1
|
Hawkins E, Robertson M, Bagnall J, Kasprzyk-Hordern B. Endocrine disruptors and antimicrobial agents in an intercity study in England: Towards holistic environmental and public exposure assessment using water-based epidemiology and retrospective mass spectra data mining. ENVIRONMENT INTERNATIONAL 2025; 200:109534. [PMID: 40414186 DOI: 10.1016/j.envint.2025.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
An analytical framework was developed, allowing for suspect screening and retrospective quantification of hazardous household-derived chemicals (HDCs) in community wastewater and river water to assess public exposure and environmental health status. 11 HDCs (bisphenol A, 4 parabens, 5 antimicrobials and benzophenone-1) and 2 metabolites (bisphenol A sulfate and triclosan sulfate) were identified, confirmed and quantified in mass spectra from a multi-city study covering 5 contrasting towns and cities in England within a catchment served by 5 wastewater treatment plants (WwTPs), representing > 75 % of the whole catchment population (∼1.5 million people) and covering a 2000 km2 area. A further 5 HDC metabolites: hydroxytriclocarban,p-chlorocresol sulfate, 2,6-dimethyl-1,4-benzenediol, chloroxylenol sulfate, 2-benzyl-1,4-benzenediol were for the first time tentatively identified in wastewater and river water using suspect screening. Trends in daily loads and population normalised daily loads of HDCs were studied. Population size was identified as the key driver of environmental burden, however, impacts from industrial usage were also apparent in the case of BPA and parabens. For example, BPA population normalised daily loads indicated higher exposure estimated for communities with industrial presence indicating occupational exposure. Environmental risk assessment was also undertaken for 11 HDCs using the risk quotient (RQ) method. RQ values < 0.1, found for most HDCs in river water, suggested low risk. However, RQ values > 1 found for triclosan and triclocarban indicated potentially high risk to the environment, which is concerning due to their endocrine disruption and antimicrobial resistance properties. This study verified the potential for holistic assessment of both community and environmental exposure. It showed that different chemicals might need to be considered in the context of risks to humans and the environment (e.g., bisphenol A of high risk to humans vs triclosan and triclocarban being of high risk to the aquatic environment). Lack of analytical standards for metabolic biomarkers, as well as lack of understanding of metabolic pathways of HDCs were identified as the key limiting factors in establishing WBE as a holistic One Health tool for combined environmental and public health assessment of HDCs, especially those that are not intended for human consumption.
Collapse
Affiliation(s)
- Eva Hawkins
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water-based Early Warning Systems for Health Protection, Bath BA2 7AY, UK; Institute of Sustainability and Climate Change, University of Bath, Bath BA2 7AY, UK
| | - Megan Robertson
- Centre of Excellence in Water-based Early Warning Systems for Health Protection, Bath BA2 7AY, UK; Wessex Water, Claverton Down, Bath BA2 7WW, UK
| | - John Bagnall
- Centre of Excellence in Water-based Early Warning Systems for Health Protection, Bath BA2 7AY, UK; Wessex Water, Claverton Down, Bath BA2 7WW, UK
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water-based Early Warning Systems for Health Protection, Bath BA2 7AY, UK; Institute of Sustainability and Climate Change, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
2
|
Alexander MV, Ayyar A, Gannon AW, Linares KE, Vincent SJ, Lowe S, To A, Blesson CS. The biological effects of bisphenol AF in reproduction and development: What do we know so far? Reprod Toxicol 2025; 132:108857. [PMID: 39954826 DOI: 10.1016/j.reprotox.2025.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Due to the established endocrine-disrupting effects of Bisphenol A (BPA), alternative bisphenols entered the market. Bisphenol AF (BPAF) is now commonly used in the industrial manufacturing of polycarbonate plastics and epoxy resins. However, BPAF's effects on reproduction and development have not been thoroughly reviewed. We investigated the relationship between BPAF exposure and reproduction and early development. We performed a literature review of studies on BPAF and reproductive physiology. Using keywords, we searched PubMed, Medline, Cochrane Library Database, Embase, and ClinicalTrials.gov for English language literature available until December 2024; we additionally identified and included studies from bibliographies. We included 125 articles, spanning in vitro and in vivo model organism and human studies. BPAF is a selective estrogen receptor modulator and an androgen receptor antagonist and is more potent than BPA. It is detected in urine, blood products, saliva, amniotic fluid, and breast milk. In vitro and in vivo studies demonstrate a spectrum of BPAF-induced endocrine and reproductive changes in both sexes. There is strong evidence of alterations in the hypothalamic-pituitary-gonadal axis and of altered steroidogenesis pathways. Multiple studies using zebrafish, Xenopus, chickens, and rodents, show BPAF's effects on embryogenesis, morphology, and sexual differentiation. Decreased serum testosterone and impaired spermatogenesis and oocyte viability have been demonstrated. The current literature shows clear disruptive effects of BPAF on reproductive health and embryonic development. Though further investigation is warranted, there is ample converging evidence to support limiting the use of BPAF and other similar bisphenols.
Collapse
Affiliation(s)
- Megan V Alexander
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Archana Ayyar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandra W Gannon
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | - Alvin To
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chellakkan S Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Li P, Zeng X, Gan Z, Li X, Sun W, Su S, Li Z, Zuoqiu S, Wang B. Bisphenol Analogues Levels in the Follicular Fluid of Chinese Infertile Female Patients: Associations with Serum Hormone Levels and Reproductive Health Outcomes. EXPOSURE AND HEALTH 2025. [DOI: 10.1007/s12403-025-00689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 06/04/2025]
|
4
|
Carneiro RB, Nika MC, Gil-Solsona R, Diamanti KS, Thomaidis NS, Corominas L, Gago-Ferrero P. A critical review of wastewater-based epidemiology as a tool to evaluate the unintentional human exposure to potentially harmful chemicals. Anal Bioanal Chem 2025; 417:495-511. [PMID: 39422714 PMCID: PMC11700037 DOI: 10.1007/s00216-024-05596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Wastewater-based epidemiology (WBE) is a powerful tool to gather epidemiological insights at the community level, providing objective data on population exposure to harmful substances. A considerable portion of the human exposure to these potentially harmful chemicals occurs unintentionally, unlike substances such as pharmaceuticals, illicit drugs, or alcohol. In this context, this comprehensive review analyzes WBE studies focused on classes of organic chemicals to which humans are unintentionally exposed, namely organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFAS), benzotriazoles and benzothiazoles, phthalates and terephthalates, benzophenones, pesticides, bisphenols, and parabens. The review highlights some advantages of WBE for public health surveillance, e.g., non-invasive analysis, predictive capability, nearly real-time data, population-wide insights, no ethical approval, and unbiased sampling. It also discusses challenges and future research directions in WBE regarding exposure to harmful chemicals from various sources. The review emphasizes the critical role of wastewater sampling, sample preparation, quality control, and instrumental analysis in achieving accurate and reliable results. Furthermore, it examines the selection of human biomarkers for WBE studies and explores strategies to link WBE with human biomonitoring (HBM), which together enhance both the precision and effectiveness of exposure assessments.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Laboratory of Chromatography, São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| | - Maria-Christina Nika
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Rubén Gil-Solsona
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Konstantina S Diamanti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Lluís Corominas
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, 17003, Girona, Catalonia, Spain
- University of Girona, Plaça de Sant Domènec 3, 17004, Girona, Catalonia, Spain
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
5
|
Marchiandi J, Dagnino S, Zander-Fox D, Green MP, Clarke BO. Characterization of Chemical Exposome in A Paired Human Preconception Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20352-20365. [PMID: 39508786 DOI: 10.1021/acs.est.4c04356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Parental preconception exposure to synthetic chemicals may have critical influences on fertility and reproduction. Here, we present a robust LC-MS/MS method covering up to 95 diverse xenobiotics in human urine, serum, seminal and follicular fluids to support exposome-wide assessment in reproductive health outcomes. Extraction recoveries of validated analytes ranged from 62% to 137% and limits of quantification from 0.01 to 6.0 ng/mL in all biofluids. We applied the validated method to a preconception cohort of Australian couples (n = 30) receiving fertility treatment. In total, 36 and 38 xenobiotics were detected across the paired biofluids of males and females, respectively, including PFAS, parabens, organic UV-filters, plastic additives, antimicrobials, and other industrial chemicals. Results showed 39% of analytes in males and 37% in females were equally detected in paired serum, urine, and reproductive fluids. The first detection of the sunscreen ingredient avobenzone and the industrial chemical 4-nitrophenol in follicular and seminal fluids suggests they can cross both blood-follicle/testis barriers, indicating potential risks for fertility. Further, the blood-follicle transfer of perfluorobutanoic acid, PFOA, PFHxS, PFOS, and oxybenzone corroborate that serum concentrations can be reliable proxies for assessing exposure within the ovarian microenvironment. In conclusion, we observed significant preconception exposure to multiple endocrine disruptors in couples and identified potential xenobiotics relevant to male and female fertility impairments.
Collapse
Affiliation(s)
- Jaye Marchiandi
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Sonia Dagnino
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W12 7TA London, U.K
| | - Deirdre Zander-Fox
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- Department of Obstetrics & Gynaecology, Monash University, Clayton, Melbourne, Victoria 3168, Australia
| | - Mark P Green
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
6
|
García García M, Picó Y, Morales-Suárez-Varela M. Effects of Bisphenol A on the Risk of Developing Obesity. Nutrients 2024; 16:3740. [PMID: 39519574 PMCID: PMC11547795 DOI: 10.3390/nu16213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Every year the global incidence of obesity increases considerably and among the factors that favor it is bisphenol A (BPA), an endocrine disruptor widely used in plastics and omnipresent in many everyday objects. METHODS A total of 19 studies published between 2018 and 2023 that addressed the relationship between BPA exposure and obesity were included in this review in order to better understand its behavior and mechanisms of action. RESULTS The studies reviewed conclude that BPA is an obesogen that alters the function of hormonal receptors, promotes metabolic syndrome, affects certain genes, etc., leading to a greater risk of developing obesity. With important emphasis on the ability to cause epigenetic changes, thus transmitting the effects to offspring when exposure has occurred during critical stages of development such as during gestation or the perinatal period. CONCLUSIONS There is sufficient evidence to show that BPA is a risk factor in the development of obesity. Even so, further research is necessary to exhaustively understand the causal relationship between the two in order to develop prevention measures and avoid possible future adverse effects.
Collapse
Affiliation(s)
- Mónica García García
- Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estelles s/n, 46100 Burjassot, València, Spain;
| | - Yolanda Picó
- Food and Environmental Safety Research Group of the Universitat de València (SAMA-UV), Desertification Research Centre (CIDE) CSIC-GV-UV, CV-315 Km. 10, 7, 46113 Moncada, València, Spain;
- CIBER of Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Av. Monforte de Lemos 3-5 Pabellón 11 Planta 0, 28029 Madrid, Madrid, Spain
| | - María Morales-Suárez-Varela
- Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estelles s/n, 46100 Burjassot, València, Spain;
- CIBER of Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Av. Monforte de Lemos 3-5 Pabellón 11 Planta 0, 28029 Madrid, Madrid, Spain
| |
Collapse
|
7
|
Emanowicz P, Średnicka P, Wójcicki M, Roszko M, Juszczuk-Kubiak E. Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification. Nutrients 2024; 16:3757. [PMID: 39519589 PMCID: PMC11547510 DOI: 10.3390/nu16213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenols, such as bisphenol A and its analogs, which include bisphenol S, bisphenol F, bisphenol AF, and tetramethyl bisphenol F, are chemical contaminants commonly found in food that raise serious health concerns. These xenobiotics can potentially have harmful effects on human health. The gut microbiota plays a crucial role in metabolizing and neutralizing these substances, which is essential for their detoxification and elimination. Probiotic supplementation has been studied for its ability to modulate the gut microbiota's composition and function, enhancing detoxification processes. Next-Generation Probiotics (NGPs) may exhibit better properties than traditional strains and are designed for targeted action on specific conditions, such as obesity. By modulating inflammatory responses and reducing the secretion of pro-inflammatory cytokines, they can significantly improve host health. Research on NGPs' ability to neutralize obesogenic bisphenols remains limited, but their potential makes this a promising area for future exploration. This review aims to understand the mechanisms of the chemical transformation of bisphenol through its interactions with the gut microbiota and the role of probiotics, particularly NGPs, in these processes. Understanding the interplay between bisphenols, gut microbiota, and NGPs may pave the way for strategies to counteract the negative health effects associated with daily and chronic exposure to bisphenols, which is crucial for food safety and consumer health protection.
Collapse
Affiliation(s)
- Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (P.Ś.); (M.W.); (E.J.-K.)
| |
Collapse
|
8
|
Estévez-Danta A, Montes R, Prieto A, Santos MM, Orive G, Lertxundi U, Quintana JB, Rodil R. Wastewater-based epidemiology methodology to investigate human exposure to bisphenol A, bisphenol F and bisphenol S. WATER RESEARCH 2024; 261:122016. [PMID: 38981356 DOI: 10.1016/j.watres.2024.122016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Wastewater-based epidemiology (WBE) has become an invaluable tool for tracking the evolution of use or exposure of/to numerous substances. Bisphenols, commonly utilized in manufacturing plastic goods, have been categorized as endocrine disrupting chemicals, underscoring the critical need for real-time data on their local-level exposure to safeguard public health. In this study, we have developed a novel analytical method and WBE framework for the assessment of population-level exposure to bisphenol A (BPA) and its most prominent substitutes, bisphenols F and S (BPF and BPS), through the determination their Phase II metabolites in wastewater by WBE. Stability and exclusivity tests denoted that glucuronides are not stable in sewage, whereas sulfate metabolites are good biomarkers. Therefore, a solid-phase extraction followed by liquid chromatography-tandem mass spectrometry method was developed for the bisphenols' monosulfates and BPA bissulfate. The analytical method was validated with three different wastewater matrices, providing trueness (as recovery) in the 79-112 % range with relative standard deviations < 12 %, and method quantification limits below 2 ng L-1 for monosulfates, but higher (35 ng L-1) for BPA bissulfate. Subsequently, the method was applied to 24h-composite raw wastewater samples collected over a week in 4 different locations in Spain and Portugal. BPA bissulfate was not detected, but the three monosulfate metabolites of each bisphenol were positively detected in the samples, being the metabolite of BPA the most prevalent, followed by those of BPF and BPS. Community-wide BPA intake was then estimated to be higher than the European Food Safety Agency (EFSA) tolerable daily intake (TDI) of 2 × 10-4 µg kg-1day-1 in all locations. In the case of BPF and BPS, there is not enough metabolism data or even established limit, but they would also surpass safe levels in several locations if a similar metabolism and TDI would be assumed. This innovative method could be used to a larger set of wastewater-treatment plants as an early-warning approach on human exposure to bisphenols.
Collapse
Affiliation(s)
- Andrea Estévez-Danta
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry. R. Constantino Candeira S/N, IIAA building, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rosa Montes
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry. R. Constantino Candeira S/N, IIAA building, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - Miguel M Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Group of Endocrine Disrupter and Emerging Contaminants, FCUP- Faculty of Sciences, Department of Biology, University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, c/Alava 43, 01006 Vitoria-Gasteiz, Alava, Spain
| | - José Benito Quintana
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry. R. Constantino Candeira S/N, IIAA building, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Rosario Rodil
- Aquatic One Health Research Center (ARCUS) & Department of Analytical Chemistry, Nutrition and Food Chemistry. R. Constantino Candeira S/N, IIAA building, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Lv L, Li Y, Chen X, Qin Z. Transcriptomic analysis reveals the effects of maternal exposure to bisphenol AF on hypothalamic development in male neonatal mice. J Environ Sci (China) 2024; 141:304-313. [PMID: 38408830 DOI: 10.1016/j.jes.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 02/28/2024]
Abstract
Fragmented data suggest that bisphenol AF (BPAF), a chemical widely used in a variety of products, might have potential impacts on the hypothalamus. Here, we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing. We found that maternal exposure to approximately 50 µg/(kg·day) BPAF from postanal day (PND) 0 to PND 15 altered the hypothalamic transcriptome, primarily involving the pathways and genes associated with extracellular matrix (ECM) and intercellular adhesion, neuroendocrine regulation, and neurological processes. Further RNA analysis confirmed the changes in the expression levels of concerned genes. Importantly, we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue. All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism. Interestingly, 5000 µg/(kg·day) BPAF caused slighter, non-significant or even inverse alterations than the low dose of 50 µg/(kg·day), displaying a dose-independent effect. Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose. Overall, our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.
Collapse
Affiliation(s)
- Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuanyue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Ling X, Lu G, Zhang L, Zhang J, Fu H, Yan Z. Cotransport of nanoplastics and plastic additive bisphenol AF (BPAF) in unsaturated hyporheic zone: Coupling effects of surface functionalization and protein corona. WATER RESEARCH 2024; 256:121574. [PMID: 38593606 DOI: 10.1016/j.watres.2024.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The ecological risk of combined pollution from microplastics (MPs) and associated contaminants usually depends on their interactions and environmental behavior, which was also disturbed by varying surface modifications of MPs. In this study, the significance of surface functionalization and protein-corona on the cotransport of nanoplastics (NPs; 100 nm) and the related additive bisphenol AF (BPAF) was examined in simulated unsaturated hyporheic zone (quartz sand; 250-425 μm). The electronegative bovine serum albumin (BSA) and electropositive trypsin were chosen as representative proteins, while pristine (PNPs), amino-modified (ANPs), and carboxyl-modified NPs (CNPs) were representative NPs with different charges. The presence of BPAF inhibited the mobility of PNPs/CNPs, but enhanced the release of ANPs in hyporheic zone, which was mainly related to their hydrophobicity changes and electrostatic interactions. Meanwhile, the NPs with high mobility and strong affinity to BPAF became effective carriers, promoting the cotransport of BPAF by 16.4 %-26.4 %. The formation of protein-coronas altered the mobility of NPs alone and their cotransport with BPAF, exhibiting a coupling effect with functional groups. BSA-corona promoted the transport of PNPs/CNPs, but this promoting effect was weakened by the presence of BPAF via increasing particle aggregation and hydrophobicity. Inversely, trypsin-corona aggravated the deposition of PNPs/CNPs, but competition deposition sites and increased energy barrier caused by coexisting BPAF reversed this effect, facilitating the cotransport of trypsin-PNPs/CNPs in hyporheic zone. However, BPAF and protein-coronas synergistically promoted the mobility of ANPs, owing to competition deposition sites and decreased electrostatic attraction. Although all of the NPs with two protein-coronas reduced dissolved BPAF in the effluents via providing deposition sites, the cotransport of total BPAF was improved by the NPs with high mobility (BSA-PNPs/CNPs) or high affinity to BPAF (BSA/trypsin-ANPs). However, the trypsin-PNPs/CNPs inhibited the transport of BPAF due to their weak mobility and adsorption with BPAF. The results provide new insights into the role of varying surface modifications on NPs in the vertical cotransport of NPs and associated contaminants in unsaturated hyporheic zone.
Collapse
Affiliation(s)
- Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Heyun Fu
- School of the Environment, Nanjing University, Nanjing 210046, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
11
|
Wang H, Gao R, Liang W, Zhou Y, Wang Z, Lan L, Chen J, Zeng F. Feasibility of sulfated BPA and BPS as wastewater-based epidemiology biomarkers: Insights from wastewater and reported human urine analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171870. [PMID: 38531444 DOI: 10.1016/j.scitotenv.2024.171870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
In wastewater-based epidemiology (WBE), the selection of appropriate biomarkers presents a significant challenge. Recently, sulfated bisphenols have garnered attention as potential WBE biomarkers due to their increased stability in wastewater compared to glucuronide conjugates. This study aims to comprehensively assess the feasibility of employing sulfated BPA and BPS as WBE biomarkers by analyzing both WBE and human biomonitoring data. To conduct this research, wastewater samples were collected from six domestic wastewater treatment plants in Guangzhou, China, and urinary concentration of BPA and BPS were obtained from peer-reviewed literature. The results revealed that mean urinary concentrations of BPA and BPS, calculated using Monte Carlo simulations, significantly exceeded those reported in human biomonitoring studies. Furthermore, the per capita mass load ratio of sulfated BPA and BPS in human urine to the mass load in wastewater was found to be below 10 %. This outcome suggests that the excretion of BPA-S and BPS-S in urine does not make a substantial contribution to wastewater, hinting at the existence of other notable sources. Consequently, our study concludes that sulfated BPA-S and BPS-S are not suitable candidates as WBE biomarkers. This work provides a referenceable analytical framework for evaluating the feasibility of WBE biomarkers and emphasizes the necessity for caution when utilizing WBE to assess human exposure to chemicals.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Zhuo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Longxia Lan
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Jinfeng Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China.
| |
Collapse
|
12
|
Lin YJ, Chen HC, Chang JW, Huang HB, Chang WT, Huang PC. Exposure characteristics and cumulative risk assessment of bisphenol A and its substitutes: the Taiwan environmental survey for toxicants 2013. Front Public Health 2024; 12:1396147. [PMID: 38846618 PMCID: PMC11153798 DOI: 10.3389/fpubh.2024.1396147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Ever since the use of bisphenol A (BPA) has been restricted, concerns have been raised regarding the use of its substitutes, such as bisphenol S (BPS) and bisphenol F (BPF). Meanwhile, the EU European Food Safety Authority (EFSA) issued the new tolerable daily intake (TDI) after the latest re-risk assessment for BPA, which enforced the need for cumulative risk assessment in the population. This study was conducted to identify BPA and its substitute's exposure characteristics of the general Taiwanese population and estimate the cumulative risk of bisphenol exposure. Methods Urine samples (N = 366 [adult, 271; minor, 95]) were collected from individuals who participated in the Taiwan Environmental Survey for Toxicants 2013. The samples were analyzed for BPA, BPS, and BPF through ultraperformance liquid chromatography-tandem mass spectrometry. Daily intake (DI) levels were calculated for each bisphenol. Hazard quotients (HQs) were calculated with the consideration of tolerable DI and a reference dose. Additionally, hazard index (HI; sum of HQs for each bisphenol) values were calculated. Results Our study found that the median level of BPA was significantly higher in adults (9.63 μg/g creatinine) than in minors (6.63 μg/g creatinine) (p < 0.001). The DI of BPS was higher in female (0.69 ng/kg/day) than in male (0.49 ng/kg/day); however, the DIs of BPF and BPS were higher in boys (1.15 and 0.26 ng/kg/day, respectively) than in girls (0.57 and 0.20 ng/kg/day, respectively). Most HI values exceeded 1 (99% of the participants) after EFSA re-establish the TDI of BPA. Discussion Our study revealed that the exposure profiles and risk of BPA and its substitute in Taiwanese varied by age and sex. Additionally, the exposure risk of BPA was deemed unacceptable in Taiwan according to new EFSA regulations, and food contamination could be the possible source of exposure. We suggest that the risk of exposure to BPA and its substitutes in most human biomonitoring studies should be reassessed based on new scientific evidence.
Collapse
Affiliation(s)
- Yu-Jung Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| |
Collapse
|
13
|
Gao Y, Bi L, Li A, Du M, Song M, Jiang G. Associations of Bisphenols Exposure and Hyperuricemia Based on Human Investigation and Animal Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5290-5298. [PMID: 38468128 DOI: 10.1021/acs.est.4c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Hyperuricemia is characterized by elevated blood uric acid (UA) levels, which can lead to certain diseases. Epidemiological studies have explored the association between environmental contaminant exposure and hyperuricemia. However, few studies have investigated the role of chemical exposure in the development of hyperuricemia. Here, we sought to investigate the effects of bisphenol exposure on the occurrence of hyperuricemia. Fifteen bisphenol chemicals (BPs) were detected in human serum and urine samples collected from an area with a high incidence of hyperuricemia in China. Serum UA levels positively correlated with urinary bisphenol S (BPS), urinary bisphenol P (BPP), and serum bisphenol F (BPF). The effects of these three chemicals on UA levels in mice were explored at various exposure concentrations. An increase in serum UA levels was observed in BPS- and BPP-exposed mice. The results showed that BPS exposure increased serum UA levels by damaging the structure of the kidneys, whereas BPP exposure increased serum UA levels by disturbing purine metabolism in the liver. Moreover, BPF did not induce an increase in serum UA levels owing to the inhibition of guanine conversion to UA. In summary, we provide evidence of the mechanisms whereby exposure to three BPs disturbs UA homeostasis. These findings provide new insights into the risks of exposure to bisphenol chemicals.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Aijing Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Mei Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Jeseta M, Kalina J, Franzova K, Fialkova S, Hosek J, Mekinova L, Crha I, Kempisty B, Ventruba P, Navratilova J. Cross sectional study on exposure to BPA and its analogues and semen parameters in Czech men. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123445. [PMID: 38325504 DOI: 10.1016/j.envpol.2024.123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Exposure to bisphenols has been found to have adverse effects on male reproductive function in animals. Human exposure to bisphenols is widespread. Bisphenol A (BPA) and its analogues, including bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) are utilized in various consumer products such as food contact materials and dental resins. The effects of these compounds on male fertility and spermatogenesis are unclear and findings from human studies are inconsistent. In this cross-sectional study, we evaluated the influence of BPA, BPS, BPF, BPAF (BPs) measured in semen on number of spermatozoa, total motility, progressive motility, morphology, and DNA fragmentation. We also examined the association of bisphenols (BPs) exposure with patients' occupation. A total of 358 patients aged 17-62 years with BMI 18-42 were included in the study from 2019 to 2021. BPs were extracted using solvent extraction followed by preconcentration step and determined by high-performance liquid chromatography and tandem mass spectrometry (LC/MSMS). Bisphenols were detected in 343 from 349 analysed samples (98.3% of all the samples). In 6 samples, the concentration of all BPs was under the limit of detection and in 20 samples under the limit of quantification. We did not find a statistically significant relationship between occupation and BPs. However, we observed significant correlations between the concentration of BPA and a lower motility and normal morphology. For BPS, a significant correlation with a lower ejaculate volume and a lower total sperm count was found. BPF and BPAF were detected only in 14.3% and 23.9% of samples, respectively. For BPF and BPAF, no significant correlations with spermiogram parameters were observed. Our results show that BPs are widespread in the male population (more than 90% of analysed samples), independently of an occupation and in case of BPA and BPS having a negative impact on spermiogram parameters.
Collapse
Affiliation(s)
- Michal Jeseta
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Czech Republic.
| | - Jiri Kalina
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katerina Franzova
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sandra Fialkova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Hosek
- Veterinary Research Institute, Hudcova 70, Brno, Czech Republic; Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Lenka Mekinova
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Crha
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Health Sciences, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Wroclaw Medical University, Poland; Physiology Graduate Faculty, North Carolina State University, Raleigh NC, USA
| | - Pavel Ventruba
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Navratilova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
15
|
Du M, Liu J, Huang B, Wang Q, Wang F, Bi L, Ma C, Song M, Jiang G. Spatial nanopores promote laccase degradation of bisphenol A and its analogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166429. [PMID: 37619739 DOI: 10.1016/j.scitotenv.2023.166429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Bisphenol A (BPA) and its analogs are endocrine-disrupting chemicals that are frequently detected in environmental and human samples. However, the effective removal of BPA and its analogs has not yet been extensively studied. Herein, we introduce a novel enzyme reactor for the degradation of BPA and its analogs in water. The influence of pore size on the degradation efficiency of immobilized laccase in the spatial nanopores of hydrogel was investigated using BPA as a representative compound. This showed that nanopores enhance the activity of immobilized laccases in a pore size-dependent manner and increase their stability. Compared with the same amount of free laccase, the 50 mg/L BPA degradation performance of laccase immobilized in 76 nm nanopores increased to 300 %. Taking advantage of magnetic separation, this immobilized laccase can be reused, and its degradation capacity was maintained at over 73.7 % after ten reactions. Moreover, the degradation of seven BPA analogs was 1.03-5.88 times higher using laccase immobilized in nanopores compared with free laccase. Also, the biocatalyst could efficiently degrade BPA analogs in real water matrix. This study opens up a new avenue for the removal of BPA and its analogs by immobilizing laccase in nanopores, overcoming the key limitations introduced by the short enzyme life span and non-reusability.
Collapse
Affiliation(s)
- Mei Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bang Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, 430056 Wuhan, China
| | - Qiong Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Jiang VS, Calafat AM, Williams PL, Chavarro JE, Ford JB, Souter I, Hauser R, Mínguez-Alarcón L. Temporal trends in urinary concentrations of phenols, phthalate metabolites and phthalate replacements between 2000 and 2017 in Boston, MA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165353. [PMID: 37437643 PMCID: PMC10543552 DOI: 10.1016/j.scitotenv.2023.165353] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can adversely affect human health and are ubiquitously found in everyday products. We examined temporal trends in urinary concentrations of EDCs and their replacements. Urinary concentrations of 11 environmental phenols, 15 phthalate metabolites, phthalate replacements such as two di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH) metabolites, and triclocarban were quantified using isotope-dilution tandem mass spectrometry. This ecological study included 996 male and 819 female patients who were predominantly White/Caucasian (83 %) with an average age of 35 years and a BMI of 25.5 kg/m2 seeking fertility treatment in Boston, MA, USA. Patients provided a total of 6483 urine samples (median = 2, range = 1-30 samples per patient) between 2000 and 2017. Over the study period, we observed significant decreases (% per year) in urinary concentrations of traditional phenols, parabens, and phthalates such as bisphenol A (β: -6.3, 95 % CI: -7.2, -5.4), benzophenone-3 (β: -6.5, 95 % CI: -1.1, -18.9), parabens ((β range:-5.4 to -14.2), triclosan (β: -18.8, 95 % CI: -24, -13.6), dichlorophenols (2.4-dichlorophenol β: -6.6, 95 % CI: -8.8, -4.3); 2,5-dichlorophenol β: -13.6, 95 % CI: -17, -10.3), di(2-ethylhexyl) phthalate metabolites (β range: -11.9 to -22.0), and other phthalate metabolites including mono-ethyl, mono-n-butyl, and mono-methyl phthalate (β range: -0.3 to -11.5). In contrast, we found significant increases in urinary concentrations of environmental phenol replacements including bisphenol S (β: 3.9, 95 % CI: 2.7, 7.6) and bisphenol F (β: 6, 95 % CI: 1.8, 10.3), DINCH metabolites (cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester [MHiNCH] β: 20, 95 % CI: 17.8, 22.2; monocarboxyisooctyl phthalate [MCOCH] β: 16.2, 95 % CI: 14, 18.4), and newer phthalate replacements such as mono-3-carboxypropyl phthalate, monobenzyl phthalate, mono-2-ethyl-5-carboxypentyl phthalate and di-isobutyl phthalate metabolites (β range = 5.3 to 45.1), over time. Urinary MHBP concentrations remained stable over the study period. While the majority of biomarkers measured declined over time, concentrations of several increased, particularly replacement chemicals that are studied.
Collapse
Affiliation(s)
- Victoria S Jiang
- Division of Reproductive Endocrinology and Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School; 55 Fruit Street, Suite 10A, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, USA
| | - Paige L Williams
- Departments of Epidemiology and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Departments of Biostatistics and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA
| | - Jorge E Chavarro
- Departments of Epidemiology and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Departments of Nutrition and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, 75 Francis St, Boston, MA, USA
| | - Jennifer B Ford
- Departments of Environmental Health and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA
| | - Irene Souter
- Division of Reproductive Endocrinology and Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School; 55 Fruit Street, Suite 10A, Boston, MA, USA
| | - Russ Hauser
- Division of Reproductive Endocrinology and Infertility, Vincent Department of Obstetrics & Gynecology, Massachusetts General Hospital/Harvard Medical School; 55 Fruit Street, Suite 10A, Boston, MA, USA; Departments of Epidemiology and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Departments of Environmental Health and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA
| | - Lidia Mínguez-Alarcón
- Departments of Environmental Health and Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, USA; Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, 75 Francis St, Boston, MA, USA.
| |
Collapse
|
17
|
Moore B, He C, Knight E, Mueller JF, Tscharke B. Bisphenols and phthalates in Australian wastewater: A statistical approach for estimating contributions from diffuse and point sources. WATER RESEARCH 2023; 246:120680. [PMID: 37801981 DOI: 10.1016/j.watres.2023.120680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Chemicals associated with plastics, such as bisphenols and phthalates, enter sewerage from both diffuse (domestic/commercial) and point (industrial) sources. In this study, we aimed to devise a conservative, statistical baseline to estimate contributions from these source types when sampling of specific sources is not possible. Population-normalised mass loads of two bisphenols and nine phthalates were estimated in wastewater samples from 22 sewage treatment plants (STPs) in 2019. Two multiday (10 and 7 day) pools were created for each STP. Baseline (diffuse) release thresholds were set at the mean of the first quartile (Q1) plus 10 times the standard deviation (STDV) of this quartile [Q1 mean + (10 x STDV)], with contributions over this considered to come from point sources. Chemicals with at least one population-normalised mass load more than three times their baseline were classified as point-source dominant and the remaining as diffuse-source dominant. Eleven of the twelve chemicals examined were detected above limits of quantification in all wastewater samples. Bisphenol A (BPA), bisphenol S (BPS), di-isononyl phthalate (DiNP) and di-methyl phthalate (DMP) were classified as point-source dominant chemicals. The total annual mass loads entering STPs across Australia were estimated to be 4.2 tonnes/year from diffuse sources and 4.5 tonnes/year from point sources for bisphenols, and 47 tonnes/year from diffuse sources and 5.9 tonnes/year from point sources for phthalates.
Collapse
Affiliation(s)
- Belinda Moore
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia.
| | - Chang He
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Emma Knight
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Benjamin Tscharke
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| |
Collapse
|
18
|
Li X, Wang X, Liu Y, Zhu H, Wang L. First evidence of occupational and residential exposure to bisphenols associated with an e-waste dismantling site: A case study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115206. [PMID: 37418938 DOI: 10.1016/j.ecoenv.2023.115206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Bisphenol A and its structural analogues (BPs) are widely used chemicals in electronics devices. To get insight into the occupational exposure to the full-time employees compared with the residents, urinary BPs in workers dismantling e-waste and in nearby residents were compared. Only 4 BPs among the tested 8 congeners, bisphenol AF (BPAF), bisphenol A, bisphenol S (BPS), and bisphenol F (BPF), were extensively detected with the detection frequencies of 100%, 99%, 98.7%, 51.3%. The median concentration of bisphenol A was 8.48 ng/mL, followed by BPAF (1.05 ng/mL), BPS (0.115 ng/mL), and BPF (0.110 ng/mL). The 4 detected BPs had a median concentration (Σ4BPs) ranging from 0.950 to 64.5 ng/mL in all volunteers, with a median value of 10.2 ng/mL. Result indicated the median concentration of ∑4BPs in worker's urine was significantly higher (14.2 ng/mL) than those in residents in nearby towns (4.52 ng/mL and 5.37 ng/mL) (p < 0.05), suggesting a BPs' occupational exposure risk related to e-waste dismantling. Besides, urinary ∑4BPs' median concentrations for the employees in family workshops (14.5 ng/mL) were significantly higher than those in plants with centralized management (9.36 ng/mL). Among volunteers, higher ∑4BPs were observed in groups of aged above 50 years, males, or body weight under average with no significant correlations. The estimated daily intake of bisphenol A did not exceed the reference dose (50 μg/kg bw/day) recommended by the U.S. Food and Drug Administration. In this research, excess levels of BPs were recorded for the full-time employees in e-waste dismantling sites. Strengthened standards could support public health initiatives for full-time worker protection and reduce take-home BPs to family members.
Collapse
Affiliation(s)
- Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xintai Wang
- Information Science and Technology College, Dalian Maritime University, Dalian, China.
| | - Yarui Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
19
|
Zheng Q, Gerber C, Steadman KJ, Lin CY, Tscharke BJ, O'Brien JW, Hobson P, Toms LM, Mueller JF, Thomas KV, Thai PK. Improving Wastewater-Based Tobacco Use Estimates Using Anabasine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7958-7965. [PMID: 37192131 DOI: 10.1021/acs.est.3c01510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In wastewater-based epidemiology (WBE), nicotine metabolites have been used as biomarkers for monitoring tobacco use. Recently, the minor tobacco alkaloids anabasine and anatabine have been suggested as more specific biomarkers for tobacco use since nicotine use can be from both tobacco and non-tobacco sources. This study aimed to provide an in-depth evaluation of the suitability of anabasine and anatabine as WBE biomarkers of tobacco and subsequently estimate their excretion factors for WBE applications. Pooled urine (n = 64) and wastewater samples (n = 277), collected between 2009 and 2019 in Queensland, Australia, were analyzed for nicotine and its metabolites (cotinine and hydroxycotinine), as well as anabasine and anatabine. Anabasine performed as the better biomarker, showing a similar per capita load in pooled urine (2.2 ± 0.3 μg/day/person) and wastewater samples (2.3 ± 0.3 μg/day/person), while the per capita load of anatabine in wastewater was 50% higher than its load in urine. It is estimated that 0.9 μg of anabasine was excreted per cigarette smoked. Triangulation of tobacco sales data and tobacco use estimated from either anabasine or cotinine showed that anabasine-based estimates were 5% higher than sales data, while cotinine-based estimates were between 2 and 28% higher. Our results provided concrete evidence to confirm the suitability of anabasine as a specific biomarker for monitoring tobacco use by WBE.
Collapse
Affiliation(s)
- Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Cobus Gerber
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Kathryn J Steadman
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Chun-Yin Lin
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jake William O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Peter Hobson
- Sullivan Nicolaides Pathology, 24 Hurworth Street, Bowen Hills, QLD 4006, Australia
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
20
|
Kasprzyk-Hordern B, Béen F, Bijlsma L, Brack W, Castiglioni S, Covaci A, Martincigh BS, Mueller JF, van Nuijs ALN, Oluseyi T, Thomas KV. Wastewater-based epidemiology for the assessment of population exposure to chemicals: The need for integration with human biomonitoring for global One Health actions. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131009. [PMID: 36863100 PMCID: PMC9927796 DOI: 10.1016/j.jhazmat.2023.131009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
WBE has now become a complimentary tool in SARS-CoV-2 surveillance. This was preceded by the established application of WBE to assess the consumption of illicit drugs in communities. It is now timely to build on this and take the opportunity to expand WBE to enable comprehensive assessment of community exposure to chemical stressors and their mixtures. The goal of WBE is to quantify community exposure, discover exposure-outcome associations, and trigger policy, technological or societal intervention strategies with the overarching aim of exposure prevention and public health promotion. To achieve WBE's full potential, the following key aspects require further action: (1) Integration of WBE-HBM (human biomonitoring) initiatives that provide comprehensive community-individual multichemical exposure assessment. (2) Global WBE monitoring campaigns to provide much needed data on exposure in low- and middle-income countries (LMICs) and fill in the gaps in knowledge especially in the underrepresented highly urbanised as well as rural settings in LMICs. (3) Combining WBE with One Health actions to enable effective interventions. (4) Advancements in new analytical tools and methodologies for WBE progression to enable biomarker selection for exposure studies, and to provide sensitive and selective multiresidue analysis for trace multi-biomarker quantification in a complex wastewater matrix. Most of all, further developments of WBE needs to be undertaken by co-design with key stakeholder groups: government organisations, health authorities and private sector.
Collapse
Affiliation(s)
| | - Frederic Béen
- Chemistry for Environment & Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, the Netherlands; KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, E-12071 Castellón, Spain
| | - Werner Brack
- Helmholtz Centre for Environmental Research GmbH - UFZ, Department of Effect-Directed Analysis, Permoserstraße 15, 04318 Leipzig, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt, Germany
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Science, Via Mario Negri 2, 20156 Milan, Italy
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia
| | | | - Temilola Oluseyi
- Analytical and Environmental Chemistry Research Group, Department of Chemistry, University of Lagos, Nigeria
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall Street, Woolloongabba, 4102 Queensland, Australia
| |
Collapse
|
21
|
Kasprzyk-Hordern B, Sims N, Farkas K, Jagadeesan K, Proctor K, Wade MJ, Jones DL. Wastewater-based epidemiology for comprehensive community health diagnostics in a national surveillance study: Mining biochemical markers in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:130989. [PMID: 36848844 DOI: 10.1016/j.jhazmat.2023.130989] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This manuscript showcases results from a large scale and comprehensive wastewater-based epidemiology (WBE) study focussed on multi-biomarker suite analysis of both chemical and biological determinants in 10 cities and towns across England equating to a population of ∼7 million people. Multi-biomarker suite analysis, describing city metabolism, can provide a holistic understanding to encompass all of human, and human-derived, activities of a city in a single model: from lifestyle choices (e.g. caffeine intake, nicotine) through to health status (e.g. prevalence of pathogenic organisms, usage of pharmaceuticals as proxy for non-communicable disease, NCD, conditions or infectious disease status), and exposure to harmful chemicals due to environmental and industrial sources (e.g. pesticide intake via contaminated food and industrial exposure). Population normalised daily loads (PNDLs) of many chemical markers were found, to a large extent, driven by the size of population contributing to wastewater (especially NCDs). However, there are several exceptions providing insights into chemical intake that can inform either disease status in various communities or unintentional exposure to hazardous chemicals: e.g. very high PNDLs of ibuprofen in Hull resulting from its direct disposal (confirmed by ibuprofen/2-hydroxyibuprofen ratios) and bisphenol A (BPA) in Hull, Lancaster and Portsmouth likely related to industrial discharge. An importance for tracking endogenous health markers such as 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA, an oxidative stress marker) as a generic marker of health status in communities was observed due to increased levels of HNE-MA seen at Barnoldswick wastewater treatment plant that coincided with higher-than-average paracetamol usage and SARS-CoV-2 prevalence in this community. PNDLs of virus markers were found to be highly variable. Being very prevalent in communities nationwide during sampling, SARS-CoV-2 presence in wastewater was to a large extent community driven. The same applies to the fecal marker virus, crAssphage, which is very prevalent in urban communities. In contrast, norovirus and enterovirus showed much higher variability in prevalence across all sites investigated, with clear cases of localized outbreaks in some cities while maintaining low prevalence in other locations. In conclusion, this study clearly demonstrates the potential for WBE to provide an integrated assessment of community health which can help target and validate policy interventions aimed at improving public health and wellbeing.
Collapse
Affiliation(s)
| | - Natalie Sims
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kishore Jagadeesan
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kathryn Proctor
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew J Wade
- Analytics & Data Science Directorate, UK Health Security Agency, London SW1P 3JR, UK
| | - Davey L Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, Murdoch WA 6105, Australia
| |
Collapse
|
22
|
Lee KM, Han SM, Lee HJ, Kang M, Jeong TY, Son J, Min H, Cha S, Oh HB, Oh WK, Lee J. Influence of mobile phase composition on the analytical sensitivity of LC-ESI-MS/MS for the concurrent analysis of bisphenols, parabens, chlorophenols, benzophenones, and alkylphenols. ENVIRONMENTAL RESEARCH 2023; 221:115305. [PMID: 36642120 DOI: 10.1016/j.envres.2023.115305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Phenols are significant environmental endocrine disruptors that can have adverse health effects on exposed individuals. Correlating phenol exposure to potential health implications requires the development of a comprehensive and sensitive analytical method capable of analyzing multiple phenols in a single sample preparation and analytical run. Currently, no such method is available for multiple classes of phenols due to electrospray ionization (ESI) limitations in concurrent ionization and lack of sensitivity to certain phenols, particularly alkylphenols. In this study, we investigated the influence of mobile phase compositions in ESI on concurrent ionization and analytical sensitivity of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) during the analysis of multiple classes of phenols, and we propose a comprehensive and sensitive analytical method for various classes of phenols (i.e., bisphenols, parabens, benzophenones, chlorophenols, and alkylphenols). The proposed method was affected by 0.5 mM ammonium fluoride under methanol conditions. It enabled the concurrent ionization of all the phenols and significantly improved the analytical sensitivity for bisphenols and alkylphenols, which typically have poor ionization efficiency. This method, combined with a "dilute and shoot" approach, allowed us to simultaneously quantify 38 phenols with good chromatographic behavior and sensitivity. Furthermore, the method was successfully applied to the analysis of 61 urine samples collected from aquatic (swimming) and land (indoor volleyball and outdoor football) athletes.
Collapse
Affiliation(s)
- Kang Mi Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea; Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Moon Han
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hyeon-Jeong Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Minsik Kang
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Tae Young Jeong
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Sangwon Cha
- Department of Chemistry, Dongguk University, Seoul, 04620, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jaeick Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
23
|
Gogola-Mruk J, Krawczyk K, Marynowicz W, Rokita M, Nimpsz S, Ptak A. Bisphenols S and F drive ovarian granulosa cell tumor invasion via a metabolic switch. Toxicol Lett 2023; 375:39-47. [PMID: 36584861 DOI: 10.1016/j.toxlet.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Alterations in the metabolism of cancer cells are crucial for tumor growth and progression. However, the mechanism whereby environmental pollutants such as bisphenols F (BPF) and S (BPS) affect glucose metabolism through the glycolytic pathway, and therefore influence tumor progression, are unclear. Both bisphenols are endocrine-disrupting molecules that are used in plastics. As a consequence of their widespread use, these compounds have been detected in various human body fluids. Thus, hormone-sensitive cancers, such as ovarian cancers, are exposed to these compounds. In the present study, we aimed to determine the effects of the concentrations of BPS and BPF found in body fluids on the cell viability, glucose uptake, glycolysis, oxygen consumption, and invasion by the adult ovarian granulosa cell tumor (AGCT) cell line. We found that BPS and BPF increased the glucose uptake, hexokinase activity, proliferation, and invasion of the cells at environmentally relevant concentrations. Furthermore, we identified an inhibition of glycolysis in parallel with an increase in oxygen consumption, suggesting a BPS/BPF-induced switch from aerobic glycolysis to mitochondrial respiration. In summary, these findings demonstrate a new mechanism through which BPS and BPF promote ovarian granulosa cell tumor progression by increasing energy production through mitochondrial respiration. Thus, both bisphenols induced a metabolic switch that appears to be a stimulus for AGCT progression.
Collapse
Affiliation(s)
- Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Kinga Krawczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Magdalena Rokita
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Samantha Nimpsz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
24
|
Zhao XN, Huang ZS, Wang GJ, Liu YL, Song WW, Ma J, Wang L. Highly Efficient Utilization of Ferrate(VI) Oxidation Capacity Initiated by Mn(II) for Contaminant Oxidation: Role of Manganese Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2527-2537. [PMID: 36725089 DOI: 10.1021/acs.est.2c06931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Manganese ion [Mn(II)] is a background constituent existing in natural waters. Herein, it was found that only 59% of bisphenol A (BPA), 47% of bisphenol F (BPF), 65% of acetaminophen (AAP), and 49% of 4-tert-butylphenol (4-tBP) were oxidized by 20 μM of Fe(VI), while 97% of BPA, 95% of BPF, 96% of AAP, and 94% of 4-tBP could be oxidized by the Fe(VI)/Mn(II) system [20 μM Fe(VI)/20 μM Mn(II)] at pH 7.0. Further investigations showed that bisphenol S (BPS) was highly reactive with reactive iron species (RFeS) but was sluggish with reactive manganese species (RMnS). By using BPS and methyl phenyl sulfoxide (PMSO) as the probe compounds, it was found that reactive iron species contributed primarily for BPA oxidation at low Mn(II)/Fe(VI) molar ratios (below 0.1), while reactive manganese species [Mn(VII)/Mn(III)] contributed increasingly for BPA oxidation with the elevation of the Mn(II)/Fe(VI) molar ratio (from 0.1 to 3.0). In the interaction of Mn(II) and Fe(VI), the transfer of oxidation capacity from Fe(VI) to Mn(III), including the formation of Mn(VII) and the inhibition of Fe(VI) self-decay, improved the amount of electron equivalents per Fe(VI) for BPA oxidation. UV-vis spectra and dominant transformation product analysis further revealed the evolution of iron and manganese species at different Mn(II)/Fe(VI) molar ratios.
Collapse
Affiliation(s)
- Xiao-Na Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhuang-Song Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Gui-Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Wei Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
25
|
Téteau O, Vitorino Carvalho A, Papillier P, Mandon-Pépin B, Jouneau L, Jarrier-Gaillard P, Desmarchais A, Lebachelier de la Riviere ME, Vignault C, Maillard V, Binet A, Uzbekova S, Elis S. Bisphenol A and bisphenol S both disrupt ovine granulosa cell steroidogenesis but through different molecular pathways. J Ovarian Res 2023; 16:30. [PMID: 36737804 PMCID: PMC9896735 DOI: 10.1186/s13048-023-01114-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ovarian granulosa cells (GC) are essential for the development and maturation of a proper oocyte. GC are sensitive to endocrine disruptors, including bisphenol A (BPA) and its analogue bisphenol S (BPS), plasticisers present in everyday consumer products. BPA exhibits greater binding affinity for the membrane oestrogen receptor (GPER) than for the nuclear oestrogen receptors (ERα and ERβ). Here, we analysed the effects of BPA and BPS on the steroidogenesis of ovine GC in vitro, as well as their early mechanisms of action, the ovine being a relevant model to study human reproductive impairment. Disruption of GC steroidogenesis might alter oocyte quality and consequently fertility rate. In addition, we compared the effects of a specific GPER agonist (G-1) and antagonist (G-15) to those of BPA and BPS. Ewe GC were cultured with BPA or BPS (10 or 50 µM) or G-1 (1 µM) and/or G-15 (10 µM) for 48 h to study steroidogenesis. RESULTS Both BPA and BPS (10 µM) altered the secretion of progesterone, however, only BPS (10 µM) affected oestradiol secretion. RNA-seq was performed on GC after 1 h of culture with BPA or BPS (50 µM) or G-1 (10 µM), followed by real-time PCR analyses of differentially expressed genes after 12, 24 and 48 h of culture. The absence of induced GPER target genes showed that BPA and BPS did not activate GPER in GC after 1 h of treatment. These molecules exhibited mainly independent early mechanisms of action. Gene ontology analysis showed that after 1 h of treatment, BPA mainly disrupted the expression of the genes involved in metabolism and transcription, while BPS had a smaller effect and impaired cellular communications. BPA had a transient effect on the expression of CHAC1 (NOTCH signalling and oxidative balance), JUN (linked to MAPK pathway), NR4A1 (oestradiol secretion inhibition), ARRDC4 (endocytose of GPCR) and KLF10 (cell growth, differentiation and apoptosis), while expression changes were maintained over time for the genes LSMEM1 (linked to MAPK pathway), TXNIP (oxidative stress) and LIF (cell cycle regulation) after 12 and 48 h, respectively. CONCLUSION In conclusion, although they exhibited similar effects, BPA and BPS impaired different molecular pathways in GC in vitro. New investigations will be necessary to follow the temporal changes of these genes over time, as well as the biological processes involved.
Collapse
Affiliation(s)
- Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Luc Jouneau
- INRAE, BREED, Université Paris-Saclay, UVSQ, 78350, Jouy-en-Josas, France
| | | | - Alice Desmarchais
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Virginie Maillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
- Service de Chirurgie Pédiatrique Viscérale, Urologique, Plastique Et Brûlés, CHRU de Tours, 37000, Tours, France
| | - Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France
| | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380, Nouzilly, France.
| |
Collapse
|
26
|
Pan Y, Han L, Chen X, Wei X, Zhou X, Liang D, Yin R, Jiao X, Li H, Li AJ, Qiu R. Occurrence of emerging bisphenol S analogues in urine from five occupational populations in South China. ENVIRONMENT INTERNATIONAL 2023; 172:107773. [PMID: 36736027 DOI: 10.1016/j.envint.2023.107773] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Bisphenol S (BPS) and its 11 emerging analogues were investigated in 325 urine samples from five occupational populations in South China. Besides BPS, ten emerging BPS analogues were newly identified and detected in the urine. It should be noted that urinary concentrations of dominant BPS analogues of 2,4'-bis(hydroxyphenyl)sulfone (2,4-BPS), bis(3-allyl-4-hydroxyphenyl)sulfone (TGSA) and diphenylsulfone (DPS) were 1.1-2.3 times higher than that of BPS, with overall detection frequencies at 74-91 %. The median sum concentrations of the target 12 bisphenols (ng/mL) were found highest in urine from cashiers (1.12), followed by water plant staffs (0.994), teachers (0.552), doctors (0.408) and power plant staffs (0.333). The composition profile of the urinary dominant bisphenols was occupational-dependent, with 2,4-BPS accounting for 45-73 % in cashiers and power plant staffs, and with DPS and TGSA for 74-82 % among doctors, teachers and water plant staffs. Significant correlations were found among the most frequently detected bisphenols in cashiers, indicating their common application and emission pathways. The median exposures based on estimated daily intakes (EDIs, ng/kg bw/day) for the 12 bisphenols in cashiers and water plant staffs (31.6-35.6) were 1.8-3.4 times higher than those of teachers, doctors and power plant staffs (10.6-17.5). This is the first study to identify multiple emerging BPS analogues in urine from occupational populations, especially cashiers and water plant staffs.
Collapse
Affiliation(s)
- Yanan Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Liqiao Han
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xiang Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xin Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyue Zhou
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Dingshan Liang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Simultaneous morphology control and defect regulation in g-C3N4 for peroxymonosulfate activation and bisphenol S degradation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Kannan A, Sims N, Hold AJ, Jagadeesan K, Standerwick R, Barden R, Kasprzyk-Hordern B. The burden of city's pain treatment - A longitudinal one year study of two cities via wastewater-based epidemiology. WATER RESEARCH 2023; 229:119391. [PMID: 36462253 DOI: 10.1016/j.watres.2022.119391] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
This paper explores Wastewater-Based Epidemiology (WBE) as a tool enabling understanding of city's pain treatment in an intercity longitudinal study. An intensive 13-month monitoring programme was undertaken in two adjacent urban areas in South-West England: a small commuter town Keynsham and the city of Bath (>180 samples collected). The study has shown a great potential of using triangulated WBE and National health Service (NHS) prescription data in understanding pain treatment in two contrasting communities with strong apparent seasonal patterns of short pain medications vs chronic pain treatment as well as the type of treatment used (e.g. oral vs topical). Community-wide usage of Non-Steroidal Anti-inflammatory Drugs (NSAIDs) and paracetamol in the intercity study is population size and season driven with the highest usage recorded in winter months. This contrasts with other pain pharmaceuticals, especially those used for chronic pain, where no/limited seasonal usage was recorded. Unmetabolized NSAIDs are, to a large extent, directly disposed of into the sewerage system bypassing metabolism due to their topical application. This is particularly apparent in winter months with naproxen showing the highest seasonal variability. Pharma/met (ratio of pharmaceutical and its metabolite concentration) analysis allows for tracking topical (non-metabolic) application/down-the-drain disposal of pharmaceuticals with frequent instances of direct disposal of NSAIDs into the sewerage system observed. Normalisation of pharma markers to population size shows comparable estimates of pharma usage in the two cities confirming population as the main driver of pharma loads in wastewater. Variable application patterns of pain pharmaceuticals make back-calculation of intake more convoluted. Intake calculated using percentage excretion of parent NSAIDs will likely lead to overestimation, as it is assumed that NSAIDs are subject to extensive metabolism (this is not the case for topical applications). Intake calculated using percentage excretion of metabolites (or parent compound) as consumption markers leads to underestimation of NSAIDs usage due to contributions from topical application not being accounted for. Prescription data indicates cumulative internal and topical usage, but the data ignores large proportion of over-the-counter usage. Therefore, we have proposed a combined approach allowing for estimation of total usage including, and differentiating between, topical application and oral administration.
Collapse
Affiliation(s)
- Andrew Kannan
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Natalie Sims
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Angus J Hold
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Kishore Jagadeesan
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | |
Collapse
|
29
|
Li M, Li T, Yin J, Xie C, Zhu J. Evaluation of toxicological effects of bisphenol S with an in vitro human bone marrow mesenchymal stem cell: Implications for bone health. Toxicology 2023; 484:153408. [PMID: 36565802 DOI: 10.1016/j.tox.2022.153408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
As the use of bisphenol A (BPA) has been restricted in consumer products, bisphenol S (BPS) is one major alternative to BPA for various materials, leading to growing concerns about its health risks in human beings. However, little is known about the toxic effects of BPS on bone health. We employed human bone marrow mesenchymal stem cells (hBMSCs) for the in vitro assessment of BPS on cell proliferation, differentiation, and self-renewal. Our study revealed that BPS at concentrations of 10-10-10-7 M increased cell viability but induced the morphological changes of hBMSCs. Moreover, BPS decreased ROS generation and increased Nrf2 expression. Furthermore, BPS not only activated ERα/β expression but also increased β-catenin expression and induced the replicative senescence of hBMSCs. Furthermore, we found that the upregulation of β-catenin induced by BPS was mediated, in part, by ER signaling. Overall, our results suggested BPS exposure caused the homeostatic imbalance of hBMSCs.
Collapse
Affiliation(s)
- Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Tenglong Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
30
|
Wang H, Tang Z, Liu ZH, Zeng F, Zhang J, Dang Z. Ten bisphenol analogs were abundantly found in swine and bovine urines collected from two Chinese farms: concentration profiles and risk evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13407-13417. [PMID: 36131175 DOI: 10.1007/s11356-022-23089-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol analogs (BPs) in livestock urine are important biomarkers to reflect the potential contaminants in food products derived from these animals. Nevertheless, little research has been done on their occurrence in farm animal urine. This work investigated ten BPs in swine and bovine urines collected from two Chinese farms. Results showed that all of these ten BPs were frequently detected in swine and bovine urines. The total mean concentration of the ten BPs (ΣBPs) in sow urines was 59.7 ng/mL, which was significantly higher than that of the boar urine with a mean concentration of 37.0 ng/mL (p < 0.05). On the other hand, the corresponding mean concentration of ΣBPs in dairy cattle urine was 59.6 ng/mL, which was significantly higher than that of the beef cattle urine with 37.0 ng/mL (p < 0.05). The respective mean concentration contribution ratios of BPA to ΣBPs in boar, sow, dairy, and beef cattle urines were only 14.9%, 21.4%, 9.0%, and 14.6%, which clearly indicated that BPA was no longer the dominant BP. The average daily urinary excretion rates of ΣBPs by boar, sow, dairy, and beef cattle were 37.0, 59.8, 167.0, and 36.8 times that of human, which suggested that swine and bovine likely encountered high dosage exposure of BPs in the two Chinese livestock farms. Our results showed that feeds and nutritional supplements as unintentionally added contaminants were the main sources of BPs to swine and bovine. As swine and bovine are important food sources for human being, part of BPs exposed to livestock eventually would enter human body via meat or milk. Therefore, quality controls of these feeds or nutritional supplements are quite important in order to guarantee welfare of livestock as well as protect health of our human beings.
Collapse
Affiliation(s)
- Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Feng Zeng
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
31
|
Makarova K, Olchowik-Grabarek E, Drabikowski K, Kurkowiak J, Zawada K. Products of Bisphenol A Degradation Induce Cytotoxicity in Human Erythrocytes (In Vitro). Int J Mol Sci 2022; 24:ijms24010492. [PMID: 36613931 PMCID: PMC9820436 DOI: 10.3390/ijms24010492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The aim of this work has been to study the possible degradation path of BPA under the Fenton reaction, namely to determine the energetically favorable intermediate products and to compare the cytotoxicity of BPA and its intermediate products of degradation. The DFT calculations of the Gibbs free energy at M06-2X/6-311G(d,p) level of theory showed that the formation of hydroquinone was the most energetically favorable path in a water environment. To explore the cytotoxicity the erythrocytes were incubated with BPA and three intermediate products of its degradation, i.e., phenol, hydroquinone and 4-isopropylphenol, in the concentrations 5-200 μg/mL, for 1, 4 and 24 h. BPA induced the strongest hemolytic changes in erythrocytes, followed by hydroquinone, phenol and 4-isopropylphenol. In the presence of hydroquinone, the highest level of RONS was observed, whereas BPA had the weakest effect on RONS generation. In addition, hydroquinone decreased the level of GSH the most. Generally, our results suggest that a preferable BPA degradation path under a Fenton reaction should be controlled in order to avoid the formation of hydroquinone. This is applicable to the degradation of BPA during waste water treatment and during chemical degradation in sea water.
Collapse
Affiliation(s)
- Katerina Makarova
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- Correspondence:
| | - Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Konstanty Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Krzysztof Drabikowski
- Laboratory of Biological Chemistry of Metal Ions, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Justyna Kurkowiak
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Katarzyna Zawada
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
32
|
Wang H, Gao R, Liang W, Wei S, Zhou Y, Zeng F. Assessment of BPA and BPS exposure in the general population in Guangzhou, China - Estimation of daily intakes based on urinary metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120375. [PMID: 36220574 DOI: 10.1016/j.envpol.2022.120375] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Human exposure to bisphenol A (BPA) and bisphenol S (BPS) has garnered considerable global health concerns. In this paper, the daily intake (DI) of BPA and BPS in the general population of Guangzhou, China, were back-calculated using the biomarkers BPA glucuronides (BPA-G) and BPS glucuronides (BPS-G), respectively. The biomarkers are preferable to total BPA and BPS measurements because they are not susceptible to external contamination. A total of 1440 urine samples were gathered from the general population in Guangzhou, China, which were classified by age and sex into 36 pooled urine samples. 100% and 98% of pooled urine samples contained BPA-G and BPS-G at median values of 1.57 and 0.38 ng/mL, respectively. Based on urinary BPA-G and BPS-G concentrations, we determined the median DI of BPA and BPS to be 31.07 and 7.37 ng/(kg bw*d), respectively, and the highest values to be 106.77 ng/(kg bw*d) and 18.19 ng/(kg bw*d), respectively. Furthermore, our results showed that for the entire dataset, the DI of BPA and BPS were considerably greater in males than in females (p < 0.01)and declined significantly with age (p < 0.05). For risk assessment, the estimated DIs of BPA and BPS were much lower than the European Food Safety Authority' s (EFSA) the temporary acceptable reference dose of 4 μg/(kg bw*d) advised for BPA, suggesting that the exposure risk of BPA and BPS for Guangzhou population is within a controllable safety range. This is the first study to investigate BPA and BPS exposure in the general population of Guangzhou, China, on the basis of urinary metabolites.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Shuyin Wei
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China.
| |
Collapse
|
33
|
Qu J, Mao W, Liao K, Zhang Y, Jin H. Association between urinary bisphenol analogue concentrations and lung cancer in adults: A case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120323. [PMID: 36191799 DOI: 10.1016/j.envpol.2022.120323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Elevated urinary bisphenol A (BPA) concentrations have been associated with lung cancer in humans. However, toxicological studies demonstrated that the proliferation of lung cancer cells was inhibited by BPA exposure. Therefore, it is still necessary to determine whether exposure to BPA and other bisphenol analogues (BPs) is associated with lung cancer in humans. In this study, 226 lung cancer patients and 243 controls were randomly recruited. Concentrations of three BPs in human urine were quantified and their relationships with the risk of human lung cancer were evaluated. BPA (mean 1.03 ng/mL, 0.87 μg/g Cre) was the predominant BP in human urine, followed by bisphenol S (BPS) (0.72 ng/mL, 0.53 μg/g Cre) and bisphenol F (0.32 ng/mL, 0.37 μg/g Cre). Significant correlations between creatinine-corrected urinary BPA concentrations and the lung cancer risk (odds ratio (OR) adjusted = 1.28, 95% confidence interval (CI): 1.17, 1.40; Ptrend = 0.04) were found using logistical regression analysis. Creatinine-corrected urinary concentrations of BPS in participants showed significant correlations with lung cancer (ORadjusted = 1.23, 95% CI: 1.04, 1.59; Ptrend = 0.01) in the adjusted model. In the stratification analysis, the significant correlation between urinary creatinine-corrected concentrations of BPA and the risk of lung cancer still observed in male participants (OR = 1.36, 95% CI: 1.09, 1.62, p = 0.040). This study demonstrates that elevated human exposure to BPA and BPS may be associated with the increased lung cancer risk.
Collapse
Affiliation(s)
- Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China; Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
34
|
Eaton CJ, Coxon S, Pattis I, Chappell A, Hewitt J, Gilpin BJ. A Framework for Public Health Authorities to Evaluate Health Determinants for Wastewater-Based Epidemiology. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:125001. [PMID: 36520537 PMCID: PMC9754092 DOI: 10.1289/ehp11115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) is rapidly developing as a powerful public health tool. It can provide information about a wide range of health determinants (HDs), including community exposure to environmental hazards, trends in consumption of licit and illicit substances, spread of infectious diseases, and general community health. As such, the list of possible candidate HDs for WBE is almost limitless. Consequently, a means to evaluate and prioritize suitable candidates for WBE is useful, particularly for public health authorities, who often face resource constraints. OBJECTIVES We have developed a framework to assist public health authorities to decide what HDs may be appropriate for WBE and what biomarkers could be used. This commentary reflects the experience of the authors, who work at the interface of research and public health implementation. DISCUSSION To be suitable for WBE, a candidate HD should address a public health or scientific issue that would benefit from better understanding at the population level. For HDs where information on individual exposures or stratification by population subgroups is required, WBE is less suitable. Where other methodologies are already used to monitor the candidate HD, consideration must be given to whether WBE could provide better or complementary information to the current approach. An essential requirement of WBE is a biomarker specific for the candidate HD. A biomarker in this context refers to any human-excreted chemical or biological that could act as an indicator of consumption or exposure to an environmental hazard or of the human health state. Suitable biomarkers should meet several criteria outlined in this commentary, which requires background knowledge for both the biomarker and the HD. An evaluation tree summarizing key considerations for public health authorities when assessing the suitability of candidate HDs for WBE and an example evaluation are presented. https://doi.org/10.1289/EHP11115.
Collapse
Affiliation(s)
- Carla J. Eaton
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Sarah Coxon
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Isabelle Pattis
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Andrew Chappell
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd., Porirua, New Zealand
| | - Brent J. Gilpin
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| |
Collapse
|
35
|
Kumar R, Adhikari S, Driver E, Zevitz J, Halden RU. Application of wastewater-based epidemiology for estimating population-wide human exposure to phthalate esters, bisphenols, and terephthalic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157616. [PMID: 35901875 DOI: 10.1016/j.scitotenv.2022.157616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Phthalates, bisphenols (BPs), and terephthalic acid (TPA) are widely used plasticizers and monomers in plastic manufacturing. Most of them are known to have an adverse effect on the human body, functioning as endocrine disruptors and suspected carcinogens. Access to near real-time data on population exposure to plasticizers is essential for identifying vulnerable communities and better protecting and managing public health locally. The objective of the present study was to evaluate population-level exposure to phthalates, BPs, and TPA by measuring urinary metabolites in community wastewater. Composited community wastewater (24-h samples) from five sewer sub-catchments of a southwestern city within the United States were analyzed for urinary biomarkers of phthalates, BPs, and TPA using solid-phase extraction-liquid chromatography-tandem mass spectrometry in conjunction with the isotope dilution method for absolute quantification. Ten of 16 analytes were detected at least once in community wastewater above the method detection limit (MDL), with MDLs ranging from 37 to 203 ng/L. The population normalized mass load of TPA was the highest, followed by the human metabolite of di-(2-ethylhexyl) phthalate (DEHP). Bisphenol S and monoethyl phthalate were detected with the highest frequency. Study findings suggest that analyzing municipal wastewater for chemical indicators of human exposure to plastic constituents is feasible, practicable, and informative, as long as appropriate steps are taken to determine, quantify and account for background levels of plastic analytes in the laboratory environment.
Collapse
Affiliation(s)
- Rahul Kumar
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 852\87, USA
| | - Erin Driver
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Jake Zevitz
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 852\87, USA; One Water One Health, Non-profit Project of Arizona State University Foundation, Tempe, AZ 85287, USA.
| |
Collapse
|
36
|
Wang T, Zhang H, Liu Y, Zhang L, Xing B. Ultrathin porous carbon nanosheet as an efficient adsorbent for the removal of bisphenol A: The overlooked role of topological defects. CHEMOSPHERE 2022; 306:135549. [PMID: 35780996 DOI: 10.1016/j.chemosphere.2022.135549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 05/27/2023]
Abstract
Carbon-based materials are emerging as a type of inexpensive and efficient adsorbent, although their genuine adsorption site is still debatable. Herein, we present a novel approach for designing and constructing an ultra-thin defect-rich hierarchically porous carbon nanosheet (ZG-C). The ZG-C sample demonstrated a high adsorption capacity for bisphenol A (BPA) (602.2 mg/g) along with a fast adsorption process (20 min), and stable reusability (the decline efficiency was 9.14% after five consecutive cycles). Based on comprehensive experiments and a number of characterizations, the high adsorption capacity of ZG-C for BPA was connected with the hierarchical porous structure of ZG-C and multiple intrinsic defects of ZG-C. The results of density functional theory (DFT) further demonstrated that topological defects played an indispensable role in promoting adsorption, and its adsorption energy (-0.595 eV) for BPA was much higher than that of other intrinsic defects. This study not only provides an innovative and simple strategy for preparing hierarchically porous carbon-based adsorbent with abundant intrinsic defects for the efficient removal of BPA, but also significantly contributes to the understanding of the application of carbon-based materials to remove bisphenols.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huixue Zhang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
37
|
Téteau O, Liere P, Pianos A, Desmarchais A, Lasserre O, Papillier P, Vignault C, Lebachelier de la Riviere ME, Maillard V, Binet A, Uzbekova S, Saint-Dizier M, Elis S. Bisphenol S Alters the Steroidome in the Preovulatory Follicle, Oviduct Fluid and Plasma in Ewes With Contrasted Metabolic Status. Front Endocrinol (Lausanne) 2022; 13:892213. [PMID: 35685208 PMCID: PMC9172638 DOI: 10.3389/fendo.2022.892213] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups. Eighty adult ewes were allotted to restricted (R) and well-fed (WF) groups, that were further subdivided into two subgroups. Ewes were exposed to 50 µg BPS/kg/day in their diet (R50 and WF50 groups) or were unexposed controls (R0 and WF0 groups). After at least 3 months of BPS exposure, preovulatory follicular fluid, oviduct fluid and plasma were collected and steroid hormones were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). A deleterious effect of restricted diet on the volume of oviduct fluid and numbers of pre-ovulatory follicles was observed. Exposure to BPS impaired estradiol concentrations in both follicular and oviduct fluids of well-fed ewes and progesterone, estradiol and estrone concentrations in plasma of restricted ewes. In addition, a significant interaction between metabolic status and BPS exposure was observed for seven steroids, including estradiol. In conclusion, BPS acts in ewes as an endocrine disruptor with differential actions according to metabolic status.
Collapse
Affiliation(s)
- Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Philippe Liere
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Pianos
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | | | | | | | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France
| | | | | | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Chirurgie pédiatrique viscérale, urologique, plastique et brûlés, CHRU de Tours, Tours, France
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
38
|
Wang H, Tang S, Zhou X, Gao R, Liu Z, Song X, Zeng F. Urinary concentrations of bisphenol analogues in the south of China population and their contribution to the per capital mass loads in wastewater. ENVIRONMENTAL RESEARCH 2022; 204:112398. [PMID: 34800536 DOI: 10.1016/j.envres.2021.112398] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol analogues (BPs) are heavily used and negatively affect the health of human beings, however, there is little knowledge regarding human exposure to BPs other than BPA. This study aims to assess human exposure to BPs through investigating pooled urine and wastewater samples. Twenty-four pooled urine samples were prepared from 960 specimens (classified by age and gender). Wastewater samples were collected from six major wastewater treatment plants (WWTPs) in Guangzhou, South of China. BPA, BPS, and BPAF were widely detected in urine samples, with a median concentration of 0.96, 0.42, and 0.15 μg/L, respectively. Median urinary levels of BPA and BPS were higher in males than females (p > 0.05). In addition, BPA and BPS urinary levels in young adults (15-30 years old) were greater than those in children (0-15 years old) (p > 0.05). Nevertheless, most of the BPs were detected in wastewater samples, of which BPA and BPS were predominant BPs, with a median concentration of 1.0 and 0.29 μg/L. The average per capital mass loads of ΣBPs on the weekdays of mix typed WWTP was much higher than those of the weekends. Nonetheless, the average loads of ΣBPs on the weekdays of domestic WWTP was slightly lower than those of the weekends. This indicated that important sources of BPs might include industrial wastewater and household cleaning products. Urinary BPA, BPS, and BPAF accounted for less than 5% per capital mass loads in wastewater, suggesting that much of the BPA, BPS, and BPAF in municipal wastewater originate non-human excretion. Hence, the wastewater-based epidemiology (WBE) approach based on parent compounds is not available for assessing human exposure to BPs, neither for other industrial chemicals with diverse sources in municipal wastewater. These results contributes to the development of an efficient surveillance system which can provide insight in the trends of human exposure of BPs.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering. Dongguan University of Technology, Dongguan, 523808, Guangdong, China
| | - Xi Zhou
- Guangdong Institute of Analysis, Guangdong Academy of Science, Guangzhou, China
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China
| | - Zehua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006; Guangdong, China
| | - Xiaofei Song
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006; Guangdong, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, China.
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou, 510275, China.
| |
Collapse
|
39
|
Pei XY, Ren HY, Liu GS, Cao GL, Xie GJ, Xing DF, Ren NQ, Liu BF. Non-radical mechanism and toxicity analysis of β-cyclodextrin functionalized biochar catalyzing the degradation of bisphenol A and its analogs by peroxydisulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127254. [PMID: 34583154 DOI: 10.1016/j.jhazmat.2021.127254] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Bisphenols (BPs) are distributed in worldwide as typical environmental hormones, which potentially harm the ecological environment and human health. In this study, four BPs, i.e., bisphenol A, bisphenol F, bisphenol S, and bisphenol AF, were used as prototypes to identify the intrinsic differences in degradation mechanisms correlated with the molecular structures in peroxydisulfate (PDS)-based advanced oxidation processes (AOPs). Electron transfer was the main way of modified biochar to trigger the heterogenous catalysis of PDS, which can cause the degradation of BPs. Phenolic hydroxyl groups on bisphenol pollutants were considered as possible active sites, and the existence of substituents was the main reason for the differentiation in the degradation efficiency of various bisphenols. Results of ecotoxicity prediction showed that most intermediates produced by the degradation of BPs in the β-SB/PDS system, which was dominated by the electron transfer pathway, had a lower toxicity than the parent molecules, while the toxicity of several ring cleavage intermediates was higher. This study presents a simple modification scheme for the conversion of biochar into functional catalysts and provides insights into the mechanism of heterogeneous catalytic degradation mediated by modified biochar as well as the degradation differences of bisphenol pollutants and their potential ecotoxicity.
Collapse
Affiliation(s)
- Xuan-Yuan Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guo-Shuai Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Guang-Li Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
40
|
Zhong R, He H, Jin M, Lu Z, Deng Y, Liu C, Shen N, Li J, Wang H, Ying P, Li B, Zeng Q, Lu Q, Cheng L, Zhu Y, Miao X, Tian J. Genome-wide gene-bisphenol A, F and triclosan interaction analyses on urinary oxidative stress markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150753. [PMID: 34619205 DOI: 10.1016/j.scitotenv.2021.150753] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bisphenols and triclosan (TCS) are common endocrine disrupters (EDCs) that may induce oxidative stress. However, there is limited information as to whether these EDCs interact with genetic variants to modify the levels of oxidative stress on a genome-wide scale. METHODS We first performed a genome-wide scan among a Chinese population and also measured three urinary EDCs, including bisphenol A (BPA), bisphenol F (BPF) and TCS, and three urinary oxidative stress markers [4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), 8-iso-prostaglandin-F2α (8-isoPGF2α) and 8-hydroxy-deoxyguanosine (8-OHdG)]. Subsequently, we examined interactions between three urinary EDCs and nearly 4.6 million genetic variants for three urinary oxidative stress markers by the general linear model. RESULTS Urinary BPA, BPF and TCS were positively associated with HNE-MA, 8-isoPGF2α and 8-OHdG. Significant rs6855040 (4p15.32/between SNORA75B and QDPR)-BPA, rs1112943 (4q35.1/SNX25)-TCS interactions were associated with the 8-isoPGF2α levels (all P < 5 × 10-8). In addition, rs4656116 (1p22.3/CACL1), rs16958760 (17p11.2/between USP43 and DHRS7C) and rs11651078 (17p11.2/LOC339260) showed significant gene-TCS interactions with 8-OHdG (all P < 5 × 10-8). The gene-level analysis found significant interaction between SNX25 and TCS for 8-isoPGF2α levels (P < 2.12 × 10-6). CONCLUSION Our results identify several gene-EDCs interactions for oxidative stress, highlighting that EDCs may modify the effect of genetic variants on oxidative stress.
Collapse
Affiliation(s)
- Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng He
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Deng
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxue Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingting Ying
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Li
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoping Miao
- School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Jianbo Tian
- School of Health Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
41
|
Zhu M, Yuan Y, Yin H, Guo Z, Wei X, Qi X, Liu H, Dang Z. Environmental contamination and human exposure of polychlorinated biphenyls (PCBs) in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150270. [PMID: 34536863 DOI: 10.1016/j.scitotenv.2021.150270] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs), together with 11 other organic compounds, were initially listed as persistent organic pollutants (POPs) by the Stockholm Convention because of their potential threat to ecosystems and humans. In China, many monitoring studies have been undertaken to reveal the level of PCBs in environment since 2005 due to the introduced stricter environmental regulations. However, there are still significant gaps in understanding the overall spatial and temporal distributions of PCBs in China. This review systematically discusses the occurrence and distribution of PCBs in environmental matrices, organisms, and humans in China. Results showed that PCB contamination in northern and southern China was not significantly different, but the PCB levels in East China were commonly higher than those in West China, which might have been due to the widespread consumption of PCBs and intensive human activities in East China. Serious PCB contamination was found in e-waste disassembling areas (e.g., Taizhou of Zhejiang Province and Qingyuan and Guiyu of Guangdong Province). Higher PCB concentrations were also chronicled in megalopolises and industrial clusters. The unintentionally produced PCBs (UP-PCBs) formed during industrial thermal processes may play an increasingly significant role in PCB pollution in China. Low PCB levels were recorded in rural and underdeveloped districts, particularly in remote and high-altitude localities such as the Tibetan Plateau and the South China Sea. However, these data are limited. Human exposure to PCBs is closely related to the characteristics of environmental pollution. This review also discusses existing issues and future research prospects on PCBs in China. For instance, the accumulation characteristics and migration regularities of PCBs in food webs should be further studied. More investigations should be undertaken to assess the quantitative relationship between external and internal exposure to PCBs. For example, bioaccessibility and bioavailability studies should be supplemented to evaluate human health risks more accurately.
Collapse
Affiliation(s)
- Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yibo Yuan
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Zhanyu Guo
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Xipeng Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Xin Qi
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hang Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
42
|
Amoah ID, Mthethwa NP, Pillay L, Deepnarain N, Pillay K, Awolusi OO, Kumari S, Bux F. RT-LAMP: A Cheaper, Simpler and Faster Alternative for the Detection of SARS-CoV-2 in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:447-456. [PMID: 34308531 PMCID: PMC8310731 DOI: 10.1007/s12560-021-09489-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/14/2021] [Indexed: 05/05/2023]
Abstract
Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has the potential to become a cheaper and faster option for monitoring COVID-19 infections through wastewater-based epidemiology. However, its application in COVID-19 surveillance has been limited to clinical testing only. We present in this paper two optimized RT-LAMP protocols based on colour change and fluorescence detection and application of these protocols for wastewater monitoring from four wastewater treatment plants over 4 weeks. The optimized RT-LAMP protocols have a limit of detection of 10 copies/25 µl reaction with positive amplification within 35 minutes. Over the 4 weeks of monitoring, the colorimetric protocol detected a prevalence of 12.5%, when 1 µl of extracted RNA with 92.7(± 28.2) ng/µl concentration was analysed. When the RNA template was increased by fivefold, the prevalence increased to 44%. The fluorescent RT-LAMP had a prevalence of 31% and 47% for starting templates of 92.7(± 28.2) ng/µl and 480(± 134.5) ng/µl of the extracted RNA, respectively. All samples were positive for SARS-CoV-2 when analysed with droplet digital PCR, with viral loads ranging from 18.1 to 195.6 gc/ml of wastewater. The RT-ddPCR, therefore, confirms the presence of the viral RNA in the wastewater samples, albeit at low concentrations. Additionally, the RT-LAMP protocols positively detected SARS-CoV-2 in wastewater samples with copies as low as 20.7 gc/ml. The results obtained in our study show the potential application of RT-LAMP for the detection of SARS-CoV-2 in wastewater, which could provide a cheaper and faster alternative to RT-qPCR or RT-ddPCR for wastewater-based epidemiological monitoring of COVID-19 and other viral infections.
Collapse
Affiliation(s)
- Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Nonsikelelo Precios Mthethwa
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Leanne Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Nashia Deepnarain
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Kriveshin Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Oluyemi Olatunji Awolusi
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
43
|
Recent advances in analysis of bisphenols and their derivatives in biological matrices. Anal Bioanal Chem 2021; 414:807-846. [PMID: 34652496 DOI: 10.1007/s00216-021-03668-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Biomonitoring is a very useful tool to evaluate human exposure to endocrine-disrupting compounds (EDCs), like bisphenols (BPs), which are widely used in the manufacture of plastics. The development of reliable analytical methods is key in the field of public health surveillance to obtain biomonitoring data to determine what BPs are reaching people's bodies. This review discusses recent methods for the quantitative measurement of bisphenols and their derivatives in biological samples like urine, blood, breast milk, saliva, and hair, among others. We also discuss the different procedures commonly used for sample treatment, which includes extraction and clean-up, and instrumental techniques currently used to determine these compounds. Sample preparation techniques continue to play an important role in the analysis of complex matrices, for liquid matrices the most commonly employed is solid-phase extraction, although microextraction techniques are gaining importance in this field, and for solid samples ultrasound-assisted extraction. The main instrumental techniques used are liquid and gas chromatography coupled with mass spectrometry. Finally, we present data on the main parameters obtained in the validation of the revised methods. This review focuses on various methods developed and applied for trace analysis of bisphenols, their conjugates, halogenated derivatives, and diglycidyl ethers in biological samples to enable the required selectivity and sensitivity. For this purpose, a review is carried out of the most recent relevant publications from 2016 up to present.
Collapse
|
44
|
Wang J, Mei H, Zhou AF, Huang LL, Cao ZQ, Hong AB, Yang M, Xie QT, Chen D, Yang SP, Xiao H, Yang P. The associations of birth outcome differences in twins with prenatal exposure to bisphenol A and its alternatives. ENVIRONMENTAL RESEARCH 2021; 200:111459. [PMID: 34126051 DOI: 10.1016/j.envres.2021.111459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA) and its alternatives, including BPF and BPS, exhibit endocrine disruption activities. However, the effects of bisphenols on fetal growth in twins remain unclear. OBJECTIVE To explore the associations of prenatal BPA, BPF, and BPS exposure with birth outcome differences in twins. METHODS We recruited 289 twin pregnant women who visited the hospital for prenatal examination during the first trimester from 2013 to 2016. Urinary bisphenol levels were determined during the first, second, and third trimesters. The associations of maternal exposure to bisphenols with birth outcome differences in twins were analyzed after stratification by different trimesters. We applied the multiple informant model to estimate trimester-specific associations between urinary bisphenol concentrations and birth outcome differences in twins. RESULTS We found low reproducibility (ICC<0.40) for maternal urinary BPA and moderate reproducibility (0.40 < ICC<0.75) for BPF and BPS. Urinary BPA concentrations were positively associated with within-pair twin birth weight difference when comparing the third vs. the first tertile in each of the three trimesters (i.e., 133.06 g, 95% CI: 68.19, 197.94; 144.5 g, 95%CI: 81.82-207.18 g; and 135.04 g, 95%CI: 71.37-198.71 g for the 1st, 2nd, and 3rd trimester, respectively). The effect of urinary BPA concentration on increased birth length difference within-pair twins were also observed across different trimesters (All P for trends < 0.05). Urinary BPA levels were positively associated with the within-pair birth weight and birth length differences across pregnancy trimesters (All of Type 3 P for values < 0.05). CONCLUSION Maternal BPA exposure appeared to influence birth wight and birth length differences in twins. Our results warrant further confirmation.
Collapse
Affiliation(s)
- Jie Wang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ai-Fen Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Li Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Zhong-Qiang Cao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ao-Bo Hong
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Meng Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qi-Tong Xie
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Shao-Ping Yang
- Department of Child Public Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
45
|
A Comprehensive Assessment of Catalytic Performances of Mn2O3 Nanoparticles for Peroxymonosulfate Activation during Bisphenol A Degradation. Catalysts 2021. [DOI: 10.3390/catal11080993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Catalytic performances of Mn2O3 nanoparticles for peroxymonosulfate (PMS) activation in bisphenol A (BPA) degradation were comprehensively investigated in this study. Experimental results showed that 10 mg/L BPA could be 100% degraded within 20 min with the dosages of 0.2 g/L Mn2O3 and 0.1 mM PMS. Moreover, Mn2O3 showed remarkable activity in activation of PMS and excellent adaptability in various real water matrices, including river water, tap water and secondary effluents. Based on the radical detection and scavenging experiments, it was found that both radical and non-radical oxidation contributed to the degradation of BPA and 1O2 was the dominant species in the degradation compared to •OH, SO4•− and O2•−. A total of 15 transformation products were identified by LC/MS-MS during BPA degradation in the Mn2O3/PMS system, and degradation pathways via three routes are proposed. Compared with lab-made catalysts reported in the literature, the Mn2O3 catalyst demonstrated its superiority in terms of its high TOC removal, low PMS consumption and fast degradation rate for BPA.
Collapse
|
46
|
Wang T, Xue L, Zheng L, Bao S, Liu Y, Fang T, Xing B. Biomass-derived N/S dual-doped hierarchically porous carbon material as effective adsorbent for the removal of bisphenol F and bisphenol S. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126126. [PMID: 34492920 DOI: 10.1016/j.jhazmat.2021.126126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Biomass-derived heteroatom-doped porous carbon-based materials are emerging as low-cost adsorbents for removing common pollutants, although the adsorption performance is still unsatisfactory and the main adsorption mechanisms are still controversial. Herein, we report a facile and general method for fabricating biomass-derived N/S dual-doped hierarchically porous carbon adsorbent (MZ-NSPC). The MZ-NSPC material exhibits excellent adsorption capacity (295.8 mg/g for bisphenol F (BPF), 308.7 mg/g for bisphenol S (BPS)), short equilibrium time (30 min), and good reusability (the decline efficiency < 6.15% after five times). The remarkable adsorption performance originates from a large BET surface area, hierarchically porous structure, and N/S heteroatoms dual-doping. Combined with comparative experiments and density functional theory (DFT) calculations, we revealed that the doped N, S heteroatoms played a synergistic effect which promoted the adsorption performance and adsorption sites are mainly the oxidized-S and pyridinic-N. Importantly, for BPF, the proportion contribution of different mechanisms followed the order of hydrophobic interaction > π-π interaction > hydrogen bonding interaction. However, adsorption mechanism of BPS was mainly controlled by π-π interaction. This work not only promotes the development of low-cost and sustainable heteroatom-doped carbon-based materials, but also systematically studies adsorption mechanism of heteroatom-doped carbon-based materials for bisphenols.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Xue
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lewen Zheng
- School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710129, China
| | - Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|