1
|
Chu B, Song F, Zou H. Controlled synthesis of β-cyclodextrin-based starlike helical poly(phenyl isocyanide) and its application in chiral resolution. Carbohydr Polym 2025; 357:123456. [PMID: 40158987 DOI: 10.1016/j.carbpol.2025.123456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/09/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
In an effort to expand the diversity of helical polymers exhibiting intricate structures, a strategy for the precise fabrication of β-cyclodextrin-based star polymers adorned with helical poly(phenyl isocyanide) (PPI) arms has been successfully realized through the integration of isocyanide polymerization and atom transfer radical polymerization (ATRP). An elegant β-cyclodextrin embellished with 7 Pd(II) complexes on one side and 14 bromine groups on the other side, denoted as ((Pd(II))7-CD-(Br)14), was initially synthesized. Subsequently, the (PPI)7-CD-(Br)14 was synthesized through the polymerization of the phenyl isocyanide monomer initiated with (Pd(II))7-CD-(Br)14. Finally, starlike PPI was obtained by ATRP of 1,2-diacrylyl ethane initiated via the macro-initiator of (PPI)7-CD-(Br)14. Circular dichroism measurement analysis indicated that the obtained starlike PPI exhibited a consistent helical conformation with a preferred handedness, and it was revealed that the helical structure of starlike PPI originated from the PPI backbone, rather than intermolecular aggregation in solutions. Furthermore, the starlike PPI demonstrated excellent efficacy in the chiral resolution of racemic compounds, achieving an enantiomeric excess (e.e.) of 92 % for threonine racemates when used as a chiral resolution agent.
Collapse
Affiliation(s)
- Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 23200, Anhui, China.
| | - Feiyang Song
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 23200, Anhui, China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| |
Collapse
|
2
|
Ediriweera GR, Li M, Fletcher NL, Houston ZH, Ahamed M, Blakey I, Thurecht KJ. Harnessing nanoparticles and bioorthogonal chemistries for improving precision of nuclear medicine. Biomater Sci 2025; 13:2297-2319. [PMID: 40135276 DOI: 10.1039/d4bm01387e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The convergence of nanotechnology, radiopharmaceutical development and molecular imaging has unveiled exciting opportunities for the progress of innovative diagnostic and therapeutic strategies, paving the way for significant advancements in biomedical research, especially in relation to cancer. For example, the use of highly sensitive and quantitative nuclear imaging techniques including PET and SPECT, together with nanoparticles for tumour imaging and therapy has recently expanded rapidly. While the long circulating properties of many nanomaterials are beneficial for prodrug chemotherapy formulations, due to the constant decay processes involved in nuclear medicines, directly labelled materials result in prolonged systemic radiation exposure and reduced therapeutic indices due to the unfavourable target-to-background ratios. This is due to the tendency for long circulating nanomaterials to distribute within the blood to other organs, such as the liver and spleen. The recent integration of bioorthogonal chemistry with nanotechnology and molecular imaging/radiotherapy has revolutionized the field by allowing the decoupling of the targeting molecule (i.e. nanomaterial with a bioorthogonal tag) and the imaging/therapeutic radioisotope. In this way, the detection/therapeutic element can be administered as a secondary "chase" molecule that contains the bioorthogonal partner, thereby creating an avenue to improve therapeutic index and provide imaging and treatments with reduced risk. This review will provide an overview of the progress made thus far in the field of nuclear imaging and radiotherapy for cancer using the combination of nanomaterials and bioorthogonal chemistry. We also provide a critical evaluation of the challenges and opportunities for using these approaches to better understand disease and treatment mechanisms, with the potential for downstream clinical translation.
Collapse
Affiliation(s)
- Gayathri R Ediriweera
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mengdie Li
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Nicholas L Fletcher
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zachary H Houston
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Muneer Ahamed
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Idriss Blakey
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- ARC Research Hub for Advanced Manufacture of Targeted Radiopharmaceuticals, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
3
|
Xu G, Tang G, Bai H. Cyclodextrin-Initiated N-Carboxyanhydride Polymerization for the Design of Stereostructural Dobby Polypeptides with Jellyfish-Type Architecture. Angew Chem Int Ed Engl 2025; 64:e202501058. [PMID: 39979214 DOI: 10.1002/anie.202501058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/22/2025]
Abstract
Strict criteria of biomedical materials in synthesis efficiency, structure determinacy, and biological safety pose formidable challenges for the synthesis of dobby polypeptides. Herein we reported a cyclodextrin (CD)-initiated, 1,1,3,3-Tetramethylguanidine (TMG)-catalyzed one-step N-carboxyanhydride (NCA) ring-opening polymerization (ROP) strategy to synthesize a series of dobby polypeptides that fulfill the criteria of biomedical materials. By leveraging TMG's catalytic mechanisms in nucleophilicity enhancement for CD hydroxyl groups and active center creation for NCA monomers, this strategy achieves efficient NCA polymerization within 2 hours and high monomer conversion up to 93.5 %. Meticulous characterizations illustrate that CD-centric polypeptides present jellyfish-type stereochemical structures, in which the arm number, length, orientation and initiation sites are precisely determined. Simultaneously, CD-centric polypeptides possess excellent self-assembling capacities to guide nanostructure fabrication, exhibiting broad-spectrum small-molecule drug encapsulation. Additionally, natural CD applied in multipoint initiation of core-first NCA ROP fundamentally improves the biodegradability and biosafety of dobby polypeptides, thus facilitating their biomedical applications.
Collapse
Affiliation(s)
- Guoqiao Xu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Swain A, Das Anthuparambil N, Begam N, Chandran S, Basu JK. Harnessing interfacial entropic effects in polymer grafted nanoparticle composites for tailoring their thermo-mechanical and separation properties. SOFT MATTER 2025. [PMID: 40266282 DOI: 10.1039/d4sm01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Nanocomposites based on polymeric materials have been extensively studied to understand and control the thermodynamics, flow, and mechanical properties of the underlying matrix as well to create new materials with diverse optical, electrical, magnetic, separation, catalytic, and biomedical properties. In the form of thin films or membranes, such materials can impart remarkable improvements in various properties of the underlying substrates. Using nanoparticles with grafted polymer chains usually overcomes a major hurdle in achieving enhancements in various properties by enabling better dispersion in the matrix while at the same time introducing a new parameter - interfacial entropy - leading to the emergence of new parameter space for tuning dispersion, flow and thermal properties. In this article, we highlight how this interfacial entropic effect can be harnessed to control various properties in thin films and membranes of grafted nanoparticle composites, in particular their thermo-mechanical properties, viscosity, fragility, glass transition temperature (Tg), and dynamic heterogeneity as well as their ability to act as highly selective gas separation and water desalination membranes. We discuss the application of a range of experimental techniques as well as molecular dynamics simulation to extract these properties and obtain microscopic insight into how the interplay of various surface and interfacial effects lies at the centre of these significant property improvements and enhanced functionality. Finally, we provide an outlook on future opportunities for designing sustainable PNCs, emphasizing their potential in environmental, energy, and biomedical applications, with advanced experiments and modelling driving further innovations.
Collapse
Affiliation(s)
- Aparna Swain
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| | - Nimmi Das Anthuparambil
- Department of Physics, Universität Siegen, Walter-Flex-Str. 3, 57072 Siegen, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nafisa Begam
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sivasurender Chandran
- Soft and Biological Matter Laboratory, Department of Physics, Indian Institute of Technology, Kanpur-208016, India.
| | - J K Basu
- Department of Physics, Indian Institute of Science Bangalore, 560012, India.
| |
Collapse
|
5
|
Wei Y, Wang M. Tumor-Targeting Theranostic Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7928-7945. [PMID: 40118780 DOI: 10.1021/acs.langmuir.4c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Theranostic polymers have emerged as a versatile platform in cancer nanomedicine, integrating therapeutic and imaging functionalities to overcome challenges in oncology. Featuring diverse architectures such as linear polymers, dendrimers, star-like polymers, and bottle-brush polymers, these systems enable tumor-targeted drug delivery, real-time imaging, and controlled release. Recent advances in stimuli-responsive designs and biomimetic strategies have improved their specificity, stability, and adaptability, outperforming conventional nanocarriers. This review summarizes the design, synthesis, and biomedical applications of theranostic polymers, focusing on their potential to address tumor heterogeneity and biological barriers. The challenges of biocompatibility, immunogenicity, and clinical translation are discussed, with a perspective toward future developments in precision medicine and imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Ying Wei
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Mingfeng Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
6
|
Ren M, Liu D, Qin F, Chen X, Ma W, Tian R, Weng T, Wang D, Astruc D, Liang L. Single-molecule resolution of macromolecules with nanopore devices. Adv Colloid Interface Sci 2025; 338:103417. [PMID: 39889505 DOI: 10.1016/j.cis.2025.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Nanopore-based electrical detection technology holds single-molecule resolution and combines the advantages of high sensitivity, high throughput, rapid analysis, and label-free detection. It is widely applied in the determination of organic and biological macromolecules, small molecules, and nanomaterials, as well as in nucleic acid and protein sequencing. There are a wide variety of organic polymers and biopolymers, and their chemical structures, and conformation in solution directly affect their ensemble properties. Currently, there is limited approach available for the analysis of single-molecule conformation and self-assembled topologies of polymers, dendrimers and biopolymers. Nanopore single-molecule platform offers unique advantages over other sensing technologies, particularly in molecular size differentiation of macromolecules and complex conformation analysis. In this review, the classification of nanopore devices, including solid-state nanopores (SSNs), biological nanopores, and hybrid nanopores is introduced. The recent developments and applications of nanopore devices are summarized, with a focus on the applications of nanopore platform in the resolution of the structures of synthetic polymer, including dendritic, star-shaped, block copolymers, as well as biopolymers, including polysaccharides, nucleic acids and proteins. The future prospects of nanopore sensing technique are ultimately discussed.
Collapse
Affiliation(s)
- Meili Ren
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China; Chongqing Jiaotong University, Chongqing 400014, PR China
| | - Daixin Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Xun Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Wenhao Ma
- Chongqing University, Chongqing 400044, China
| | - Rong Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Ting Weng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Deqang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Didier Astruc
- University of Bordeaux, ISM UMR CNRS 5255, 33405 Talence Cedex, France.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China.
| |
Collapse
|
7
|
Zhang M, Armes SP, An Z. Synthesis of Star Polymers with Ultrahigh Molecular Weights and Tunable Dispersities via Photoiniferter Polymerization. ACS Macro Lett 2025; 14:306-312. [PMID: 39981946 DOI: 10.1021/acsmacrolett.5c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Simultaneous control over macromolecular chain topology, molecular weight, and dispersity is an important synthetic goal in polymer chemistry. The synthesis of well-defined poly(methyl acrylate) star polymers with ultrahigh molecular weights (>106 g mol-1) and tunable dispersities is realized for the first time via blue light-controlled photoiniferter polymerization using a tetrafunctional switchable RAFT agent (SRA4). The spectroscopic properties and polymerization activity of SRA4 can be reversibly tuned by addition of acid/base. For example, protonation of SRA4 with 4-toluenesulfonic acid (TsOH) leads to enhanced UV-visible light absorption, a faster polymerization rate, and a lower dispersity for the resulting star polymer. Star polymers were prepared with predicted molecular weights (Mn ≈ 80-1550 kg mol-1) and tunable dispersities (Đ ≈ 1.8-1.2) when targeting degrees of polymerization in the range of 1000-20000 in the presence of varying amounts of TsOH. High end-group fidelity for such star polymers was confirmed by one-pot chain extension experiments, which afforded a series of pseudoblock copolymers with controlled dispersities. Finally, rotational rheology was used to examine the effect of molecular weight, dispersity, and chain topology (whether linear or star-shaped) on solution viscosity.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Steven P Armes
- School of Mathematical and Physical Sciences, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Mobley E, Lin EY, Sletten EM. Chromenylium Star Polymers: Merging Water Solubility and Stealth Properties with Shortwave Infrared Emissive Fluorophores. ACS CENTRAL SCIENCE 2025; 11:208-218. [PMID: 40028351 PMCID: PMC11869135 DOI: 10.1021/acscentsci.4c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 03/05/2025]
Abstract
Fluorescence imaging in the shortwave infrared (SWIR) region has emerged as a vital tool for studying mammals. SWIR emissive polymethine dyes are well-suited to this endeavor; however, advancing in vivo imaging utility with these dyes is primarily limited by hydrophobicity and/or nonspecific protein association. Herein, we take a distinct approach to combine hydrophilicity and stealth behavior to construct bright, SWIR emissive chromenylium fluorophores by employing a well-defined poly(2-methyl-2-oxazoline) (POx) star polymer architecture, which we refer to as chromenylium stars, or "CStars." Of these polymer-shielded dyes, the variant containing five POx chains (CStar30) boasts particularly enhanced aqueous solubility and SWIR brightness, enabling high-resolution SWIR imaging in mice. The swift renal clearance and stealth behavior displayed in vivo also achieves improved noninvasive visualization of the lymphatic system. Further, CStar's orthogonal biodistribution to an FDA-approved dye, indocyanine green (ICG), facilitates excitation-multiplexed SWIR imaging in two colors to achieve simultaneous visualization of both fluid dynamics and protein dynamics in the same animal in real time at video-rate frame counts.
Collapse
Affiliation(s)
- Emily
B. Mobley
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Eric Y. Lin
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ellen M. Sletten
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Li F, Liang H, Li H, Tang Y. Construction of UCST-Responsive Claw-Like Polysulfobetaines for Efficient Capture of Cellulase. Chemistry 2025; 31:e202404167. [PMID: 39777747 DOI: 10.1002/chem.202404167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
The high cost of enzymatic glycolysis has seriously restricted the industrialization of lignocellulose-based sugar platform technology. Recovering and recycling cellulase can reduce the cost. Here, a thermo-responsive claw-type polysulfobetaine (PSPA) was constructed for hydrophobic grasping and efficient recycling of cellulase. Compared with the linear sulfobetaine homopolymer (PSPE), PSPA had more sensitive temperature response and strong cellulase recovery ability. PSPE-3 (Mw=355.1 kDa) was added to the hydrolysis system of corncob residue (CCR) (50 °C), at 0.4 mass ratio of PSPE-3 to cellulase, and after enzymatic hydrolysis, 50 % of the cellulase was saved when cooling to 25 °C. But only 0.05 times PSPA-1 (Mw=30.0 kDa) was added to the CCR system, and 70 % of the cellulase was saved when cooling to 25 °C. This work presents a claw shaped protein-capture agent, polysulfobetaine for capturing cellulase, which is of great significance to reduce the lignocellulosic hydrolysis cost, and efficiently separate enzyme proteins.
Collapse
Affiliation(s)
- Feiyun Li
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huinan Liang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Helin Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanjun Tang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
10
|
Pagnacco CA, Alvarez‐Fernandez A, Maestro A, González de San Román E, Lund R, Barroso‐Bujans F. Varying the Core Topology in All-Glycidol Hyperbranched Polyglycerols: Synthesis and Physical Characterization. Macromol Rapid Commun 2025; 46:e2400791. [PMID: 39501609 PMCID: PMC11841663 DOI: 10.1002/marc.202400791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 02/21/2025]
Abstract
In the present study, low molecular weight cyclic polyglycidol is used as a macroinitiator for hypergrafting glycidol and producing cyclic graft hyperbranched polyglycerol (cPG-g-hbPG) in the molecular weight range of 103-106 g mol-1. Linear graft hyperbranched polyglycerol (linPG-g-hbPG) and hyperbranched polyglycerol (hbPG) are prepared as reference samples. This creates a family of hbPG structures with cyclic, linear, and star cores, allowing to evaluate their properties in solution and in bulk. The morphology study of the high molecular weight structures using atomic force microscopy revealed a spherical shape for cPG-g-hbPG and hbPG, and a cylindrical shape for linPG-g-hbPG in the nanometric range. Small angle X-ray scattering confirmed the compact particle-like structure of this family of hbPG architectures. Interestingly, the glass transition temperature showed a structure dependence, with cPG-g-hbPG having the highest values and hbPG having the lowest values for the same molecular weight. This study is a step forward in the generation of water-soluble polymers with tailored structure and functionality for advanced applications.
Collapse
Affiliation(s)
- Carlo Andrea Pagnacco
- Donostia International Physics Center (DIPC)Paseo Manuel Lardizábal 4Donostia−San Sebastián20018Spain
- Materials Physics CenterCSIC‐UPV/EHUPaseo Manuel Lardizábal 5Donostia−San Sebastián20018Spain
- PMASFaculty of ChemistryUniversity of the Basque Country (UPV/EHU)Paseo Manuel Lardizábal 3Donostia−San Sebastián20018Spain
| | | | - Armando Maestro
- Materials Physics CenterCSIC‐UPV/EHUPaseo Manuel Lardizábal 5Donostia−San Sebastián20018Spain
- IKERBASQUE – Basque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | | | - Reidar Lund
- Department of ChemistryUniversity of OsloPostboks 1033BlindernOslo0315Norway
- Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloPostboks 1033BlindernOslo0315Norway
| | - Fabienne Barroso‐Bujans
- Donostia International Physics Center (DIPC)Paseo Manuel Lardizábal 4Donostia−San Sebastián20018Spain
- Materials Physics CenterCSIC‐UPV/EHUPaseo Manuel Lardizábal 5Donostia−San Sebastián20018Spain
- IKERBASQUE – Basque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| |
Collapse
|
11
|
Shimony N, Gross A, Mizrahi B. Mineral Plastics and Gels from Multi-Arm Ionomers. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400244. [PMID: 39925667 PMCID: PMC11802327 DOI: 10.1002/gch2.202400244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/18/2024] [Indexed: 02/11/2025]
Abstract
Plastic production and waste are a growing menace that affects the soil, the marine environment, and the air in a cumulative manner. The demand for mineral and bioplastics from renewable and biodegradable materials has therefore increased in all relevant sectors. The use of currently available degradable plastics is, however, limited by their poor mechanical properties and high production costs. In addition, many of today's plastics undergo uncontrolled biodegradation processes that involve harsh or expensive conditions and which may last from months to years. Here, the advantages of using multi-arm polymers for the production of sustainable mineral plastics are presented. A 4-arm poly(acrylic acid) is synthesized via atom transfer radical polymerization and is reacted with divalent calcium ions to obtain semi-liquid hydrogel or degradable plastic when dried. The mechanical properties of the different phases are evaluated and compared with linear poly(acrylic acid) of the same molecular weight. The multi-arm approach yielded improved mechanical characteristics, including self-healing and biodegradation without compromising other typical hydrogel characteristics. This concept of synthesizing multi-arm polymers with improved characteristics from building blocks of traditionally linear structures may be applicable to other mineral and bioplastic materials including acrylates, polysaccharides, and DNA.
Collapse
Affiliation(s)
- Neta Shimony
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of Technology, Technion CityHaifa3200003Israel
| | - Adi Gross
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of Technology, Technion CityHaifa3200003Israel
| | - Boaz Mizrahi
- Faculty of Biotechnology and Food EngineeringTechnion – Israel Institute of Technology, Technion CityHaifa3200003Israel
| |
Collapse
|
12
|
Aliakseyeu A, Truong E, Hu YY, Sayko R, Dobrynin AV, Sukhishvili SA. Self-Diffusion of Star and Linear Polyelectrolytes in Salt-Free and Salt Solutions. Macromolecules 2025; 58:240-248. [PMID: 39831289 PMCID: PMC11741142 DOI: 10.1021/acs.macromol.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
This work explored solution properties of linear and star poly(methacrylic acids) with four, six, and eight arms (LPMAA, 4PMAA, PMAA, and 8PMAA, respectively) of matched molecular weights in a wide range of pH, salt, and polymer concentrations. Experimental measurements of self-diffusion were performed by fluorescence correlation spectroscopy (FCS), and the results were interpreted using the scaling theory of polyelectrolyte solutions. While all PMAAs were pH sensitive and showed an increase in hydrodynamic radius (R h) with pH in the dilute regime, the R h of star polymers (measured at basic pH values) was significantly smaller for the star polyacids due to their more compact structure. Fully ionized star PMAAs were also found to be less sensitive to changes in salt concentration and type of the counterion compared to linear PMAA. While R h of fully ionized linear PMAA decreased in the series Li+ > Na+ > K+ > Cs+ in agreement with the Hofmeister series, R h of star PMAAs was virtually independent of type of the counterion for eight-arm PMAA. However, molecular architecture strongly affected interactions of counterions with PMAAs. In particular, 7Li NMR revealed that the spin-lattice relaxation time T 1 of Li+ ions in low-salt solutions of eight-arm PMAA was ∼2-fold smaller than that in the solution of linear PMAA, suggesting slower Li+-ion dynamics within star polymers. An increase in concentration of monovalent chloride salts, c s, above that of the PMAA monomer unit concentration (c m) resulted in shrinking of both linear and star molecules, with the hydrodynamic size R h scaling as R h ∝ c s -0.11±0.01. Self-diffusion of linear and star polyelectrolytes was then studied in a wide range of polyelectrolyte concentrations (10-3 mol/L < c m < 0.5 mol/L) in low-salt (<10-4 mol/L of added salt) and high-salt (1 mol/L) solutions. In both the low-salt and high-salt regimes, diffusion coefficient D was lower for PMAAs with a larger number of arms at a fixed c m. In addition, in both cases, D plateaued at low polymer concentrations and decreased at higher polymer concentrations. However, while in the high-salt conditions, the concentration dependence of D reflected transitions between the dilute to semidilute solution regimes as expected for neutral chains in good and theta solvents, analysis of the diffusion data in the low-salt conditions using the scaling theory revealed a different origin of the concentration dependence of D. Specifically, in the low-salt solutions, both linear and star PMAAs exhibited unentangled (Rouse-like) dynamics in the entire range of polyelectrolyte concentrations.
Collapse
Affiliation(s)
- Aliaksei Aliakseyeu
- Department
of Materials Science & Engineering, Texas A&M University, College
Station, Texas 77840, United States
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Erica Truong
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - Yan-Yan Hu
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
- Center of
Interdisciplinary Magnetic Resonance, the
National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Ryan Sayko
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27529, United States
| | - Andrey V. Dobrynin
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27529, United States
| | - Svetlana A. Sukhishvili
- Department
of Materials Science & Engineering, Texas A&M University, College
Station, Texas 77840, United States
| |
Collapse
|
13
|
Jafari VF, Nour S, Wylie RAL, Heath DE, Qiao GG. Robot-Assisted Synthesis of Structure-Controlled Star-Cluster Hydrogels with Targeted Mechanophysical Properties for Biomedical Applications. Biomacromolecules 2025; 26:311-322. [PMID: 39715067 DOI: 10.1021/acs.biomac.4c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Advancements in polymer chemistry have enabled the design of macromolecular structures with tailored properties for diverse applications. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a controlled technique for precise polymer design. Automation tools further enhance polymer synthesis by enabling the rapid, reproducible preparation of polymer libraries. This study utilizes an automated platform and a biologically friendly bio-Fenton RAFT synthesis method to create hydrogels with embedded star polymers derived from complex block copolymers with controlled block lengths and sequences. Automation improves the efficiency compared to manual methods, while the choice of prepolymer and polymerization techniques ensures biocompatibility. Hydrogels formed by cross-linking linear block copolymers exhibit tunable physical, chemical, and mechanical properties. By systematically altering the prepolymer block sequences, promising hydrogel candidates for enhanced cell biocompatibility and proliferation are identified. These synthetic hydrogels mimic cellular microenvironments and offer a robust platform for biomedical applications, paving the way for an efficient hydrogel design and synthesis.
Collapse
Affiliation(s)
- Vianna F Jafari
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Melbourne 3010, Australia
| | - Shirin Nour
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Melbourne 3010, Australia
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne 3010, Australia
| | - Ross A L Wylie
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Melbourne 3010, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne 3010, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
14
|
Laroque S, Locock KES, Perrier S. Cationic Star Polymers Obtained by the Arm-First Approach─Influence of Arm Number and Positioning of Cationic Units on Antimicrobial Activity. Biomacromolecules 2025; 26:190-200. [PMID: 39620381 PMCID: PMC11733951 DOI: 10.1021/acs.biomac.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 01/14/2025]
Abstract
Recently, we published a study demonstrating the promising structure-activity relationship of 4-arm star polymers toward bacterial cells and biofilms. The aim of this study was to increase the number of arms to determine if this could further enhance activity via the arm-first approach, which enables access to star structures with a higher number of arms. A library of amphiphilic diblock and miktoarm star polymers was successfully synthesized, and their biological properties were assessed. The increased number of arms failed to increase activity for the diblock stars, possibly due to shielding of the cationic units located at the core from binding to the membrane, which was slightly improved for the miktoarm structures. However, the efficient synthesis of these structures shown herein could be used to synthesize star polymers with a higher cationic ratio or longer arms, thereby circumventing the limitation of reduced interaction of cationic units with the membrane.
Collapse
Affiliation(s)
- Sophie Laroque
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | | | - Sébastien Perrier
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Division
of Biomedical Science, Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K.
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
15
|
Traeger A, Leiske MN. The Whole Is Greater than the Sum of Its Parts - Challenges and Perspectives in Polyelectrolytes. Biomacromolecules 2025; 26:5-32. [PMID: 39661745 PMCID: PMC11733940 DOI: 10.1021/acs.biomac.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Polyelectrolytes offer unique properties for biological applications due to their charged nature and high water solubility. Here, the challenges in their synthesis and characterization techniques are reviewed, emphasizing that their strong interactions with the surrounding media and counterions must be considered when working with this interesting class of materials. Their potential in complexation for gene delivery, their unique stealth and anti-fouling properties, and their more specific interactions with amino acid transporters for cancer therapy are highlighted. The underlying mechanisms responsible for their biological efficacy, including the proton sponge effect for endosomal release and their interactions with cellular membranes, are addressed. For polyelectrolytes with a high level of usage, an overview is given of their historical context. This Perspective outlines the potential of polyelectrolytes for innovative applications in the field of biomedicine. Considering the physicochemical characteristics of this class of materials, this work strives to elucidate the distinctive properties and applications of polyelectrolytes.
Collapse
Affiliation(s)
- Anja Traeger
- Institute
of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center
for Soft Matter (JCSM), Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Meike N. Leiske
- Macromolecular
Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Bavarian
Polymer Institute, 95447 Bayreuth, Germany
| |
Collapse
|
16
|
Abtahi S, Hendeniya N, Mahmud ST, Mogbojuri G, Iheme CL, Chang B. Metal-Coordinated Polymer-Inorganic Hybrids: Synthesis, Properties, and Application. Polymers (Basel) 2025; 17:136. [PMID: 39861209 PMCID: PMC11768156 DOI: 10.3390/polym17020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes. In contrast, heterogeneous methods are post-processing techniques that provide high area selectivity for inorganic precursors, allowing precise integration within polymer matrices. Finally, we highlight the role of hybrid linkers, namely metallosupramolecular polymers, in creating structural diversity. These can be organized into three main groups: metal-organic frameworks (MOFs), coordination polymers (CPs), and supramolecular coordination complexes (SCCs). Each of these groups introduces unique structural and functional properties that expand the potential applications of hybrid materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Boyce Chang
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
17
|
Ahmetali E, Kocaarslan A, Bräse S, Théato P, Kasım Şener M. Zinc Phthalocyanine Core-First Star Polymers Through Nitroxide Mediated Polymerization and Nitroxide Exchange Reaction. Macromol Rapid Commun 2025; 46:e2400601. [PMID: 39340483 PMCID: PMC11713867 DOI: 10.1002/marc.202400601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 09/30/2024]
Abstract
Nitroxide-mediated polymerization (NMP) and nitroxide exchange reaction (NER) are very efficient methodologies that require only suitable alkoxyamine derivatives and create different polymeric architectures in a controlled manner. Herein, the synthesis of star polymers containing TEMPO-substituted symmetric zinc phthalocyanine (ZnPc) is presented via NMP and NER. Moreover, linear polymer formation is conducted in a single arm on TEMPO-substituted asymmetric ZnPc to elucidate the properties of star polymers. All linear and star polymers are characterized by FT-IR, UV-vis, fluorescence, GPC, NMR, and EPR techniques. The results show that the proposed reactions are capable of forming controlled star-shaped polymers. The increasing arm number (from a single to four arms) results in variable dispersity values (Đ) (1.2-3) due to different arm lengths, especially in NMP. However, this difficulty has been overcome via NER, and star polymers have been successfully synthesized with relatively low molecular weight (30 K > 10 K) and low dispersity (1.2-1.9). The results clearly indicate that while styrene and 4-vinyl benzyl chloride monomers are introduced to the structure equally, star polymers with phthalocyanine can be synthesized in a controlled manner, and their quarternized derivatives have the potential to be effective as photoactive agents in photodynamic therapy.
Collapse
Affiliation(s)
- Erem Ahmetali
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Kaiserstraße 1276131KarlsruheGermany
- Department of ChemistryYıldız Technical UniversityIstanbul34210Turkey
| | - Azra Kocaarslan
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1876131KarlsruheGermany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Kaiserstraße 1276131KarlsruheGermany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Patrick Théato
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1876131KarlsruheGermany
- Soft Matter Synthesis Laboratory – Institute for Biological Interfaces III (IBG‐3)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - M. Kasım Şener
- Department of ChemistryYıldız Technical UniversityIstanbul34210Turkey
| |
Collapse
|
18
|
Meng X, Wang X, Zhang Z, Song L, Chen J. Recent Advancements of Nanomedicine in Breast Cancer Surgery. Int J Nanomedicine 2024; 19:14143-14169. [PMID: 39759962 PMCID: PMC11699852 DOI: 10.2147/ijn.s494364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer surgery plays a pivotal role in the multidisciplinary approaches. Surgical techniques and objectives are gradually shifting from tumor complete resection towards prolonging survival, improving cosmetic outcomes, and restoring the social and psychological well-being of patients. However, surgical treatment still faces challenges such as inadequate sensitivity in sentinel lymph node localization, the need to improve intraoperative tumor boundary localization imaging, postoperative scar healing, and the risk of recurrence, necessitating other adjunct measures for improvement. To address these challenges, specificity-optimized nanomedicines have been introduced into the surgical therapeutic landscape of breast cancer. In particular, this review involves starting with an overview of breast structure and the composition of the tumor microenvironment and then introducing the guiding principle and foundation for the design of nanomedicine. Moreover, we will take the order process of breast cancer surgery diagnosis and treatment as the starting point, and adaptively propose the roles and advantages of nanomedicine in addressing the corresponding issues. Furthermore, we also involved the prospects of utilizing advanced technological approaches. Overall, this review seeks to uncover the sophisticated design and strategies of nanomedicine from a clinical standpoint, address the challenges faced in surgical treatment, and provide insights into this subject matter.
Collapse
Affiliation(s)
- Xiangyue Meng
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xin Wang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zhihao Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Linlin Song
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jie Chen
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
19
|
Kozhunova EY, Sentyurin VV, Inozemtseva AI, Nikolenko AD, Khokhlov AR, Magdesieva TV. Redox-Active Water-Soluble Low-Weight and Polymer-Based Anolytes Containing Tetrazine Groups: Synthesis and Electrochemical Characterization. Polymers (Basel) 2024; 17:60. [PMID: 39795463 PMCID: PMC11722628 DOI: 10.3390/polym17010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Polymer-based aqueous redox flow batteries (RFBs) are attracting increasing attention as a promising next-generation energy storage technology due to their potential for low cost and environmental friendliness. The search for new redox-active organic compounds for incorporation into polymer materials is ongoing, with anolyte-type compounds in high demand. In response to this need, we have synthesized and tested a range of new water-soluble redox-active s-tetrazine derivatives, including both low molecular weight compounds and polymers with different architectures. S-tetrazines are some of the smallest organic molecules that can undergo a reversible two-electron reduction in protic media, making them a promising candidate for anolyte applications. We have successfully modified linear polyacrylic acid and poly(N-isopropylacrylamide-co-acrylic acid) microgels with pendent 1,2,4,5-tetrazine groups. Electrochemical testing has shown that the new tetrazine-containing monomers and, importantly, the water-soluble redox polymers, both linear and microgel, demonstrate the chemical reversibility of the reduction process in an aqueous solution containing acetate buffer. This expands the range of water-soluble anodic materials suitable for water-based organic RFBs. The reduction potential value can be adjusted by changing the substituents in the tetrazine core. It is also worth noting that the choice of electrode material plays an important role in the kinetics of the tetrazine reaction: the use of carbon electrodes is particularly beneficial.
Collapse
Affiliation(s)
- Elena Yu. Kozhunova
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.S.); (A.I.I.); (A.D.N.)
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vyacheslav V. Sentyurin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.S.); (A.I.I.); (A.D.N.)
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alina I. Inozemtseva
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.S.); (A.I.I.); (A.D.N.)
- N.N. Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russia
| | - Anatoly D. Nikolenko
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.S.); (A.I.I.); (A.D.N.)
- N.N. Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russia
| | - Alexei R. Khokhlov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia; (V.V.S.); (A.I.I.); (A.D.N.)
| | | |
Collapse
|
20
|
Shen L, Wang P, Xiang S, Zhao S, Fu F, Dong Q, Liu X. Janus Structure Construction of Polyester-Cotton Fabrics for Achieving Excellent Moisture, Moisture-Permeability, and Antibacterial Capability. Macromol Rapid Commun 2024; 45:e2400556. [PMID: 39283827 DOI: 10.1002/marc.202400556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/25/2024] [Indexed: 12/11/2024]
Abstract
Integration of hydrophobic and antibacterial functionalities into polyester-cotton blended (PTCO) textiles has attracted more attention but remains a challenge. Here, a Janus fabric with antibacterial effect, hydrophobicity, and enhanced moisture-permeability is fabricated using a "mist polymerization" approach. The PET fibers in the PTCO fabric are amino-functionalized through ammonolysis reactions of PET molecules with HDA, and mist treatments of poly lauryl methacrylate (PLMA) and poly(DMC-co-MA) (PDM) are applied on the two side surfaces of the PTCO-HDA fabric, respectively. The resulting Janus fabric exhibits an antibacterial rate of 99.9% against both E. coli and S. aureus, along with a hydrophobic property on its single side (PTCO-HDA@PLMA). Additionally, the establishment of a surface-free energy gradient across the fabric confers superior moisture-permeability to the Janus fabric, offering advantages in preserving textile comfort. Moreover, this approach does not significantly compromise the original fabric properties, such as mechanical strength, moisture permeability, and fabric softness. The proposed method offers a straightforward and scalable strategy for textile finishing, demonstrating great potential in expanding the application scope of PTCO fabrics, and it may hold a pivotal role in diverse applications, notably encompassing home textiles, wound dressings, and high-performance sportswear.
Collapse
Affiliation(s)
- Liwen Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Pei Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuangfei Xiang
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, 700 Yuhui Road, Keqiao District, Shaoxing, 312030, China
| | - Shujun Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Feiya Fu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qingqi Dong
- Zhe Jiang Hengyi High-Tech Materials Co. Ltd., No. 11268, Red 15th Line, Qiantang New Area, Hangzhou, 311228, China
| | - Xiangdong Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
21
|
Malhotra M, Pardasani M, Pathan S, Srikanth P, Shaw K, Abraham NM, Jayakannan M. Star-polymer unimolecular micelle nanoparticles to deliver a payload across the blood-brain barrier. NANOSCALE 2024; 16:21582-21593. [PMID: 39494464 PMCID: PMC11533066 DOI: 10.1039/d4nr02636e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Nanocarrier-mediated therapeutic delivery to brain tissue is impeded by tightly controlled transportation across the blood-brain barrier (BBB). Herein, we report a well-defined core-shell star-shaped unimolecular micelle (star-UMM; a single polymer entity) as an efficient BBB-breaching nanoparticle for brain-specific administration of the fluorescent anticancer drug doxorubicin and in vivo mapping of brain tissues by the near-infrared biomarker IR780 in mice. The star-UMM was engineered by precisely programming the polymer topology having hydrophobic and hydrophilic polycaprolactone blocks and in-built with lysosomal enzyme-biodegradation stimuli to deliver the payloads at intracellular compartments. In vivo imaging in mice revealed prolonged circulation of star-UMM in blood for >72 h, and whole-organ image-quantification substantiated its efficient ability to breach the BBB. Star UMM exhibited excellent stability in blood circulation and reduced cardiotoxicity, was non-hemolytic, had substantial uptake in the cortical neurons of the mouse brain, had lysosomal enzymatic-biodegradation, and exhibited negligible immunogenicity or necrosis. This newly designed star-UMM could have long-term applications in brain-specific drug delivery.
Collapse
Affiliation(s)
- Mehak Malhotra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Meenakshi Pardasani
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Priyadharshini Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Karishma Shaw
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Nixon M Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| |
Collapse
|
22
|
Ghosh R, Pathan S, Jayakannan M. Structural Engineering of Cationic Block Copolymer Architectures for Selective Breaching of Prokaryotic and Eukaryotic Biological Species. ACS APPLIED BIO MATERIALS 2024; 7:7062-7075. [PMID: 39422071 DOI: 10.1021/acsabm.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Positively charged antimicrobial polymers are known to cause severe damage to biological systems, and thus synthetic strategies are urgently required to design next-generation nontoxic cationic macromolecular architectures for healthcare applications. Here, we report a structural-engineering strategy to build cationic linear and star-block copolymer nanoarchitectures having identical chemical composition, molar mass, nanoparticle size, and positive surface charge, yet they differ distinctly in their biological action in breaching prokaryotic species such as E. coli (Gram-negative bacteria) without affecting eukaryotic species like red-blood and mammalian cells. For this purpose, linear and star-block structures are built on a polycaprolactone biodegradable platform having an imidazolium positive handle. Under physiological conditions, the linear architecture exhibits toxicity indiscriminately to all biological species, whereas its star counterpart is remarkably selective in membrane breaching action toward bacteria while maintaining inertness toward eukaryotic species. Confocal microscopy analysis of HPTS fluorescent dye-loaded star-polymer nanoparticles substantiated their antimicrobial action in E. coli. Tissue-penetrable near-infrared fluorescent dye (IR-780) loaded NP aided the in vivo biodistribution analysis and ex vivo quantification of cationic species' accumulations in vital organs in mice. Azithromycin, a clinical water-insoluble macrolide, is delivered from the star platform to accomplish synergistic antimicrobial activity by the combination of bactericidal-bacteriostatic action of the polymer carrier and drug together in a single system.
Collapse
Affiliation(s)
- Ruma Ghosh
- Department of Chemistry Indian Institute of Science Education and Research (IISER Pune) Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Shahidkhan Pathan
- Department of Chemistry Indian Institute of Science Education and Research (IISER Pune) Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry Indian Institute of Science Education and Research (IISER Pune) Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
23
|
Han PC, Chuang CH, Lin SW, Xiang X, Wang Z, Kuzumoto M, Tokuda S, Tateishi T, Legrand A, Tsang MY, Yang HC, Wu KCW, Urayama K, Kang DY, Furukawa S. Phase-transformable metal-organic polyhedra for membrane processing and switchable gas separation. Nat Commun 2024; 15:9523. [PMID: 39537589 PMCID: PMC11560977 DOI: 10.1038/s41467-024-53560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
The capability of materials to interconvert between different phases provides more possibilities for controlling materials' properties without additional chemical modification. The study of state-changing microporous materials just emerged and mainly involves the liquefication or amorphization of solid adsorbents into liquid or glass phases by adding non-porous components or sacrificing their porosity. The material featuring reversible phases with maintained porosity is, however, still challenging. Here, we synthesize metal-organic polyhedra (MOPs) that interconvert between the liquid-glass-crystal phases. The modular synthetic approach is applied to integrate the core MOP cavity that provides permanent microporosity with tethered polymers that dictate the phase transition. We showcase the processability of this material by fabricating a gas separation membrane featuring tunable permeability and selectivity by switching the state. Compared to most conventional porous membranes, the liquid MOP membrane particularly shows the selectivity for CO2 over H2 with enhanced permeability.
Collapse
Grants
- JP23H00298 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP24K17695 MEXT | Japan Society for the Promotion of Science (JSPS)
- JPMXP1122714694 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMXP1122714694 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- CGR8 KAUST | Global Collaborative Research, King Abdullah University of Science and Technology (GCR, KAUST)
- 113L9008 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- 113L9008 Ministry of Education (Ministry of Education, Republic of China (Taiwan))
- National Science and Technology Council of Taiwan: 112-2628-E-002-015-MY3
Collapse
Affiliation(s)
- Po-Chun Han
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan
- Ph. D. Program of Green Materials and Precision Devices, College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Hui Chuang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Shang-Wei Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Xiangmei Xiang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan.
| | - Mako Kuzumoto
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan
| | - Shun Tokuda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan
| | - Tomoki Tateishi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan
| | - Alexandre Legrand
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan
- Unité de Catalyse et Chimie du Solide (UCCS), Université de Lille, CNRS, Centrale Lille, Université d'Artois, UMR 8181, Lille, France
| | - Min Ying Tsang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, ul. Stabłowicka 147, Wrocław, Poland
| | - Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kevin C-W Wu
- Ph. D. Program of Green Materials and Precision Devices, College of Engineering, National Taiwan University, Taipei, Taiwan.
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Kenji Urayama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan.
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan.
| |
Collapse
|
24
|
Chueasupcharoen W, Meepowpan P, Manokruang K, Sriyai M, Manaspon C, Tighe BJ, Derry MJ, Topham PD, Punyodom W. Metal-free ring-opening polymerization for the synthesis of biocompatible star-shaped block copolymers with controllable architecture. Eur Polym J 2024; 220:113471. [DOI: 10.1016/j.eurpolymj.2024.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Yao X, Cao X, He J, Hao L, Chen H, Li X, Huang W. Controlled Fabrication of Unimolecular Micelles as Versatile Nanoplatform for Multifunctional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405816. [PMID: 39246207 DOI: 10.1002/smll.202405816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Unimolecular micelles (UMs) are nano-sized structures that are composed of single molecules with precise composition. Compared to self-assembled polymeric micelles, UMs possess ultra-stable property even in complex biological environment. With the development of controllable polymerization and coupling chemistry, the preparation of narrowly monodispersed UMs with precise morphology and size has been realized, which further facilitates their multifunctional applications. After brief introduction, state-of-the-art advances in the synthesis and applications of UMs are discussed with an emphasis on their bioapplications. It is believed that these UMs have great potential in future fabrication of multifunctional nanoplatforms.
Collapse
Affiliation(s)
- Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xudong Cao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Jiayu He
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Linhui Hao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Haobo Chen
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
26
|
Tronnet A, Salas-Ambrosio P, Roman R, Bravo-Anaya LM, Ayala M, Bonduelle C. Star-Like Polypeptides as Simplified Analogues of Horseradish Peroxidase (HRP) Metalloenzymes. Macromol Biosci 2024; 24:e2400155. [PMID: 39122460 DOI: 10.1002/mabi.202400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Indexed: 08/12/2024]
Abstract
Peroxidases, like horseradish peroxidase (HRP), are heme metalloenzymes that are powerful biocatalysts for various oxidation reactions. By using simple grafting-from approach, ring-opening polymerization (ROP), and manganese porphyrins, star-shaped polypeptides analogues of HRP capable of catalyzing oxidation reactions with H2O2 is successfully prepared. Like their protein model, these simplified analogues show interesting Michaelis-Menten constant (KM) in the mM range for the oxidant. Interestingly, the polymer structures are more resistant to denaturation (heat, proteolysis and oxidant concentration) than HRP, opening up interesting prospects for their use in catalysis or in biosensing devices.
Collapse
Affiliation(s)
- Antoine Tronnet
- CNRS, LCPO (Laboratoire de Chimie des Polymères Organiques (UMR5629)), University of Bordeaux, Bordeaux INP, 16 avenue Pey Berland, Pessac, F-33600, France
- CNRS, LCC (Laboratoire de Chimie de Coordination (UPR8241)), University of Toulouse, 205 route de Narbonne, Toulouse, F-31077, France
| | - Pedro Salas-Ambrosio
- CNRS, LCPO (Laboratoire de Chimie des Polymères Organiques (UMR5629)), University of Bordeaux, Bordeaux INP, 16 avenue Pey Berland, Pessac, F-33600, France
| | - Rosa Roman
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos
| | | | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos
| | - Colin Bonduelle
- CNRS, LCPO (Laboratoire de Chimie des Polymères Organiques (UMR5629)), University of Bordeaux, Bordeaux INP, 16 avenue Pey Berland, Pessac, F-33600, France
| |
Collapse
|
27
|
Shao Z, Xu YD, Luo H, Hakobyan K, Zhang M, Xu J, Stenzel MH, Wong EHH. Smart Galactosidase-Responsive Antimicrobial Dendron: Towards More Biocompatible Membrane-Disruptive Agents. Macromol Rapid Commun 2024; 45:e2400350. [PMID: 38895813 DOI: 10.1002/marc.202400350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Antimicrobial resistance is a global healthcare challenge that urgently needs the development of new therapeutic agents. Antimicrobial peptides and mimics thereof are promising candidates but mostly suffer from inherent toxicity issues due to the non-selective binding of cationic groups with mammalian cells. To overcome this toxicity issue, this work herein reports the synthesis of a smart antimicrobial dendron with masked cationic groups (Gal-Dendron) that could be uncaged in the presence of β-galactosidase enzyme to form the activated Enz-Dendron and confer antimicrobial activity. Enz-Dendron show bacteriostatic activity toward Gram-negative (P. aeruginosa and E. coli) and Gram-positive (S. aureus) bacteria with minimum inhibitory concentration values of 96 µm and exerted its antimicrobial mechanism via a membrane disruption pathway, as indicated by inner and outer membrane permeabilization assays. Crucially, toxicity studies confirmed that the masked prodrug Gal-Dendron exhibited low hemolysis and is at least 2.4 times less toxic than the uncaged cationic Enz-Dendron, thus demonstrating the advantage of masking the cationic groups with responsive immolative linkers to overcome toxicity and selectivity issues. Overall, this study highlights the potential of designing new membrane-disruptive antimicrobial agents that are more biocompatible via the amine uncaging strategy.
Collapse
Affiliation(s)
- Zeyu Shao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - You Dan Xu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Hao Luo
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Karen Hakobyan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Mengnan Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| |
Collapse
|
28
|
Danel Z, Halun J, Karbowniczek P. Analytical and Numerical Investigation of Star Polymers in Confined Geometries. Int J Mol Sci 2024; 25:9561. [PMID: 39273508 PMCID: PMC11395107 DOI: 10.3390/ijms25179561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The analysis of the impact of the star polymer topology on depletion interaction potentials, depletion forces, and monomer density profiles is carried out analytically using field theory methods and techniques as well as molecular dynamic simulations. The dimensionless depletion interaction potentials and the dimensionless depletion forces for a dilute solution of ideal star polymers with three and five legs (arms) in a Θ-solvent confined in a slit between two parallel walls with repulsive surfaces and for the case where one of the surfaces is repulsive and the other inert are obtained. Furthermore, the dimensionless layer monomer density profiles for ideal star polymers with an odd number (f˜ = 3, 5) of arms immersed in a dilute solution of big colloidal particles with different adsorbing or repelling properties in respect of polymers are calculated, bearing in mind the Derjaguin approximation. Molecular dynamic simulations of a dilute solution of star-shaped polymers in a good solvent with N = 901 (3 × 300 + 1 -star polymer with three arms) and 1501 (5 × 300 + 1 -star polymer with five arms) beads accordingly confined in a slit with different boundary conditions are performed, and the results of the monomer density profiles for the above-mentioned cases are obtained. The numerical calculation of the radius of gyration for star polymers with f˜ = 3, 5 arms and the ratio of the perpendicular to parallel components of the radius of gyration with respect to the wall orientation for the above-mentioned cases is performed. The obtained analytical and numerical results for star polymers with an odd number (f˜ = 3, 5) of arms are compared with our previous results for linear polymers in confined geometries. The acquired results show that a dilute solution of star polymer chains can be applied in the production of new functional materials, because the behavior of these solutions is strictly correlated with the topology of polymers and also with the nature and geometry of confined surfaces. The above-mentioned properties can find extensive practical application in materials engineering, as well as in biotechnology and medicine for drug and gene transmission.
Collapse
Affiliation(s)
- Zoriana Danel
- Faculty of Materials Engineering and Physics, Cracow University of Technology, 30-719 Cracow, Poland
| | - Joanna Halun
- Institute of Nuclear Physics, Polish Academy of Sciences, 30-719 Cracow, Poland
| | - Pawel Karbowniczek
- Faculty of Materials Engineering and Physics, Cracow University of Technology, 30-719 Cracow, Poland
| |
Collapse
|
29
|
Gogoi D, Puri S, Chauhan A, Singh A. Segregation kinetics of miktoarm star polymers: A dissipative particle dynamics study. Phys Rev E 2024; 110:034504. [PMID: 39425331 DOI: 10.1103/physreve.110.034504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 10/21/2024]
Abstract
We study the phase separation kinetics of miktoarm star polymer (MSP) melts/blends with diverse architectures using dissipative particle dynamics simulation. Our study focuses on symmetric and asymmetric miktoarm star polymer (SMSP/AMSP) mixtures based on arm composition and number. For a fixed MSP chain size, the characteristic microphase-separated domains initially show diffusive growth with a growth exponent ϕ∼1/3 for both melts that gradually crossover to saturation at late times. The simulation results demonstrate that the evolution morphology of SMSP melt exhibits perfect dynamic scaling with varying arm numbers; the timescale follows a power-law decay with an exponent θ≃1 as the number of arms increases. The structural constraints on AMSP melts cause the domain growth rate to decrease as the number of one type of arms increases while their length remains fixed. This increase in the number of arms for AMSP corresponds to increased off-criticality. The saturation length in AMSP follows a power-law increase with an exponent λ≃2/3 as off-criticality decreases. Additionally, macrophase separation kinetics in SMSP/AMSP blends show a transition from viscous (ϕ∼1) to inertial (ϕ∼2/3) hydrodynamic growth regimes at late times; this exhibits the same dynamical universality class as linear polymer blends, with slight deviations at early stages.
Collapse
|
30
|
Ilyin SO. Structural Rheology in the Development and Study of Complex Polymer Materials. Polymers (Basel) 2024; 16:2458. [PMID: 39274091 PMCID: PMC11397847 DOI: 10.3390/polym16172458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The progress in polymer science and nanotechnology yields new colloidal and macromolecular objects and their combinations, which can be defined as complex polymer materials. The complexity may include a complicated composition and architecture of macromolecular chains, specific intermolecular interactions, an unusual phase behavior, and a structure of a multi-component polymer-containing material. Determination of a relation between the structure of a complex material, the structure and properties of its constituent elements, and the rheological properties of the material as a whole is the subject of structural rheology-a valuable tool for the development and study of novel materials. This work summarizes the author's structural-rheological studies of complex polymer materials for determining the conditions and rheo-manifestations of their micro- and nanostructuring. The complicated chemical composition of macromolecular chains and its role in polymer structuring via block segregation and cooperative hydrogen bonds in melt and solutions is considered using tri- and multiblock styrene/isoprene and vinyl acetate/vinyl alcohol copolymers. Specific molecular interactions are analyzed in solutions of cellulose; its acetate butyrate; a gelatin/carrageenan combination; and different acrylonitrile, oxadiazole, and benzimidazole copolymers. A homogeneous structuring may result from a conformational transition, a mesophase formation, or a macromolecular association caused by a complex chain composition or specific inter- and supramolecular interactions, which, however, may be masked by macromolecular entanglements when determining a rheological behavior. A heterogeneous structure formation implies a microscopic phase separation upon non-solvent addition, temperature change, or intense shear up to a macroscopic decomposition. Specific polymer/particle interactions have been examined using polyethylene oxide solutions, polyisobutylene melts, and cellulose gels containing solid particles of different nature, demonstrating the competition of macromolecular entanglements, interparticle interactions, and adsorption polymer/particle bonds in governing the rheological properties. Complex chain architecture has been considered using long-chain branched polybutylene-adipate-terephthalate and polyethylene melts, cross-linked sodium hyaluronate hydrogels, asphaltene solutions, and linear/highly-branched polydimethylsiloxane blends, showing that branching raises the viscosity and elasticity and can result in limited miscibility with linear isomonomer chains. Finally, some examples of composite adhesives, membranes, and greases as structured polymeric functional materials have been presented with the demonstration of the relation between their rheological and performance properties.
Collapse
Affiliation(s)
- Sergey O Ilyin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
| |
Collapse
|
31
|
Lin W, Jia S, Li Y, Zhang L, Liu H, Tan J. Aqueous RAFT Dispersion Polymerization Mediated by an ω,ω-Macromolecular Chain Transfer Monomer: An Efficient Approach for Amphiphilic Branched Block Copolymers and the Assemblies. ACS Macro Lett 2024; 13:1022-1030. [PMID: 39074066 DOI: 10.1021/acsmacrolett.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Herein, an ω,ω-macromolecular chain transfer monomer (macro-CTM) containing a RAFT (reversible addition-fragmentation chain transfer) group and a methacryloyl group was synthesized and used to mediate photoinitiated RAFT dispersion polymerization of hydroxypropyl methacrylate (HPMA) in water. The macro-CTM undergoes a self-condensing vinyl polymerization (SCVP) mechanism under RAFT dispersion polymerization conditions, leading to the formation of amphiphilic branched block copolymers and the assemblies. Compared with RAFT solution polymerization, it was found that the SCVP process was promoted under RAFT dispersion polymerization conditions. Morphologies of branched block copolymer assemblies could be controlled by varying the monomer concentration and the [HPMA]/[macro-CTM] ratio. The branched block copolymer vesicles could be used as seeds for seeded RAFT emulsion polymerization, and framboidal vesicles were successfully obtained. Finally, degrees of branching of branched block copolymers could be further controlled by using a binary mixture of the macro-CTM and a linear macro-RAFT agent or a small molecule CTM. We believe that this study not only provides a versatile strategy for the preparation of branched block copolymer assemblies but also offers important insights into polymer synthesis via heterogeneous RAFT polymerization.
Collapse
Affiliation(s)
- Weihong Lin
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuai Jia
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxiang Li
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, Guangdong, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
32
|
Gupta S, Janata M, Čadová E, Raus V. Straightforward synthesis of complex polymeric architectures with ultra-high chain density. Chem Sci 2024; 15:12739-12753. [PMID: 39148800 PMCID: PMC11323333 DOI: 10.1039/d4sc01739k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Synthesis of complex polymeric architectures (CPAs) via reversible-deactivation radical polymerization (RDRP) currently relies on the rather inefficient attachment of monofunctional initiation/transfer sites onto CPA precursors. This drawback seriously limits the overall functionality of the resulting (macro)initiators and, consequently, also the total number of installable polymeric chains, which represents a significant bottleneck in the design of new polymeric materials. Here, we show that the (macro)initiator functionality can be substantially amplified by using trichloroacetyl isocyanate as a highly efficient vehicle for the rapid and clean introduction of trichloroacetyl groups (TAGs) into diverse precursors. Through extensive screening of polymerization conditions and comprehensive NMR and triple-detection SEC studies, we demonstrate that TAGs function as universal trifunctional initiators of copper-mediated RDRP of different monomer classes, affording low-dispersity polymers in a wide molecular weight range. We thus unlock access to a whole new group of ultra-high chain density CPAs previously inaccessible via simple RDRP protocols. We highlight new opportunities in CPA synthesis through numerous examples, including the de novo one-pot synthesis of a novel "star-on-star" CPA, the preparation of β-cyclodextrin-based 45-arm star polymers, and facile grafting from otherwise problematic cellulose substrates both in solution and from surface, obtaining effortlessly ultra-dense, ultra-high-molecular weight bottle-brush copolymers and thick spatially-controlled polymeric coatings, respectively.
Collapse
Affiliation(s)
- Sachin Gupta
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| | - Miroslav Janata
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences Heyrovského nám. 2 162 06 Prague 6 Czech Republic
| |
Collapse
|
33
|
Xie G, Wu J, Zhang L, Tan J. Efficient Synthesis of μ-A(BC)C Miktoarm Star Polymer Assemblies via Aqueous Photoinitiated Polymerization-Induced Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39088262 DOI: 10.1021/acs.langmuir.4c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
In this study, green light-activated photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization of glycerol methacrylate was performed using an ω,ω-heterodifunctional macro-RAFT agent. Because of the different RAFT controllability of two RAFT groups toward methacrylic monomers, only one RAFT group was activated under green light irradiation, leading to the formation of a diblock copolymer macro-RAFT agent with one RAFT group located at the chain end and the other RAFT group located between two blocks. The obtained diblock copolymer macro-RAFT agent was then used to mediate aqueous photoinitiated RAFT dispersion polymerization of diacetone acrylamide (DAAM), which formed μ-A(BC)C miktoarm star polymer assemblies with a diverse set of morphologies. Comparing with the ABC triblock copolymer, it was found that the architecture of the μ-A(BC)C miktoarm star polymer facilitated the formation of higher-order morphologies. Kinetic studies indicated that the aqueous photoinitiated RAFT dispersion polymerization exhibited ultrafast polymerization behavior, with quantitative monomer conversion being achieved within 5 min. Size exclusion chromatography analysis confirmed that good RAFT control was maintained during the polymerization. A morphological phase diagram for μ-A(BC)C miktoarm star polymer assemblies was constructed by varying the monomer concentration and the [DAAM]/[Macro-RAFT] ratio. We expect that this study not only develops an approach for the preparation of miktoarm star polymer assemblies but also provides mechanistic insights into the polymerization-induced self-assembly of nonlinear polymers.
Collapse
Affiliation(s)
- Gangyu Xie
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiarui Wu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
34
|
Chen Q, Xia X, Huang W, Zhang L, Ni R, Liu J. Topological Programmability of Isomerizable Polymers. PHYSICAL REVIEW LETTERS 2024; 133:048101. [PMID: 39121423 DOI: 10.1103/physrevlett.133.048101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/20/2024] [Indexed: 08/11/2024]
Abstract
Topology isomerizable networks (TINs) can be programmed into numerous polymers exhibiting unique and spatially defined (thermo-) mechanical properties. However, capturing the dynamics in topological transformations and revealing the intrinsic mechanisms of mechanical property modulation at the microscopic level is a significant challenge. Here, we use a combination of coarse-grained molecular dynamics simulations and reaction kinetic theory to reveal the impact of dynamic bond exchange reactions on the topology of branched chains. We find that, the grafted units follow a geometric distribution with a converged uniformity, which depends solely on the average grafted units of branched chains. Furthermore, we demonstrate that the topological structure can lead to spontaneous modulation of mechanical properties. The theoretical framework provides a research paradigm for studying the topology and mechanical properties of TINs.
Collapse
Affiliation(s)
| | - Xiuyang Xia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | | | | | | | | |
Collapse
|
35
|
Ma Z, Liu G, Hu N, Chen L, Wei J. pH-induced morphological transition of aggregates formed by miktoarm star polymers in dilute solution: a mesoscopic simulation study. RSC Adv 2024; 14:24240-24249. [PMID: 39101066 PMCID: PMC11295911 DOI: 10.1039/d4ra04511d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
The self-assembly of miktoarm star polymers μ-A i (B(D)) j C k in a neutral solution and the pH-responsive behaviors of vesicles and spherical micelles in an acidic solution have been investigated by DPD simulation. The results show that the self-assembled morphologies can be regulated by the lengths of pH-responsive arm B and hydrophilic arm C, leading to the formation of vesicles, discoidal micelles, and spherical micelles in a neutral solution. The dynamic evolution pathways of vesicles and spherical micelles are categorized into three stages: nucleation, coalescence, and growth. Subsequently, the pH-responsive behaviors of vesicles and spherical micelles have been explored by tuning the protonation degree of pH-responsive arm B. The vesicles evolves from nanodisks to nanosheets, then to nanoribbons, as the protonation degree increases, corresponding to a decrease in pH value, while the spherical micelles undergoes a transition into worm-like micelles, nanosheets, and nanoribbons. Notably, the electrostatic interaction leads the counterions to form a regular hexagonal pattern in nanosheets, while an alternative distribution of charged beads has been observed in nanoribbons. Furthermore, the role of the electrostatic interaction in the morphological transition has been elucidated through the analysis of the distribution of positive and negative charges, as well as the electrostatic potential for associates.
Collapse
Affiliation(s)
- Zengwei Ma
- College of Science, Chongqing University of Technology Chongqing 400054 China
| | - Gaiqin Liu
- College of Science, Chongqing University of Technology Chongqing 400054 China
| | - Nan Hu
- College of Science, Chongqing University of Technology Chongqing 400054 China
| | - Lin Chen
- College of Science, Chongqing University of Technology Chongqing 400054 China
| | - Jianwei Wei
- College of Science, Chongqing University of Technology Chongqing 400054 China
| |
Collapse
|
36
|
Novák M, Milasheuskaya Y, Srb M, Podzimek Š, Bouška M, Jambor R. Synthesis of star-shaped poly(lactide)s, poly(valerolactone)s and poly(caprolactone)s via ROP catalyzed by N-donor tin(ii) cations and comparison of their wetting properties with linear analogues. RSC Adv 2024; 14:23273-23285. [PMID: 39049884 PMCID: PMC11267256 DOI: 10.1039/d4ra03515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024] Open
Abstract
In this study, we report the use of N-coordinated tin(ii) cations [L1→Sn(H2O)][OTf]2·THF (1) and [L1→SnCl][SnCl3] (2) (L1 = 1,2-(C5H4N-2-CH = N)2CH2CH2) as efficient ROP catalysts, which, in combination with benzyl alcohol, afford well-defined linear poly(ε-caprolactone) (PCL) and poly(δ-valerolactones) (PVL) via an activated monomer mechanism (AMM). Thanks to the versatility of complexes 1 and 2 as catalysts, star-shaped PCL, PVL and PLA were also prepared using three-, four-, five- and six-functional alcohols. The number of arms was determined by SEC-MALS-Visco analysis. Spin-coated thin layers of linear and selected six-armed polymers were further studied in terms of their wettability to water. Attention was focused on the influence of the composition and structure of the polymers. Finally, to increase the hydrophobic properties of the studied polymers, stannaboroxines L2(Ph)Sn[(OB-(C6H4-4-CF3))2O] and L2(Ph)Sn[(OB-(C6H4-3,5-CF3)2)2O] (L2 = C6H3-2,6-(Me2NCH2)2) were applied.
Collapse
Affiliation(s)
- Miroslav Novák
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Yaraslava Milasheuskaya
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Michael Srb
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Štěpán Podzimek
- Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Marek Bouška
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice Studentská 573 53210 Pardubice Czech Republic
| |
Collapse
|
37
|
De Alwis Watuthanthrige N, Whitfield R, Harrisson S, Truong NP, Anastasaki A. Thermal Solution Depolymerization of RAFT Telechelic Polymers. ACS Macro Lett 2024; 13:806-811. [PMID: 38857492 PMCID: PMC11256755 DOI: 10.1021/acsmacrolett.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Thermal solution depolymerization is a promising low-temperature chemical recycling strategy enabling high monomer recovery from polymers made by controlled radical polymerization. However, current methodologies predominantly focus on the depolymerization of monofunctional polymers, limiting the material scope and depolymerization pathways. Herein, we report the depolymerization of telechelic polymers synthesized by RAFT polymerization. Notably, we observed a significant decrease in the molecular weight (Mn) of the polymers during monomer recovery, which contrasts the minimal Mn shift observed during the depolymerization of monofunctional polymers. Introducing Z groups at the center or both ends of the polymer resulted in distinct kinetic profiles, indicating partial depolymerization of the bifunctional polymers, as supported by mathematical modeling. Remarkably, telechelic polymers featuring R-terminal groups showed up to 68% improvement in overall depolymerization conversion compared to their monofunctional analogues, highlighting the potential of these materials in chemical recycling and the circular economy.
Collapse
Affiliation(s)
| | - Richard Whitfield
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Simon Harrisson
- Laboratoire
de Chimie des Polymères Organiques, University of Bordeaux/Bordeaux-INP/CNRS UMR5629, Pessac 33607, France
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
38
|
Shi CY, Qin WY, Qu DH. Semi-crystalline polymers with supramolecular synergistic interactions: from mechanical toughening to dynamic smart materials. Chem Sci 2024; 15:8295-8310. [PMID: 38846397 PMCID: PMC11151828 DOI: 10.1039/d4sc02089h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Semi-crystalline polymers (SCPs) with anisotropic amorphous and crystalline domains as the basic skeleton are ubiquitous from natural products to synthetic polymers. The combination of chemically incompatible hard and soft phases contributes to unique thermal and mechanical properties. The further introduction of supramolecular interactions as noncovalently interacting crystal phases and soft dynamic crosslinking sites can synergize with covalent polymer chains, thereby enabling effective energy dissipation and dynamic rearrangement in hierarchical superstructures. Therefore, this review will focus on the design principles of SCPs by discussing supramolecular construction strategies and state-of-the-art functional applications from mechanical toughening to sophisticated functions such as dynamic adaptivity, shape memory, ion transport, etc. Current challenges and further opportunities are discussed to provide an overview of possible future directions and potential material applications.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Wen-Yu Qin
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
39
|
Kupczak M, Mielańczyk A, Fronczyk T, Drejka P, Ledwon P, Neugebauer D. From Facile One-Pot Synthesis of Semi-Degradable Amphiphilic Miktoarm Polymers to Unique Degradation Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2684. [PMID: 38893949 PMCID: PMC11173590 DOI: 10.3390/ma17112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
We report a one-pot synthesis of well-defined A5B and A8B miktoarm star-shaped polymers where N,N-dimethylaminoethyl methacrylate (DMAEMA) and various cyclic esters such as ε-caprolactone (ε-CL), lactide (LA) and glycolide (GA) were used for the synthesis. Miktopolymers were obtained by simultaneously carrying out atom transfer radical polymerization (ATRP) of DMAEMA, ring-opening polymerization (ROP) of cyclic esters, and click reaction between the azide group in gluconamide-based (GLBr5-Az) or lactonamide-based (GLBr8-Az) ATRP initiators and 4-pentyn-1-ol. The relatively low dispersity indices of the obtained miktoarm stars (Đ = 1.2-1.6) indicate that control over the polymerization processes was sustained despite almost complete monomers conversions (83-99%). The presence of salts from phosphate-buffered saline (PBS) in polymer solutions affects the phase transition, increasing cloud point temperatures (TCP) values. The critical aggregation concentration (CAC) values increased with a decreasing number of average molecular weights of the hydrophobic fraction. Hydrolytic degradation studies revealed that the highest reduction of molecular weight was observed for polymers with PCL and PLGCL arm. The influence of the composition on the miktopolymers hydrophilicity was investigated via water contact angle (WCA) measurement. Thermogravimetric analysis (TGA) disclosed that the number of arms and their composition in the miktopolymer affects its weight loss under the influence of temperature.
Collapse
Affiliation(s)
- Maria Kupczak
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody St., 44-100 Gliwice, Poland; (M.K.); (T.F.); (P.D.); (P.L.); (D.N.)
- Łukasiewicz Research Network–Institute for Engineering of Polymer Materials and Dyes, 55. M. Skłodowska-Curie St., 87-100 Toruń, Poland
| | - Anna Mielańczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody St., 44-100 Gliwice, Poland; (M.K.); (T.F.); (P.D.); (P.L.); (D.N.)
| | - Tomasz Fronczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody St., 44-100 Gliwice, Poland; (M.K.); (T.F.); (P.D.); (P.L.); (D.N.)
| | - Patryk Drejka
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody St., 44-100 Gliwice, Poland; (M.K.); (T.F.); (P.D.); (P.L.); (D.N.)
| | - Przemyslaw Ledwon
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody St., 44-100 Gliwice, Poland; (M.K.); (T.F.); (P.D.); (P.L.); (D.N.)
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 9. M. Strzody St., 44-100 Gliwice, Poland; (M.K.); (T.F.); (P.D.); (P.L.); (D.N.)
| |
Collapse
|
40
|
Oliva R, Torcasio SM, Coulembier O, Piperno A, Mazzaglia A, Scalese S, Rossi A, Bassi G, Panseri S, Montesi M, Scala A. RGD-tagging of star-shaped PLA-PEG micellar nanoassemblies enhances doxorubicin efficacy against osteosarcoma. Int J Pharm 2024; 657:124183. [PMID: 38692500 DOI: 10.1016/j.ijpharm.2024.124183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
We developed cyclic RGD-tagged polymeric micellar nanoassemblies for sustained delivery of Doxorubicin (Dox) endowed with significant cytotoxic effect against MG63, SAOS-2, and U2-OS osteosarcoma cells without compromising the viability of healthy osteoblasts (hFOBs). Targeted polymeric micellar nanoassemblies (RGD-NanoStar@Dox) enabled Dox to reach the nucleus of MG63, SAOS-2, and U2-OS cells causing the same cytotoxic effect as free Dox, unlike untargeted micellar nanoassemblies (NanoStar@Dox) which failed to reach the nucleus and resulted ineffective, demonstrating the crucial role of cyclic RGD peptide in driving cellular uptake and accumulation mechanisms in osteosarcoma cells. Micellar nanoassemblies were obtained by nanoformulation of three-armed star PLA-PEG copolymers properly synthetized with and without decoration with the cyclic-RGDyK peptide (Arg-Gly-Asp-D-Tyr-Lys). The optimal RGD-NanoStar@Dox nanoformulation obtained by nanoprecipitation method (8 % drug loading; 35 % encapsulation efficiency) provided a prolonged and sustained drug release with a rate significantly lower than the free drug under the same experimental conditions. Moreover, the nanosystem preserved Dox from the natural degradation occurring under physiological conditions (i.e., dimerization and consequent precipitation) serving as a slow-release "drug reservoir" ensuring an extended biological activity over the time.
Collapse
Affiliation(s)
- Roberto Oliva
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Serena Maria Torcasio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy; Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Olivier Coulembier
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials, University of Mons, Place du Parc 23, 7000 Mons, Belgium
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonino Mazzaglia
- CNR-ISMN, National Council of Research, Institute for the Study of Nanostructured Materials, URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le, F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Silvia Scalese
- CNR-IMM, Consiglio Nazionale delle Ricerche - Istituto per la Microelettronica e Microsistemi, Ottava Strada n.5, 95121 Catania, Italy
| | - Arianna Rossi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy; CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Giada Bassi
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, RA, Italy; Department of Neuroscience, Imaging and Clinical Science, University of Studies "G. D'Annunzio", 66100 Chieti, CH, Italy
| | - Silvia Panseri
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Monica Montesi
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
41
|
Mu Y, Chen B, Zhang H, Fei M, Liu T, Mehta N, Wang DZ, Miller AJM, Diaconescu PL, Wang D. Highly Selective Electrochemical Baeyer-Villiger Oxidation through Oxygen Atom Transfer from Water. J Am Chem Soc 2024; 146:13438-13444. [PMID: 38687695 DOI: 10.1021/jacs.4c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The Baeyer-Villiger oxidation of ketones is a crucial oxygen atom transfer (OAT) process used for ester production. Traditionally, Baeyer-Villiger oxidation is accomplished by thermally oxidizing the OAT from stoichiometric peroxides, which are often difficult to handle. Electrochemical methods hold promise for breaking the limitation of using water as the oxygen atom source. Nevertheless, existing demonstrations of electrochemical Baeyer-Villiger oxidation face the challenges of low selectivity. We report in this study a strategy to overcome this challenge. By employing a well-known water oxidation catalyst, Fe2O3, we achieved nearly perfect selectivity for the electrochemical Baeyer-Villiger oxidation of cyclohexanone. Mechanistic studies suggest that it is essential to produce surface hydroperoxo intermediates (M-OOH, where M represents a metal center) that promote the nucleophilic attack on ketone substrates. By confining the reactions to the catalyst surfaces, competing reactions (e.g., dehydrogenation, carboxylic acid cation rearrangements, and hydroxylation) are greatly limited, thereby offering high selectivity. The surface-initiated nature of the reaction is confirmed by kinetic studies and spectroelectrochemical characterizations. This discovery adds nucleophilic oxidation to the toolbox of electrochemical organic synthesis.
Collapse
Affiliation(s)
- Yu Mu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Boqiang Chen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Hongna Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Muchun Fei
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tianying Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Neal Mehta
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - David Z Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dunwei Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
42
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
43
|
Carrillo JMY, Parambil V, Patra TK, Chen Z, Russell TP, Sankaranarayanan SKRS, Sumpter BG, Batra R. Accelerated Sequence Design of Star Block Copolymers: An Unbiased Exploration Strategy via Fusion of Molecular Dynamics Simulations and Machine Learning. J Phys Chem B 2024; 128:4220-4230. [PMID: 38648367 DOI: 10.1021/acs.jpcb.3c08110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Star block copolymers (s-BCPs) have potential applications as novel surfactants or amphiphiles for emulsification, compatibilization, chemical transformations, and separations. s-BCPs have chain architectures where three or more linear diblock copolymer arms comprised of two chemically distinct linear polymers, e.g., solvophobic and solvophilic chains, are covalently joined at one point. The chemical composition of each of the subunit polymer chains comprising the arms, their molecular weights, and the number of arms can be varied to tailor the surface and interfacial activity of these architecturally unique molecules. This makes identification of the optimal s-BCP design nontrivial as the total number of plausible s-BCP architectures is experimentally or computationally intractable. In this work, we use molecular dynamics (MD) simulations coupled with a reinforcement learning-based Monte Carlo tree search (MCTS) to identify s-BCP designs that minimize the interfacial tension between polar and nonpolar solvents. We first validate the MCTS approach for the design of small- and medium-sized s-BCPs and then use it to efficiently identify sequences of copolymer blocks for large-sized s-BCPs. The structural origins of interfacial tension in these systems are also identified by using the configurations obtained from MD simulations. Chemical insights into the arrangement of copolymer blocks that promote lower interfacial tension were mined using machine learning (ML) techniques. Overall, this work provides an efficient approach to solve design problems via fusion of simulations and ML and provides important groundwork for future experimental investigation of s-BCPs for various applications.
Collapse
Affiliation(s)
- Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vijith Parambil
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tarak K Patra
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Atomistic Modelling and Materials Design, IIT Madras, Chennai 600036, India
| | - Zhan Chen
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Rohit Batra
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Center for Atomistic Modelling and Materials Design, IIT Madras, Chennai 600036, India
| |
Collapse
|
44
|
Rahmati F, Sethi D, Shu W, Asgari Lajayer B, Mosaferi M, Thomson A, Price GW. Advances in microbial exoenzymes bioengineering for improvement of bioplastics degradation. CHEMOSPHERE 2024; 355:141749. [PMID: 38521099 DOI: 10.1016/j.chemosphere.2024.141749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Plastic pollution has become a major global concern, posing numerous challenges for the environment and wildlife. Most conventional ways of plastics degradation are inefficient and cause great damage to ecosystems. The development of biodegradable plastics offers a promising solution for waste management. These plastics are designed to break down under various conditions, opening up new possibilities to mitigate the negative impact of traditional plastics. Microbes, including bacteria and fungi, play a crucial role in the degradation of bioplastics by producing and secreting extracellular enzymes, such as cutinase, lipases, and proteases. However, these microbial enzymes are sensitive to extreme environmental conditions, such as temperature and acidity, affecting their functions and stability. To address these challenges, scientists have employed protein engineering and immobilization techniques to enhance enzyme stability and predict protein structures. Strategies such as improving enzyme and substrate interaction, increasing enzyme thermostability, reinforcing the bonding between the active site of the enzyme and substrate, and refining enzyme activity are being utilized to boost enzyme immobilization and functionality. Recently, bioengineering through gene cloning and expression in potential microorganisms, has revolutionized the biodegradation of bioplastics. This review aimed to discuss the most recent protein engineering strategies for modifying bioplastic-degrading enzymes in terms of stability and functionality, including enzyme thermostability enhancement, reinforcing the substrate binding to the enzyme active site, refining with other enzymes, and improvement of enzyme surface and substrate action. Additionally, discovered bioplastic-degrading exoenzymes by metagenomics techniques were emphasized.
Collapse
Affiliation(s)
- Farzad Rahmati
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University (IAU), Qom 37185364, Iran
| | - Debadatta Sethi
- Sugarcane Research Station, Odisha University of Agriculture and Technology, Nayagarh, India
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | | | - Mohammad Mosaferi
- Health and Environment Research Center, Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Allan Thomson
- Perennia Food and Agriculture Corporation., 173 Dr. Bernie MacDonald Dr., Bible Hill, Truro, NS, B6L 2H5, Canada
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
45
|
Schaefer S, Melodia D, Corrigan N, Lenardon MD, Boyer C. Effect of Star Topology Versus Linear Polymers on Antifungal Activity and Mammalian Cell Toxicity. Macromol Biosci 2024; 24:e2300452. [PMID: 38009827 DOI: 10.1002/mabi.202300452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/05/2023] [Indexed: 11/29/2023]
Abstract
The global increase in invasive fungal infections and the emergence of drug-resistant strains demand the urgent development of novel antifungal drugs. In this context, synthetic polymers with diverse compositions, mimicking natural antimicrobial peptides, have shown promising potential for combating fungal infections. This study investigates how altering polymer end-groups and topology from linear to branched star-like structures affects their efficacy against Candida spp., including clinical isolates. Additionally, the polymers' biocompatibility is accessed with murine embryonic fibroblasts and red blood cells in vitro. Notably, a low-molecular weight star polymer outperforms both its linear polymeric counterparts and amphotericin B (AmpB) in terms of an improved therapeutic index and reduced haemolytic activity, despite a higher minimum inhibitory concentration against Candida albicans (C. albicans) SC5314 (16-32 µg mL-1 vs 1 µg mL-1 for AmpB). These findings demonstrate the potential of synthetic polymers with diverse topologies as promising candidates for antifungal applications.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales, 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, 2052, Australia
| | - Daniele Melodia
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales, 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales, 2052, Australia
| | - Megan Denise Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
46
|
Haino T, Nitta N. Supramolecular Synthesis of Star Polymers. Chempluschem 2024; 89:e202400014. [PMID: 38407573 DOI: 10.1002/cplu.202400014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Supramolecular polymers, in which monomers are assembled via intermolecular interactions, have been extensively studied. The fusion of supramolecular polymers with conventional polymers has attracted the attention of many researchers. In this review article, the recent progress in the construction of supramolecular star polymers, including regular star polymers and miktoarm star polymers, is discussed. The initial sections briefly provide an overview of the conventional classification and synthesis methods for star polymers. Coordination-driven self-assembly was investigated for the supramolecular synthesis of star polymers. Star polymers with multiple polymer chains radiating from metal-organic polyhedra (MOPs) have also been described. Particular focus has been placed on the synthesis of star polymers featuring supramolecular cores formed through hydrogen-bonding-directed self-assembly. After describing the synthesis of star polymers based on host-guest complexes, the construction of miktoarm star polymers based on the molecular recognition of coordination capsules is detailed.
Collapse
Affiliation(s)
- Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Higashi-Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Natsumi Nitta
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Elise Avenue, Chicago, Illinois, 60637, United States
| |
Collapse
|
47
|
Skandalis A, Sentoukas T, Selianitis D, Balafouti A, Pispas S. Using RAFT Polymerization Methodologies to Create Branched and Nanogel-Type Copolymers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1947. [PMID: 38730753 PMCID: PMC11084462 DOI: 10.3390/ma17091947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
This review aims to highlight the most recent advances in the field of the synthesis of branched copolymers and nanogels using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is a reversible deactivation radical polymerization technique (RDRP) that has gained tremendous attention due to its versatility, compatibility with a plethora of functional monomers, and mild polymerization conditions. These parameters lead to final polymers with good control over the molar mass and narrow molar mass distributions. Branched polymers can be defined as the incorporation of secondary polymer chains to a primary backbone, resulting in a wide range of complex macromolecular architectures, like star-shaped, graft, and hyperbranched polymers and nanogels. These subcategories will be discussed in detail in this review in terms of synthesis routes and properties, mainly in solutions.
Collapse
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| |
Collapse
|
48
|
Roberts CT, Beck SK, Prejean CM, Graul LM, Maitland DJ, Grunlan MA. Star-PCL shape memory polymer (SMP) scaffolds with tunable transition temperatures for enhanced utility. J Mater Chem B 2024; 12:3694-3702. [PMID: 38529581 PMCID: PMC11022546 DOI: 10.1039/d4tb00050a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Thermoresponsive shape memory polymers (SMPs) prepared from UV-curable poly(ε-caprolactone) (PCL) macromers have the potential to create self-fitting bone scaffolds, self-expanding vaginal stents, and other shape-shifting devices. To ensure tissue safety during deployment, the shape actuation temperature (i.e., the melt transition temperature or Tm of PCL) must be reduced from ∼55 °C that is observed for scaffolds prepared from linear-PCL-DA (Mn ∼ 10 kg mol-1). Moreover, increasing the rate of biodegradation would be advantageous, facilitating bone tissue healing and potentially eliminating the need for stent retrieval. Herein, a series of six UV-curable PCL macromers were prepared with linear or 4-arm star architectures and with Mns of 10, 7.5, and 5 kg mol-1, and subsequently fabricated into six porous scaffold compositions (10k, 7.5k, 5k, 10k★, 7.5k★, and 5k★) via solvent casting particulate leaching (SCPL). Scaffolds produced from star-PCL-tetraacrylate (star-PCL-TA) macromers produced pronounced reductions in Tm with decreased Mnversus those formed with the corresponding linear-PCL-diacrylate (linear-PCL-DA) macromers. Scaffolds were produced with the desired reduced Tm profiles: 37 °C < Tm < 55 °C (self-fitting bone scaffold), and Tm ≤ 37 °C (self-expanding stent). As macromer Mn decreased, crosslink density increased while % crystallinity decreased, particularly for scaffolds prepared from star-PCL-TA macromers. While shape memory behavior was retained and radial expansion pressure increased, this imparted a reduction in modulus but with an increase in the rate of degradation.
Collapse
Affiliation(s)
- Courteney T Roberts
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Sarah K Beck
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - C Mabel Prejean
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Lance M Graul
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Duncan J Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
49
|
Zhao Y, Zhao W, Lv Y, Jin L, Ni Y, Hadjichristidis N. Well-defined star (co)polypeptides via a fast, efficient, and metal-free strategy. Int J Biol Macromol 2024; 264:130566. [PMID: 38432269 DOI: 10.1016/j.ijbiomac.2024.130566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Polypeptides, especially star polypeptides, as a unique kind of biological macromolecules have broad applications in biomedical fields such as drug release, gene delivery, tissue engineering, and regenerative medicines due to their close structural similarity to naturally occurring peptides and proteins, biocompatibility, and amino acid functionality. However, the synthesis of star polypeptide mainly relies on the conventional primary amine-initiated ring-opening polymerization (ROP) of N-carboxyanhydrides (NCA) and suffers from low polymerization activity and limited controllability. This study proposes a fast, efficient and metal-free strategy to access star (co)polypeptides by combining the Michael reaction between acrylates and secondary aminoalcohols with the hydrogen-bonding organocatalytic ROP of NCA. This approach enables the preparation of a library of star (co)polypeptides with predesigned molecular weights, narrow molecular weight distributions, tunable arm number, and arm compositions. Importantly, this method exhibits high activity and selectivity at room temperature, making it both practical and versatile in synthesis applications.
Collapse
Affiliation(s)
- Yi Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Wei Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China.
| | - Yanfeng Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Liuping Jin
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, New Brunswick, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME 04469, USA
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
50
|
Schußmann MG, Kreutzer L, Hirschberg V. Fast and Scalable Synthetic Route to Densely Grafted, Branched Polystyrenes and Polydienes via Anionic Polymerization Utilizing P2VP as Branching Point. Macromol Rapid Commun 2024; 45:e2300674. [PMID: 38234077 DOI: 10.1002/marc.202300674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Defined, branched polymer architectures with low dispersity and architectural purity are of great interest to polymer science but are challenging to synthesize. Besides star and comb, especially the pom-pom topology is of interest as it is the simplest topology with exactly two branching points. Most synthetic approaches to a pom-pom topology reported a lack of full control and variability over one of the three topological parameters, the backbone or arm molecular weight and arm number. A new, elegant, fast, and scalable synthetic route without the need for post-polymerization modification (PPM) or purification steps during the synthesis to a pom-pom and a broad variety of topologies made from styrene and dienes is reported, with potential application to barbwire, bottlebrush, miktoarm star, Janus type polymers, or multi-graft copolymers. The key is to inset short poly(2-vinyl-pyridine) blocks (<2 mol% in the branched product) into the backbone as branching points. Carb anions can react at the C6 carbon of the pyridine ring, grafting the arms onto the backbone. Since the synthetic route to polystyrene pom-poms has only two steps and is free of PPM or purification, large amounts of up to 300 g of defined pom-pom structures can be synthesized in one batch.
Collapse
Affiliation(s)
- Max G Schußmann
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute for Technology, Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Lukas Kreutzer
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute for Technology, Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Valerian Hirschberg
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute for Technology, Engesserstraße 18, 76131, Karlsruhe, Germany
- Institute for Technical Chemistry, Technical University Clausthal, Arnold-Sommerfeld-Str. 4, 38678, Clausthal-Zellerfeld, Germany
| |
Collapse
|