1
|
Liu M, Song J, Liu H, Li G, Luan N, Liu X, Shen Y, Lyu M, Wang Z, Zhou H, Yang Q, Zuo J. Combined heavy metals (As and Pb) affects antioxidant status and lipid metabolism in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2025; 292:110160. [PMID: 39988223 DOI: 10.1016/j.cbpc.2025.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
The potential risk of coexistence of mixed heavy metals in the aquatic environment has increased with the development of technology. Lead (Pb) and arsenic (As) are among the most widely applied heavy metals, whose single toxicity has been extensively investigated, but their combined toxicity has been reported relatively rarely. In this study, different concentrations of Pb (40 μg/L, 4 mg/L), As (32 μg/L, 3.2 mg/L) and their combinations (40 μg/L + 32 μg/L, 4 mg/L + 3.2 mg/L) were set up for 30 days to establish a heavy metal exposure model in zebrafish. Pathological sections, biochemical parameters and gene expression analysis were used to assess the toxicity effects of oxidative damage and lipid metabolism in the liver. Our results showed that combined exposure of As and Pb resulted in elevated ROS and MDA levels and upregulated expression of genes related to the Nrf2-Keap1/Are signaling pathway in female zebrafish, causing enhanced oxidative stress. Moreover, mixture of As and Pb was able to cause abnormal upregulation of lipid metabolism-related genes and reduced activity of fatty acid synthase (FAS) in the liver of female zebrafish. The abnormal decrease of carnitine palmitoyl transferase (CPT-1) and gene cpt1a in males were also observed. These results contributed to hepatic Triglyceride (TG) excessive accumulation, ultimately triggering a disturbance of lipid metabolism. These findings indicated that chronic exposure to As and Pb was capable of producing adverse effects on oxidative stress and lipid metabolism in fish in a sex-specific manner. This study provides new perspective for evaluating the combined effects of heavy metals in the aquatic environment.
Collapse
Affiliation(s)
- Ming Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Guangzhou Nutriera Biotechnology Co., Ltd, Guangzhou 511495, Guangdong, China
| | - Jian Song
- Wuqi Oriental Aquaculture Co., Ltd, Wuhan 430345, China
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ning Luan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yi Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Minglei Lyu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhengyu Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huiming Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Jiangxi Fisheries Research Institute, Nanchang 330039, Jiangxi, China
| | - Qing Yang
- Institute of Hydroecology, Ministry of Water Resources, Chinese Academy of Sciences, Wuhan 430079, Hubei, China.
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
2
|
Yin H, Zhou Y, Sui C, Ding J, Wang J. Recent advances on photocatalytic degradation of phthalate ester plasticizers using nanomaterial photocatalysts. ENVIRONMENTAL RESEARCH 2025; 276:121497. [PMID: 40180262 DOI: 10.1016/j.envres.2025.121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Phthalate esters (PAEs) are a class of organic ester compounds containing benzene rings, which have been widely applied as additives in various fields, especially as plasticizers in plastic product to improve the flexibility. Due to the non-covalent bonding, PAEs inevitably leach out from the plastic polymers into environments. PAEs are endocrine disruptors, which possess seriously hazards to organisms, such as reproductive and genetic abnormalities. Now, PAEs pollution has become a serious environmental problem. Moreover, due to its difficulty in natural degradation, it has become a widespread concern to eliminate PAEs pollution with energy-saving technology. Among various degradation technologies for organic pollutant removal, photocatalytic degradation has attracted more attentions due to the merits of low energy consumption, high removal efficiency, abundant photocatalyst and low secondary pollution. In this article, the photocatalytic degradation using nanomaterial photocatalysts towards four kinds of typical PAEs were reviewed, including di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), dimethyl phthalate (DMP), and diethyl phthalate (DEP). To improve the photocatalytic degradation efficiency, various semiconductor photocatalysts have been developed, and the optical and electrochemical properties, and the degradation mechanism and pathway have been also discussed. Finally, the challenges and perspectives of photocatalytic technology on PAEs elimination were presented.
Collapse
Affiliation(s)
- Huanshun Yin
- Key Laboratory of Marine Resource Chemistry and Food Technology of Ministry of Education, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yunlei Zhou
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education & Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China.
| | - Chengji Sui
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014 Jinan, PR China.
| | - Jia Ding
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
3
|
Zhang Y, Rehman H, Khattak F, Tariq M, Khan BN, Chaman S, Riaz A, Ovais Omer M, Ali A, un Nisa Q, Muddassir Ali M, Saleem G. Immunomodulatory and growth-promoting effects of Rauwolfia serpentina root powder in broiler chicks challenged with Salmonella Gallinarum. Front Vet Sci 2025; 12:1534347. [PMID: 39963274 PMCID: PMC11831699 DOI: 10.3389/fvets.2025.1534347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Background Amid growing concern about antimicrobial resistance due to the irrational use of antibiotics in treating common poultry diseases, particularly Salmonella which is a foodborne pathogen in humans. This study investigates the effects of ethnoveterinary supplementation of Rauwolfia serpentina (L. Benth. ex Kurz) powder (RSP) on three key immune-related genes; Suppressor of cytokine signaling 3 (SOCS3), the quiescence-related gene P20K (P20K), and the major histocompatibility complex Class IIβ (MHC class IIβ), gut morphology and growth performance of broiler chicks infected with Salmonella Gallinarum. Methods Two hundred and forty day-old Hubbard classic chickens were randomly assigned to four groups: non-challenged control (NC), and Salmonella Gallinarum challenge group (SGC), and two treatment groups fed a basic diet supplemented with 1.5% Rauwolfia serpentina powder (RSP) with SGC (RSP-1) and 3% RSP with SGC (RSP-2), respectively, from day 3 till 28 days of age. Each treatment was replicated 4 times with 15 bird/replicate pen. On day 7, all the birds in the RSP-1, RSP-2 and SGC groups received 1 ml of BHI broth containing 2 × 108 CFU of Salmonella Gallinarum via oral gavage. While control birds received an equivalent volume of sterile BHI broth. Gene expression analysis was conducted using real-time PCR to measure the expression of key immune-related genes: SOCS3, P20K, and MHC Class IIβ in spleen, liver, and caeca. Additionally, histopathological assessments of gut and growth performance parameters including feed intake, body weight gain, and feed conversion ratio (FCR) were monitored throughout the experimental period. Result The gene expression analysis at 3 and 21 days post-challenge revealed that SGC birds had significantly higher SOCS3, P20K, and lower MHC class IIβ expression (p < 0.001) in the caecum, liver, and spleen of broiler chickens. In contrast, the RSP-1 and RSP-2 groups showed significantly lower SOCS3 and P20K expression (p < 0.001), alongside improved gut morphology, weight gain, and FCR compared to the SGC group, with these benefits increasing over time. Conclusion In conclusion, these findings suggest that Rauwolfia serpentina supplementation modulates key immune-related gene expression (SOCS3, P20K, and MHC class IIβ), enhances intestinal health, and improves growth performance in broilers challenged with Salmonella Gallinarum.
Collapse
Affiliation(s)
- Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Hiba Rehman
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Farina Khattak
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | - Maryam Tariq
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Sadia Chaman
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ayaesha Riaz
- Department of Parasitology and Microbiology, Faculty of Veterinary and Animal PMAS-ARID Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Ovais Omer
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aqib Ali
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Qamar un Nisa
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary Animal Sciences, Lahore, Pakistan
| | - Gulbeena Saleem
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
4
|
Wang B, Xiao L, Chen P, Zhang T, Zhang P, Cao L, Zhou Z, Cheng H, Zhang T, Li S. Uncovering the role of traditional Chinese medicine in immune-metabolic balance of gastritis from the perspective of Cold and Hot: Jin Hong Tablets as a case study. Chin Med 2024; 19:134. [PMID: 39367502 PMCID: PMC11451182 DOI: 10.1186/s13020-024-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024] Open
Abstract
Chronic gastritis (CG) is a common inflammatory disease of chronic inflammatory lesion of gastric mucosa and in the diagnosis of gastritis in traditional Chinese medicine (TCM), CG can be classified into Cold ZHENG (syndrome in TCM) and Hot ZHENG. However, the molecular features of Cold/Hot ZHENG in CG and the mechanism of Cold/Hot herbs in formulae for CG remained unclear. In this study, we collected a transcriptomics data including 35 patients of Cold/Hot ZHENG CG and 3 scRNA-seq CG samples. And 25 formulae for CG and 89 herbs recorded in these formulae were also collected. We conduct a comprehensive analysis based on the combination of transcriptomics datasets and machine learning algorithms, to discover biomarkers for Cold/Hot ZHENG CG. Then the target profiles of the collected formulae and Cold/Hot herbs were predicted to uncover the features and biomarkers of them against Cold/Hot ZHENG CG. These biomarkers suggest that Hot ZHENG CG might be characterized by over-inflammation and exuberant metabolism, and Cold ZHENG CG showed a trend of suppression in immune regulation and energy metabolism. Biomarkers and specific pathways of Hot herbs tend to regulate immune responses and energy metabolism, while those of Cold herbs are more likely to participate in anti-inflammatory effects. Finally, the findings were verified based on public transcriptomics datasets, as well as transcriptomics and ELISA detection, taking Jin Hong tablets as a case study. Biomarkers like leptin and IL-6 together with proportions of immune cells showed significant changes after the intervention. These findings might reflect the mechanism and build a bridge between macro and micro views of Cold/Hot ZHENG as well as Cold/Hot herbs.
Collapse
Affiliation(s)
- Boyang Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Lihao Xiao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd., Lianyungang, 222047, Jiangshu, China
| | - Pan Chen
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangshu, China
| | - Tingyu Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Peng Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd., Lianyungang, 222047, Jiangshu, China
| | - Ziyi Zhou
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Haibo Cheng
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangshu, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Teng M, Sun J, Zhao L, Li Y, Zhang Z, Zhu W, Zhang Y, Xu F, Xing S, Zhao X, Wu F. Effects of BBIBP-CorV vaccine on gut microbiota and short-chain fatty acids in mice exposed to bis (2-ethylhexyl) phthalate and dioctyl terephthalate. ENVIRONMENT INTERNATIONAL 2024; 190:108851. [PMID: 38941942 DOI: 10.1016/j.envint.2024.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
As the COVID-19 pandemic has progressed, increasing evidences suggest that the gut microbiota may play a crucial role in the effectiveness of SARS-CoV-2 vaccine. Thus, this study was aimed at investigating the influence of SARS-CoV-2 vaccine on the gut microbiota and short-chain fatty acids (SCFAs) of organisms exposed to environmental contaminants, i.e., plasticizers: phthalate esters. We found that in mice, exposure to dioctyl terephthalate (DOTP) and bis -2-ethylhexyl phthalate (DEHP) decreased the blood glucose level and white fat weight, induced inflammatory responses, caused damage to liver and intestinal tissues, and disrupted the gut microbiota composition and SCFAs metabolism. Specifically, the Bacteroidetes phylum was positively correlated with BBIBP-CorV vaccine, while acetic acid was negatively associated with the vaccine. Interestingly, the BBIBP-CorV vaccine somewhat alleviated tissue inflammation and reduced the contents of acetic acid and propionic acid in mice exposed to DEHP and DOTP. These findings were confirmed by a fecal microbiota transplantation assay. Overall, this study revealed that exposure to DEHP and DOTP adversely affects the gut microbiota and SCFAs, while the BBIBP-CorV vaccine can protect mice against these effects. This work highlighted the relationship between BBIBP-CorV vaccination, gut microbiome composition, and responses to plasticizers, which may facilitate the development and risk assessment of SARS-CoV-2 vaccines and environmental contaminants on microbiota health.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lihui Zhao
- College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
| | - Yunxia Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zixuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yuntao Zhang
- China National Biotec Group Company Limited, Beijing 100024, China
| | - Fangjingwei Xu
- China National Biotec Group Company Limited, Beijing 100024, China
| | - Sixi Xing
- China National Biotec Group Company Limited, Beijing 100024, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Rosenfeld CS. Should Pregnant Women Consume Probiotics to Combat Endocrine-Disrupting Chemical-Induced Health Risks to Their Unborn Offspring? Biomedicines 2024; 12:1628. [PMID: 39200093 PMCID: PMC11351870 DOI: 10.3390/biomedicines12081628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) have become so pervasive in our environment and daily lives that it is impossible to avoid contact with such compounds, including pregnant women seeking to minimize exposures to themselves and their unborn children. Developmental exposure of humans and rodent models to bisphenol A (BPA) and other EDCs is linked to increased anxiogenic behaviors, learning and memory deficits, and decreased socio-sexual behaviors. Prenatal exposure to BPA and other EDCs leads to longstanding and harmful effects on gut microbiota with reductions in beneficial bacteria, i.e., gut dysbiosis, and such microbial changes are linked to host changes in fecal metabolites, including those involved in carbohydrate metabolism and synthesis, and neurobehavioral alterations in adulthood, in particular, social and cognitive deficits. Gut dysbiosis is increasingly being recognized as a key driver of a myriad of diseases, ranging from metabolic, cardiovascular, reproductive, and neurobehavioral disorders via the gut-microbiome-brain axis. Thus, EDCs might induce indirect effects on physical and mental health by acting as microbiome-disrupting chemicals. Findings raise the important question as to whether pregnant women should consume a probiotic supplement to mitigate pernicious effects of EDCs, especially BPA, on themselves and their unborn offspring. Current studies investigating the effects of maternal probiotic supplementation on pregnant women's health and that of their unborn offspring will be reviewed. Data will inform on the potential application of probiotic supplementation to reverse harmful effects of EDCs, especially BPA, in pregnant women unwittingly exposed to these compounds and striving to give their offspring the best start in life.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Department of Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
- Department of Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Liu Y, You S, Ding L, Yuan F, Sun Y. Hepatotoxic effects of chronic exposure to environmentally relevant concentrations of Di-(2-ethylhexyl) phthalate (DEHP) on crucian carp: Insights from multi-omics analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171447. [PMID: 38447714 DOI: 10.1016/j.scitotenv.2024.171447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an extensively used phthalate esters (PAEs) that raise growing ecotoxicological concerns due to detrimental effects on living organisms and ecosystems. This study performed hepatotoxic investigations on crucian carp under chronic low-dosage (CLD) exposure to DEHP at environmentally relevant concentrations (20-500 μg/L). The results demonstrated that the CLD exposure induced irreversible damage to the liver tissue. Multi-omics (transcriptomics and metabolomics) analyses revealed the predominant toxicological mechanisms underlying DEHP-induced hepatotoxicity by inhibiting energy production pathways and the up-regulation of the purine metabolism. Disruption of metabolic pathways led to excessive reactive oxygen species (ROS) production and subsequent oxidative stress. The adverse metabolic effects were exacerbated by an interplay between oxidative stress and endoplasmic reticulum stress. This study not only provides new mechanistic insights into the ecotoxicological effects of DEHP under chronic low-dosage exposure, but also suggests a potential strategy for further ecological risk assessment of PAEs.
Collapse
Affiliation(s)
- Yingjie Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Ding
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Fangying Yuan
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Yanchun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China.
| |
Collapse
|
8
|
Liu X, Liu F, Liu L, Song Y, Liu H. Carbamazepine transmits immune effect by activation of gut-liver axis and TLR signaling pathway from parental zebrafish to offspring. Toxicol Sci 2024; 199:108-119. [PMID: 38445754 DOI: 10.1093/toxsci/kfae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Carbamazepine (CBZ) has been identified in the aquatic environment as an emerging contaminant. Its immune effect across generations at environmentally relevant concentrations is little known. We aim to elucidate the effects of CBZ on the immune system in zebrafish (Danio rerio), hypothesizing the effects caused by CBZ exposure in the parental generation can be passed on to its offspring, leading to impairment of innate immune function and defense against pathogen weakened. A suite of bioassays (including a test with added lipopolysaccharide) was used to measure the effects of environmentally relevant levels of CBZ (1, 10, and 100 μg/l) on zebrafish at multiple biological levels, and across 2 successive generations (21 days exposure for F0; 5 and 21 days exposure or nonexposure for F1). The results showed that CBZ affected homeostasis in the immune system, caused liver vacuolization, increased the inflammation-related microbiota proportion in gut, and decreased reproduction, by induction of oxidative stress and modulation of Toll-like receptors (TLR) signaling pathway on gut-liver axis. The effects of exposure to CBZ over 21 days in F0 could be passed to the next generation. Intergenerational effects on TLR and antioxidant defense system were also observed in nonexposed F1 at 5 days post-fertilization (5 dpf), but diminished at 21 dpf. The finding provided evidence to unravel immune response by gut-liver axis mediated and oxidative stress under 4 test conditions. The study has raised a potential concern about the multigenerational immune effects of environmental pollutants and calls for a focus on the risk of synergetic pathogen infection.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Fan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Li Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - You Song
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Oslo 0579, Norway
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
9
|
Cheng X, Chen J, Guo X, Cao H, Zhang C, Hu G, Zhuang Y. Disrupting the gut microbiota/metabolites axis by Di-(2-ethylhexyl) phthalate drives intestinal inflammation via AhR/NF-κB pathway in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123232. [PMID: 38171427 DOI: 10.1016/j.envpol.2023.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known for its environmental endocrine-disrupting properties, posing potential risks to various organs. However, the precise impact of DEHP on intestinal health and its contribution to the initiation of intestinal inflammation remains elucidated. This study aims to investigate the underlying mechanisms of DEHP-induced intestinal inflammation in mice, specifically focusing on the complex interplay between the gut microbiota-metabolite axis and associated pathophysiological alterations. Our findings showed that DEHP-induced damage of multiple organs systemically, as indicated by abnormal liver and kidney biochemical markers, along with a disrupted ileum morphology. Additionally, DEHP exposure disrupted gut barrier function, causing intestinal inflammation characterized by bacterial translocation and alterations in defense and inflammation-related gene expressions. Moreover, 16S rRNA analysis suggested that DEHP-induced gut microbial remodeling is characterized by an upregulation of detrimental bacteria (Erysipelotrichaceae) and a downregulation of beneficial bacteria (Muribaculaceae, Ruminococcaceae, and Lachnospiraceae). Metabolomics analysis revealed DEHP perturbed gut metabolic homeostasis, particularly affecting the degradation of aromatic compounds, which generated an aberrant activation of the AhR and NF-κB, subsequently causing intestinal inflammation. Consequently, our results elucidate the mechanistic link between disrupted gut microbiota and metabolome and the initiation of DEHP-induced intestinal inflammation, mediated through the AhR/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jinyan Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
10
|
Sah RK, Nandan A, Kv A, S P, S S, Jose A, Venkidasamy B, Nile SH. Decoding the role of the gut microbiome in gut-brain axis, stress-resilience, or stress-susceptibility: A review. Asian J Psychiatr 2024; 91:103861. [PMID: 38134565 DOI: 10.1016/j.ajp.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Increased exposure to stress is associated with stress-related disorders, including depression, anxiety, and neurodegenerative conditions. However, susceptibility to stress is not seen in every individual exposed to stress, and many of them exhibit resilience. Thus, developing resilience to stress could be a big breakthrough in stress-related disorders, with the potential to replace or act as an alternative to the available therapies. In this article, we have focused on the recent advancements in gut microbiome research and the potential role of the gut-brain axis (GBA) in developing resilience or susceptibility to stress. There might be a complex interaction between the autonomic nervous system (ANS), immune system, endocrine system, microbial metabolites, and bioactive lipids like short-chain fatty acids (SCFAs), neurotransmitters, and their metabolites that regulates the communication between the gut microbiota and the brain. High fiber intake, prebiotics, probiotics, plant supplements, and fecal microbiome transplant (FMT) could be beneficial against gut dysbiosis-associated brain disorders. These could promote the growth of SCFA-producing bacteria, thereby enhancing the gut barrier and reducing the gut inflammatory response, increase the expression of the claudin-2 protein associated with the gut barrier, and maintain the blood-brain barrier integrity by promoting the expression of tight junction proteins such as claudin-5. Their neuroprotective effects might also be related to enhancing the expression of brain-derived neurotrophic factor (BDNF) and glucagon-like peptide (GLP-1). Further investigations are needed in the field of the gut microbiome for the elucidation of the mechanisms by which gut dysbiosis contributes to the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Athira Kv
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India.
| | - Prashant S
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Sathianarayanan S
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Mangalore, India
| | - Asha Jose
- JSS College of Pharmacy, JSS Academy of Higher Education and research, Ooty 643001, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
11
|
Zhang H, Ran M, Jiang L, Sun X, Qiu T, Li J, Wang N, Yao X, Zhang C, Deng H, Wang S, Yang G. Mitochondrial dysfunction and endoplasmic reticulum stress induced by activation of PPARα leaded testicular to apoptosis in SD rats explored to di-(2-ethylhexyl) phthalate (DEHP). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115711. [PMID: 37979351 DOI: 10.1016/j.ecoenv.2023.115711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP), as a common endocrine disrupting chemicals, can induce toxicity to reproductive system. However, the mechanism remains to be explored. In our study, DEHP exposure induced testicular injury in rats. The high throughput transcriptional sequencing was performed to identify differentially expressed genes (DEGs) between the treatment and control groups. KEGG analysis revealed that DEGs were enriched in apoptosis, PPARα, and ER stress pathway. DEHP up-regulated the expression of PPARα, Bax, Bim, caspase-4. GRP78, PERK, p-PERK, eIF2α, p-eIF2α, ATF4 and CHOP. This view has also been confirmed in TM3 and TM4 cells. In vitro, after pre-treatment with GW6471 (an inhibitor of PPARα) or GSK (an inhibitor of PERK), the apoptosis was inhibited and mitochondrial dysfunction was improved. Moreover, the improvement of mitochondrial dysfunction decreased the expression of PERK pathway by using SS-31(a protective agent for mitochondrial function). Interestingly, ER stress promoted the accumulation of ROS by ERO1L (the downstream of CHOP during ER stress), and the ROS further aggravated the ER stress, thus forming a feedback loop during the apoptosis. In this process, a vicious cycle consisting of PERK, eIF2α, ATF4, CHOP, ERO1L, ROS was involved. Taken together, our results suggested that mitochondrial dysfunction and ER stress-ROS feedback loop caused by PPARα activation played a crucial role in DEHP-induced apoptosis. This work provides insight into the mechanism of DEHP-induced reproductive toxicity.
Collapse
Affiliation(s)
- Haoyang Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Maohuan Ran
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Liping Jiang
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Xiance Sun
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Tianming Qiu
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Xiaofeng Yao
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China.
| |
Collapse
|
12
|
Cox A, Bomstein Z, Jayaraman A, Allred C. The intestinal microbiota as mediators between dietary contaminants and host health. Exp Biol Med (Maywood) 2023; 248:2131-2150. [PMID: 37997859 PMCID: PMC10800128 DOI: 10.1177/15353702231208486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
The gut microbiota sit at an important interface between the host and the environment, and are exposed to a multitude of nutritive and non-nutritive substances. These microbiota are critical to maintaining host health, but their supportive roles may be compromised in response to endogenous compounds. Numerous non-nutritive substances are introduced through contaminated foods, with three common groups of contaminants being bisphenols, phthalates, and mycotoxins. The former contaminants are commonly introduced through food and/or beverages packaged in plastic, while mycotoxins contaminate various crops used to feed livestock and humans alike. Each group of contaminants have been shown to shift microbial communities following exposure; however, specific patterns in microbial responses have yet to be identified, and little is known about the capacity of the microbiota to metabolize these contaminants. This review characterizes the state of existing research related to gut microbial responses to and biotransformation of bisphenols, phthalates, and mycotoxins. Collectively, we highlight the need to identify consistent, contaminant-specific responses in microbial shifts, whether these community alterations are a result of contaminant effects on the host or microbiota directly, and to identify the extent of contaminant biotransformation by microbiota, including if these transformations occur in physiologically relevant contexts.
Collapse
Affiliation(s)
- Amon Cox
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zach Bomstein
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Clinton Allred
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
13
|
Yang G, Gong C, Zheng X, Hu F, Liu J, Wang T, Chen X, Li M, Zhu Z, Zhang L, Li R. Early clues and molecular mechanism involved in neurodegenerative diseases induced in immature mice by combined exposure to polypropylene microplastics and DEHP. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122406. [PMID: 37597731 DOI: 10.1016/j.envpol.2023.122406] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Studies have shown that exposure to either microplastics (MPs) or di-(2-ethylhexyl) phthalic acid (DEHP) alone can cause neurotoxicity in animals, but it remains uncertain whether and to what extent co-exposure to these two substances, which often occur together in reality, can also induce neurotoxicity. This study aimed to investigate the neurotoxicity and molecular mechanisms of combined exposure to DEHP and polypropylene microplastics (synthetic PP-MPs were used), the microplastics most commonly encountered by young children, in immature mice. The results showed that exposure to PP-MPs and/or DEHP did cause neurotoxic effects in immature mice, including induction of neurocognitive and memory deficits, damage to the CA3 region of the hippocampus, increased oxidative stress, and decreased AChE activity in the brain. The severity of the neurotoxicity increased with increasing concentrations of PP-MPs, combined exposure to PP-MPs and DEHP exhibited additive or synergistic effects. Transcriptomic analyses revealed that the PP-MPs and/or DEHP exposure altered the expression profiles of gene clusters involved in the stress response, and in protein processing in endoplasmic reticulum. Quantitative analyses further indicated that PP-MPs and/or DEHP exposure inhibited the activity of the heat shock response mediated by heat shock transcription factor 1, while chronically activated the unfolded protein response, consequently inducing neurotoxicity through neuronal apoptosis and neuroinflammation in the immature mice. As a pioneer study to highlight the neurotoxicity induced by combined exposure to PP-MPs and DEHP in immature mice, this research provides new insights into mitigating the health risks of PP-MPs and DEHP exposure in young children.
Collapse
Affiliation(s)
- Ge Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Cunyi Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xinyue Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Fei Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jie Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China; The Primary School Attached to Central China Normal University, Wuhan, 430079, China
| | - Tian Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China; College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xinyue Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Min Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zhihong Zhu
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
14
|
Lin W, Qin Y, Wang X, Du M, Wang Y, Chen X, Ren Y. Flunitrazepam and its metabolites exposure disturb the zebrafish gut-liver axis: Combined microbiome and metabolomic analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106688. [PMID: 37699776 DOI: 10.1016/j.aquatox.2023.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
Due to clinical treatment and illegal use, psychoactive substances have been widely detected in the aquatic environment. In this study, we investigated the effects of the benzodiazepine drug flunitrazepam (FLZ) and its metabolite 7-aminoflunitrazepam (7-FLZ) on the gut-liver axis of zebrafish. Zebrafish were exposed to two concentrations of FLZ and 7-FLZ (0.05 and 1 μg/L) for 30 days. Results showed that both FLZ and 7-FLZ exposure altered the relative abundance of Proteobacteria at the phylum level, with significant differences observed at the genus level for pathogenic bacteria such as Paracoccus, Shewanella, and Aeromonas. Metabolomics results showed both exposures significantly interfered with nucleotide and amino acid metabolism. The imbalance of gut microbiota and metabolic disorder increased the level of malondialdehyde, which in turn heightened the permeability of the gut mucosal barrier. FLZ and 7-FLZ induced oxidative stress in the liver via the gut-liver axis, leading to decreased levels of glucose, total cholesterol, and triglyceride, as well as the down-regulation of glycolipid metabolism-related genes (PPARα, PPARγ, FABP2, Fabp11, PFKFB3, and LDHA). Metabolomics results revealed that FLZ and 7-FLZ significantly affected the biosynthesis of amino acids and arginine, and other metabolic pathways such as nucleotide, nicotinate and nicotinamide, and purine in the liver. Our results unveiled the mechanisms behind the toxicological effects of psychoactive substances on the gut-liver axis, providing valuable data for ecological and environmental risk assessments.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xinying Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Mingluo Du
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Yukai Wang
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Xiaohui Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, China.
| |
Collapse
|
15
|
Han Q, Gao X, Wang S, Wei Z, Wang Y, Xu K, Chen M. Co-exposure to polystyrene microplastics and di-(2-ethylhexyl) phthalate aggravates allergic asthma through the TRPA1-p38 MAPK pathway. Toxicol Lett 2023; 384:73-85. [PMID: 37500026 DOI: 10.1016/j.toxlet.2023.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Increasing attention has been paid to the potential impact of microplastics (MPs) pollution on human health. MPs and phthalates coexist in the environment, however, the effects of exposure to MPs alone or to a combination of di-(2-ethylhexyl) phthalate (DEHP) and MPs on allergic asthma are unclear. This study investigates the effects of exposure to polystyrene microplastics (PS-MPs) or co-exposure with DEHP, on allergic asthma, and the underlying molecular mechanisms. We established an allergic asthma model using ovalbumin, and mice were exposed to PS-MPs (5 mg/kg bw/day) alone, or combined with DEHP (0.5, 5 mg/kg bw/day), for 28 days. The results showed that in the presence of ovalbumin (OVA) sensitization, exposure to PS-MPs alone slightly affected airway inflammation, and airway hyperresponsiveness, while co-exposure to PS-MPs and DEHP caused more significant damage. Co-exposure also induced more oxidative stress and Th2 immune responses, and activation of the TRPA1 and p38 MAPK pathways. The aggravation of asthmatic symptoms induced by co-exposure to PS-MPs and DEHP were inhibited by blocking TRPA1 ion channel or p38 MAPK pathway. The results demonstrated that co-exposure to PS-MPs and DEHP exacerbates allergic asthma, by exacerbating oxidative stress and inflammatory responses, and activating the TRPA1-p38 MAPK pathway.
Collapse
Affiliation(s)
- Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Shuwei Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Zhaolan Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|
16
|
Shi QQ, Zhang XQ, Zhang ZM, Wang NB, Liu H, Zhang RR, Sun AL, Chen J, Shi XZ. Transcriptome sequencing and metabolite analysis reveal the single and combined effects of microplastics and di-(2-ethylhexyl) phthalate on Peneaus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161549. [PMID: 36640892 DOI: 10.1016/j.scitotenv.2023.161549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Due to the rising usage of plastics, plastic debris are present throughout marine ecosystems and detrimentally affects marine biota. Additionally, plastics likely result in elusive toxicity effects due to addition of plasticizers. The aim of the present study was to reveal the potential effects and mechanism of microplastics (MPs), di-(2-ethylhexyl) phthalate (DEHP) and copollution of MPs and DEHP (MPs-DEHP) on Peneaus vannamei (P. vannamei) juveniles regarding oxidative stress, transcriptomics and metabolomics. MPs, DEHP and MPs-DEHP significantly induced the activities of superoxide dismutase (SOD) and catalase (CAT); MPs and DEHP have an antagonistic effect for malondialdehyde (MDA); suggesting that disorders of the antioxidant defence systems. 13, 133 and 58 differentially expressed genes and 21, 82 and 39 differentially expressed metabolites were responsible for the distinction of MPs, DEHP and MPs-DEHP groups, respectively. The combination of transcriptomic and metabolomic analyses showed that MPs, DEHP and MPs-DEHP exposure disturbed amino acid and lipid metabolism, and further induced inflammatory responses and dysfunction of purine metabolism. Furthermore, the presence of MPs might alleviate the biotoxicity of DEHP in P. vannamei. These findings provide new insights into the single and combined toxicological effects of MPs and additives for marine biota.
Collapse
Affiliation(s)
- Qiang-Qiang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China
| | - Xiao-Qian Zhang
- School of Marine Sciences, Ningbo University, Ningbo 31211, PR China.
| | - Ze-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China
| | - Ning-Bo Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China
| | - Hua Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China
| | - Rong-Rong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China
| | - Ai-Li Sun
- School of Marine Sciences, Ningbo University, Ningbo 31211, PR China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China
| | - Xi-Zhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China.
| |
Collapse
|
17
|
Shum TF, Wang L, Chiou J. Impact of Plasticizer on the Intestinal Epithelial Integrity and Tissue-Repairing Ability within Cells in the Proximity of the Human Gut Microbiome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2152. [PMID: 36767519 PMCID: PMC9915929 DOI: 10.3390/ijerph20032152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Toxicological research into the impact of plasticizer on different organs has been reported in the past few decades, while their effects on shifting the gut microbiota and immune cells homeostasis in zebrafish were only studied recently. However, studies on the impact of plasticizer on human gut microbiota are scarce. In this study, we co-incubated healthy human fecal microbiota with different concentrations of Di(2-ethylhexyl) phthalate (DEHP) and di-iso-nonyl phthalate (DINP), analyzed microbial composition by 16S rDNA sequencing, and compared the influence of their derived microbiomes on the human enterocyte (HT-29) and murine macrophage (RAW264.7) cell lines. Microbial diversity is reduced by DEHP treatment in a dose-dependent manner. DEHP treatment reduced the phyla Firmicutes/Bacteroidetes ratio, while DINP treatment promoted Proteobacteria. Expressions of tight/adherens junction genes in HT-29 and anti-inflammatory genes in RAW264.7 were down-regulated by plasticizer-co-incubated microbiota derived metabolites. Overall, it is observed that selected plasticizers at high dosages can induce compositional changes in human microbiota. Metabolites from such altered microbiota could affect the tight junction integrity of the intestinal epithelium and upset macrophage differentiation homeostasis in proximity. Chronic exposure to these plasticizers may promote risks of dysbiosis, leaky gut or the exacerbation of intestinal inflammation.
Collapse
Affiliation(s)
- Tim-Fat Shum
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Liwen Wang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jiachi Chiou
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
18
|
Yu J, Huang G, Gong Q, Zhang K, Abdelhafez HEDH, Du Y, Guo J. MicroRNA-375 Mediated Regulation on Pre-mRNA Processing Factor 3 in Zebrafish Embryos Exposed to Di-(2-ethylhexyl)phthalate at Low Concentrations. Chem Res Toxicol 2023; 36:32-42. [PMID: 36538765 DOI: 10.1021/acs.chemrestox.2c00257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Di-(2-ethylhexyl)phthalate (DEHP) is an endocrine-disrupting chemical (EDC) that induces epigenetic alterations, apoptosis, and oxidative stress after biological exposure. MicroRNAs (miRNAs) are a class of small noncoding RNAs with many regulatory functions and play a role in organisms exposed to environmental chemicals. miRNA-mRNA prediction indicated that pre-mRNA processing factor 3 (PRPF3) is a likely target mRNA for miR-375 whose expression is altered by DEHP exposure. However, the interrelation between miR-375 and PRPF3 has not yet been confirmed experimentally. This study aimed to investigate the effects of DEHP on miR-375 and PRPF3 in zebrafish. The expression of miR-375 was downregulated, whereas PRPF3 was upregulated at both transcriptional and post-transcriptional levels upon stimulation with DEHP. The interaction between miR-375 and the 3'-untranslated region (3'-UTR) of PRPF3 was confirmed by a dual fluorescent protein assay and a dual luciferase reporter gene assay. The expression of PRPF3 at both transcriptional and post-transcriptional levels was reduced in ZF4 cells when transfected with a miR-375 mimic but increased when transfected with a miR-375 inhibitor. The results improved our understanding of molecular mechanisms of toxicity upon DEHP exposure and presented miR-375 as a potential novel toxicological biomarker for chemical exposure.
Collapse
Affiliation(s)
- Junjie Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Ge Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qi Gong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Kai Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Hossam El Din H Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Lab, Agricultural Research Center, Ministry of Agriculture, Giza 11435, Egypt
| | - Yuting Du
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jiangfeng Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
19
|
Zhang C, Ren W, Sun C, Liu L, Li M, Wang W, Fang Y, Liu L, Yang X, Zhang X, Li S. Associations between gastrointestinal infection and urinary phthalate metabolite concentrations in US children and adolescents from NHANES 2005-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4582-4591. [PMID: 35972658 DOI: 10.1007/s11356-022-22327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to evaluate at the link between gastrointestinal illness and urine phthalate metabolite concentrations in children and adolescents in the United States between 2005 and 2016. A total of 4008 National Health and Nutrition Examination Survey (NHANES) participants had urine samples obtained during the survey and self-reported their gastrointestinal functional status over the previous week. High performance liquid chromatography/tandem mass spectrometry (HPLC/MS-MS) was used to identify twelve phthalate metabolites in urine samples. The link between PAE concentrations and gastrointestinal illnesses was investigated using logistic regression, which was controlled for possible confounders. The combined and independent effects of PAEs on gastrointestinal illnesses were investigated using Bayesian Kernel Machine Regression (BKMR) and quantile-based g-computation (qgcomp). In children and adolescents, the prevalence of gastrointestinal infection was 9.0%. One log-unit increase in urinary concentrations was associated with an increased risk of gastrointestinal infection for monocarboxyoctyl phthalate (MCOP) (adjusted odd ratio (aOR) = 1.36, 95 percent confidence interval (95%ci): 1.08, 1.62), mono(2-ethylhexyl) phthalate (MEHP) (aOR = 1.18, 95 percent CI: 1.05, 1.32) and mono(2-eth The mixed exposure model findings revealed that the combined effect of PAEs was substantially linked with gastrointestinal infection; exposure to the combination of PAEs was positively associated with the risk of gastrointestinal infection. In the BKMR model, the exposure to the mixture of PAEs was positively associated with the risk of gastrointestinal infection. In qgcomp, a substantial positive correlation between PAEs and gastrointestinal illnesses was identified (OR = 1.16, 95 percent CI: 1.05, 1.28). MCOP and MEHP may be the major contributors after controlling for other PAE homologs. These associations were more pronounced in overweight and obese children and adolescents. Mixed exposure to phthalates (PAEs) in children and adolescents was significantly associated with gastrointestinal infections, with MCOP and MEHP accounting for the major proportions. These associations were more pronounced in overweight and obese children and adolescents.
Collapse
Affiliation(s)
- Chuang Zhang
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Weirui Ren
- Department of Gastroenterology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Chi Sun
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lin Liu
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Meng Li
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wenbo Wang
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yanbin Fang
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lin Liu
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiaofeng Yang
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xiangjian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050000, China
| | - Suolin Li
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
20
|
Miao Z, Miao Z, Liu M, Xu S. Melatonin ameliorates imidacloprid-induced intestinal injury by negatively regulating the PGN/P38MAPK pathway in the common carp (Cyprinuscarpio). FISH & SHELLFISH IMMUNOLOGY 2022; 131:1063-1074. [PMID: 36375784 DOI: 10.1016/j.fsi.2022.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Imidacloprid (IMI), one of the most frequently used neonicotinoid insecticides in agriculture, is resided in surface water worldwide and poses a threat to aquatic organisms. Melatonin (MT) provides effective protection against insecticide-induced toxicity, nevertheless, the toxic effects and whether MT attenuates intestinal injury caused by IMI exposure in the common carps remains poorly explored. Previous studies have reported adverse effects of IMI exposure on intestinal health status. Therefore, we first demonstrated that IMI altered the composition and function of the intestinal microbiota, destroying the integrity of intestinal ultrastructure, increasing intestinal permeability. Meanwhile, metagenomic sequencing and ELISA kits results hypothesized that peptidoglycan (PGN) is an IMI-triggered intestinal microbial metabolite. Subsequently, we thus further elucidated that IMI induced an increase in intestinal tight junction permeability by inducing PGN secretion in vitro model. MT addition dramatically attenuated IMI-induced intestinal toxicity by remitting PGN synthesis and thus resecuring tight junction permeability, thereby reducing intestinal injury. SB203580 was supplied as a P38MAPK inhibitor to alleviate the increased permeability of tight junctions induced by IMI/PGN. Therefore, these findings confirmed that MT protects against IMI-induced intestinal injury by negatively regulating PGN/P38MAPK pathway to antagonize the increased tight junction permeability.
Collapse
Affiliation(s)
- Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
21
|
Bashir ST, Chiu K, Zheng E, Martinez A, Chiu J, Raj K, Stasiak S, Lai NZE, Arcanjo RB, Flaws JA, Nowak RA. Subchronic exposure to environmentally relevant concentrations of di-(2-ethylhexyl) phthalate differentially affects the colon and ileum in adult female mice. CHEMOSPHERE 2022; 309:136680. [PMID: 36209858 DOI: 10.1016/j.chemosphere.2022.136680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a large-molecular-weight phthalate added to plastics to impart versatile properties. DEHP can be found in medical equipment and devices, food containers, building materials, and children's toys. Although DEHP exposure occurs most commonly by ingesting contaminated foods in the majority of the population, its effects on the gastrointestinal tract have not been well studied. Therefore, we analyzed the effects of subchronic exposure to DEHP on the ileum and colon morphology, gene expression, and immune microenvironment. Adult C57BL/6 female mice were orally dosed with corn oil (control, n = 7) or DEHP (0.02, 0.2, or 30 mg/kg, n = 7/treatment dose) for 30-34 days. Mice were euthanized during diestrus, and colon and ileum tissues were collected for RT-qPCR and immunohistochemistry. Subchronic DEHP exposure in the ileum altered the expression of several immune-mediating factors (Muc1, Lyz1, Cldn1) and cell viability factors (Bcl2 and Aifm1). Similarly, DEHP exposure in the colon impacted the gene expression of factors involved in mediating immune responses (Muc3a, Zo2, Ocln, Il6, and Il17a); and also altered the expression of cell viability factors (Ki67, Bcl2, Cdk4, and Aifm1) as well as a specialized epithelial cell marker (Vil1). Immunohistochemical analysis of the ileum showed DEHP increased expression of VIL1, CLDN1, and TNF and decreased number of T-cells in the villi. Histological analysis of the colon showed DEHP altered morphology and reduced cell proliferation. Moreover, in the colon, DEHP increased the expression of MUC2, MUC1, VIL1, CLDN1, and TNF. DEHP also increased the number of T-cells and Type 2 immune cells in the colon. These data suggest that subchronic DEHP exposure differentially affects the ileum and colon and alters colonic morphology and the intestinal immune microenvironment. These results have important implications for understanding the effects of DEHP on the gastrointestinal system.
Collapse
Affiliation(s)
- Shah Tauseef Bashir
- Department of Molecular and Integrative Physiology, College of Liberal Arts & Sciences, University of Illinois, Urbana, IL, USA; Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Karen Chiu
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Eileen Zheng
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Angel Martinez
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Justin Chiu
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - Kishori Raj
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Sandra Stasiak
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Nastasia Zhen Ee Lai
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Rachel B Arcanjo
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA
| | - Jodi A Flaws
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Romana A Nowak
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
22
|
Foucault P, Gallet A, Duval C, Marie B, Duperron S. Gut microbiota and holobiont metabolome composition of the medaka fish (Oryzias latipes) are affected by a short exposure to the cyanobacterium Microcystis aeruginosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106329. [PMID: 36274502 DOI: 10.1016/j.aquatox.2022.106329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Blooms of toxic cyanobacteria are a common stress encountered by aquatic fauna. Evidence indicates that long-lasting blooms affect fauna-associated microbiota. Because of their multiple roles, host-associated microbes are nowadays considered relevant to ecotoxicology, yet the respective timing of microbiota versus functional changes in holobionts response needs to be clarified. The response of gut microbiota and holobiont's metabolome to exposure to a dense culture of Microcystis aeruginosa was investigated as a microcosm-simulated bloom in the model fish species Oryzias latipes (medaka). Both gut microbiota and gut metabolome displayed significant composition changes after only 2 days of exposure. A dominant symbiont, member of the Firmicutes, plummeted whereas various genera of Proteobacteria and Actinobacteriota increased in relative abundance. Changes in microbiota composition occurred earlier and faster compared to metabolome composition. Liver and muscle metabolome were much less affected than guts, supporting that the gut and associated microbiota are in the front row upon exposure. This study highlights that even short cyanobacterial blooms, that are increasingly frequent, trigger changes in microbiota composition and holobiont metabolome. It emphasizes the relevance of multi-omics approaches to explore organism's response to an ecotoxicological stress.
Collapse
Affiliation(s)
- Pierre Foucault
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France; UMR7618 iEES-Paris, Sorbonne Université, Paris, France
| | - Alison Gallet
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Charlotte Duval
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Benjamin Marie
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Sébastien Duperron
- UMR7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France.
| |
Collapse
|
23
|
Yang TN, Li XN, Wang YX, Ma XY, Li JL. Disrupted microbiota-barrier-immune interaction in phthalates-mediated barrier defect in the duodenum. CHEMOSPHERE 2022; 308:136275. [PMID: 36058374 DOI: 10.1016/j.chemosphere.2022.136275] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
As one of the most used phthalates, Di (2-ethylhexyl) phthalate (DEHP) is a widespread environmental contaminant. Extremely persistent plastic can enter the food chain of animals through the aquatic environment, affect metabolic pathways and cause damage to the digestive system. But the molecular mechanism of its toxic effects on the duodenum in birds has not been elucidated. To investigate the toxicity of phthalates in the duodenum, quails were gavaged with 250, 500, and 750 mg/kg doses of DEHP for 45 days, and water and oil control groups were retained. This study revealed that subchronic exposure to DEHP could lead to duodenal barrier defect in quail. The damage to duodenum was reflected in a reduction in V/C and tight junction proteins. Moreover, DEHP also led to a breakdown of antimicrobial defenses through the flora derangement, which acted as a biological barrier. The massive presence of Lipopolysaccharide (LPS) led to the activation of TLR4 receptors. In addition, DEHP activated oxidative stress, which synergized the inflammatory response induced by the TLR4-NFκB pathway, and further promoted duodenum damage. This study provides a base for the further effect of phthalates on the microbiota-barrier-immune interaction.
Collapse
Affiliation(s)
- Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
24
|
Torres-Sánchez A, Ruiz-Rodríguez A, Ortiz P, Moreno MA, Ampatzoglou A, Gruszecka-Kosowska A, Monteoliva-Sánchez M, Aguilera M. Exploring Next Generation Probiotics for Metabolic and Microbiota Dysbiosis Linked to Xenobiotic Exposure: Holistic Approach. Int J Mol Sci 2022; 23:12917. [PMID: 36361709 PMCID: PMC9655105 DOI: 10.3390/ijms232112917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Variation of gut microbiota in metabolic diseases seems to be related to dysbiosis induced by exposure to multiple substances called Microbiota Disrupting Chemicals (MDCs), which are present as environmental and dietary contaminants. Some recent studies have focused on elucidating the alterations of gut microbiota taxa and their metabolites as a consequence of xenobiotic exposures to find possible key targets involved in the severity of the host disease triggered. Compilation of data supporting the triad of xenobiotic-microbiota-metabolic diseases would subsequently allow such health misbalances to be prevented or treated by identifying beneficial microbe taxa that could be Next Generation Probiotics (NGPs) with metabolic enzymes for MDC neutralisation and mitigation strategies. In this review, we aim to compile the available information and reports focused on variations of the main gut microbiota taxa in metabolic diseases associated with xenobiotic exposure and related microbial metabolite profiles impacting the host health status. We performed an extensive literature search using SCOPUS, Web of Science, and PubMed databases. The data retrieval and thorough analyses highlight the need for more combined metagenomic and metabolomic studies revealing signatures for xenobiotics and triggered metabolic diseases. Moreover, metabolome and microbiome compositional taxa analyses allow further exploration of how to target beneficial NGP candidates according to their alleged variability abundance and potential therapeutic significance. Furthermore, this holistic approach has identified limitations and the need of future directions to expand and integrate key knowledge to design appropriate clinical and interventional studies with NGPs. Apart from human health, the beneficial microbes and metabolites identified could also be proposed for various applications under One Health, such as probiotics for animals, plants and environmental bioremediation.
Collapse
Affiliation(s)
- Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Alicia Ruiz-Rodríguez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Pilar Ortiz
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - María Alejandra Moreno
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Antonis Ampatzoglou
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Agnieszka Gruszecka-Kosowska
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, 18012 Granada, Spain
| |
Collapse
|
25
|
Yu Z, Xia Y, Cheng S, Mao L, Luo S, Tang S, Sun W, Jiang X, Zou Z, Chen C, Qiu J, Zhou L. Polystyrene nanoparticles aggravate the adverse effects of di-(2-ethylhexyl) phthalate on different segments of intestine in mice. CHEMOSPHERE 2022; 305:135324. [PMID: 35697104 DOI: 10.1016/j.chemosphere.2022.135324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Emerging evidence indicates that nanoplastics (NPs) can transport organic pollutants such as di-(2-ethylhexyl) phthalate (DEHP) into organisms and induce adverse health effects. Nevertheless, the toxic effects of NPs combined with DEHP on mammalian intestine are still unclear. In this study, the C57BL6J mice were exposed to polystyrene nanoparticles (PSNPs), DEHP or them both for 30 days to determine their effects on different segments of intestine and the gut microbiota. As a result, DEHP alone or co-exposure to DEHP and PSNPs induced histological damages in all intestinal parts, mainly manifested as the decreased villus lengths, increased crypt depths in the duodenum, jejunum and ileum and decreased villus counts accompanied with decreased epithelial area in the colon. Moreover, decreased mucus coverage, down-regulated Muc2 expression levels as well as the broken tight junctions were observed in intestinal epithelium of mice, particularly obvious in the co-treatment groups. In general, as manifested by greater alterations in most of the parameters mentioned above, simultaneously exposed to PSNPs and DEHP seemed to induce enhanced toxic effects on intestine of mouse when compared with DEHP alone. Furthermore, the altered community composition of gut microbiota might at least partially contribute to these abnormalities. Overall, our results highlight the aggravated toxicity on different segments of intestine in mammalians due to co-exposure of PSNPs and DEHP, and these findings will provide valuable insights into the health risk of NPs and plastic additives.
Collapse
Affiliation(s)
- Ziying Yu
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wei Sun
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
26
|
Competition-Induced Binding Spherical Nucleic AcidFluorescence Amplifier for the Detection of Di (2-ethylhexyl) Phthalate in the Aquatic Environment. NANOMATERIALS 2022; 12:nano12132196. [PMID: 35808031 PMCID: PMC9268500 DOI: 10.3390/nano12132196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is a toxic plasticizer and androgen antagonist. Its accumulation in water exceeds national drinking water standards and it must be continuously and effectively regulated. Currently, methods used to detect DEHP are still unsatisfactory because they usually have limited detection sensitivity and require complex operating procedures. A competition-induced fluorescence detection method was developed for the selective detection of DEHP in an aquatic environment. An aptamer with walking function was used as the recognition element for DEHP, and its quantification was induced by competition to change the fluorescence signal. The detection range was 0.01~100 µg/L, and the detection limit was 1.008 μg/L. This high-sensitivity DEHP detection capability and simplified process facilitates real-time fields and other monitoring tasks.
Collapse
|
27
|
Trevisan R, Ranasinghe P, Jayasundara N, Di Giulio RT. Nanoplastics in Aquatic Environments: Impacts on Aquatic Species and Interactions with Environmental Factors and Pollutants. TOXICS 2022; 10:toxics10060326. [PMID: 35736934 PMCID: PMC9230143 DOI: 10.3390/toxics10060326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022]
Abstract
Plastic production began in the early 1900s and it has transformed our way of life. Despite the many advantages of plastics, a massive amount of plastic waste is generated each year, threatening the environment and human health. Because of their pervasiveness and potential for health consequences, small plastic residues produced by the breakdown of larger particles have recently received considerable attention. Plastic particles at the nanometer scale (nanoplastics) are more easily absorbed, ingested, or inhaled and translocated to other tissues and organs than larger particles. Nanoplastics can also be transferred through the food web and between generations, have an influence on cellular function and physiology, and increase infections and disease susceptibility. This review will focus on current research on the toxicity of nanoplastics to aquatic species, taking into account their interactive effects with complex environmental mixtures and multiple stressors. It intends to summarize the cellular and molecular effects of nanoplastics on aquatic species; discuss the carrier effect of nanoplastics in the presence of single or complex environmental pollutants, pathogens, and weathering/aging processes; and include environmental stressors, such as temperature, salinity, pH, organic matter, and food availability, as factors influencing nanoplastic toxicity. Microplastics studies were also included in the discussion when the data with NPs were limited. Finally, this review will address knowledge gaps and critical questions in plastics’ ecotoxicity to contribute to future research in the field.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88037-000, Brazil
- Correspondence:
| | - Prabha Ranasinghe
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| | - Richard T. Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; (P.R.); (N.J.); (R.T.D.G.)
| |
Collapse
|
28
|
Martyniuk CJ, Buerger AN, Vespalcova H, Rudzanova B, Sohag SR, Hanlon AT, Ginn PE, Craft SL, Smetanova S, Budinska E, Bisesi JH, Adamovsky O. Sex-dependent host-microbiome dynamics in zebrafish: Implications for toxicology and gastrointestinal physiology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100993. [PMID: 35533547 DOI: 10.1016/j.cbd.2022.100993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
The physiology of males and females can be vastly different, complicating interpretation of toxicological and physiological data. The objectives of this study were to elucidate the sex differences in the microbiome-gastrointestinal (GI) transcriptome of adult zebrafish. We compared microbial composition and diversity in both males and females fed the same diet and housed in the same environment. There were no sex-specific differences in weight gain nor gastrointestinal morphology based on histopathology. There was no difference in gut microbial diversity, richness (Shannon and Chao1 index) nor predicted functional composition of the microbiome between males and females. Prior to post-hoc correction, male zebrafish showed higher abundance for the bacterial families Erythrobacteraceae and Lamiaceae, both belonging to the phyla Actinobacteria and Proteobacteria. At the genus level, Lamia and Altererythrobacter were more dominant in males and an unidentified genus in Bacteroidetes was more abundant in females. There were 16 unique differentially expressed transcripts in the gastrointestinal tissue between male and female zebrafish (FDR corrected, p < 0.05). Relative to males, the mRNA expression for trim35-9, slc25a48, chchd3b, csad, and hsd17b3 were lower in female GI while cyp2k6, adra2c, and bckdk were higher in the female GI. Immune and lipid-related gene network expression differed between the sexes (i.e., cholesterol export and metabolism) as well as networks related to gastric motility, gastrointestinal system absorption and digestion. Such data provide clues as to putative differences in gastrointestinal physiology between male and female zebrafish. This study identifies host-transcriptome differences that can be considered when interpreting the microgenderome of zebrafish in studies investigating GI physiology and toxicology of fishes.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Amanda N Buerger
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Hana Vespalcova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Barbora Rudzanova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Shahadur R Sohag
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Amy T Hanlon
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Pamela E Ginn
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Serena L Craft
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Sona Smetanova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Eva Budinska
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ondrej Adamovsky
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic.
| |
Collapse
|
29
|
Buerger AN, Parente CE, Harris JP, Watts EG, Wormington AM, Bisesi JH. Impacts of diethylhexyl phthalate and overfeeding on physical fitness and lipid mobilization in Danio rerio (zebrafish). CHEMOSPHERE 2022; 295:133703. [PMID: 35066078 DOI: 10.1016/j.chemosphere.2022.133703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
As the prevalence of obesity has steadily increased on a global scale, research has shifted to explore potential contributors to this pandemic beyond overeating and lack of exercise. Environmental chemical contaminants, known as obesogens, alter metabolic processes and exacerbate the obese phenotype. Diethylhexyl phthalate (DEHP) is a common chemical plasticizer found in medical supplies, food packaging, and polyvinyl materials, and has been identified as a probable obesogen. This study investigated the hypothesis that co-exposure to DEHP and overfeeding would result in decreased lipid mobilization and physical fitness in Danio rerio (zebrafish). Four treatment groups were randomly assigned: Regular Fed (control, 10 mg/fish/day with 0 mg/kg DEHP), Overfed (20 mg/fish/day with 0 mg/kg DEHP), Regular Fed + DEHP (10 mg/fish/day with 3 mg/kg DEHP), Overfed + DEHP (20 mg/fish/day with 3 mg/kg DEHP). After 24 weeks, swim tunnel assays were conducted on half of the zebrafish from each treatment to measure critical swimming speeds (Ucrit); the other fish were euthanized without swimming. Body mass index (BMI) was measured, and tissues were collected for blood lipid characterization and gene expression analyses. Co-exposure to DEHP and overfeeding decreased swim performance as measured by Ucrit. While no differences in blood lipids were observed with DEHP exposure, differential expression of genes related to lipid metabolism and utilization in the gastrointestinal and liver tissue suggests alterations in metabolism and lipid packaging, which may impact utilization and ability to mobilize lipid reserves during physical activity following chronic exposures.
Collapse
Affiliation(s)
- Amanda N Buerger
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Caitlyn E Parente
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA; Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Jason P Harris
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA; Department of Biology, University of Florida, Gainesville, FL, USA
| | - Emily G Watts
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA; Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Alexis M Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Gruber ES, Stadlbauer V, Pichler V, Resch-Fauster K, Todorovic A, Meisel TC, Trawoeger S, Hollóczki O, Turner SD, Wadsak W, Vethaak AD, Kenner L. To Waste or Not to Waste: Questioning Potential Health Risks of Micro- and Nanoplastics with a Focus on Their Ingestion and Potential Carcinogenicity. EXPOSURE AND HEALTH 2022; 15:33-51. [PMID: 36873245 PMCID: PMC9971145 DOI: 10.1007/s12403-022-00470-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 05/27/2023]
Abstract
Micro- and nanoplastics (MNPs) are recognized as emerging contaminants, especially in food, with unknown health significance. MNPs passing through the gastrointestinal tract have been brought in context with disruption of the gut microbiome. Several molecular mechanisms have been described to facilitate tissue uptake of MNPs, which then are involved in local inflammatory and immune responses. Furthermore, MNPs can act as potential transporters ("vectors") of contaminants and as chemosensitizers for toxic substances ("Trojan Horse effect"). In this review, we summarize current multidisciplinary knowledge of ingested MNPs and their potential adverse health effects. We discuss new insights into analytical and molecular modeling tools to help us better understand the local deposition and uptake of MNPs that might drive carcinogenic signaling. We present bioethical insights to basically re-consider the "culture of consumerism." Finally, we map out prominent research questions in accordance with the Sustainable Development Goals of the United Nations.
Collapse
Affiliation(s)
- Elisabeth S. Gruber
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Andrea Todorovic
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Styria, Austria
| | - Thomas C. Meisel
- General and Analytical Chemistry, Montanuniversitaet Leoben, Styria, Austria
| | - Sibylle Trawoeger
- Division of Systematic Theology and its Didactics, Faculty of Catholic Theology, University of Wuerzburg, Wuerzburg, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Suzanne D. Turner
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP UK
- Central European Institute of Technology, Masaryk University, 602 00 Brno, Czech Republic
| | - Wolfgang Wadsak
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - A. Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Unit of Marine and Coastal Systems, Deltares, P.O. Box 177, 2600 MH Delft, Netherlands
| | - Lukas Kenner
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
- Division of Experimental and Laboratory Animal Pathology, Department of Pathology Medical, University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
31
|
Ortiz P, Torres-Sánchez A, López-Moreno A, Cerk K, Ruiz-Moreno Á, Monteoliva-Sánchez M, Ampatzoglou A, Aguilera M, Gruszecka-Kosowska A. Impact of Cumulative Environmental and Dietary Xenobiotics on Human Microbiota: Risk Assessment for One Health. J Xenobiot 2022; 12:56-63. [PMID: 35323221 PMCID: PMC8949313 DOI: 10.3390/jox12010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
Chemical risk assessment in the context of the risk analysis framework was initially designed to evaluate the impact of hazardous substances or xenobiotics on human health. As the need of multiple stressors assessment was revealed to be more reliable regarding the occurrence and severity of the adverse effects in the exposed organisms, the cumulative risk assessment started to be the recommended approach. As toxicant mixtures and their "cocktail effects" are considered to be main hazards, the most important exposure for these xenobiotics would be of dietary and environmental origin. In fact, even a more holistic prism should currently be considered. In this sense, the definition of One Health refers to simultaneous actions for improving human, animal, and environmental health through transdisciplinary cooperation. Global policies necessitate going beyond the classical risk assessment for guaranteeing human health through actions and implementation of the One Health approach. In this context, a new perspective is proposed for the integration of microbiome biomarkers and next generation probiotics potentially impacting and modulating not only human health, but plant, animal health, and the environment.
Collapse
Affiliation(s)
- Pilar Ortiz
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- IBS (Instituto de Investigación Biosanitaria ibs.), 18012 Granada, Spain
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Ángel Ruiz-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Antonis Ampatzoglou
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- IBS (Instituto de Investigación Biosanitaria ibs.), 18012 Granada, Spain
| | - Agnieszka Gruszecka-Kosowska
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain; (P.O.); (A.T.-S.); (A.L.-M.); (K.C.); (Á.R.-M.); (M.M.-S.); (A.A.)
- Institute of Nutrition and Food Technology “José Mataix” (UGR-INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Department of Environmental Protection, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
32
|
Noecker C, Eng A, Muller E, Borenstein E. MIMOSA2: a metabolic network-based tool for inferring mechanism-supported relationships in microbiome-metabolome data. Bioinformatics 2022; 38:1615-1623. [PMID: 34999748 PMCID: PMC8896604 DOI: 10.1093/bioinformatics/btac003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION Recent technological developments have facilitated an expansion of microbiome-metabolome studies, in which samples are assayed using both genomic and metabolomic technologies to characterize the abundances of microbial taxa and metabolites. A common goal of these studies is to identify microbial species or genes that contribute to differences in metabolite levels across samples. Previous work indicated that integrating these datasets with reference knowledge on microbial metabolic capacities may enable more precise and confident inference of microbe-metabolite links. RESULTS We present MIMOSA2, an R package and web application for model-based integrative analysis of microbiome-metabolome datasets. MIMOSA2 uses genomic and metabolic reference databases to construct a community metabolic model based on microbiome data and uses this model to predict differences in metabolite levels across samples. These predictions are compared with metabolomics data to identify putative microbiome-governed metabolites and taxonomic contributors to metabolite variation. MIMOSA2 supports various input data types and customization with user-defined metabolic pathways. We establish MIMOSA2's ability to identify ground truth microbial mechanisms in simulation datasets, compare its results with experimentally inferred mechanisms in honeybee microbiota, and demonstrate its application in two human studies of inflammatory bowel disease. Overall, MIMOSA2 combines reference databases, a validated statistical framework, and a user-friendly interface to facilitate modeling and evaluating relationships between members of the microbiota and their metabolic products. AVAILABILITY AND IMPLEMENTATION MIMOSA2 is implemented in R under the GNU General Public License v3.0 and is freely available as a web server at http://elbo-spice.cs.tau.ac.il/shiny/MIMOSA2shiny/ and as an R package from http://www.borensteinlab.com/software_MIMOSA2.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Cecilia Noecker
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Alexander Eng
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Efrat Muller
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Elhanan Borenstein
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
33
|
Lin G, Li S, Huang J, Gao D, Lu J. Hypoosmotic stress induced functional alternations of intestinal barrier integrity, inflammatory reactions, and neurotransmission along gut-brain axis in the yellowfin seabream (Acanthopagrus latus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1725-1738. [PMID: 34480680 DOI: 10.1007/s10695-021-01011-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The gut-brain axis plays a major role in multiple metabolic regulation processes, but studies regarding its responses to environmental stress in fish are still limited. In this study, we performed transcriptome sequencing analysis and enzyme-linked immunosorbent assay (ELISA) in yellowfin seabream (Acanthopagrus latus) exposed to environments with different water salinity (freshwater: 0 ppt; low-saline water: 3 ppt; brackish water: 6 ppt). According to transcriptome analysis, 707 and 1477 genes were identified as differentially expressed genes (DEGs) between freshwater and brackish water treatments in the brain and gut, respectively. Brain DEGs were significantly enriched into a set of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with signal transduction, most of which were downregulated. Gut DEGs were enriched into a neurotransmission-relevant KEGG pathway tryptophan metabolism, and the downregulated DEGs were enriched into the KEGG pathway focal adhesion. ELISA demonstrated significant physiological responses of the brain and gut across treatments, as determined by the concentrations of tight junction protein ZO-2, interleukin 1β, and serotonin. Under hypoosmotic stress, the functions of the gut-brain axis are altered via impairment of intestinal barrier integrity, by disturbance of gut-brain neurotransmission, and through tissue-damaging inflammatory reactions. Our work identified candidate genes which showed significantly differential expression in the gut-brain axis when yellowfin seabream encountered hypoosmotic stress, which could shed lights on the understanding of the potential osmotic regulation mechanisms of the gut-brain axis in teleost.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510275, Guangdong, China.
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519000, China.
| |
Collapse
|
34
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Drakoulis N, Porter AL, Tsatsakis A, Spandidos DA. Contributing factors common to COVID‑19 and gastrointestinal cancer. Oncol Rep 2021; 47:16. [PMID: 34779496 PMCID: PMC8611322 DOI: 10.3892/or.2021.8227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from the dysfunctional immune response of an individual following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events, ultimately leading to COVID-19. The authors have previously identified a number of contributing factors (CFs) common to myriad chronic diseases. Based on these observations, it was hypothesized that there may be a significant overlap between CFs associated with COVID-19 and gastrointestinal cancer (GIC). Thus, in the present study, a streamlined dot-product approach was used initially to identify potential CFs that affect COVID-19 and GIC directly (i.e., the simultaneous occurrence of CFs and disease in the same article). The nascent character of the COVID-19 core literature (~1-year-old) did not allow sufficient time for the direct effects of numerous CFs on COVID-19 to emerge from laboratory experiments and epidemiological studies. Therefore, a literature-related discovery approach was used to augment the COVID-19 core literature-based ‘direct impact’ CFs with discovery-based ‘indirect impact’ CFs [CFs were identified in the non-COVID-19 biomedical literature that had the same biomarker impact pattern (e.g., hyperinflammation, hypercoagulation, hypoxia, etc.) as was shown in the COVID-19 literature]. Approximately 2,250 candidate direct impact CFs in common between GIC and COVID-19 were identified, albeit some being variants of the same concept. As commonality proof of concept, 75 potential CFs that appeared promising were selected, and 63 overlapping COVID-19/GIC potential/candidate CFs were validated with biological plausibility. In total, 42 of the 63 were overlapping direct impact COVID-19/GIC CFs, and the remaining 21 were candidate GIC CFs that overlapped with indirect impact COVID-19 CFs. On the whole, the present study demonstrates that COVID-19 and GIC share a number of common risk/CFs, including behaviors and toxic exposures, that impair immune function. A key component of immune system health is the removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA 20155, USA
| | | | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I‑70125 Bari, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
35
|
Chiu K, Bashir ST, Chiu J, Nowak RA, Flaws JA. The Impact of Di-Isononyl Phthalate Exposure on Specialized Epithelial Cells in the Colon. Toxicol Sci 2021; 184:142-153. [PMID: 34453847 PMCID: PMC8677456 DOI: 10.1093/toxsci/kfab105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Di-isononyl phthalate (DiNP) is a high-molecular-weight phthalate commonly used as a plasticizer for polyvinyl chloride and other end products, such as medical devices and construction materials. Most of our initial exposure to DiNP occurs by ingestion of DiNP-contaminated foods. However, little is known about the effects of DiNP on the colon. Therefore, the goal of this study was to test the hypothesis that DiNP exposure alters immune responses and impacts specialized epithelial cells in the colon. To test this hypothesis, adult female mice were orally dosed with corn-oil vehicle control or doses of DiNP ranging from 20 µg/kg/d to 200 mg/kg/d for 10-14 days. After the dosing period, mice were euthanized in diestrus, and colon tissues and sera were collected for histological, genomic, and proteomic analysis of various immune factors and specialized epithelial cells. Subacute exposure to DiNP significantly increased protein levels of Ki67 and MUC2, expression of a Paneth cell marker (Lyz1), and estradiol levels in sera compared with control. Gene expression of mucins (Muc1, Muc2, Muc3a, and Muc4), Toll-like receptors (Tlr4 and Tlr5), and specialized epithelial cells (ChgA, Lgr5, Cd24a, and Vil1) were not significantly different between treatment groups and control. Cytokine levels of IL-1RA and CXCL12 were also not significantly different between DiNP treatment groups and control. These data reveal that DiNP exposure increases circulating estradiol levels and gene expression in specialized epithelial cells with immune response capabilities (eg, goblet and Paneth cells) in the mouse colon, which may initiate immune responses to prevent further damage in the colon.
Collapse
Affiliation(s)
- Karen Chiu
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3832, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802-6178, USA
| | - Shah Tauseef Bashir
- Department of Molecular and Integrative Physiology, College of Liberal Arts and Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3732, USA
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801-4733, USA
| | - Justin Chiu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802-6178, USA
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801-4733, USA
| | - Romana A Nowak
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801-4733, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3832, USA
| | - Jodi A Flaws
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3832, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802-6178, USA
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801-4733, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3832, USA
| |
Collapse
|
36
|
Uyanga VA, Amevor FK, Liu M, Cui Z, Zhao X, Lin H. Potential Implications of Citrulline and Quercetin on Gut Functioning of Monogastric Animals and Humans: A Comprehensive Review. Nutrients 2021; 13:3782. [PMID: 34836037 PMCID: PMC8621968 DOI: 10.3390/nu13113782] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022] Open
Abstract
The importance of gut health in animal welfare and wellbeing is undisputable. The intestinal microbiota plays an essential role in the metabolic, nutritional, physiological, and immunological processes of animals. Therefore, the rapid development of dietary supplements to improve gut functions and homeostasis is imminent. Recent studies have uncovered the beneficial effects of dietary supplements on the immune response, microbiota, gut homeostasis, and intestinal health. The application of citrulline (a functional gut biomarker) and quercetin (a known potent flavonoid) to promote gut functions has gained considerable interest as both bioactive substances possess anti-inflammatory, anti-oxidative, and immunomodulatory properties. Research has demonstrated that both citrulline and quercetin can mediate gut activities by combating disruptions to the intestinal integrity and alterations to the gut microbiota. In addition, citrulline and quercetin play crucial roles in maintaining intestinal immune tolerance and gut health. However, the synergistic benefits which these dietary supplements (citrulline and quercetin) may afford to simultaneously promote gut functions remain to be explored. Therefore, this review summarizes the modulatory effects of citrulline and quercetin on the intestinal integrity and gut microbiota, and further expounds on their potential synergistic roles to attenuate intestinal inflammation and promote gut health.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, China; (V.A.U.); (M.L.)
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi P.O. Box 25305-00100, Kenya;
| | - Felix Kwame Amevor
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi P.O. Box 25305-00100, Kenya;
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, China; (V.A.U.); (M.L.)
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China;
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City 271018, China; (V.A.U.); (M.L.)
| |
Collapse
|
37
|
Jia PP, Junaid M, Xin GY, Wang Y, Ma YB, Pei DS. Disruption of Intestinal Homeostasis Through Altered Responses of the Microbial Community, Energy Metabolites, and Immune System in Zebrafish After Chronic Exposure to DEHP. Front Microbiol 2021; 12:729530. [PMID: 34675901 PMCID: PMC8524448 DOI: 10.3389/fmicb.2021.729530] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/02/2021] [Indexed: 01/09/2023] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is ubiquitously reported in global water bodies and exhibits various environmental and human health risks. However, the effects of DEHP chronic exposure on the intestinal microbiota and associated host health concerns in aquatic species are still largely unexplored. In this study, chronic exposure to DEHP at environmental levels significantly increased the body weight, length, and body mass index (BMI), especially in male fish. The microbial community was disrupted with the relative abundance of phylum Firmicutes and genera diversity for Prevotella-7, Deefgea, PeM15, Halomonas, Akkermansia, Chitinibacter, and Roseomonas, which are significantly activated in zebrafish after exposure to DEHP. The height of the gut villus, the thickness of muscularis layer, and the number of goblet cells per villus were significantly decreased, as well as showed differences between female and male zebrafish. Further, the levels of energy-related metabolites in gut tissues were increased, compared to the control group. The expression levels of immune-related genes (interleukin 8, il-8, also referred to as cxcl8a), microbial defense-related genes (lysozyme, lyz, interleukin 10, and il-10), and obesity-related genes (aquaporin 8a, aqp8, mucin 2.1, muc2.1, fibroblast growth factor 2, fgf2, and proopiomelanocortin a, pomca) were significantly up-regulated in zebrafish, except the down-regulated expressions of toll-like receptor-5 (tlr-5) and interleukin 1β (il-1β) in the females and pomca in the males, respectively. Importantly, Spearman's correlation analyses revealed that the levels of metabolites and gene expressions in the gut were closely related to the dominant microbial genera, such as Aeromonas, Deefgea, Akkermansia, PeM15, Mycobacterium, and Rhodobacter. Taken together, chronic exposure to DEHP at environmental levels disturbed bacterial composition accompanied by the altered expressions of intestinal metabolites and the critical immune and intestinal function-related genes, which provided novel insights into DEHP effects on perturbation of gut microbiota and metabolic homeostasis in zebrafish.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health and Management, Chongqing Medical University, Chongqing, China.,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Guang-Yuan Xin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yan Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
38
|
Subacute Exposure to an Environmentally Relevant Dose of Di-(2-ethylhexyl) Phthalate during Gestation Alters the Cecal Microbiome, but Not Pregnancy Outcomes in Mice. TOXICS 2021; 9:toxics9090215. [PMID: 34564366 PMCID: PMC8470982 DOI: 10.3390/toxics9090215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is a plasticizer commonly found in polyvinyl chloride, medical equipment, and food packaging. DEHP has been shown to target the reproductive system and alter the gut microbiome in humans and experimental animals. However, very little is known about the impact of DEHP-induced microbiome changes and its effects during pregnancy. Thus, the objective of this study was to investigate the effects of DEHP exposure during pregnancy on the cecal microbiome and pregnancy outcomes. Specifically, this study tested the hypothesis that subacute exposure to DEHP during pregnancy alters the cecal microbiome in pregnant mice, leading to changes in birth outcomes. To test this hypothesis, pregnant dams were orally exposed to corn oil vehicle or 20 µg/kg/day DEHP for 10 days and euthanized 21 days after their last dose. Cecal contents were collected for 16S Illumina and shotgun metagenomic sequencing. Fertility studies were also conducted to examine whether DEHP exposure impacted birth outcomes. Subacute exposure to environmentally relevant doses of DEHP in pregnant dams significantly increased alpha diversity and significantly altered beta diversity. Furthermore, DEHP exposure during pregnancy significantly increased the relative abundance of Bacteroidetes and decreased the relative abundance of Firmicutes and Deferribacteres compared with controls. The affected taxonomic families included Deferribacteraceae, Lachnospiraceae, and Mucisprillum. In addition to changes in the gut microbiota, DEHP exposure significantly altered 14 functional pathways compared with the control. Finally, DEHP exposure did not significantly impact the fertility and birth outcomes compared with the control. Collectively, these data indicate that DEHP exposure during pregnancy shifts the cecal microbiome, but the shifts do not impact fertility and birth outcomes.
Collapse
|
39
|
Zhang Y, Yu H, Li S, Wang L, Huang F, Guan R, Li J, Jiao Y, Sun J. Rapidly degradation of di-(2-ethylhexyl) phthalate by Z-scheme Bi 2O 3/TiO 2@reduced graphene oxide driven by simulated solar radiation. CHEMOSPHERE 2021; 272:129631. [PMID: 33485039 DOI: 10.1016/j.chemosphere.2021.129631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/01/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a priority environmental pollutant with carcinogenic, teratogenic, and mutagenic toxicity. Because it is widely used and ubiquitous in water, it is urgent to use a non-toxic, fast, and non-temperature dependent photocatalyst for degradation. Herein, a Z-scheme heterojunction composite catalyst consisting of Bi2O3 and TiO2 with reduced graphene oxide (rGO) as a two-dimensional template was designed and characterized. Under simulated solar radiation, the catalyst doped with 4% rGO presented the best photocatalytic DEHP (10 mg L-1) degradation at pH = 6, reaching 89% conversion in 90 min, and the degradation rate was 2.05 times higher than unmodified materials. The successful preparation of the Z-scheme junction enhanced the utilization of visible light region, thereby improving the DEHP's photocatalytic degradation performance. Subsequently, density functional theory (DFT) combined with GC-MS metabolite detection to propose a complete DEHP photocatalytic degradation mechanism. ·O2- and ·OH were detected as the primary reactive oxygen radicals involved in DEHP degradation, which easily attacked the O11 site with a high Fukui index (f0) through de-esterification, β-oxidation, and hydroxylation. While satisfying the rapid degradation, the highly repeatable catalyst cleaved the aromatic ring so that DEHP achieved mineralization during the degradation process. Therefore, its ability to completely degrade was very promising for environmental remediation, especially in water treatment. Besides, there were only a few studies on the degradation mechanism and reaction pathway of DEHP under visible light, which provided a theoretical basis for the aromatic compounds' photocatalysis research.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China; Shenzhen Key Lab of Industrial Water Conservation & Municipal Sewage Resources Technology, School of Construction & Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, PR China.
| | - Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shaofeng Li
- Shenzhen Key Lab of Industrial Water Conservation & Municipal Sewage Resources Technology, School of Construction & Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fuxin Huang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Rui Guan
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jian Sun
- Shenzhen Key Lab of Industrial Water Conservation & Municipal Sewage Resources Technology, School of Construction & Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| |
Collapse
|
40
|
Adamovsky O, Bisesi JH, Martyniuk CJ. Plastics in our water: Fish microbiomes at risk? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100834. [PMID: 33930774 DOI: 10.1016/j.cbd.2021.100834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Water contaminated with plastic debris and leached plasticizers can be ingested or taken up by aquatic invertebrates and vertebrates alike, exerting adverse effects on multiple tissues including the gastrointestinal tract. As such, gut microbiomes of aquatic animals are susceptible targets for toxicity. Recent studies conducted in teleost fishes report that microplastics and plasticizers (e.g., phthalates, bisphenol A) induce gastrointestinal dysbiosis and alter microbial diversity in the gastrointestinal system. Here we synthesize the current state of the science regarding plastics, plasticizers, and their effects on microbiomes of fish. Literature suggests that microplastics and plasticizers increase the abundance of opportunistic pathogenic microorganisms (e.g. Actinobacillus, Mycoplasma and Stenotrophomonas) in fish and reveal that gamma-proteobacteria are sensitive to microplastics. Recommendations moving forward for the research field include (1) environmentally relevant exposures to improve understanding of the long-term impacts of microplastic and plasticizer contamination on the fish gastrointestinal microbiome; (2) investigation into the potential impacts of understudied polymers such as polypropylene, polyamide and polyester, and (3) studies with elastomers such as rubbers that are components of tire materials, as these chemicals often dominate plastic debris. Focus on both microplastics and the gut microbiota is intensifying in environmental toxicology, and herein lies an opportunity to improve evaluation of global ecological impacts associated with plastic contamination. This is important as the microbiota is intimately tied to an individual's health and fragmentation of microbial community networks and gut dysbiosis can result in disease susceptibility and early mortality events.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental and Global Health and Center for Environmental and Human Toxicology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
41
|
Sehnal L, Brammer-Robbins E, Wormington AM, Blaha L, Bisesi J, Larkin I, Martyniuk CJ, Simonin M, Adamovsky O. Microbiome Composition and Function in Aquatic Vertebrates: Small Organisms Making Big Impacts on Aquatic Animal Health. Front Microbiol 2021; 12:567408. [PMID: 33776947 PMCID: PMC7995652 DOI: 10.3389/fmicb.2021.567408] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/05/2021] [Indexed: 01/03/2023] Open
Abstract
Aquatic ecosystems are under increasing stress from global anthropogenic and natural changes, including climate change, eutrophication, ocean acidification, and pollution. In this critical review, we synthesize research on the microbiota of aquatic vertebrates and discuss the impact of emerging stressors on aquatic microbial communities using two case studies, that of toxic cyanobacteria and microplastics. Most studies to date are focused on host-associated microbiomes of individual organisms, however, few studies take an integrative approach to examine aquatic vertebrate microbiomes by considering both host-associated and free-living microbiota within an ecosystem. We highlight what is known about microbiota in aquatic ecosystems, with a focus on the interface between water, fish, and marine mammals. Though microbiomes in water vary with geography, temperature, depth, and other factors, core microbial functions such as primary production, nitrogen cycling, and nutrient metabolism are often conserved across aquatic environments. We outline knowledge on the composition and function of tissue-specific microbiomes in fish and marine mammals and discuss the environmental factors influencing their structure. The microbiota of aquatic mammals and fish are highly unique to species and a delicate balance between respiratory, skin, and gastrointestinal microbiota exists within the host. In aquatic vertebrates, water conditions and ecological niche are driving factors behind microbial composition and function. We also generate a comprehensive catalog of marine mammal and fish microbial genera, revealing commonalities in composition and function among aquatic species, and discuss the potential use of microbiomes as indicators of health and ecological status of aquatic ecosystems. We also discuss the importance of a focus on the functional relevance of microbial communities in relation to organism physiology and their ability to overcome stressors related to global change. Understanding the dynamic relationship between aquatic microbiota and the animals they colonize is critical for monitoring water quality and population health.
Collapse
Affiliation(s)
- Ludek Sehnal
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Elizabeth Brammer-Robbins
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Alexis M. Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Joe Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Iske Larkin
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | |
Collapse
|
42
|
Lear G, Kingsbury JM, Franchini S, Gambarini V, Maday SDM, Wallbank JA, Weaver L, Pantos O. Plastics and the microbiome: impacts and solutions. ENVIRONMENTAL MICROBIOME 2021; 16:2. [PMID: 33902756 PMCID: PMC8066485 DOI: 10.1186/s40793-020-00371-w] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/28/2020] [Indexed: 05/12/2023]
Abstract
Global plastic production has increased exponentially since manufacturing commenced in the 1950's, including polymer types infused with diverse additives and fillers. While the negative impacts of plastics are widely reported, particularly on marine vertebrates, impacts on microbial life remain poorly understood. Plastics impact microbiomes directly, exerting toxic effects, providing supplemental carbon sources and acting as rafts for microbial colonisation and dispersal. Indirect consequences include increased environmental shading, altered compositions of host communities and disruption of host organism or community health, hormone balances and immune responses. The isolation and application of plastic-degrading microbes are of substantial interest yet little evidence supports the microbial biodegradation of most high molecular weight synthetic polymers. Over 400 microbial species have been presumptively identified as capable of plastic degradation, but evidence for the degradation of highly prevalent polymers including polypropylene, nylon, polystyrene and polyvinyl chloride must be treated with caution; most studies fail to differentiate losses caused by the leaching or degradation of polymer monomers, additives or fillers. Even where polymer degradation is demonstrated, such as for polyethylene terephthalate, the ability of microorganisms to degrade more highly crystalline forms of the polymer used in commercial plastics appears limited. Microbiomes frequently work in conjunction with abiotic factors such as heat and light to impact the structural integrity of polymers and accessibility to enzymatic attack. Consequently, there remains much scope for extremophile microbiomes to be explored as a source of plastic-degrading enzymes and microorganisms. We propose a best-practice workflow for isolating and reporting plastic-degrading taxa from diverse environmental microbiomes, which should include multiple lines of evidence supporting changes in polymer structure, mass loss, and detection of presumed degradation products, along with confirmation of microbial strains and enzymes (and their associated genes) responsible for high molecular weight plastic polymer degradation. Such approaches are necessary for enzymatic degraders of high molecular weight plastic polymers to be differentiated from organisms only capable of degrading the more labile carbon within predominantly amorphous plastics, plastic monomers, additives or fillers.
Collapse
Affiliation(s)
- G Lear
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand.
| | - J M Kingsbury
- Institute of Environmental Science and Research, 27 Creyke Rd, Ilam, Christchurch, 8041, New Zealand
| | - S Franchini
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - V Gambarini
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - S D M Maday
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - J A Wallbank
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland, 1010, New Zealand
| | - L Weaver
- Institute of Environmental Science and Research, 27 Creyke Rd, Ilam, Christchurch, 8041, New Zealand
| | - O Pantos
- Institute of Environmental Science and Research, 27 Creyke Rd, Ilam, Christchurch, 8041, New Zealand
| |
Collapse
|
43
|
Hua Q, Adamovsky O, Vespalcova H, Boyda J, Schmidt JT, Kozuch M, Craft SLM, Ginn PE, Smatana S, Budinska E, Persico M, Bisesi JH, Martyniuk CJ. Microbiome analysis and predicted relative metabolomic turnover suggest bacterial heme and selenium metabolism are altered in the gastrointestinal system of zebrafish (Danio rerio) exposed to the organochlorine dieldrin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115715. [PMID: 33069042 DOI: 10.1016/j.envpol.2020.115715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Dietary exposure to chemicals alters the diversity of microbiome communities and can lead to pathophysiological changes in the gastrointestinal system. The organochlorine pesticide dieldrin is a persistent environmental contaminant that bioaccumulates in fatty tissue of aquatic organisms. The objectives of this study were to determine whether environmentally-relevant doses of dieldrin altered gastrointestinal morphology and the microbiome of zebrafish. Adult zebrafish at ∼4 months of age were fed a measured amount of feed containing either a solvent control or one of two doses of dieldrin (measured at 16, and 163.5 ng/g dry weight) for 4 months. Dieldrin body burden levels in zebrafish after four-month exposure were 0 (control), 11.47 ± 1.13 ng/g (low dose) and 18.32 ± 1.32 ng/g (high dose) wet weight [mean ± std]. Extensive histopathology at the whole organism level revealed that dieldrin exposure did not induce notable tissue pathology, including the gastrointestinal tract. A repeated measure mixed model analysis revealed that, while fish gained weight over time, there were no dieldrin-specific effects on body weight. Fecal content was collected from the gastrointestinal tract of males and 16S rRNA gene sequencing conducted. Dieldrin at a measured feed dose of 16 ng/g reduced the abundance of Firmicutes, a phylum involved in energy resorption. At the level of class, there was a decrease in abundance of Clostridia and Betaproteobacteria, and an increase in Verrucomicrobiae species. We used a computational approach called predicted relative metabolomic turnover (PRMT) to predict how a shift in microbial community composition affects exchange of metabolites. Dieldrin was predicted to affect metabolic turnover of uroporphyrinogen I and coproporphyrinogen I [enzyme]-cysteine, hydrogen selenide, selenite, and methyl-selenic acid in the fish gastrointestinal system. These pathways are related to bacterial heme biosynthesis and selenium metabolism. Our study demonstrates that dietary exposures to dieldrin can alter microbiota composition over 4 months, however the long-term consequences of such impacts are not well understood.
Collapse
Affiliation(s)
- Qing Hua
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Ondrej Adamovsky
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Hana Vespalcova
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Jonna Boyda
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Jordan T Schmidt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Marianne Kozuch
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Serena L M Craft
- University of Florida, Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, Gainesville, USA
| | - Pamela E Ginn
- University of Florida, Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, Gainesville, USA
| | - Stanislav Smatana
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic; Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno University of Technology, Brno, Czech Republic
| | - Eva Budinska
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Maria Persico
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Joseph H Bisesi
- Department of Environmental & Global Health and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; University of Florida Genetics Institute and Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
44
|
Aguilera M, Gálvez-Ontiveros Y, Rivas A. Endobolome, a New Concept for Determining the Influence of Microbiota Disrupting Chemicals (MDC) in Relation to Specific Endocrine Pathogenesis. Front Microbiol 2020; 11:578007. [PMID: 33329442 PMCID: PMC7733930 DOI: 10.3389/fmicb.2020.578007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Endogenous steroid hormones and Endocrine Disrupting Chemicals (EDC) interact with gut microbiota through different pathways. We suggest the use of the term "endobolome" when referring to the group of gut microbiota genes and pathways involved in the metabolism of steroid hormones and EDC. States of dysbiosis and reduced diversity of the gut microbiota may impact and modify the endobolome resulting at long-term in the development of certain pathophysiological conditions. The endobolome might play a central role in the gut microbiota as seen by the amount of potentially endobolome-mediated diseases and thereby it can be considered an useful diagnostic tool and therapeutic target for future functional research strategies that envisage the use of next generation of probiotics. In addition, we propose that EDC and other xenobiotics that alter the gut microbial composition and its metabolic capacities should be categorized into a subgroup termed "microbiota disrupting chemicals" (MDC). This will help to distinguish the role of contaminants from other microbiota natural modifiers such as those contained or released from diet, environment, physical activity and stress. These MDC might have the ability to promote specific changes in the microbiota that can ultimately result in common intestinal and chronic or long-term systemic diseases in the host. The risk of developing certain disorders associated with gut microbiota changes should be established by determining both the effects of the MDC on gut microbiota and the impact of microbiota changes on chemicals metabolism and host susceptibility. In any case, further animal controlled experiments, clinical trials and large epidemiological studies are required in order to establish the concatenated impact of the MDC-microbiota-host health axis.
Collapse
Affiliation(s)
- Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Ana Rivas
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|