte matrix. Benefiting from the high dielectric constant and ferroelectric properties of BTO, the interfacial compatibility between electrolytes and electrodes was significantly improved. The enhanced Li+ transference number (0.64) of solid electrolyte and in situ generated BaF2 inorganic interphase contribute to the enhanced cycling stability of PVEC-3BTO based Li//Li symmetrical batteries. Furthermore, the antioxidation ability of PVEC-3BTO has also been enhanced by modulating the local electric field for good pairing with high-voltage LiCoO2 material. Therefore, in this work, the mechanism of BTO for improving interfacial compatibility is revealed, and also useful methods for addressing the interface issues of SSLMBs have been provided.
Collapse
Affiliation(s)
- Lingqiao Wu
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Haoran Lv
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Rui Zhang
- Beijing Huairou Laboratory, Beijing, 101400, P. R. China
| | - Peipei Ding
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mingxue Tang
- Center for High Pressure Science & Technology Advanced Research, Beijing 100094, P. R. China
| | - Shiqi Liu
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Lihang Wang
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Fangzheng Liu
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xianwei Guo
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Haijun Yu
- Institute of Advanced Battery Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
41
|
Fathipour M, Xu Y, Rana M. Magnetron-Sputtered Lead Titanate Thin Films for Pyroelectric Applications: Part 2-Electrical Characteristics and Characterization Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:589. [PMID: 38591476 PMCID: PMC10856648 DOI: 10.3390/ma17030589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 04/10/2024]
Abstract
Pyroelectric materials are naturally electrically polarized and exhibits a built-in spontaneous polarization in their unit cell structure even in the absence of any externally applied electric field. These materials are regarded as one of the ideal detector elements for infrared applications because they have a fast response time and uniform sensitivity at room temperature across all wavelengths. Crystals of the perovskite lead titanate (PbTiO3) family show pyroelectric characteristics and undergo structural phase transitions. They have a high Curie temperature (the temperature at which the material changes from the ferroelectric (polar) to the paraelectric (nonpolar) phase), high pyroelectric coefficient, high spontaneous polarization, low dielectric constant, and constitute important component materials not only useful for infrared detection, but also with vast applications in electronic, optic, and MEMS devices. However, the preparation of large perfect and pure single crystals PbTiO3 is challenging. Additionally, difficulties arise in the application of such bulk crystals in terms of connection to processing circuits, large size, and high voltages required for their operation. In this part of the review paper, we explain the electrical behavior and characterization techniques commonly utilized to unravel the pyroelectric properties of lead titanate and its derivatives. Further, it explains how the material preparation techniques affect the electrical characteristics of resulting thin films. It also provides an in-depth discussion of the measurement of pyroelectric coefficients using different techniques.
Collapse
Affiliation(s)
- Morteza Fathipour
- Division of Physics, Engineering, Mathematics and Computer Sciences & Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA;
| | - Yanan Xu
- Division of Physics, Engineering, Mathematics and Computer Sciences, Delaware State University, Dover, DE 19901, USA;
| | - Mukti Rana
- Division of Physics, Engineering, Mathematics and Computer Sciences & Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA;
| |
Collapse
|