1
|
Lütjohann C, Näther C, Lindhorst TK. Ready chemistry with a rare sugar: Altrobioside synthesis and analysis of conformational characteristics. Carbohydr Res 2024; 544:109228. [PMID: 39153326 DOI: 10.1016/j.carres.2024.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
We describe the synthesis of the full set of the so far unknown methyl altrobiosides and the initial analysis of the conformational dynamic which occurs in some of the synthesized compounds. d-Altrose chemistry has largely been neglected as it is a rare sugar and has first to be synthesized from glucose or mannose, respectively. Nevertheless, d-altrose is particularly interesting as the energy barrier between the complementary chair conformations is rather low and therefore dynamic mixtures of conformers might occur. We describe the ready synthesis of the selectively protected altrosyl acceptors for the glycosidation from d-mannose and the altrosyl-trichloroacetimidate as useful glycosyl donor to achieve the (1 → 2), (1 → 3), (1 → 4), and (1 → 6)-α-linked altrobiosides. The diastereomeric α- and β-O-(d-altropyranosyl)-trichloroacetimidates adopt different ring conformations as analyzed by NMR and VCD spectroscopy. Also, the pyranose ring conformations of the obtained altrobiosides apparently differ from a regular 4C1 chair according to NMR analysis and are influenced by the regiochemistry of the interglycosidic linkage.
Collapse
Affiliation(s)
- Clemens Lütjohann
- Christiana Albertina University of Kiel, Otto Diels Institute of Organic Chemistry, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany
| | - Christian Näther
- Christiana Albertina University of Kiel, Institute of Inorganic Chemistry, Max-Eyth-Straße 2, 24118, Kiel, Germany
| | - Thisbe K Lindhorst
- Christiana Albertina University of Kiel, Otto Diels Institute of Organic Chemistry, Otto-Hahn-Platz 3-4, 24118, Kiel, Germany.
| |
Collapse
|
2
|
Zhang G, See NW, Wimmer N, Godinez MJ, Cameron SA, Furneaux RH, Ferro V. Site-Selective Photobromination of O-Acetylated Carbohydrates in Benzotrifluoride. Org Lett 2024; 26:5956-5960. [PMID: 38975898 DOI: 10.1021/acs.orglett.4c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Ferrier photobromination enables direct synthetic access to valuable 5-C-bromosugars but has limitations that restrict its broader use. The reaction is typically conducted in CCl4 heated at reflux with irradiation by broad spectrum, energy-inefficient heat lamps. Herein, we demonstrate that the reaction proceeds rapidly and efficiently with PhCF3 as a safe and environmentally benign alternative to CCl4 at mild temperatures (≤40 °C) inside a compact photoreactor fitted with purple light-emitting diodes (LEDs).
Collapse
Affiliation(s)
- Guoqing Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas W See
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Norbert Wimmer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael J Godinez
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Scott A Cameron
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Richard H Furneaux
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Sun Q, Ni J, Li S, Ding H, Wang P, Song N, Wang X, Li M. Access to Reverse Glycosyl Azides and Rare Sugar-Based Glycosyl Azides via Radical Decarboxylative Azidation: Divergent Synthesis of 4'- C-Azidonucleosides as Potential Antiviral Agents. Org Lett 2024; 26:3997-4001. [PMID: 38687048 DOI: 10.1021/acs.orglett.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The radical decarboxylative azidation of structurally diverse uronic acids has been established as an efficient approach to reverse glycosyl azides and rare sugar-derived glycosyl azides under the action of Ag2CO3, 3-pyridinesulfonyl azide, and K2S2O8. The power of this method has been highlighted by the divergent synthesis of 4'-C-azidonucleosides using Vorbrüggen glycosylation of nucleobases with 4-C-azidofuranosyl acetates. The antiviral assessment of the resulting nucleosides revealed one compound as a potential inhibitor of covalently closed circular DNA.
Collapse
Affiliation(s)
- Qikai Sun
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jingxuan Ni
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shanshan Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Han Ding
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ni Song
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xin Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Sanya 572000, China
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Cheng Y, Xia Y, Yuan Z, Li H, Wang J, Wang Y, Yang CG, Yu B. Expeditious Synthesis of Gwanakoside A and the Chloronaphthol Glycoside Congeners. Org Lett 2024; 26:2425-2429. [PMID: 38506225 DOI: 10.1021/acs.orglett.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The synthesis of gwanakoside A, a chlorinated naphthol bis-glycoside, and its analogues was achieved through stepwise chlorination and donor-equivalent controlled regioselective phenol glycosylation with glycosyl N-phenyltrifluoroacetimidates as donors. Gwanakoside A displayed considerable inhibitory effects against various cancer cells and Staphylococcus aureus strains.
Collapse
Affiliation(s)
- Yuting Cheng
- Department of Chemistry, University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, China
| | - Yan Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ziqi Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haotian Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jing Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yingjie Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
5
|
Wu Z, Meng J, Liu H, Li Y, Zhang X, Zhang W. Multi-site programmable functionalization of alkenes via controllable alkene isomerization. Nat Chem 2023; 15:988-997. [PMID: 37202630 DOI: 10.1038/s41557-023-01209-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 04/17/2023] [Indexed: 05/20/2023]
Abstract
Direct and selective functionalization of hydrocarbon chains is a fundamental problem in synthetic chemistry. Conventional functionalization of C=C double bonds and C(sp3)-H bonds provides some solutions, but site diversity remains an issue. The merging of alkene isomerization with (oxidative) functionalization provides an ideal method for remote functionalization, which would provide more opportunities for site diversity. However, the reported functionalized sites are still limited and focus on a specific terminal position and internal site; new site-selective functionalization, including multi-functionalization, remains a largely unmet challenge. Here we describe a palladium-catalysed aerobic oxidative method for the multi-site programmable functionalization, involving the C=C double bond and multiple C(sp3)-H bonds, of terminal olefins via a strategy that controls the reaction sequence between alkene isomerization and oxidative functionalization. Specifically, 1-acetoxylation (anti-Markovnikov), 2-acetoxylation, 1,2-diacetoxylation and 1,2,3-triacetoxylation have been realized, accompanied by controllable remote alkenylation. This method enables available terminal olefins from petrochemical feedstocks to be readily converted into unsaturated alcohols and polyalcohols and particularly into different monosaccharides and C-glycosides.
Collapse
Affiliation(s)
- Zhengxing Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjie Meng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huikang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yunyi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Kajimoto T, Du T, Yoshitake T, Kaneko K, Kobayashi H, Matsushima Y, Miura T. Facile Preparation of L-Iduronic Acid and α-L-Iduronidation Using Methyl 1,2,3,4-Tetra-O-acetyl-α-L-iduronate as Glycosyl Donor. Chem Pharm Bull (Tokyo) 2023; 71:724-729. [PMID: 37661377 DOI: 10.1248/cpb.c23-00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Methyl 1,2,3,4-tetra-O-acetyl-α-L-iduronate was prepared from methyl 1,2,3,4-tetra-O-β-D-glucuronate in two steps: Ferrier's photobromination and subsequent radical reduction with tris(trimethylsilyl)silane. The obtained methyl 1,2,3,4-tetra-O-acetyl-α-L-iduronate was a good glycosyl donor for the L-iduronidation when bis(trifluoromethanesulfonic)imide was employed as the activator. The reaction afforded the α-isomer as the major product, the configuration of which is the same as that of the L-iduronic acid unit in heparin and heparan sulfate.
Collapse
Affiliation(s)
| | - Tianqi Du
- College of Pharmaceutical Sciences, Ritsumeikan University
| | | | - Kimiyoshi Kaneko
- Research Organization of Science and Technology, Ritsumeikan University
| | | | | | - Tsuyoshi Miura
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
7
|
Kumar M, Kumar N, Gurawa A, Kashyap S. Protecting group enabled stereocontrolled approach for rare-sugars talose/gulose via dual-ruthenium catalysis. Carbohydr Res 2023; 523:108705. [PMID: 36370626 DOI: 10.1016/j.carres.2022.108705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 01/28/2023]
Abstract
We herein report a convenient and highly stereocontrolled approach for rare and vital ᴅ-talo and ᴅ-gulo sugars directly from economical ᴅ-galactal through dual ruthenium-catalysis. The stereo-divergent strategy involves Ru(III)Cl3-catalyzed Ferrier glycosylation of ᴅ-galactal to give 2,3-unsaturated ᴅ-galactopyranoside, further selective functionalization of C-4 and C-6 position with diverse protecting groups and dihydroxylation with Ru(VIII)O4 generated in situ providing access to talo/gulo isomers. The α-anomeric stereoselectivity and syn-diastereoselectivity in glycosylation-dihydroxylation steps have been predominantly achieved by judicious selection of stereoelectronically diverse protecting groups. The synthetic utility of the dual-ruthenium catalysis was demonstrated for efficiently assembling the ᴅ-talose and/or ᴅ-gulose sugars in natural products and bioactive scaffolds.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur, 302017, India
| | - Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur, 302017, India
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur, 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur, 302017, India.
| |
Collapse
|
8
|
Borbás A, Herczeg M, Demeter F, Bényei A. Synthesis of the Three Most Expensive l-Hexose Thioglycosides from d-Glucose. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThe biologically important l-hexoses, which are less widespread than d-hexoses, cannot be obtained from natural sources or can only be extracted very costly. Due to the complexity of their synthesis, their commercially available derivatives (which are sold mostly in free form) are also very expensive, which is further exacerbated by the current rapid rise in prices. In the present work, starting from the cheapest d-hexose, d-glucose, using inexpensive and readily available chemicals, a reaction pathway was developed in which the three most expensive l-hexoses (l-idose, l-altrose, and l-talose) were successfully prepared in orthogonally protected thioglycoside form, ready for glycosylation. The l-ido and l-talo derivatives were synthesized by C-5 epimerization of the corresponding 5,6-unsaturated thioglycosides. From the l-ido derivatives, the orthogonally protected thioglycosides of l-altrose were then prepared by C-4 epimerization. Different approaches to the preparation of the key intermediates, 5,6-unsaturated thioglycoside derivatives, were systematically investigated in the presence of various protecting groups (ether and ester) and using commercially available reagents.
Collapse
Affiliation(s)
- Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen
- Research Group for Oligosaccharide Chemistry of Hungarian Academy of Sciences, ELKH
| | - Fruzsina Demeter
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen
| | - Attila Bényei
- Laboratory for X-ray Diffraction, Department of Physical Chemistry, University of Debrecen
| |
Collapse
|
9
|
Tang H, Zhou Z, Chen Z, Ju X, Li L. Development of a sugar isomerase cascade to convert D-xylose to rare sugars. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Teng KC, Tseng KY, Tzeng ZH, Hung SC. A concise synthesis of l-gulose and its C-6 derivatives. Bioorg Med Chem 2022; 73:117029. [PMID: 36174449 DOI: 10.1016/j.bmc.2022.117029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/02/2022]
Abstract
A convenient route for the preparation of l-gulose and its C-6 derivatives starting from commercially available 2,3:5,6-diisopropylidene-d-mannofuranose via C-5 epimerization as the key step was developed. 1-O-Benzylation followed by regioselective hydrolysis of the 5,6-isopropylidene group furnished benzyl 2,3-isopropylidene-α-d-mannofuranoside, which was subjected upon regioselective one-pot 6-O-benzoylation and 5-O-mesylation, providing the corresponding 5-OMs-6-OBz derivative in excellent selectivity. Treatment of this mesylate compound with potassium t-butoxide to remove the benzoyl group followed by intramolecular SN2 inversion led to benzyl 5,6-anhydro-2,3-isopropylidene-β-l-gulofuranoside, which could undergo not only nucleophilic substitutions to open the epoxide ring to give various C-6 derivatives, but also acidic hydrolysis to yield 1,6-anhydro-β-l-gulopyranose for further transformation into l-gulopyranosyl pentaacetate.
Collapse
Affiliation(s)
- Kai-Ching Teng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; Department of Applied Science, National Taitung University, Taitung 95092, Taiwan
| | - Kuei-Yao Tseng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| | - Zheng-Hao Tzeng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan; Department of Applied Science, National Taitung University, Taitung 95092, Taiwan; Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
11
|
Demeter F, Bereczki I, Borbás A, Herczeg M. Synthesis of Four Orthogonally Protected Rare l-Hexose Thioglycosides from d-Mannose by C-5 and C-4 Epimerization. Molecules 2022; 27:3422. [PMID: 35684360 PMCID: PMC9182441 DOI: 10.3390/molecules27113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/30/2023] Open
Abstract
l-Hexoses are important components of biologically relevant compounds and precursors of some therapeuticals. However, they typically cannot be obtained from natural sources and due to the complexity of their synthesis, their commercially available derivatives are also very expensive. Starting from one of the cheapest d-hexoses, d-mannose, using inexpensive and readily available chemicals, we developed a reaction pathway to obtain two orthogonally protected l-hexose thioglycoside derivatives, l-gulose and l-galactose, through the corresponding 5,6-unsaturated thioglycosides by C-5 epimerization. From these derivatives, the orthogonally protected thioglycosides of further two l-hexoses (l-allose and l-glucose) were synthesized by C-4 epimerization. The preparation of the key intermediates, the 5,6-unsaturated derivatives, was systematically studied using various protecting groups. By the method developed, we are able to produce highly functionalized l-gulose derivatives in 9 steps (total yields: 21-23%) and l-galactose derivatives in 12 steps (total yields: 6-8%) starting from d-mannose.
Collapse
Affiliation(s)
- Fruzsina Demeter
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Research Group for Oligosaccharide Chemistry of Hungarian Academy of Sciences, ELKH, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
12
|
Li X, Wu J, Tang W. General Strategy for the Synthesis of Rare Sugars via Ru(II)-Catalyzed and Boron-Mediated Selective Epimerization of 1,2- trans-Diols to 1,2- cis-Diols. J Am Chem Soc 2022; 144:3727-3736. [PMID: 35168319 DOI: 10.1021/jacs.1c13399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human glycans are primarily composed of nine common sugar building blocks. On the other hand, several hundred monosaccharides have been discovered in bacteria and most of them are not readily available. The ability to access these rare sugars and the corresponding glycoconjugates can facilitate the studies of various fundamentally important biological processes in bacteria, including interactions between microbiota and the human host. Many rare sugars also exist in a variety of natural products and pharmaceutical reagents with significant biological activities. Although several methods have been developed for the synthesis of rare monosaccharides, most of them involve lengthy steps. Herein, we report an efficient and general strategy that can provide access to rare sugars from commercially available common monosaccharides via a one-step Ru(II)-catalyzed and boron-mediated selective epimerization of 1,2-trans-diols to 1,2-cis-diols. The formation of boronate esters drives the equilibrium toward 1,2-cis-diol products, which can be immediately used for further selective functionalization and glycosylation. The utility of this strategy was demonstrated by the efficient construction of glycoside skeletons in natural products or bioactive compounds.
Collapse
Affiliation(s)
- Xiaolei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jicheng Wu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Chen X, Wang F, Yu Q, Liu S, Wang W, Zhang Y, Wang Z, Yuan Z. One pot cascade biosynthesis of d-allulose from d-glucose and its kinetic modelling. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Montes AS, León EI, Martin A, Pérez-Martín I, Suárez E. Free‐Radical Epimerization of D‐ into L‐C‐(glycosyl)methanol Compounds Using 1,5‐Hydrogen Atom Transfer Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Adrián S. Montes
- IPNA: Instituto de Productos Naturales y Agrobiologia Síntesis de Productos Naturales Avda. Astrofisico Francisco Sanchez 3 38206 La Laguna SPAIN
| | - Elisa I León
- IPNA: Instituto de Productos Naturales y Agrobiologia Síntesis de Productos Naturales Avda. Astrofisico Francisco Sanchez 3 38206 La Laguna SPAIN
| | - Angeles Martin
- Instituto de Productos Naturales Y Agrobiolog�a, CSIC Sintesis de Productos Naturales Avda. Astrofisico Fco. Sanchez 3 38205 La Laguna SPAIN
| | - Inés Pérez-Martín
- IPNA: Instituto de Productos Naturales y Agrobiologia Síntesis de Productos Naturales Avda. Astrofisico Francisco Sanchez 3 38206 La Laguna SPAIN
| | - Ernesto Suárez
- IPNA: Instituto de Productos Naturales y Agrobiologia Síntesis de Productos Naturales Avda. Astrofisico Francisco Sanchez 3 38206 La Laguna SPAIN
| |
Collapse
|
15
|
Beerens K, Gevaert O, Desmet T. GDP-Mannose 3,5-Epimerase: A View on Structure, Mechanism, and Industrial Potential. Front Mol Biosci 2022; 8:784142. [PMID: 35087867 PMCID: PMC8787198 DOI: 10.3389/fmolb.2021.784142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
GDP-mannose 3,5-epimerase (GM35E, GME) belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily and catalyses the conversion of GDP-d-mannose towards GDP-l-galactose. Although the overall reaction seems relatively simple (a double epimerization), the enzyme needs to orchestrate a complex set of chemical reactions, with no less than 6 catalysis steps (oxidation, 2x deprotonation, 2x protonation and reduction), to perform the double epimerization of GDP-mannose to GDP-l-galactose. The enzyme is involved in the biosynthesis of vitamin C in plants and lipopolysaccharide synthesis in bacteria. In this review, we provide a clear overview of these interesting epimerases, including the latest findings such as the recently characterized bacterial and thermostable GM35E representative and its mechanism revision but also focus on their industrial potential in rare sugar synthesis and glycorandomization.
Collapse
Affiliation(s)
| | | | - Tom Desmet
- *Correspondence: Koen Beerens, ; Tom Desmet,
| |
Collapse
|
16
|
Zhang M, Chen HW, Liu QQ, Gao FT, Li YX, Hu XG, Yu CY. De Novo Synthesis of Orthogonally-Protected C2-Fluoro Digitoxoses and Cymaroses: Development and Application for the Synthesis of Fluorinated Digoxin. J Org Chem 2021; 87:1272-1284. [PMID: 34964642 DOI: 10.1021/acs.joc.1c02592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inspired by Roush's pioneering work on rare sugars, we have developed a scalable, stereoselective, de novo synthesis of orthogonally protected C2-fluoro digitoxose and cymarose, utilizing Sharpless kinetic resolution and organocatalytic fluorination as key steps. The utility of this strategy is demonstrated by the synthesis of a fluorinated analogue of digoxin, which indicates the fluorine on the sugar ring may have a significant impact on biological activity.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.,Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Wei Chen
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Qing-Quan Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Feng-Teng Gao
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
17
|
Bols M, Frihed TG, Pedersen MJ, Pedersen CM. Silylated Sugars – Synthesis and Properties. Synlett 2021. [DOI: 10.1055/s-0040-1719854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractSilicon has been used in carbohydrate chemistry for half a century, but mostly as a protective group for sugar alcohols. Recently, the use of silicon has expanded to functionalization via C–H activation, conformational arming of glycosyl donors, and conformational alteration of carbohydrates. Silicon has proven useful as more than a protective group and during the last one and a half decades we have demonstrated how it influences both the reactivity of glycosyl donors and stereochemical outcome of glycosylations. Silicon can also be attached directly to the sugar C-backbone, which has even more pronounced effects on the chemistry and properties of the molecules. In this Account, we will give a tour through our work involving silicon and carbohydrates.1 Introduction2 Conformational Arming of Glycosyl Donors with Silyl Groups3 Silyl Protective Groups for Tethering Glycosyl Donors4. Si–C Glycosides via C–H Activation4.1 C–H Activation and Oxidation of Methyl 6-Deoxy-l-glycosides4.2 Synthesis of All Eight 6-Deoxy-l-sugars4.3 Synthesis of All Eight l-Sugars by C–H Activation4.4 Modification of the Oxasilolane Ring5 C–Si in Glycosyl Donors – Activating or Not?6 Si–C-Substituted Pyranosides7 Perspective
Collapse
Affiliation(s)
- Mikael Bols
- University of Copenhagen, Department of Chemistry
| | | | | | | |
Collapse
|
18
|
Desmons S, Grayson-Steel K, Nuñez-Dallos N, Vendier L, Hurtado J, Clapés P, Fauré R, Dumon C, Bontemps S. Enantioselective Reductive Oligomerization of Carbon Dioxide into l-Erythrulose via a Chemoenzymatic Catalysis. J Am Chem Soc 2021; 143:16274-16283. [PMID: 34546049 DOI: 10.1021/jacs.1c07872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A cell-free enantioselective transformation of the carbon atom of CO2 has never been reported. In the urgent context of transforming CO2 into products of high value, the enantiocontrolled synthesis of chiral compounds from CO2 would be highly desirable. Using an original hybrid chemoenzymatic catalytic process, we report herein the reductive oligomerization of CO2 into C3 (dihydroxyacetone, DHA) and C4 (l-erythrulose) carbohydrates, with perfect enantioselectivity of the latter chiral product. This was achieved with the key intermediacy of formaldehyde. CO2 is first reduced selectively by 4e- by an iron-catalyzed hydroboration reaction, leading to the isolation and complete characterization of a new bis(boryl)acetal compound derived from dimesitylborane. In an aqueous buffer solution at 30 °C, this compound readily releases formaldehyde, which is then involved in selective enzymatic transformations, giving rise either (i) to DHA using a formolase (FLS) catalysis or (ii) to l-erythrulose with a cascade reaction combining FLS and d-fructose-6-phosphate aldolase (FSA) A129S variant. Finally, the nature of the synthesized products is noteworthy, since carbohydrates are of high interest for the chemical and pharmaceutical industries. The present results prove that the cell-free de novo synthesis of carbohydrates from CO2 as a sustainable carbon source is a possible alternative pathway in addition to the intensely studied biomass extraction and de novo syntheses from fossil resources.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France.,TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | | | - Nelson Nuñez-Dallos
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France.,Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Laure Vendier
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France
| | - John Hurtado
- Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia
| | - Pere Clapés
- Biological Chemistry Department, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
19
|
Li T, Wang J, Zhu X, Zhou X, Sun S, Wang P, Cao H, Yu G, Li M. Synthesis of Rare 6-Deoxy-d-/l-Heptopyranosyl Fluorides: Assembly of a Hexasaccharide Corresponding to Campylobacter jejuni Strain CG8486 Capsular Polysaccharide. J Am Chem Soc 2021; 143:11171-11179. [PMID: 34260212 DOI: 10.1021/jacs.1c05048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Campylobacter jejuni is the leading cause of human diarrheal diseases and has been designated as one of highly resistant pathogens by the World Health Organization. The C. jejuni capsular polysaccharides feature broad existence of uncommon 6dHepp residues and have proven to be potential antigens to develop innovative antibacterial glycoconjugation vaccines. To address the lack of synthetic methods for rare 6dHepp architectures of importance, we herein describe a novel and efficient approach for the preparation of uncommon d-/l-6dHepp fluorides that have power as glycosylating agents. The synthesis is achieved by a C1-to-C5 switch strategy relying on radical decarboxylative fluorination of uronic acids arising from readily available allyl d-C-glycosides. To further showcase the application of this protocol, a structurally unique hexasaccharide composed of →3)-β-d-6didoHepp-(1→4)-β-d-GlcpNAc-(1→ units, corresponding to the capsular polysaccharide of C. jejuni strain CG8486 has been assembled for the first time. The assembly is characterized by highly efficient construction of the synthetically challenging β-(1,2-cis)-d-ido-heptopyranoside by inversion of the C2 configuration of β-(1,2-trans)-d-gulo-heptopyranoside, which is conveniently obtained by anchimerically assisted stereoselective glycosylation of the orthogonally protected 6dgulHepp fluoride. Ready accessibility of 6dHepp fluorides and the resulting glycans could serve as a rational starting point for the further development of synthetic vaccines fighting Campylobacter infection.
Collapse
Affiliation(s)
- Tiantian Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianjun Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xinhao Zhu
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Zhou
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shaozi Sun
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hongzhi Cao
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guangli Yu
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
20
|
Paul A, Kulkarni SS. Synthesis of L-hexoses: an Update. CHEM REC 2021; 21:3224-3237. [PMID: 34075685 DOI: 10.1002/tcr.202100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Over the years, carbohydrates have increasingly become an important class of compounds contributing significantly to the target specific drug discovery and vaccine development. Several oligosaccharides contain L-hexoses that are biologically relevant as therapeutic and diagnostic tools. Since, L-hexoses and deoxy L-hexoses are not readily available in large amount and pure form, attention is drawn towards development of cost effective and high yielding synthetic routes for their procurement. In this review we give an update on the recent developments in strategies for synthesis of L-hexoses and deoxy L-hexoses.
Collapse
Affiliation(s)
- Ankita Paul
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
21
|
See NW, Wimmer N, Krenske EH, Ferro V. A Substituent‐Directed Strategy for the Selective Synthesis of L‐Hexoses: An Expeditious Route to L‐Idose. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicholas W. See
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Norbert Wimmer
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
22
|
Tindall DJ, Mader S, Kindler A, Rominger F, Hashmi ASK, Schaub T. Selektive und skalierbare Synthese von Zuckeralkoholen durch homogene asymmetrische Hydrierung von ungeschützten Ketosen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel J. Tindall
- Catalysis Research Laboratory (CaRLa) Universität Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Deutschland
| | - Steffen Mader
- Synthesis BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Deutschland
| | - Alois Kindler
- Synthesis BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Deutschland
| | - Frank Rominger
- Organisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - A. Stephen K. Hashmi
- Catalysis Research Laboratory (CaRLa) Universität Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Deutschland
- Organisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa) Universität Heidelberg Im Neuenheimer Feld 584 69120 Heidelberg Deutschland
- Synthesis BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen Deutschland
| |
Collapse
|
23
|
Tindall DJ, Mader S, Kindler A, Rominger F, Hashmi ASK, Schaub T. Selective and Scalable Synthesis of Sugar Alcohols by Homogeneous Asymmetric Hydrogenation of Unprotected Ketoses. Angew Chem Int Ed Engl 2021; 60:721-725. [PMID: 32926512 DOI: 10.1002/anie.202009790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/22/2020] [Indexed: 11/10/2022]
Abstract
Sugar alcohols are of great importance for the food industry and are promising building blocks for bio-based polymers. Industrially, they are produced by heterogeneous hydrogenation of sugars with H2 , usually with none to low stereoselectivities. Now, we present a homogeneous system based on commercially available components, which not only increases the overall yield, but also allows a wide range of unprotected ketoses to be diastereoselectively hydrogenated. Furthermore, the system is reliable on a multi-gram scale allowing sugar alcohols to be isolated in large quantities at high atom economy.
Collapse
Affiliation(s)
- Daniel J Tindall
- Catalysis Research Laboratory (CaRLa), Heidelberg University, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Steffen Mader
- Synthesis, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Alois Kindler
- Synthesis, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Frank Rominger
- Organic Institute, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - A Stephen K Hashmi
- Catalysis Research Laboratory (CaRLa), Heidelberg University, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany.,Organic Institute, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), Heidelberg University, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany.,Synthesis, BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| |
Collapse
|
24
|
Long Q, Gao J, Yan N, Wang P, Li M. (C 6F 5) 3B·(HF) n-catalyzed glycosylation of disarmed glycosyl fluorides and reverse glycosyl fluorides. Org Chem Front 2021. [DOI: 10.1039/d1qo00211b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
(C6F5)3B·(HF)n-catalyzed glycosylation of disarmed glycosyl fluorides and reverse glycosyl fluorides with structurally diverse nucleophiles has been achieved.
Collapse
Affiliation(s)
- Qing Long
- Key Laboratory of Marine Medicine
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Jingru Gao
- Key Laboratory of Marine Medicine
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Ningjie Yan
- Key Laboratory of Marine Medicine
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Peng Wang
- Key Laboratory of Marine Medicine
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Ming Li
- Key Laboratory of Marine Medicine
- Chinese Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| |
Collapse
|
25
|
Hsu YH, Chang CC. Conversion of a readily available carbohydrate raw material into a rare l-deoxyhexose. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Chen P, Wang P, Long Q, Ding H, Cheng G, Li T, Li M. Synthesis of Reverse Glycosyl Fluorides and Rare Glycosyl Fluorides Enabled by Radical Decarboxylative Fluorination of Uronic Acids. Org Lett 2020; 22:9325-9330. [PMID: 33226829 DOI: 10.1021/acs.orglett.0c03514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An efficient protocol for synthesizing reverse glycosyl fluorides is described, relying on silver-promoted decarboxylative fluorination of structurally diverse pentofuran- and hexopyranuronic acids under the mild reaction conditions. The potential applications of the reaction are further demonstrated by converting readily available d-uronic acid derivatives into uncommon d-/l-glycosyl fluorides through a C1-to-C5 switch strategy. The reaction mechanism is corroborated by 5-exo-trig radical cyclization of allyl α-d-C-glucopyranuronic acid triggered by decarboxylative fluorination.
Collapse
Affiliation(s)
- Pengwei Chen
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qing Long
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Han Ding
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guoqiang Cheng
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tiantian Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.,Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
27
|
Gevaert O, Van Overtveldt S, Da Costa M, Beerens K, Desmet T. GDP-altrose as novel product of GDP-mannose 3,5-epimerase: Revisiting its reaction mechanism. Int J Biol Macromol 2020; 165:1862-1868. [PMID: 33075338 DOI: 10.1016/j.ijbiomac.2020.10.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
GDP-mannose 3,5-epimerase (GM35E) catalyzes the double epimerization of GDP-mannose to yield GDP-l-galactose. GDP-l-gulose (C5-epimer) has previously been detected as a byproduct of this reaction, indicating that C3,5-epimerization occurs through an initial epimerization at C5. Given these products, GM35E constitutes a valuable bridge between d- and l-hexoses. In order to fully exploit this potential, the enzyme might be subjected to specificity engineering for which profound mechanistic insights are beneficial. Accordingly, this study further elucidated GM35E's reaction mechanism. For the first time, the production of the C3-epimer GDP-altrose was demonstrated, resulting in an adjustment of the acknowledged reaction mechanism. As GM35E converts GDP-mannose to GDP-l-gulose, GDP-altrose and GDP-l-galactose in a 72:4:4:20 ratio, this indicates that the enzyme does not discriminate between the C3 and C5 position as initial epimerization site. This was also confirmed by a structural investigation. Based on a mutational analysis of the active site, residues S115 and R281 were attributed a stabilizing function, which is believed to support the reactivation process of the catalytic residues. This paper eventually reflected on some engineering strategies that aim to change the enzyme towards a single specificity.
Collapse
Affiliation(s)
- Ophelia Gevaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Stevie Van Overtveldt
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Matthieu Da Costa
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| |
Collapse
|
28
|
Chen M, Wu H, Zhang W, Mu W. Microbial and enzymatic strategies for the production of L-ribose. Appl Microbiol Biotechnol 2020; 104:3321-3329. [PMID: 32088757 DOI: 10.1007/s00253-020-10471-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
L-Ribose is a non-naturally occurring pentose that recently has become known for its potential application in the pharmaceutical industry, as it is an ideal starting material for use in synthesizing L-nucleosides analogues, an important class of antiviral drugs. In the past few decades, the synthesis of L-ribose has been mainly undertaken through the chemical route. However, chemical synthesis of L-ribose is difficult to achieve on an industrial scale. Therefore, the biotechnological production of L-ribose has gained considerable attention, as it exhibits many merits over the chemical approaches. The present review focuses on various biotechnological strategies for the production of L-ribose through microbial biotransformation and enzymatic catalysis, and in particular on an analysis and comparison of the synthetic methods and different enzymes. The physiological functions and applications of L-ribose are also elucidated. In addition, different sugar isomerases involved in the production of L-ribose from a number of sources are discussed in detail with regard to their biochemical properties. Furthermore, analysis of the separation issues of L-ribose from the reaction solution and different purification methods is presented.Key points • l -Arabinose, l -ribulose and ribitol can be used to produce l -ribose by enzymes. • Five enzymes are systematically introduced for production of l -ribose. • Microbial transformation and enzymatic methods are promising for yielding l -ribose.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
29
|
Krasnoff SB, Howe KJ, Heck ML, Donzelli BGG. Siderophores from the Entomopathogenic Fungus Beauveria bassiana. JOURNAL OF NATURAL PRODUCTS 2020; 83:296-304. [PMID: 32058711 DOI: 10.1021/acs.jnatprod.9b00698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report NMR- and MS-based structural characterizations of siderophores and related compounds from Beauveria bassiana (Balsamo-Crivelli) Vuillemin, including ten new chemical entities (2-4, 6-9, 11-12, and 15) and five known compounds, (1, 5, 10, 13, and 14). The siderophore mixture from ARSEF strain #2680 included two compounds in which N5-mevalonyl-N5-hydroxyornithine replaces both (2) or one (3) of the N5-anhydromevalonyl-N5-hydroxyornithine units of dimerumic acid (1). Mevalonolactone (14) was present as a degradation product of 2 and 3. ARSEF #2860 also produced compounds that have mannopyranose (5, 6) or 4-O-methyl-mannopyranose units (4, 7), two compounds (8, 9) that can be rationalized as 4-O-methyl-mannopyranosyl analogues of the esterifying acid moieties of metachelins A and B, respectively, and two probable decomposition products of 1, a nitro compound (11) and a formate (12). Beauverichelin A (15), a coprogen-type siderophore that represents the di-4-O-methyl-mannopyranosyl analogue of metachelin A, was detected in crude extracts of ARSEF #2860, but only in trace amounts. ARSEF strains #252 and #1955 yielded beauverichelin A in quantities that were sufficient for NMR analysis. Only the di- (1-7) and trihydroxamate (15) siderophores showed iron-binding activity in the CAS assay and, when ferrated, showed strong ESIMS signals consistent with 1:1 ligand/iron complexes.
Collapse
Affiliation(s)
- Stuart B Krasnoff
- USDA-ARS , Robert W. Holley Center for Agriculture & Health , Ithaca , New York 14853 , United States
| | - Kevin J Howe
- USDA-ARS , Robert W. Holley Center for Agriculture & Health , Ithaca , New York 14853 , United States
| | - Michelle L Heck
- USDA-ARS , Robert W. Holley Center for Agriculture & Health , Ithaca , New York 14853 , United States
- Department of Plant Pathology and Plant-Microbe Biology , Cornell University , Ithaca , New York 14853 , United States
- Boyce Thompson Institute , Ithaca , New York 14853 , United States
| | - Bruno G G Donzelli
- USDA-ARS , Robert W. Holley Center for Agriculture & Health , Ithaca , New York 14853 , United States
| |
Collapse
|
30
|
Shimogaki M, Takeshima A, Kano T, Maruoka K. Enantioselective Synthesis of Monosaccharide Analogues by Two-Step Sequential Enamine Catalysis: Benzoyloxylation and Aldol Reaction. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mio Shimogaki
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
| | - Aika Takeshima
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
| | - Taichi Kano
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
| | - Keiji Maruoka
- Department of Chemistry; Graduate School of Science; Kyoto University; Sakyo 606-8502 Kyoto Japan
- Graduate School of Pharmaceutical Sciences; Graduate School of Science; Kyoto University; Sakyo 606-8501 Kyoto Japan
- School of Chemical Engineering and Light Industry; Graduate School of Science; Guangdong University of Technology; 510006 Guangzhou China
| |
Collapse
|
31
|
Wang Y, Carder HM, Wendlandt AE. Synthesis of rare sugar isomers through site-selective epimerization. Nature 2020; 578:403-408. [DOI: 10.1038/s41586-020-1937-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022]
|
32
|
Wu H, Huang J, Deng Y, Zhang W, Mu W. Production of l-ribose from l-arabinose by co-expression of l-arabinose isomerase and d-lyxose isomerase in Escherichia coli. Enzyme Microb Technol 2020; 132:109443. [DOI: 10.1016/j.enzmictec.2019.109443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022]
|
33
|
Armetta J, Berthome R, Cros A, Pophillat C, Colombo BM, Pandi A, Grigoras I. Biosensor-based enzyme engineering approach applied to psicose biosynthesis. Synth Biol (Oxf) 2019; 4:ysz028. [PMID: 32995548 PMCID: PMC7445875 DOI: 10.1093/synbio/ysz028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 10/11/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022] Open
Abstract
Bioproduction of chemical compounds is of great interest for modern industries, as it reduces their production costs and ecological impact. With the use of synthetic biology, metabolic engineering and enzyme engineering tools, the yield of production can be improved to reach mass production and cost-effectiveness expectations. In this study, we explore the bioproduction of D-psicose, also known as D-allulose, a rare non-toxic sugar and a sweetener present in nature in low amounts. D-psicose has interesting properties and seemingly the ability to fight against obesity and type 2 diabetes. We developed a biosensor-based enzyme screening approach as a tool for enzyme selection that we benchmarked with the Clostridium cellulolyticum D-psicose 3-epimerase for the production of D-psicose from D-fructose. For this purpose, we constructed and characterized seven psicose responsive biosensors based on previously uncharacterized transcription factors and either their predicted promoters or an engineered promoter. In order to standardize our system, we created the Universal Biosensor Chassis, a construct with a highly modular architecture that allows rapid engineering of any transcription factor-based biosensor. Among the seven biosensors, we chose the one displaying the most linear behavior and the highest increase in fluorescence fold change. Next, we generated a library of D-psicose 3-epimerase mutants by error-prone PCR and screened it using the biosensor to select gain of function enzyme mutants, thus demonstrating the framework's efficiency.
Collapse
Affiliation(s)
- Jeremy Armetta
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Rose Berthome
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Antonin Cros
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Celine Pophillat
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Bruno Maria Colombo
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| | - Amir Pandi
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Ioana Grigoras
- iSSB, UMR8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Genopole Campus 1, Bât. 6, 5 rue Henri Desbruères, 91030 Evry, France
| |
Collapse
|
34
|
Wan IC, Witte MD, Minnaard AJ. From d- to l-Monosaccharide Derivatives via Photodecarboxylation-Alkylation. Org Lett 2019; 21:7669-7673. [PMID: 31512472 PMCID: PMC6759743 DOI: 10.1021/acs.orglett.9b03016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 11/28/2022]
Abstract
Photodecarboxylation-alkylation of conformationally locked monosaccharides leads to inversion of stereochemistry at C5. This allows the synthesis of l-sugars from their readily available d-counterparts. Via this strategy, methyl l-guloside was synthesized from methyl d-mannoside in 21% yield over six steps.
Collapse
Affiliation(s)
- I. C.
Steven Wan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Martin D. Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
35
|
Characterization of the First Bacterial and Thermostable GDP-Mannose 3,5-Epimerase. Int J Mol Sci 2019; 20:ijms20143530. [PMID: 31330931 PMCID: PMC6678494 DOI: 10.3390/ijms20143530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/25/2023] Open
Abstract
GDP-mannose 3,5-epimerase (GM35E) catalyzes the conversion of GDP-mannose towards GDP-l-galactose and GDP-l-gulose. Although this reaction represents one of the few enzymatic routes towards the production of l-sugars and derivatives, it has not yet been exploited for that purpose. One of the reasons is that so far only GM35Es from plants have been characterized, yielding biocatalysts that are relatively unstable and difficult to express heterologously. Through the mining of sequence databases, we succeeded in identifying a promising bacterial homologue. The gene from the thermophilic organism Methylacidiphilum fumariolicum was codon optimized for expression in Escherichia coli, resulting in the production of 40 mg/L of recombinant protein. The enzyme was found to act as a self-sufficient GM35E, performing three chemical reactions in the same active site. Furthermore, the biocatalyst was highly stable at temperatures up to 55 °C, making it well suited for the synthesis of new carbohydrate products with application in the pharma industry.
Collapse
|
36
|
Galkin KI, Ananikov VP. Towards Improved Biorefinery Technologies: 5-Methylfurfural as a Versatile C 6 Platform for Biofuels Development. CHEMSUSCHEM 2019; 12:185-189. [PMID: 30315683 DOI: 10.1002/cssc.201802126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Low chemical stability and high oxygen content limit utilization of the bio-based platform chemical 5-(hydroxymethyl)furfural (HMF) in biofuels development. In this work, Lewis-acid-catalyzed conversion of renewable 6-deoxy sugars leading to formation of more stable 5-methylfurfural (MF) is carried out with high selectivity. Besides its higher stability, MF is a deoxygenated analogue of HMF with increased C/O ratio. A highly selective synthesis of the innovative liquid biofuel 2,5-dimethylfuran starting from MF under mild conditions is described. The superior synthetic utility of MF against HMF in benzoin and aldol condensation reactions leading to long-chain alkane precursors is demonstrated.
Collapse
Affiliation(s)
- Konstantin I Galkin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt, 47, Moscow, 119991, Russia
| |
Collapse
|
37
|
Mu W, Hassanin HAM, Zhou L, Jiang B. Chemistry Behind Rare Sugars and Bioprocessing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13343-13345. [PMID: 30543101 DOI: 10.1021/acs.jafc.8b06293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Wanmeng Mu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Hinawi A M Hassanin
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Leon Zhou
- Roquette America , Keokuk , Iowa 52632 , United States
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
38
|
Tamura M, Yuasa N, Cao J, Nakagawa Y, Tomishige K. Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. Angew Chem Int Ed Engl 2018; 57:8058-8062. [DOI: 10.1002/anie.201803043] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/12/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Masazumi Tamura
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Naoto Yuasa
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Ji Cao
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Yoshinao Nakagawa
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Keiichi Tomishige
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| |
Collapse
|
39
|
Tamura M, Yuasa N, Cao J, Nakagawa Y, Tomishige K. Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Masazumi Tamura
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Naoto Yuasa
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Ji Cao
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Yoshinao Nakagawa
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| | - Keiichi Tomishige
- Graduate School of EngineeringTohoku University Aoba 6-6-07, Aramaki, Aoba-ku Sendai Miyagi 980-8579 Japan
| |
Collapse
|
40
|
Herczeg M, Demeter F, Balogh T, Kelemen V, Borbás A. Rapid Synthesis of l
-Idosyl Glycosyl Donors from α-Thioglucosides for the Preparation of Heparin Disaccharides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mihály Herczeg
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| | - Fruzsina Demeter
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| | - Tímea Balogh
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| | - Viktor Kelemen
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| |
Collapse
|
41
|
Abstract
Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the "building block approach", i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach.
Collapse
Affiliation(s)
- Jonathan W Lehmann
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel J Blair
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin D Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
42
|
Song W, Cai J, Zou X, Wang X, Hu J, Yin J. Applications of controlled inversion strategies in carbohydrate synthesis. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Zhang Y, Zhang H, Zheng Q. What regulates the catalytic activities in AGE catalysis? An answer from quantum mechanics/molecular mechanics simulations. Phys Chem Chem Phys 2017; 19:31731-31746. [PMID: 29167851 DOI: 10.1039/c7cp07079a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The AGE superfamily (AGEs) is made up of kinds of isomerase which are very important both physiologically and industrially. One of the most intriguing aspects of AGEs has to do with the mechanism that regulates their activities in single conserved active pocket. In order to clarify the relationship among single conserved active pocket and two activities in AGEs, results for the epimerization activity catalyzed by RaCE and the isomerization activity catalyzed by SeYihS were obtained by using QM/MM umbrella sampling simulations and 2D-FES calculations. Our results show that both of them have similar enzyme-substrate combination mode for inner pyranose ring in single conserved active pocket even though they have different substrate specificity. This means that the pathways of ring opening catalyzed by them are similar. However, one non-conserved residue (Leu183 in RaCE, Met175 in SeYihS) in the active site, which has different steric hindrance, causes a small but effective change in the direction of ring opening in stage 1. And then this change will induce a fundamentally different catalytic activity for RaCE and SeYihS in stage 2. Our results give a novel viewpoint about the regulatory mechanism between CE and YihS in AGEs, and may be helpful for further experiments of rational enzyme design based on the (α/α)6-barrel basic scaffold.
Collapse
Affiliation(s)
- Yulai Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | | | | |
Collapse
|
44
|
Song W, Wang S, Tang W. De Novo Synthesis of Mono- and Oligosaccharides via Dihydropyran Intermediates. Chem Asian J 2017; 12:1027-1042. [DOI: 10.1002/asia.201700212] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Wangze Song
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- School of Pharmaceutical Science and Technology; State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian, 116024 P.R. China
| | - Shuojin Wang
- School of Pharmacy; Hainan Medical University; Haikou 571199 P.R. China
| | - Weiping Tang
- School of Pharmacy; University of Wisconsin-Madison; Madison WI 53705 USA
- Department of Chemistry; University of Wisconsin-Madison; Madison WI 53706 USA
| |
Collapse
|
45
|
Enzymatic approaches to rare sugar production. Biotechnol Adv 2017; 35:267-274. [DOI: 10.1016/j.biotechadv.2017.01.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/30/2016] [Accepted: 01/17/2017] [Indexed: 01/02/2023]
|
46
|
Affiliation(s)
- Rui Che
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200062 China
| | - Xingui Liu
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200062 China
| | - Wei Lu
- School of Chemistry and Molecular Engineering; East China Normal University; Shanghai 200062 China
| |
Collapse
|
47
|
Masuda K, Nagatomo M, Inoue M. Direct assembly of multiply oxygenated carbon chains by decarbonylative radical–radical coupling reactions. Nat Chem 2016; 9:207-212. [DOI: 10.1038/nchem.2639] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/08/2016] [Indexed: 11/09/2022]
|
48
|
Łopatkiewicz G, Mlynarski J. Synthesis of l-Pyranosides by Hydroboration of Hex-5-enopyranosides Revisited. J Org Chem 2016; 81:7545-56. [PMID: 27504790 DOI: 10.1021/acs.joc.6b01243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extensive study of the diastereoselective synthesis of l-pyranosides utilizing hydroboration of substituted exo-glucals (5-enopyranosides) obtained from d-sugars is presented. On the basis of this study we present the empirical rules describing the reaction stereoselectivity and the correlation between the yield of the l-ido product and the size of protecting groups used. Application of these guidelines revealed that the hydroboration of methyl 2,3-O-methyl-6-deoxy-α-d-xylo-hex-5-enopyranoside resulted in exclusive formation of l-ido product with high yield. This method can be successfully applied to the synthesis of l-iduronic acid being an essential component of anticoagulant drugs with diastereoselectivity superior to previously published protocols.
Collapse
Affiliation(s)
| | - Jacek Mlynarski
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
49
|
Liu Z, Yoshihara A, Jenkinson SF, Wormald MR, Estévez RJ, Fleet GWJ, Izumori K. Triacetonide of Glucoheptonic Acid in the Scalable Syntheses of d-Gulose, 6-Deoxy-d-gulose, l-Glucose, 6-Deoxy-l-glucose, and Related Sugars. Org Lett 2016; 18:4112-5. [PMID: 27487167 DOI: 10.1021/acs.orglett.6b02041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ease of separation of petrol-soluble acetonides derived from the triacetonide of methyl glucoheptonate allows scalable syntheses of rare sugars containing the l-gluco or d-gulo structural motif with any oxidation level at the C6 or C1 position of the hexose, usually without chromatography: meso-d-glycero-d-guloheptitol available in two steps is an ideal entry point for the study of the biotechnological production of heptoses.
Collapse
Affiliation(s)
- Zilei Liu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, U.K.,Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford OX1 3QU, U.K
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University , Miki, Kagawa 761-0795, Japan
| | - Sarah F Jenkinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, U.K
| | - Mark R Wormald
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , Oxford OX1 3QU, U.K
| | - Ramón J Estévez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - George W J Fleet
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Oxford OX1 3TA, U.K
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University , Miki, Kagawa 761-0795, Japan
| |
Collapse
|
50
|
Liu Z, Yoshihara A, Kelly C, Heap JT, Marqvorsen MHS, Jenkinson SF, Wormald MR, Otero JM, Estévez A, Kato A, Fleet GWJ, Estévez RJ, Izumori K. 6-Deoxyhexoses froml-Rhamnose in the Search for Inducers of the Rhamnose Operon: Synergy of Chemistry and Biotechnology. Chemistry 2016; 22:12557-65. [PMID: 27439720 DOI: 10.1002/chem.201602482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Zilei Liu
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
- Glycobiology Institute; Department of Biochemistry; University of Oxford; Oxford OX1 3QU UK
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education; Kagawa University; Miki Kagawa 761-0795 Japan
| | - Ciarán Kelly
- Centre for Synthetic Biology and Innovation; Department of Life Sciences; Imperial College; London SW7 2AZ UK
| | - John T. Heap
- Centre for Synthetic Biology and Innovation; Department of Life Sciences; Imperial College; London SW7 2AZ UK
| | - Mikkel H. S. Marqvorsen
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | - Sarah F. Jenkinson
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | - Mark R. Wormald
- Glycobiology Institute; Department of Biochemistry; University of Oxford; Oxford OX1 3QU UK
| | - José M. Otero
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Amalia Estévez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Atsushi Kato
- Department of Hospital Pharmacy; University of Toyama; Toyama 930-0194 Japan
| | - George W. J. Fleet
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | - Ramón J. Estévez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education; Kagawa University; Miki Kagawa 761-0795 Japan
| |
Collapse
|