1
|
Chang W, Xu SD, Liu T, Wu LL, Liu ST, Liu G, Sun J, Luo YX, Gao L, Li H, Lu Q, Yuan Z, Liu KY, Zhou H, Zhang XD, Huang YC, Xiong YW, Zhu HL, Xu DX, Wang H. Risk prioritization and experimental validation of per- and polyfluoroalkyl substances (PFAS) in Chaohu Lake: Based on nontarget and target analyses. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138179. [PMID: 40209414 DOI: 10.1016/j.jhazmat.2025.138179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Pollution caused by per- and polyfluoroalkyl substances (PFAS) in surface water has become a global health concern. Nevertheless, due to the continuous production of emerging PFAS, the pollution levels and hazards of several precursors and their metabolites have not been evaluated. In this study, Chaohu Lake was selected as a representative freshwater lake to obtain a deeper understanding of the profiles of emerging PFAS in surface water. Nontarget screening tentatively identified 49 PFAS with a confidence level of ≥L3, which included 12 legacy PFAS and 37 emerging PFAS. Based on a target analysis of 57 PFAS, 18 PFAS were detected, with at least 10 PFAS detected in every water sample, indicating the widespread presence of PFAS in Chaohu Lake. Moreover, a risk-based PFAS priority model was used to prioritize the PFAS in Chaohu Lake. Remarkably, perfluoromethanesulfonic acid (PFMeS) exhibited the highest level of risk index among the intersection PFAS identified by the nontarget screening of Chaohu Lake water and human serum. For validation, the cytotoxicity of PFMeS was further evaluated in vitro. This study considerably expands our understanding of the occurrence, environmental risk, and cytotoxicity of PFAS in Chaohu Lake and also provides an experimentally validated basis for future research on novel contaminants in a water environment.
Collapse
Affiliation(s)
- Wei Chang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Shen-Dong Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Ting Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lan-Lan Wu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Si-Ting Liu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Gang Liu
- Environmental Protection Monitoring Station, Anhui Provincial Lake Chaohu Administration, Chaohu 238000, China
| | - Jian Sun
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Lei Gao
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Hao Li
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Qi Lu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Kai-Yong Liu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Huan Zhou
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Xu-Dong Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Yi-Chao Huang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China.
| |
Collapse
|
2
|
Lyu Y, Guo R, Zhong W, Zhu L. Renal Dysfunction Induced by Sodium p-Perfluorous Nonenoxybenzenesulfonate in Mice: Insights from the Intrinsic Mechanisms of Proteinuria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:10799-10811. [PMID: 40444664 DOI: 10.1021/acs.est.4c14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Chronic kidney disease (CKD), characterized by gradual loss of renal function, may be driven by environmental exposure such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), yet the intrinsic mechanisms are largely unknown. Here, we observed distinct proteinuria in the mice exposed to sodium p-perfluorous nonenoxybenzenesulfonate (OBS), an alternative to perfluorooctanesulfonate. The renal S-adenosylhomocysteine (SAH) level increased due to the decrease in its hydrolase adenosylhomocysteinase (AHCY), and was positively correlated with the observed proteinuria. Consequently, the DNA methylation level was downregulated. Specifically, the promoter methylation of Arap3 increased, while the genebody methylation of Tiam1 decreased, thereby causing downregulation of their mRNA expressions. This further suppressed the levels of Rho GTPases RhoA and Rac1, which then reduced their downstream genes Pip5k1a, Pip5k1b and Pip5k1c, and eventually inhibited Actn4 expression. Consequently, the podocyte cytoskeleton was disrupted, promoting foot process fusion and inducing proteinuria. Overexpression of AHCY in OBS-exposed mice reduced the level of SAH, restored the methylation levels and gene expressions, ameliorated the podocyte injury, and eventually reduced the level of urinary protein. Taken together, inhibition of AHCY was the molecular initiating event of OBS-induced proteinuria, which functioned through the AHCY-SAH-Arap3/Tiam1-RhoA/Rac1-Pip5k1a/Pip5k1b/Pip5k1c-Actn4 axis. This study provides profound insight into the potential risk of PFAS in disrupting renal function and kidney health.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Ruyu Guo
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Zhang B, Li Q, Wang W, Tian M, Xu D, Xie Y. PFOS and Its Substitute OBS Cause Endothelial Dysfunction to Promote Atherogenesis in ApoE -/- Mice. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:526-538. [PMID: 40400551 PMCID: PMC12090012 DOI: 10.1021/envhealth.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 05/23/2025]
Abstract
Perfluorooctanesulfonate (PFOS), an emerging contaminant with widespread concern, has been associated with the pathogenesis of atherosclerosis (AS). As a substitute for PFOS, sodium p-perfluorous nonenoxybenzenesulfonate (OBS) is extensively utilized in various applications and detected in human blood. However, its potential health risk in AS remain unclear. In this study, we investigated the comparative impacts of PFOS and OBS on endothelial dysfunction and atherogenesis. In the in vivo study, Apolipoprotein E knockout (ApoE-/-) mice were exposed to 0.4 or 4 mg/L PFOS/OBS for 12 weeks. We found that dyslipidemia developed more rapidly in the OBS-exposed mice than in the PFOS-exposed mice. PFOS exhibited a higher enrichment capacity in both blood and aortic tissues than OBS. Remarkably, OBS induced a more pronounced inflammatory response and caused a more significant disruption of the endothelial barrier in the aorta of ApoE-/- mice compared to PFOS. In vitro experiments showed that OBS, at the same exposure concentrations and durations as PFOS (0.1-20 μmol/L, 48 h), more effectively inhibited cell viability of human umbilical vein endothelial cells (HUVECs), caused higher levels of lactate dehydrogenase (LDH) release, and enhanced cell adhesion between HUVECs and monocytes. Both PFOS and OBS were found to activate the NF-κB signaling pathway and upregulate the expression of inflammatory factors. Notably, the use of OBS, but not PFOS, was shown to disrupt cell junctions and increase endothelial permeability by activating the MAPK/ERK signaling pathway. Our findings suggest that OBS may lead to endothelial dysfunction and have a greater impact on AS compared to PFOS, presenting significant health risks in cardiovascular diseases.
Collapse
Affiliation(s)
- Boxiang Zhang
- Institute
of Environmental Systems Biology, Environment Science and Engineering
College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Qing Li
- Institute
of Environmental Systems Biology, Environment Science and Engineering
College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Wensheng Wang
- Institute
of Environmental Systems Biology, Environment Science and Engineering
College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Mingming Tian
- Institute
of Environmental Systems Biology, Environment Science and Engineering
College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Dan Xu
- Institute
of Environmental Systems Biology, Environment Science and Engineering
College, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Ying Xie
- The
Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
4
|
Qiao B, Chen H, Song D, Fang B, Zhou Y, Yao Y, Sun H. Nontarget Screening and Occurrence of Emerging Per- and Polyfluoroalkyl Substances in Municipal and Semiconductor Industrial Wastewater: A Large-Scale Survey in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40378070 DOI: 10.1021/acs.est.5c02035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Due to the lack of transparency in the production and applications of emerging per- and polyfluoroalkyl substances (PFAS), it is a huge challenge to grasp the real PFAS pollution profile in a specific region or industry by target analysis. This study collected extensive samples across China, including municipal wastewater from 9 major cities and wastewater from various manufacturing stages at 3 large semiconductor factories. Suspect and nontarget screening were conducted along with target analysis, and 82 PFAS in 25 classes were identified. Notably, this is the first study to investigate PFAS contamination in semiconductor wastewater on the Chinese mainland. Moreover, 13 classes of PFAS were reported for the first time worldwide in semiconductor wastewater, including multiple hydrosubstituted perfluoroalkyl carboxylic acid (mH-PFCA), ether-inserted PFCA (OPFCA), and perfluoroalkyl alcohol (PA) derivatives. The highest total concentrations of target, suspect, and nontarget PFAS in semiconductor wastewater (12 μg/L) were substantially higher than those measured in all municipal wastewater (25-950 ng/L). The composition of PFAS varied regionally in semiconductor wastewater. Total oxidizable precursor assay revealed the presence of unknown precursors (0.043-0.83 nmol/L), which cannot be directly monitored but may pose a greater PFAS contamination risk in semiconductor water treatment and discharge processes.
Collapse
Affiliation(s)
- Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300051, China
| | - Dongbao Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yue Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300051, China
| |
Collapse
|
5
|
Wang Y, Chen H, Xing Q, Xu X. Emerging and legacy per- and polyfluoroalkyl substances from offshore oilfields and receiving water in China. ENVIRONMENTAL RESEARCH 2025:121865. [PMID: 40378999 DOI: 10.1016/j.envres.2025.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/19/2025] [Accepted: 05/14/2025] [Indexed: 05/19/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are extensively utilized as oilfield production chemicals and aqueous film-forming foams (AFFFs) in oilfields. A comprehensive investigation was undertaken to analyze twenty per-and polyfluoroalkyl substances (PFASs), including three emerging PFASs in drill cuttings, slurry and produced water from offshore oilfields in three main sea areas of China. The investigation results were further compared with those in their receiving water. The concentration ranges of ΣPFASs in drill cuttings, slurry as well as produced water were 1049-3473 ng/g and 81.9 ng/L-2090 ng/L, respectively. In comparison, the concentrations range of PFASs in receiving water was 46.2-99.7 ng/L. Both sodium p-perfluorous nonenoxybenzenesulfonate (OBS) and hexafluoropropylene oxide dimer acid (HFPO-DA) were identified as the predominant PFASs detected at elevated concentrations in drilling cuttings, slurry, and produced water, demonstrating their extensive utilization in such environments. HFPO-DA and OBS concentrations in produced water exceeded those in receiving water by 1-2 orders of magnitude. Principal component analysis (PCA) analyses revealed that the compositions of PFASs in the receiving water samples exhibited significant similarity to those in drill cuttings, slurry and produced water from oilfields. It was indicated that discharges from oilfields were the primary contributors of PFASs in their receiving water. In 60-96% of samples from produced water in the Bohai Sea and South China Sea oilfields, as well as receiving water adjacent to the Bohai Sea oilfields, the risk quotient (RQ) of HFPO-DA ranged 0.1-1, indicating moderate ecological risks to aquatic organisms. In contrast, legacy PFASs generally showed lower risk levels.
Collapse
Affiliation(s)
- Yumeng Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Hong Chen
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Qinghui Xing
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xuemei Xu
- Key Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
6
|
Lyu Y, Zhang T, Zhong W, Yi S, Zhu L. Exposure to Sodium p-Perfluorous Nonenoxybenzenesulfonate Induces Renal Fibrosis in Mice by Disrupting Lysine Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7461-7473. [PMID: 40116701 DOI: 10.1021/acs.est.4c10724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Environmental exposure is one driving factor of chronic kidney disease (CKD), yet the intrinsic molecular mechanisms are largely unexplored. As a persistent chemical, perfluorooctanesulfonate (PFOS) is regulated due to a great potential to induce multiple diseases, including renal fibrosis, a major pathological characteristic of CKD. It is hypothesized that sodium p-perfluorous nonenoxybenzenesulfonate (OBS), a typical alternative to PFOS, may also induce renal fibrosis. We observed distinct renal fibrosis in mice exposed to OBS. Metabolomics analysis showed that Nα-acetyllysine was the primary metabolite biomarker, whose level decreased greatly due to its excessive consumption by lysyloxidase (LOX). This suppressed the miR-140-5p expression, promoting upregulation of fibroblast growth factor 9 (FGF9), which activated the PI3K/Akt signaling pathway through fibroblast growth factor receptor 3 (FGFR3), thereby enhancing proliferation and activation of fibroblasts. Supplement of Nα-acetyllysine upregulated miR-140-5p expression, reduced expressions of FGF9 and FGFR3, and eventually ameliorated OBS-induced renal fibrosis. Similarly, treatment with miR-140-5p agomir and PI3K/Akt signaling pathway inhibitor LY294002 attenuated OBS-induced renal fibrosis. Taken together, OBS caused renal fibrosis through the LOX-Nα-acetyllysine-miR-140-5p-FGF9-FGFR3-PI3K/Akt-Bad-Bcl-2-fibroblast axis. The results of this study reveal a specific molecular axis for OBS to induce renal fibrosis and call for concerns in supervising the application of OBS.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Wang Q, Ruan Y, Shao Y, Jin L, Xie N, Yang X, Hong Y, Wang H, Tsujimoto A, Yasuhara M, Leung KMY, Lam PKS. Spatiotemporal Trend of PFAS in Estuarine Sediments: Insights into Chlorinated Polyfluoroalkyl Ether Sulfonate Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7377-7388. [PMID: 40172133 DOI: 10.1021/acs.est.5c02731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic long-lasting chemicals. Marine sediment is a major repository for PFAS in the environment; accordingly, this work investigated 45 legacy and emerging PFAS in samples of surface sediments and sediment cores (1940s-2020s) collected in the Pearl River outlets, its estuary, and the adjacent northern South China Sea (NSCS), one of the global pollution hotspots. The range of total PFAS concentrations in surface sediments from the river outlets and the NSCS was 244-14400 pg/g dry weight (dw) and 31.6-363 pg/g dw, respectively. In sediment cores, perfluorooctanesulfonate (PFOS) concentrations initially increased and then declined around ten years ago. Levels of long-chain perfluorinated carboxylates have been increasing since the 1980s and experienced an accelerated rise in the 2000s. Hydrogen-substituted polyfluoroalkyl ether sulfonate (H-PFESA) was widely found in sediment samples for the first time. The ratios of 6:2 H-PFESA to 6:2 chlorinated (Cl-) PFESA in sediment cores exceeded those in surface sediment and exhibited an increasing trend with the sediment age, implying the gradual transformation of 6:2 Cl-PFESA to its hydrogen-substituted analog in sediments. A preliminary risk assessment indicated that ∑6:2 PFESAs and PFOS posed medium to high risks over recent decades.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yetong Shao
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Linjie Jin
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Naiyu Xie
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xiaoqiang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yuanyuan Hong
- School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, Institute for Climate and Carbon Neutrality, and Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong SAR 999077, China
| | - He Wang
- School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, Institute for Climate and Carbon Neutrality, and Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Akira Tsujimoto
- Institute of Education, Academic Assembly, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Moriaki Yasuhara
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, Institute for Climate and Carbon Neutrality, and Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR 999077, China
| |
Collapse
|
8
|
Wu P, Hu ZF, Wang N, Lu LL, Zhang SH, Hu SQ, Bu YQ, Kang GD, Zhang HH. Differential electroplating wastewater treatment processes alter the occurrence of legacy per- and polyfluoroalkyl substances from production discharge to wastewater treatment effluent. ENVIRONMENTAL RESEARCH 2025; 271:121080. [PMID: 39929415 DOI: 10.1016/j.envres.2025.121080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
This study aimed at demonstrating the influence of differential electroplating wastewater treatment processes on the occurrence of legacy per- and polyfluoroalkyl substances (PFAS) from production discharge to wastewater treatment effluent. Here, the wastewater and sludge samples were collected from one electroplating industrial park (EIP) and four electroplating plants (EPs 1-4), which equipped with centralized wastewater treatment plant or distributed wastewater treatment facilities. Among them, EIP and EP-1 respectively gather four and three different production discharges, while other EPs have one type. Results indicated that the total concentrations of thirteen PFAS (∑13PFAS) in production discharges varied among EIP (18457.24, 3126.78, 3383.61, and 1736.84 ng/L), EP-1 (9048.19, 1876.1, and 1708.84 ng/L) and EPs 2-4 (1153.8, 42042.81, and 318.82 ng/L), and the perfluorooctane sulfonate acid (PFOS) was the main PFAS in all collected discharges. Wherein the ∑13PFAS in effluents from EIP, EP-1, EP-3, and EP-4 were respectively reduced by 93%, 96%, 99%, and 61%, and that of EP-2 increased by 12.4%. By comparing the centralized and distributed wastewater treatment processes, filtration techniques (like membrane bio-reactor or reverse osmosis) were shared processes of EIP, EP-1, EP-3, and EP-4, which might be contribute to the PFOS removal. However, the process consisting of regulation, coagulation sedimentation, biochemical treatment, and precipitation of EP-2 was difficult to eliminate the PFOS, demonstrating that the differential wastewater treatment processes altered the PFAS occurrence from discharge to effluent. Meanwhile, the ∑13PFAS of sludge samples also presented that the emission of PFAS from solid phase could not be ignored after wastewater treatment. Therefore, this study revealed that the occurrence of PFAS from electroplating production discharge to effluent were closely related to wastewater treatment process, thus providing theoretical guidance for limiting emission and reducing ecological risk of PFAS from electroplating industry in future work.
Collapse
Affiliation(s)
- Ping Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Zheng-Feng Hu
- Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Ecological and Environmental Science and Research Institute of Zhejiang Province, Hangzhou, 310007, China
| | - Ning Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lei-Lei Lu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Sheng-Hu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shuang-Qing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Yuan-Qing Bu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Guo-Dong Kang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Hou-Hu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
9
|
Yu L, Liu X, Hua Z, Xing X, Xue H. Fate variations of Per- and polyfluoroalkyl substances in diverse aquatic environments: An overlooked influence of hydrodynamics. WATER RESEARCH 2025; 282:123628. [PMID: 40233499 DOI: 10.1016/j.watres.2025.123628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have become a significant global issue; nevertheless, information regarding the hydrodynamic effect on their catchment-scale fate remains lacking. Thus, this study investigated PFASs in water and paired sediment samples from diverse aquatic habitats within the Qinhuai River Basin (QRB), where high concentrations of PFASs are ubiquitous. Rarity score analysis reveals that PFASs were diffusely distributed across the QRB, yet specific sites were identified as emission hotspots. The sediment-water and suspended particulate matter-water partitioning coefficients of PFASs both exhibited significant correlations with chemical structures, ambient variables, land use, and flow velocity (p < 0.05). Flow velocity can promote the liberation of PFASs from particles into water, reducing their accumulation capacity; hence, the higher partitioning coefficients of PFASs were observed in relatively low-velocity aquatic systems, such as lakes, reservoirs, and ponds. A partial least-squares structural equation model was employed to further elucidate their effect pathways and magnitudes on partitioning coefficients. In addition, the primary sources of PFASs were identified, emphasizing their complexity. The ecological risks of PFASs were assessed, indicating priority PFAS species (long-chain PFCAs and HFPO-TA) for management and suggesting water as the preferable environmental medium for regulation. This is the first field investigation to quantify the significance of hydrodynamic influences on the catchment-scale fate of PFASs, improving our understanding of their distribution and behaviors from the perspective of environmental hydraulics.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Xiaolei Xing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Liu Y, Guo Y, Lv M, Wang Y, Xiang T, Sun J, Zhang Q, Liu R, Chen L, Shi C, Liang Y, Wang Y, Fu J, Qu G, Jiang G. Unraveling the Exposure Spectrum of PFAS in Fluorochemical Occupational Workers: Structural Diversity, Temporal Trends, and Risk Prioritization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6247-6260. [PMID: 40101141 DOI: 10.1021/acs.est.4c13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Despite extensive poly/perfluoroalkyl substance (PFAS) discovery studies in various samples, the exposure spectrum in fluorochemical occupational workers remains largely unexplored. Here, serum samples from 28 workers at a fluorochemical facility were analyzed using nontarget techniques, identifying 64 PFAS classes, including 15 novel ones such as pentafluorosulfur ether-substituted perfluoroalkyl sulfonic acids, hydrogen-substituted perfluoroalkylamines, and perfluoroalkylsulfonyl protocatechualdehyde esters. Temporal trend analyses (2008-2018) revealed stable levels for most PFAS but an increase in perfluorobutanoic acid (PFBA) and perfluorohexanesulfonic acid (PFHxS), suggesting industrial shifts from long-chain PFAS to short-chain homologues in China since the early 2010s. Commonly reported structurally modified PFAS (e.g., hydrogen/carbonyl/chlorine substitution, ether insertion, and unsaturation) were likely historical byproducts of legacy PFAS production rather than intentionally manufactured alternatives. A Toxicological Priority Index-based risk assessment, integrating mobility, persistence, and bioaccumulation indices, identified perfluoroalkylamines, di(perfluoroakyl sulfonyl)imides, structurally modified perfluoroalkyl sulfonic acids/carboxylic acids, and perfluoroalkylsulfonamidoacetic acids as high-risk PFAS chemicals. Overall, structurally modified PFAS exhibited higher mobility but lower persistence and bioaccumulation than legacy PFAS, except for chlorinated variants, which showed increased bioaccumulation potential. This study highlights critical gaps in the spectrum of historically emitted PFAS and emphasizes the need for large-scale monitoring and extensive risk assessments to manage emerging PFAS.
Collapse
Affiliation(s)
- Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meilin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Jiazheng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Qing Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of Sciences, Northeastern University, Shenyang 110004, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Xie G, van Gestel CAM, Vonk JA, Kraak MHS. Multigeneration responses of Daphnia magna to short-chain per- and polyfluorinated substances (PFAS). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118078. [PMID: 40120482 DOI: 10.1016/j.ecoenv.2025.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Short-chain per- and polyfluorinated substances (PFAS) are ubiquitous in the environment, but their chronic effects on aquatic organisms over multiple generations are often overlooked in environmental risk assessment. In this study, the ecotoxicity of perfluorobutane sulfonic acid (PFBS) and its precursor perfluorobutane sulfonamide (FBSA) to Daphnia magna was assessed under continuous exposure for six consecutive generations, with adult survival, reproduction, and population growth rate as endpoints. Observed effects were also related to internal PFAS concentrations in the daphnids. Compared to the first generation, both PFBS and FBSA showed intensified ecotoxicity over six generations, increasing by 1.8-3.0, and 3.6-6.4 times, respectively. Specifically, the EC50_r, water and LC50, water of PFBS decreased from 886 and > 1470 mg/L in the F0 generation to 470 and 483 mg/L, respectively in the F3 generation, while the EC50_r, water and EC50_repro, water of FBSA decreased from 12.4 and 7.08 mg/L in the F0 generation to 3.37 and 1.10 mg/L, respectively in the F5 generation. PFBS ecotoxicity increased as a result of elevated compound accumulation over generations, indicating a narcotic mode of action, whereas FBSA exerted specific reproductive toxicity, resulting in a more pronounced worsening of adverse effects over time. Compared to PFBS, FBSA was around 100 times more toxic in F0, escalating to over 435 times more toxic in F5, and also showed a higher bioaccumulation potential. These findings highlight that the conventional single-generation ecotoxicity tests underestimate PFAS ecotoxicity during multigeneration exposure, and that the environmental risks of PFAS cannot be reliably assessed by the current limited subset of studied compounds.
Collapse
Affiliation(s)
- Ge Xie
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 Hz, the Netherlands.
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 Hz, the Netherlands.
| | - J Arie Vonk
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands.
| | - Michiel H S Kraak
- Department of Freshwater and Marine Ecology (FAME), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, the Netherlands.
| |
Collapse
|
12
|
Lv J, Tan Z, An Z, Xu R, Zhang H, Guo M, Xiao F, Zhao M, Guo Y, Liu Y, Liu X, Ma J, Guo H. Co-exposure to polystyrene nanoplastics and F-53B induces vascular endothelial cell pyroptosis through the NF-κB/NLRP3 pathway. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137114. [PMID: 39764954 DOI: 10.1016/j.jhazmat.2025.137114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 03/12/2025]
Abstract
6:2 Chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA; trade name F-53B) is an alternative to perfluorooctane sulfonate (PFOS) and is widely detected in various environmental media and biological samples. Polystyrene nanoplastics (PS-NPs) have become a significant pollutant in the global environment. However, the comprehensive effects of both on the vascular system of mammals are still unclear. This study aims to explore the impacts of F-53B and PS-NPs exposure on the vascular system. Experimental findings indicate that both individual and co-exposure to F-53B and PS-NPs could lead to arterial wall thickening, increase collagen deposition, and reduce elasticity in mice. Moreover, co-exposure results in loss of endothelial integrity, impairs the repair capabilities of endothelial cells by inhibiting their proliferation and migration, and increases the levels of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Mechanistic studies reveal that F-53B and PS-NPs exposure activate the NF-κB/NLRP3 signaling pathway, promoting endothelial cell pyroptosis and ultimately inducing vascular damage. In summary, this study provides novel insights into the synergistic impact of F-53B and PS-NPs on vascular injury, shedding light on the mechanism underlying the combined toxicity of PS-NPs and other pollutants.
Collapse
Affiliation(s)
- Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Postdoctoral Station of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Xu
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Fang Xiao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengwei Zhao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yi Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050017, China
| | - Jingtao Ma
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
13
|
Munoz G, Taxil-Paloc A, Desrosiers M, Vo Duy S, Liu M, Houde M, Liu J, Sauvé S. Zwitterionic, cationic, and anionic PFAS in freshwater sediments from AFFF-impacted and non-impacted sites of Eastern Canada. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136634. [PMID: 39637784 DOI: 10.1016/j.jhazmat.2024.136634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Zwitterionic, cationic, and anionic per- and polyfluoroalkyl substances (PFAS) were investigated in freshwater sediments of Canada, including sites impacted by aqueous film-forming foams (AFFFs). The first step of the project involved optimizing the extraction method with equilibrated sediment-water-AFFF samples. The analytical method had acceptable linearity, accuracy, and precision in the sediment matrix, and was further validated with NIST SRM 1936. In the second step of the project, the method was applied to determine over 70 target PFAS in field-collected sediments (n = 102). At federal contaminated sites of Ontario, Newfoundland, and Québec (ditches and creeks at international airports with fire training or fire equipment testing areas), summed PFAS averaged 30 ng/g (maximum of 160 ng/g) with molecular patterns dominated by perfluorooctane sulfonate (maximum PFOS: 84 ng/g). Based on maximum observed concentrations >10 ng/g, other key PFAS at these AFFF-impacted sites included negative ion mode perfluorohexane sulfonate, perfluorohexane sulfonamide, fluorotelomer sulfonates (6:2 FTS and 8:2 FTS) and 5:3 fluorotelomer acid, and positive ion mode N-dimethylammoniopropyl perfluorohexane sulfonamide and 5:1:2 fluorotelomer betaine. In contrast, environmental sediment samples collected at a larger spatial scale (province-wide survey) were characterized by low ΣPFAS (generally <1 ng/g), with PFOS/PFOA below chronic toxicity thresholds for aquatic life.
Collapse
Affiliation(s)
- Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Alice Taxil-Paloc
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; Sciences Sorbonne Université, Paris 75005, France
| | - Mélanie Desrosiers
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Min Liu
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; Department of Civil Engineering, McGill University, Montréal, QC H3A 0G4, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC H2Y 2E7, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, QC H3A 0G4, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada.
| |
Collapse
|
14
|
Sun J, Liu Y, Yao L, Guo Y, Ma C, Xiang T, Cheng Z, Deng Y, Xie X, Qu G, Shi J, Jiang G, Wang Y. Suspect and Nontarget Analysis of Per- and Polyfluoroalkyl Substances in Groundwater Underlying Different Land-Use Areas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2722-2731. [PMID: 39882996 DOI: 10.1021/acs.est.4c09020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Groundwater can be contaminated by PFAS emissions, yet research on the presence and associated risks of PFAS in groundwater underlying different land-use areas remains limited. Herein, high-resolution mass spectrometry-based suspect and nontarget analyses were performed to determine PFAS occurrence in groundwater samples obtained from a rural area, a planting region, and the vicinities of a pharmaceutical park, an airport, and an industrial park in Datong City, China. A total of 31 PFAS (16 emerging and 15 legacy PFAS) were identified, and the ΣPFAS concentrations ranged from 0.775 (rural area) to 80.7 ng/L (pharmaceutical park). In terms of the average concentration of ΣPFAS, legacy PFAS were predominant in rural groundwater, whereas emerging PFAS were predominant in the other four land-use areas. PFOA, PFDA, PFUnDA, and 6:2 FTS were detected in all groundwater samples. To further prioritize the risk of identified PFAS in groundwater, the detection frequency; concentration; and persistence, bioaccumulation, and toxicity attributes were adopted, which showed that high-risk compounds varied across different land-use areas. Our results further reveal the ubiquitous contamination of PFAS in groundwater environments, even in areas with limited human activity, and highlight the necessity of suspect and nontarget analysis for assessing PFAS exposure through groundwater.
Collapse
Affiliation(s)
- Jiazheng Sun
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenxi Ma
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Tongtong Xiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zheyu Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yamin Deng
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xianjun Xie
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
15
|
Teymoorian T, Munoz G, Sauvé S. PFAS contamination in tap water: Target and suspect screening of zwitterionic, cationic, and anionic species across Canada and beyond. ENVIRONMENT INTERNATIONAL 2025; 195:109250. [PMID: 39787781 DOI: 10.1016/j.envint.2025.109250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/01/2025] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
This study investigated the occurrence of perfluoroalkyl and polyfluoroalkyl substances (PFAS), including anionic, cationic, and zwitterionic compounds, in drinking water. Between 2021-2023, an expanded list of 76 target PFAS was screened in tap water samples mainly from Canada, but also including tap water samples from the Eastern United States, Mexico, South America (Argentina), the Caribbean (Dominican Republic, Cuba), Africa (Algeria, Cameroon, Central African Republic, Morocco, Rwanda, Tunisia), Europe (France, Greece, Italy, Spain, and the United Kingdom) and Asia (Japan, Vietnam, Iran, and Türkiye). An additional ∼ 200 suspect-target PFAS were screened using high-resolution Orbitrap mass spectrometry. The results revealed widespread contamination of PFAS in tap water. The most frequent were perfluorobutane sulfonate (PFBS), perfluorooctane sulfonate (PFOS), and perfluorobutanoic acid (PFBA) with detection rates of ≥ 79 %. Several PFAS not currently included in EPA methods for drinking water revealed region-specific trends. For instance, emerging zwitterionic 6:2 fluorotelomer sulfonamidopropyl betaine (6:2 FTAB) was found at the highest levels in cities of France, British Columbia (Canada), and the UK. The occurrence of FTAB likely reflects shifts from PFOS-based aqueous film-forming foams (AFFF) in the past decades, and possibly other uses. Short-chain perfluoroalkyl sulfonamides (FBSA, FHxSA) were also globally recurrent. Bistriflimide, a counterion often used in the composition of ionic liquids and in the production of lithium-ion batteries, was detected in 46 % of the samples. The highest levels of total PFAS in drinking water were linked to contamination from fluorochemical industries (surface water), AFFF use (groundwater), and landfills (groundwater). This database of 275 PFAS x 153 samples provides valuable insights toward refining the lists of relevant PFAS to be monitored in drinking water.
Collapse
Affiliation(s)
| | - Gabriel Munoz
- Département de Chimie, Université de Montréal, Montreal, QC, Canada
| | - Sébastien Sauvé
- Département de Chimie, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
16
|
Zhang M, Shi J, Pan H, Zhu J, Wang X, Zhou J, Deng H. F-53B stimulated vascular smooth muscle cell phenotypic switch and vascular remodeling via ferroptosis-related pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176565. [PMID: 39341237 DOI: 10.1016/j.scitotenv.2024.176565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The compound 6:2 chlorinated polyfluorinated ether sulfonate (F53B), an alternative to perfluorooctane sulfonate (PFOS), has been widely utilized in China. Although the connection between the exposure and toxicity of F53B is established, the role and mechanisms of the compound in promoting vascular remodeling are yet to be elucidated. Thus, the present study investigated the impact of F53B on the function of vascular smooth muscle cells (VSMCs) and vascular remodeling. The data exhibited that F53B stimulates vascular morphological alterations in vivo, and exposure to the compound caused excessive VSMCs ferroptosis and phenotype switching, as determined using phenotype and molecular assays. Moreover, Fer-1 reversed F-53B-induced VSMC dysfunction and vascular remodeling. Furthermore, F53B activated the ferroptosis-related pathway, encompassing ATR expression and LOC101929922/miR-542-3p/ACSL4 pathway. Thus, the current results elaborated on the multifaceted toxicities of F53B that induce vascular remodeling, thereby necessitating the assessment of vasotoxicity risks associated with the compound.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Cardiovascular Diseases, Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China.
| | - Jun Shi
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Huichao Pan
- Institute of Cardiovascular Diseases, Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xueting Wang
- Institute of Cardiovascular Diseases, Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China
| | - Jun Zhou
- Institute of Cardiovascular Diseases, Division of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China
| | - Huiping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Wang W, Xie T, Ma N, Jiang X, Zhang H, Sun T, Cui B. In-stream attenuation and enantioselective fractionation of psychiatric pharmaceuticals in a wastewater effluent-dominated river basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175521. [PMID: 39147057 DOI: 10.1016/j.scitotenv.2024.175521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Wastewater effluent is the main contributor of psychiatric pharmaceuticals (PPs) pollution in surface waters. However, little is known about its spatial evolution dynamics in effluent-dominated rivers. Herein, 10 representative PPs, including 6 chiral pharmaceuticals and 4 achiral pharmaceuticals, were explored in the Beiyun River, a typical wastewater effluent-dominated river, to explore their occurrence, in-stream attenuation and enantioselective fractionation behaviors at a watershed scale. Among the target substances, 8 and 9 drugs were detected in surface water and sediment samples with the ΣPPs concentrations ranging from 78.4 to 260.1 ng/L and 4.8 to 43.4 ng/g dw in surface water and sediments, respectively. Along the mainstream of the Beiyun River, only several PPs detected in surface water, e.g., citalopram, O-demethylvenlafaxine, and fluoxetine, exhibited in-stream attenuation behaviors when reaching rural area, while all PPs detected in sediments displayed in-stream attenuation behavior. Four chiral PPs detected in surface water exhibited an enantioselective attenuation phenomenon, while in sediments, only citalopram displayed an enantioselective fractionation behavior. The differences in the in-stream attenuation and enantioselective environmental behavior of individual PPs caused complex contaminant evolution along the stream reach. This work provides enantiomeric profiles of chiral pollutants for evaluating their in-stream attenuation processes, which would facilitate better understanding of the changing contaminant exposure conditions in complex natural environments.
Collapse
Affiliation(s)
- Weimin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Tian Xie
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ning Ma
- Beijing Drainage Management Affairs Center, Beijing 100195, China
| | - Xiaoman Jiang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Wang D, Liu X, Guo Z, Shan W, Yang Z, Chen Y, Ju F, Zhang Y. Legacy and Novel Per- and Polyfluoroalkyl Substances in Surface Soils across China: Source Tracking and Main Drivers for the Spatial Variation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20160-20171. [PMID: 39475150 PMCID: PMC11562953 DOI: 10.1021/acs.est.4c05913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/13/2024]
Abstract
China aims to actively control the contamination of globally concerning per- and polyfluoroalkyl substances (PFASs). Evaluation of the current situation can provide a critical reference point for tracking the effectiveness of ongoing progress. Herein, we present the first comprehensive assessment of the spatial variations of 20 legacy and 54 novel PFASs in Chinese background soils in 2021. Novel PFASs were extensively detected in 98.4% of the samples, with 21 species being first reported, which greatly facilitated the appointment of diverse emission sources that aligned with local industrial structures. However, legacy PFASs still dominated the ∑74PFAS profile (median 0.51 ng/g, 0.050-8.33 ng/g). The spatial heterogeneity of soil PFASs was positively driven by economic development and atmospheric deposition, enabling the establishment of predictive models to project the national distribution and temporal trends. Elevated PFAS levels were predominantly distributed in the more industrialized eastern and southern regions, as well as other coastal areas with greater precipitation. ∑74PFAS in surface soils was estimated to increase by 12.9 pg/(g year) over 2002-2021, which would continue alongside economic growth, albeit with greater contributions from novel alternatives. Our work provides comprehensive baseline and predictive data to inform policies toward PFAS control in China.
Collapse
Affiliation(s)
- Danfan Wang
- College
of Environmental and Resource Sciences, Zhejiang University, Hangzhou ,Zhejiang 310058, China
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
| | - Xiangyu Liu
- College
of Environmental and Resource Sciences, Zhejiang University, Hangzhou ,Zhejiang 310058, China
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
| | - Zhefei Guo
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
| | - Wenyu Shan
- College
of Environmental and Resource Sciences, Zhejiang University, Hangzhou ,Zhejiang 310058, China
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
| | - Zilin Yang
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
| | - Yinjuan Chen
- Instrumentation
and Service Center for Molecular Sciences, Westlake University, Hangzhou ,Zhejiang310030, China
| | - Feng Ju
- Research
Center for Industries of the Future, Westlake
University, Hangzhou ,Zhejiang310030, China
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
- Institute
of Advanced Technology, Westlake Institute
for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanyan Zhang
- Research
Center for Industries of the Future, Westlake
University, Hangzhou ,Zhejiang310030, China
- Key
Laboratory of Coastal Environment and Resources of Zhejiang Province,
School of Engineering, Westlake University, Hangzhou ,Zhejiang 310030, China
- Institute
of Advanced Technology, Westlake Institute
for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
19
|
Wang X, Huang X, Zhi Y, Liu X, Wang Q, Yue D, Wang X. Leaching of per- and polyfluoroalkyl substances (PFAS) from food contact materials with implications for waste disposal. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135658. [PMID: 39226686 DOI: 10.1016/j.jhazmat.2024.135658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Leaching of per- and polyfluoroalkyl substances (PFAS) during the post-consumer disposal of food contact materials (FCMs) poses a potential environmental threat but has seldom been evaluated. This study characterized the leaching behavior of PFAS and unidentified precursors from six common FCMs and assessed the impact of environmental conditions on PFAS release during disposal. The total concentration of 21 PFAS ranged from 3.2 to 377 ng/g in FCMs, with PFAS leachability into water varying between 1.1-42.8 %. Increasing temperature promoted PFAS leaching, with leached nine primary PFAS (∑9PFAS) reaching 46.3, 70.4, and 102 ng/L at 35, 45, and 55 ℃, respectively. Thermodynamic analysis (∆G>0, ∆H>0, and ∆S<0) indicated hydrophobic interactions control PFAS leaching. The presence of dissolved organic matter in synthetic leachate increased the leached ∑9PFAS from 47.1 to 103 ng/L but decreased PFBS, PFOS, and 6:2 FTS leaching. The total release of seven perfluorocarboxylic acids (∑7PFCAs) from takeaway food packaging waste was estimated to be 0.3-8.2 kg/y to landfill leachate and 0.6-15.4 kg/y to incineration plant leachate, contributing 0.2-4.8 % and 0.1-3.2 % of total ∑7PFCAs in each leachate type. While the study presents a refined methodology for estimating PFAS release during disposal, future research is needed on the indirect contribution from precursors.
Collapse
Affiliation(s)
- Xinyue Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xingyao Huang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yue Zhi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xuemei Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qian Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Dongbei Yue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoming Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
20
|
Zhao X, Liu Y, Yang D, Dong S, Xu J, Li X, Li X, Ding G. Thyroid endocrine disruption effects of OBS in adult zebrafish and offspring after parental exposure at early life stage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107125. [PMID: 39426365 DOI: 10.1016/j.aquatox.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
As an alternative to perfluorooctane sulfonate, sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has been widely used and caused ubiquitous water pollution. However, its toxicity to aquatic organisms is still not well known. Therefore, in this study, parental zebrafish were exposed to OBS at environmentally relevant concentrations from ∼ 2 h post-fertilization to 21 days post-fertilization (dpf) in order to investigate the thyroid disrupting effects in F0 adults and F1 offspring. Histopathological changes, such as hyperplasia of thyroid follicular epithelia and colloidal depletion, were observed in F0 adults at 180 dpf. In F0 females, thyroxine (T4) levels were significantly reduced in 30 and 300 μg/L exposure groups, while triiodothyronine (T3) levels were significantly increased in 3 μg/L exposure group. For F0 males, significant increases of T4 and T3 levels were observed, revealing the sex-specific differences after the OBS exposure. The transcription levels of some key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were significantly disrupted, which induced the thyroid endocrine disruption effects in adult zebrafish even after a prolonged recovery period. For F1 offspring, the thyroid hormone (TH) homeostasis was also altered as T4 and T3 levels in embryos/larvae exhibited similar changes as F0 females. The transcription levels of some key genes related to the HPT axis were also significantly dysregulated, suggesting the transgenerational thyroid disrupting effects of OBS in F1 offspring. In addition, the decreased swirl-escape rate was observed in F1 larvae, which could be caused by disrupting gene expressions related to the central nervous system development and be associated with the TH dyshomeostasis. Therefore, parental OBS exposure at early life stage resulted in thyroid endocrine disruption effects in both F0 adult zebrafish and F1 offspring, and caused the developmental neurotoxicity in F1 larvae.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Yaxuan Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Xiaohui Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China.
| |
Collapse
|
21
|
Zhao M, Yao Y, Dong X, Fang B, Wang Z, Chen H, Sun H. Identification of emerging PFAS in industrial sludge from North China: Release risk assessment by the TOP assay. WATER RESEARCH 2024; 268:122667. [PMID: 39509771 DOI: 10.1016/j.watres.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been widely used across various industries, leading to their prevalent occurrence in sludges generated by wastewater treatment plants (WWTPs). Consequently, industrial sludges serve as typical reservoirs for PFAS. This study examined 46 target PFAS in sludge samples intended for brick production from nine WWTPs in North China, identifying emerging PFAS and categorizing their behaviors through high-resolution mass spectrometry (HRMS) screening and total oxidizable precursor (TOP) assay. Forty-one PFAS were detected, with trifluoroacetic acid (TFA), perfluorooctane sulfonic acid, and hexafluoropropylene oxide dimer acid being the most prevalent. Twenty-nine emerging PFAS were identified, and their behaviors were categorized using TOP assay. Notably, four CF3-containing PFAS were identified, all confirmed as precursors of TFA, with a molar yield of 16.4 %-25.6 % in Milli-Q water during TOP assay validation. These findings indicate that the transformation of these precursors during sludge recycling may substantially contribute to TFA release, underscoring potential risks associated with secondary PFAS release during sludge resource utilization.
Collapse
Affiliation(s)
- Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ziyuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Fang B, Chen H, Zhou Y, Qiao B, Baqar M, Wang Y, Yao Y, Sun H. Fluorotelomer betaines and sulfonic acid in aerobic wetland soil: Stability, biotransformation, and bacterial community response. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135261. [PMID: 39032178 DOI: 10.1016/j.jhazmat.2024.135261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/22/2024]
Abstract
The microbial degradation of 6:2 fluorotelomer sulfonic acid (6:2 FTSA), fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), and fluorotelomer betaines (5:3 and 5:1:2 FTB) in aerobic wetland soil was investigated during a 100-day incubation. The half-lives of 6:2 FTSA in the treatments with diethylene glycol butyl ether as the sole carbon source (NA treatment) and with additional supplementation of sodium acetate (ED treatment) were determined to be 26.2 and 16.7 days, respectively. By day 100, ∼20 mol% of 6:2 FTAB was degraded in the NA and ED treatments. The potential transformation products of 6:2 FTSA and 6:2 FTAB were identified using liquid/gas chromatography-high resolution mass spectrometry, and their biotransformation pathways were proposed. In contrast, 5:3 and 5:1:2 FTB exhibited high persistence under two carbon source conditions. There was no intense alteration in the diversity of soil bacterial communities under the stress of fluorotelomer compounds at the level of ∼150 μg/L. The supplementation of sodium acetate led to an enrichment of bacterial species within the genera Hydrogenophaga (phylum Proteobacteria) and Rhodococcus (phylum Actinobacteria), promoting the biodegradation of 6:2 FTSA and 6:2 FTAB and the formation of transformation products. Species from the genus Rhodococcus were potentially crucial functional microorganisms involved in the degradation of 6:2 FTSA.
Collapse
Affiliation(s)
- Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yue Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
23
|
Wang Y, Liu M, Vo Duy S, Munoz G, Sauvé S, Liu J. Fast analysis of short-chain and ultra-short-chain fluorinated organics in water by on-line extraction coupled to HPLC-HRMS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173682. [PMID: 38825196 DOI: 10.1016/j.scitotenv.2024.173682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
A rapid on-line solid-phase extraction liquid chromatography high-resolution mass spectrometry (on-line SPE-LC-HRMS) method was developed to analyze 11 ultra-short and short-chain PFAS in surface water. Analytical optimization involved screening 7 chromatographic columns and 5 on-line SPE columns, as well as evaluating SPE loading conditions, filters, sample acidification, chromatographic mobile phases, and SPE loading mobile phases. The optimized method was then applied to 44 river water samples collected in Eastern Canada, including sites near airports with fire-training areas. Among the 11 targeted PFAS, the most frequently detected were trifluoroacetic acid (TFA, 4.6-220 ng/L), perfluorobutanoic acid (PFBA, 0.85-33 ng/L), perfluoropentanoic acid (PFPeA, 1.2-2100 ng/L), trifluoromethane sulfonic acid (TMS, 0.01-4.3 ng/L), and perfluorobutane sulfonic acid (PFBS, 0.07-450 ng/L). Levels of C3-C5 perfluoroalkyl carboxylic acids (PFCAs), C2-C4 perfluoroalkyl sulfonates (PFSAs) and n:3 polyfluoroalkyl acids (n = 2,3; n:3 acids) were significantly higher in water bodies near fire-training area sites compared with rivers in urban areas. In contrast, TFA, TMS, and 1:3 acid were not significantly elevated, likely reflecting atmospheric deposition or other diffuse sources for these compounds. Nontarget and suspect screening analysis revealed an abundance of other ultra-short and short-chain PFAS in AFFF-impacted water bodies. Perfluoroalkyl sulfonamides (FASA, C2, C3, and C5), perfluoroalkyl sulfonamide propanoic acids (FASA-PrA, C1-C2) and n:3 acids (n = 1, 4, and 5) were detected for the first time in environmental surface waters.
Collapse
Affiliation(s)
- Yu Wang
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Min Liu
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada; Department of Chemistry, Université de Montréal, Montreal, QC H2V 0B3, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montreal, QC H2V 0B3, Canada; Centre d'expertise en analyse environnementale du Québec, Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, QC H2V 0B3, Canada; Centre d'expertise en analyse environnementale du Québec, Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, QC H2V 0B3, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada.
| |
Collapse
|
24
|
Liu X, Yu L, Zhang Y, Hua Z, Li X, Xue H, Chu K. Release of perfluoroalkyl acids from sediments under the effects of the discharge ratio and flow flux at a Y-shaped confluence. WATER RESEARCH 2024; 260:121947. [PMID: 38901312 DOI: 10.1016/j.watres.2024.121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The sediments in riverine environments contain notably high concentrations of perfluoroalkyl acids (PFAAs), which may be released into the water body under different hydrodynamic forces, such as those occurring at Y-shaped confluences. The release of PFAAs may pose a significant risk to the surrounding aquatic ecosystems. However, our understanding of the release and transport of PFAAs from sediments at Y-shaped confluences remains unclear. Thus, in this study, we performed a series of flume experiments to explore the effects of discharge ratio and total flow flux on the release and redistribution of PFAAs. The results indicated that these two parameters significantly affected the hydrodynamic features of confluences and the water physicochemical parameters. PFAA concentrations in the dissolved phase and suspended particulate matter (SPM) rose significantly as the discharge ratio and total flow flux increased. The dissolved phase was the predominant loading form of PFAAs, with short-chain PFAAs being the main kind, while long-chain PFAAs were dominant in the SPM. The spatial distribution pattern of PFAAs in sediments at the confluence exhibited a high degree of correspondence with hydrodynamic zones. The separation zone and maximum velocity zone were consistent with sediment regions with low and high capacities to release PFAAs, respectively. The patterns of variation in PFAA distribution were comparable to those observed in hydrodynamic zones as the discharge ratio and total flow flux varied. Furthermore, these two parameters altered the partitioning behaviors of PFAAs; specifically, the PFAAs in sediments tended to be released into the pore-water, while the liberated PFAAs tended to attach to SPM. Linear regression and correlation analyses suggested that the stream-wise and vertical flow velocity components near the sediment-water interface were the primary contributors to sediment suspension and PFAA exchange between the water column and pore-water. These findings will help us to understand the patterns of PFAA release in sediments at Y-shaped confluences and assist in the management of PFAA-contaminated sediments at these locations.
Collapse
Affiliation(s)
- Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China.
| | - Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Xiaoqing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai Universities, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| |
Collapse
|
25
|
Qiao B, Chen H, Song D, Yu H, Baqar M, Li X, Zhao L, Yao Y, Sun H. Multimedia distribution and release characteristics of emerging PFAS in wastewater treatment plants in Tianjin, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134879. [PMID: 38876021 DOI: 10.1016/j.jhazmat.2024.134879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Legacy and emerging PFAS in the air, wastewater, and sludge from two wastewater treatment plants (WWTPs) in Tianjin were investigated in this study. The semi-quantified nontarget PFAS accounted for up to 99 % of ƩPFAS in the gas phase, and aqueous film-forming foam (AFFF)-related PFAS were predominant in wastewater (up to 2250 ng/L, 79 % of ƩPFAS) and sludge (up to 4690 ng/g, 95 % of ƩPFAS). Furthermore, field-derived air particle-gas, air-wastewater, and wastewater particle-wastewater distribution coefficients of emerging PFAS are characterized, which have rarely been reported. The emerging substitute p-perfluorous nonenoxybenzenesulfonate (OBS) and AFFF-related cationic and zwitterionic PFAS show a stronger tendency to partition into particle phase in air and wastewater than perfluorooctane sulfonic acid (PFOS). The estimated total PFAS emissions from the effluent and sludge of WWTP A were 202 kg/y and 351 kg/y, respectively. While the target PFAS only accounted for 20-33 % of the total emissions, suggesting a significant underestimation of environmental releases of the nontarget PFAS and unknown perfluoroalkyl acid precursors through the wastewater and sludge disposal. Overall, this study highlights the importance of comprehensive monitoring and understanding the behavior of legacy and emerging PFAS in wastewater systems, and fills a critical gap in our understanding of PFAS exposure.
Collapse
Affiliation(s)
- Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Dongbao Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Wang K, He L, Liu X, Wu M. Sodium p-perfluorinated noneoxybenzen sulfonate (OBS) induced neurotoxicity in zebrafish through mitochondrial dysfunction. CHEMOSPHERE 2024; 362:142651. [PMID: 38901702 DOI: 10.1016/j.chemosphere.2024.142651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS)-one of the main alternatives to perfluorooctane sulfonate-has been increasingly detected in both aquatic environments and human bodies. Therefore, the pathogenic risks of OBS exposure warrant attention, especially its central nervous system toxicity mechanism under long-term exposure. In this study, the effects and mechanisms of OBS on the zebrafish brain at 40 days post exposure were examined. The results demonstrated that at 3.2 μg/L, OBS had no significant effect on the zebrafish brain, but 32 μg/L OBS caused depression or poor social behavior in zebrafish and reduced both their memory and survival ability. These changes were accompanied by histological damage and cell apoptosis. Furthermore, OBS caused the accumulation of excessive reactive oxygen species in the fish brain, leading to oxidative stress and subsequently cell apoptosis. Moreover, an imbalance of both inflammatory factors (IL-6, IL-1β, IL-10, TNF-α, and NF-κB) and neurotransmitters (GABA and Glu) led to neuroinflammation. Additionally, 32 μg/L OBS induced decreases in mitochondrial membrane potential and Na+-K+-ATPase activity, leading to both mitochondrial structural damage and the emergence of mitochondrial autophagosomes, partly explaining the neurotoxicity of OBS. These results help to analyze the target sites and molecular mechanisms of OBS neurotoxicity and provide a basis for the scientific evaluation of its health risks to humans.
Collapse
Affiliation(s)
- Kai Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China.
| | - Lu He
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China
| | - Xiaoyu Liu
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China
| | - Mengfei Wu
- Plant Protection College, Shenyang Agricultural University, Shenyang, 100866, PR China
| |
Collapse
|
27
|
Lu M, Liu Y, Zheng X, Liu W, Liu Y, Bao J, Feng A, Bao Y, Diao J, Liu H. Amino Group-Driven Adsorption of Sodium p-Perfluorous Nonenoxybenzene Sulfonate in Water by the Modified Graphene Oxide. TOXICS 2024; 12:343. [PMID: 38787122 PMCID: PMC11125578 DOI: 10.3390/toxics12050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS) is one of the key alternatives to perfluoroalkyl substances (PFASs). Its widespread tendency has increased extensive contamination in the aquatic environment. However, the present treatment technology for OBS exhibited insignificant adsorption capacity and long adsorption time. In this study, three proportions (1:5, 3:5, and 10:1) of chitosan-modified amino-driven graphene oxide (CS-GO) were innovated to strengthen the OBS adsorption capacity, compared with graphene oxide (GO) and graphene (GH). Through the characterization of SEM, BET, and FTIR, it was discovered that CS was synthetized on GO surfaces successfully with a low specific surface area. Subsequently, batch single influence factor studies on OBS removal from simulated wastewater were investigated. The optimum removal efficiency of OBS could be achieved up to 95.4% within 2 h when the adsorbent was selected as CS-GO (10:1), the dosage was 2 mg, and the pH was 3. The addition of inorganic ions could promote the adsorption efficiency of OBS. In addition, CS-GO presented the maximum adsorption energy due to additional functional groups of -NH3, and electrostatic interaction was the foremost motive for improving the adsorption efficiency of OBS. Moreover, OBS exhibited the fastest diffusion coefficient in the CS-GO-OBS solution, which is consistent with the fitting results of adsorption kinetics.
Collapse
Affiliation(s)
- Mengyuan Lu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Xinning Zheng
- Shenyang Zhenxing Sewage Treatment Co., Ltd., Shenyang 110143, China;
| | - Wenjuan Liu
- Dalian Xigang District Center for Disease Control and Prevention, Dalian 116021, China;
| | - Yang Liu
- Shenyang Hoper Group Co., Ltd., Shenyang 110112, China;
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Ao Feng
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Yueyao Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Jiangyong Diao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (J.D.); (H.L.)
| | - Hongyang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (J.D.); (H.L.)
| |
Collapse
|
28
|
Tan Z, Lv J, Li H, An Z, Li L, Ke Y, Liu Y, Liu X, Wang L, Li A, Guo H. Angiotoxic effects of chlorinated polyfluorinated ether sulfonate, a novel perfluorooctane sulfonate substitute, in vivo and in vitro. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133919. [PMID: 38432093 DOI: 10.1016/j.jhazmat.2024.133919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Chlorinated polyfluorinated ether sulfonate (Cl-PFESA), a substitute for perfluorooctane sulfonate (PFOS), has been widely used in the Chinese electroplating industry under the trade name F-53B. The production and use of F-53B is keep increasing in recent years, consequently causing more emissions into the environment. Thus, there is a growing concern about the adverse effects of F-53B on human health. However, related research is very limited, particularly in terms of its toxicity to the vascular system. In this study, C57BL/6 J mice were exposed to 0.04, 0.2, and 1 mg/kg F-53B for 12 weeks to assess its impact on the vascular system. We found that F-53B exposure caused aortic wall thickening, collagen deposition, and reduced elasticity in mice. In addition, F-53B exposure led to a loss of vascular endothelial integrity and a vascular inflammatory response. Intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were found to be indispensable for this process. Furthermore, RNA sequencing analysis revealed that F-53B can decrease the repair capacity of endothelial cells by inhibiting their proliferation and migration. Collectively, our findings demonstrate that F-53B exposure induces vascular inflammation and loss of endothelial integrity as well as suppresses the repair capacity of endothelial cells, which ultimately results in vascular injury, highlighting the need for a more thorough risk assessment of F-53B to human health.
Collapse
Affiliation(s)
- Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Haoran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yijia Ke
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, Hebei Province, PR China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, Hebei Province, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050000, PR China.
| |
Collapse
|
29
|
Liu JJ, Zhang YH, Li F, Sun J, Yuan SJ, Zhang PD. Contamination status, partitioning behavior, ecological risks assessment of legacy and emerging per- and polyfluoroalkyl substances in a typical heavily polluted semi-enclosed bay, China. ENVIRONMENTAL RESEARCH 2024; 247:118214. [PMID: 38246302 DOI: 10.1016/j.envres.2024.118214] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
The contaminant status, spatial distribution, partitioning behavior, and ecological risks of 26 legacy and emerging perfluoroalkyl and polyfluoroalkyl substances (PFASs) in Laizhou Bay, China were investigated. The concentrations of ∑PFASs in surface and bottom seawater ranged from 37.2 to 222 ng/L and from 34.2 to 305 ng/L with an average of 116 ± 62.7 and 138 ± 93.8 ng/L, respectively. There were no significant differences in the average concentrations between the surface and bottom seawater (P > 0.05). Perfluorooctanoic acid (PFOA) and short-chain PFASs dominated the composition of PFASs in seawater. The concentrations of ∑PFASs in sediments ranged from 0.997 to 7.21 ng/g dry weight (dw), dominated by perfluorobutane sulfonate (PFBS), perfluorobutanoic acid (PFBA), and long-chain PFASs. The emerging alternatives of perfluoro-1-butane-sulfonamide (FBSA) and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) were detected for the first time in Laizhou Bay. The ∑PFASs in seawater in the southwest of the bay were higher than those in the northeast of the bay. The ∑PFASs in sediments in the northeast sea area were higher than those in the inner area of the bay. Log Kd and log Koc values increased with increasing carbon chain length for PFASs compounds. Ecological risk assessments indicated a low ecological risk associated with HFPO-DA but a moderate risk associated with PFOA contamination in Laizhou Bay. Positive matrix factorization (PMF) analysis revealed that fluoropolymer manufacturing, metal plating plants, and textile treatments were identified as major sources contributing to PFASs contamination.
Collapse
Affiliation(s)
- Jin-Ji Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Yan-Hao Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Fan Li
- Shandong Marine Resources and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai, 264006, People's Republic of China
| | - Jie Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Shun-Jie Yuan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China
| | - Pei-Dong Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, People's Republic of China.
| |
Collapse
|
30
|
Mo L, Wan N, Zhou B, Shao M, Zhang X, Li M, Liu Y, Mai B. Per- and polyfluoroalkyl substances in waterbird feathers around Poyang Lake, China: Compound and species-specific bioaccumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116141. [PMID: 38394760 DOI: 10.1016/j.ecoenv.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
As a nondestructive means of environmental monitoring, bird feathers have been used to analyze levels of per- and polyfluoroalkyl substances (PFASs) in specific environments. In this study, feather samples from 10 waterbird species around Poyang Lake were collected, and a pretreatment method for PFASs in feathers was optimized. The results showed that a combined cleaning method using ultrapure water and n-hexane effectively removed external PFASs. Twenty-three legacy and emerging PFASs were identified in the feathers of waterbirds, of which hexafluoropropylene oxides (HFPOs), chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), and sodium p-perfluorinated noneoxybenzene sulfonate (OBS) were reported for the first time, with their concentrations ranging from 0.060-2.4 ng·g-1 dw, 0.046-30 ng·g-1 dw, and lower than the method detection limit to 30 ng·g-1 dw, respectively. Compound- and species-specific bioaccumulation of PFASs was observed in the feathers of different waterbird species, suggesting that different PFAS types can be monitored through the selection of different species. Moreover, the concentrations of most PFCAs (except perfluorobutyric acid), perfluorooctane sulfonate (PFOS), and perfluorooctane sulfonamide (FOSA) were significantly positively correlated with δ15N (p < 0.05), while the concentrations of HFPOs, Cl-PFESAs, and OBS had significant positive correlations with δ13C. This indicates that the bioaccumulation of legacy and emerging PFASs in waterbird feathers is affected by their trophic level, feeding habits, and foraging area.
Collapse
Affiliation(s)
- Limin Mo
- School of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Nannan Wan
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Bo Zhou
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Mingqin Shao
- School of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.
| | - Xinghui Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Mingqi Li
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
31
|
Wang J, Shen C, Zhang J, Lou G, Shan S, Zhao Y, Man YB, Li Y. Per- and polyfluoroalkyl substances (PFASs) in Chinese surface water: Temporal trends and geographical distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170127. [PMID: 38242487 DOI: 10.1016/j.scitotenv.2024.170127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
PFAS, recognized as persistent organic pollutants, present risks to both the ecological environment and human health. Studying PFASs in surface water yields insights into pollution dynamics. However, existing research on PFASs surface water pollution in China often focuses on specific regions, lacking comprehensive nationwide analyses. This study examined 48 research papers covering PFAS pollution in Chinese surface water, involving 49 regions and 1338 sampling sites. The results indicate widespread PFAS contamination, even in regions like Tibet. Predominant PFAS types include PFOA and PFOS, and pollution is associated with the relocation of industries from developed to developing countries post-2010. The shift from long-chain to short-chain PFASs aligns with recent environmental policy proposals. Geographic concentration of PFAS pollution correlates with industry distribution and economic development levels. Addressing point source pollution, especially from wastewater plant tailwater, is crucial for combating PFAS contamination. Greater emphasis should be placed on addressing short-chain PFASs.
Collapse
Affiliation(s)
- Jie Wang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Guangyu Lou
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Yuliang Li
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an 710064, PR China.
| |
Collapse
|
32
|
Han G, Song S, Lu Y, Zhang M, Du D, Wu Q, Yang S, Wang R, Cui H, Yang L, Mao R, Sun B, Sweetman AJ, Wu Y. Simulating behavior of perfluorooctane sulfonate (PFOS) in the mainstream of a river system with sluice regulations. CHEMOSPHERE 2024; 352:141302. [PMID: 38286309 DOI: 10.1016/j.chemosphere.2024.141302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent, anionic and ubiquitous contaminant that undergoes long-range transport within the environment. Its behavior has attracted wide-range academic and regulatory attention. In this article, a mass balance model was employed to simulate PFOS concentrations in the mainstream of Haihe River water system, encompassing sluices and artificial rivers. The dynamic simulation of PFOS concentrations in both sediment and freshwater took into account fluctuations in PFOS emissions, water levels and water discharge. Furthermore, the study delved into exploring the impacts of sluices and artificial rivers on the behavior of PFOS. The simulated concentrations of PFOS in steady state agreed with the measured concentrations in surveys carried out in Nov. 2019, July 2020, Oct. 2020, and June 2021. Every year, approximately 24 kg PFOS was discharged into the Bohai Sea with Chaobai New River being the largest contributor for 44 %. Moreover, the transport of PFOS in the original rivers is likely to be restricted by sluices and replaced by artificial rivers. Monte Carlo analysis showed that model predictions of PFOS concentrations in sediment were subject to greater uncertainty than those in freshwater as the former is impacted by more parameters, such as density of sediment. This study provides a scientific basis for the local government to manage and control PFOS.
Collapse
Affiliation(s)
- Guoxiang Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjie Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haotian Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruoyu Mao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Andrew J Sweetman
- Lancaster Environmental Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Yanqi Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Yuan W, Song S, Lu Y, Shi Y, Yang S, Wu Q, Wu Y, Jia D, Sun J. Legacy and alternative per-and polyfluoroalkyl substances (PFASs) in the Bohai Bay Rim: Occurrence, partitioning behavior, risk assessment, and emission scenario analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168837. [PMID: 38040376 DOI: 10.1016/j.scitotenv.2023.168837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
The use of alternative per- and polyfluoroalkyl substances (PFASs) has been practiced because of the restrictions on legacy PFASs. However, knowledge gaps exist on the ecological risks of alternatives and relationships between restrictions and emissions. This study systematically analyzed the occurrence characteristics, water-sediment partitioning behaviors, ecological risks, and emissions of legacy and alternative PFASs in the Bohai Bay Rim (BBR). The mean concentration of total PFASs was 46.105 ng/L in surface water and 6.125 ng/g dry weight (dw) in sediments. As an alternative for perfluorooctanoic acid (PFOA), hexafluoropropylene oxide dimer acid (GenX) had a concentration second only to PFOA in surface water. In sediments, perfluorobutyric acid (PFBA) and GenX were the two predominant contaminants. In the water-sediment partitioning system, GenX, 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (F-53B), and 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (8:2 Cl-PFESA) tended to be enriched towards sediments. The species sensitivity distribution (SSD) models revealed the low ecological risks of PFASs and their alternatives in the BBR. Moreover, predicted no-effected concentrations (PNECs) indicated that short-chain alternatives like PFBA and perfluorobutane sulfonate (PFBS) were safer for aquatic ecosystems, while caution should be exercised when using GenX and F-53B. Due to the incremental replacement of PFOA by GenX, cumulative emissions of 1317.96 kg PFOA and 667.22 kg GenX were estimated during 2004-2022, in which PFOA emissions were reduced by 59.2 % due to restrictions implemented since 2016. If more stringent restrictions are implemented from 2023 to 2030, PFOA emissions will further decrease by 85.0 %, but GenX emissions will increase by an additional 21.3 %. Simultaneously, GenX concentrations in surface water are forecasted to surge by 2.02 to 2.45 times in 2023. This study deepens the understanding of PFAS alternatives and assists authorities in developing policies to administer PFAS alternatives.
Collapse
Affiliation(s)
- Wang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Yonglong Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjie Yang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiang Wu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanqi Wu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dai Jia
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jun Sun
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China; College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China
| |
Collapse
|
34
|
Wang G, Xing Z, Liu S, Chen H, Dong X, Guo P, Wang H, Liu Y. Emerging and legacy per- and polyfluoroalkyl substances in Daling River and its estuary, Northern China. MARINE POLLUTION BULLETIN 2024; 199:115953. [PMID: 38128250 DOI: 10.1016/j.marpolbul.2023.115953] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Strict restriction on legacy per- and polyfluoroalkyl substances (PFASs) has caused a dramatic increase in production and usage of emerging PFASs over the last decades. However, the environmental behaviors of emerging PFASs is largely unknown in Daling River, Northern China. In this study, the potential sources, sediment-water partitioning and substitution trends of PFASs were investigated in overlying water and sediments from Daling River and its estuary. Perfluorooctane sulfonate and 6:2 fluorotelomer sulfonic acid were major compounds, and sodium p-perfluorous nonenoxybenzene sulfonate was first detected. Firefighting foam manufacturing and fluoropolymer production were the main sources of PFASs. Compared to legacy PFASs (C8), the emerging PFASs (C6 - C9) were more incline to distribute into overlying water. Substitution trends indicated 6:2 fluorotelomer sulfonic acid and hexafluoropropylene oxide trimer acid as the important alternatives of perfluorooctane sulfonate and perfluorooctanoic acid, respectively. The results were meaningful for understanding the environmental behaviors of emerging PFASs.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Ziao Xing
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shuaihao Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Haiyue Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xu Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Pengxu Guo
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian 116026, China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
35
|
Chen X, Lv Z, Yang Y, Yang R, Shan G, Zhu L. Screening Novel Per- and Polyfluoroalkyl Substances in Human Blood Based on Nontarget Analysis and Underestimated Potential Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:150-159. [PMID: 38153813 DOI: 10.1021/acs.est.3c06675] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Nontarget analysis has gained prominence in screening novel perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the environment, yet remaining limited in human biological matrices. In this study, 155 whole blood samples were collected from the general population in Shijiazhuang City, China. By nontarget analysis, 31 legacy and novel PFASs were assigned with the confidence level of 3 or above. For the first time, 11 PFASs were identified in human blood, including C1 and C3 perfluoroalkyl sulfonic acids (PFSAs), C4 ether PFSA, C8 ether perfluoroalkyl carboxylic acid (ether PFCA), C4-5 unsaturated perfluoroalkyl alcohols, C9-10 carboxylic acid-perfluoroalkyl sulfonamides (CA-PFSMs), and C1 perfluoroalkyl sulfonamide. It is surprising that the targeted PFASs were the highest in the suburban population which was impacted by industrial emission, while the novel PFASs identified by nontarget analysis, such as C1 PFSA and C9-11 CA-PFSMs, were the highest in the rural population who often drank contaminated groundwater. Combining the toxicity prediction results of the bioaccumulation potential, lethality to rats, and binding affinity to target proteins, C3 PFSA, C4 and C7 ether PFSAs, and C9-11 CA-PFSMs exhibit great health risks. These findings emphasize the necessity of broadening nontarget analysis in assessing the PFAS exposure risks, particularly in rural populations.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zixuan Lv
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
36
|
Zhao M, Yao Y, Dong X, Baqar M, Fang B, Chen H, Sun H. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances (PFAS) in Soils from an Oil Refinery in Southwestern China: A Combined Approach with TOP Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20194-20205. [PMID: 37991390 DOI: 10.1021/acs.est.3c05859] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Oil refinery activity can be an emission source of perfluoroalkyl and polyfluoroalkyl substances (PFAS) to the environment, while the contamination profiles in soils remain unknown. This study investigated 44 target PFAS in soil samples collected from an oil refinery in Southeastern China, identified novel PFAS, and characterized their behaviors by assessing their changes before and after employing advanced oxidation using a combination of nontarget analysis and a total oxidizable precursor (TOP) assay. Thirty-four target PFAS were detected in soil samples. Trifluoroacetic acid (TFA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were the dominant PFAS. Twenty-three novel PFAS of 14 classes were identified, including 8 precursors, 11 products, and 4 stable PFAS characterized by the TOP assay. Particularly, three per-/polyfluorinated alcohols were identified for the first time, and hexafluoroisopropanol (HFIP) quantified up to 657 ng/g dw is a novel precursor for TFA. Bistriflimide (NTf2) potentially associated with an oil refinery was also reported for the first time in the soil samples. This study highlighted the advantage of embedding the TOP assay in nontarget analysis to reveal not only the presence of unknown PFAS but also their roles in environmental processes. Overall, this approach provides an efficient way to uncover contamination profiles of PFAS especially in source-impacted areas.
Collapse
Affiliation(s)
- Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
37
|
Qiao B, Song D, Fang B, Yu H, Li X, Zhao L, Yao Y, Zhu L, Chen H, Sun H. Nontarget Screening and Fate of Emerging Per- and Polyfluoroalkyl Substances in Wastewater Treatment Plants in Tianjin, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20127-20137. [PMID: 37800548 DOI: 10.1021/acs.est.3c03997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Wastewater treatment plants (WWTPs) are typical point sources of per- and polyfluoroalkyl substances (PFAS) released into the environment. The suspect and nontarget screening based on gas chromatography or liquid chromatography-high resolution mass spectrometry were performed on atmosphere, wastewater, and sludge samples collected from two WWTPs in Tianjin to discover emerging PFAS and their fate in this study. A total of 40 PFAS (14 neutral and 26 ionic) and 64 PFAS were identified in the atmosphere and wastewater/sludge, respectively, among which 5 short-chain perfluoroalkyl sulfonamide derivatives, 4 ionic PFAS, and 15 aqueous film-forming foam-related cationic or zwitterionic PFAS have rarely or never been reported in WWTPs in China. Active air sampling is more conducive to the enrichment of emerging PFAS, while passive sampling is inclined to leave out some ultrashort-chain PFAS or unstable transformation intermediates. Moreover, most precursors and intermediates could be enriched in the atmosphere at night, while the PFAS associated with aerosols with high water content or particles enter the atmosphere easily during the day. Although most emerging PFAS could not be eliminated efficiently in conventional treatment units, deep bed filtration and advanced oxidation processes could partly remove some emerging precursors.
Collapse
Affiliation(s)
- Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Dongbao Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lingyan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Han BC, Liu JS, Bizimana A, Zhang BX, Kateryna S, Zhao Z, Yu LP, Shen ZZ, Meng XZ. Identifying priority PBT-like compounds from emerging PFAS by nontargeted analysis and machine learning models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122663. [PMID: 37783416 DOI: 10.1016/j.envpol.2023.122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
As traditional per and polyfluoroalkyl substances (PFAS) are phased out, emerging PFAS are being developed and widely used. However, little is known about their properties, including persistence, bioaccumulation, and toxicity (PBT). Screening for emerging PFAS relies on available chemical inventory databases. Here, we compiled a database of emerging PFAS obtained from nontargeted analysis and assessed their PBT properties using machine learning models, including qualitative graph attention networks, Insubria PBT Index and quantitative EAS-E Suite, VEGA, and ProTox-II platforms. Totally 282 homologues (21.8% of emerging PFAS) were identified as PBT based on the combined qualitative and quantitative prediction, in which 140 homologues were detected in industrial and nonbiological/biological samples, belong to four categories, i.e. modifications of perfluoroalkyl carboxylic acids, perfluoroalkane sulfonamido substances, fluorotelomers and modifications of perfluoroalkyl sulfonic acids. Approximately 10.1% of prioritized emerging PFAS were matched to chemical vendors and 19.6% to patents. Aqueous film-forming foams and fluorochemical factories are the predominant sources for prioritized emerging PFAS. The database and screening results can update the assessment related to legislative bodies such as the US Toxic Substances Control Act and the Stockholm Convention. The combined qualitative and quantitative machine learning models can provide a methodological tool for prioritizing other emerging organic contaminants.
Collapse
Affiliation(s)
- Bao-Cang Han
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jin-Song Liu
- College of Advanced Materials Engineering, Jiaxing Nanhu University. 572 South Yuexiu Road, Jiaxing, 314001, Zhejiang Province, China
| | - Aaron Bizimana
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; UNEP-Tongji Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bo-Xuan Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Sukhodolska Kateryna
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; UNEP-Tongji Institute of Environment for Sustainable Development (IESD), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Yu
- Suzhou Jingtian Lover Environmental Technology Co. Ltd., Suzhou, 215228, Jiangsu Province, China
| | - Zhong-Zeng Shen
- Suzhou Jingtian Lover Environmental Technology Co. Ltd., Suzhou, 215228, Jiangsu Province, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
39
|
Yu H, Chen H, Zhang P, Yao Y, Zhao L, Zhu L, Sun H. In situ self-sacrificial synthesis of polypyrrole/biochar composites for efficiently removing short- and long-chain perfluoroalkyl acid from contaminated water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118745. [PMID: 37562255 DOI: 10.1016/j.jenvman.2023.118745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Efficient removal of perfluoroalkyl acids (PFAAs), especially short-chain ones, from contaminated water is of great challenge and is urgently called for so as to safeguard the ecosystem and human health. Herein, polypyrrole (PPy) functionalized biochar (BC) composites were innovatively synthesized by an in situ self-sacrificial approach to allow efficient capture of PFAAs with different chain lengths. Compared with conventional PPy-based composites synthesized by direct polymerization using FeCl3 as an oxidizing agent, PPy/BC composites were fabricated utilizing freshly generated Fe3+ as an oxidizing agent from self-sacrificial Fe3O4 for pyrrole monomers in situ polymerizing on BC. As a result, with the support of BC and gradual release of Fe3+, PPy overcame its tendency to aggregate and became uniformly dispersed on BC, and meanwhile, PPy could well tailor the surface chemistry of BC to endow its positively charged surface. Consequently, the composites exhibited strong sorption capacities of 3.89 and 1.53 mmol/g for short-chain perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS), 2.55 and 1.22 mmol/g for long-chain perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), respectively, which were superior to those of pristine BC, commercial activated carbon, and anion exchange resins reported. Additionally, they could effectively remove 17 different classes of per- and polyfluoroalkyl substances (PFAS) (removal >95%) from actual PFAS-contaminated water, and the spent sorbent could be well regenerated and reused at least 5 times. An integrated analysis indicated that such an outstanding PFAA sorption performance on PPy/BC composites could be mainly attributed to surface adsorption enhanced by electrostatic attractions (anion exchange interaction) with the traditional hydrophobic interaction and pore filling of less contribution, particularly for short-chain analogues. These results are expected to inform the design of BC with greater ability to remove PFAS from water and the new sorbent could help water facilities comply with PFAS regulations.
Collapse
Affiliation(s)
- Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
40
|
Li H, Zhu X, Zhang J, Wang Z, Li R. Characterizing the long-term occurrence and anthropogenic drivers of per- and polyfluoroalkyl substances in surface water of the Rhine River. WATER RESEARCH 2023; 245:120528. [PMID: 37742404 DOI: 10.1016/j.watres.2023.120528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) raise significant concerns due to their persistence, bioaccumulation potential, and toxicity to both ecosystems and human health. However, the long-term trends of PFAS in aquatic environments remain inadequately explored. In this study, we systematically assessed the spatiotemporal distribution, periodic fluctuations, source apportionment, and risk evaluation of 12 PFAS in the Rhine River based on the long-term measuring data collected from 2007 to 2019. The study revealed that the mean concentration and mass flux of total PFAS during this period were 32.83 ng L-1 and 6.36 × 104 μg s-1, declining at an annual rate of 3.70% and 3.82%, respectively. Wavelet analysis demonstrated that the most prominent periodic oscillation of PFAS was 40-60 months. Regarding the sources of PFAS, we employed the self-organizing map (SOM) and the positive matrix factorization (PMF) model for source apportionment. The results indicated that the primary sources of PFAS were agrochemical, pharmaceutical and textile industries, accounting for 38.1% of the total concentration. The contribution from household contamination, tannery industry, and coating materials has increased annually. In contrast, the share of electrochemical fluorination and chemical recycling has shown a continuous decline. The risk quotient (RQ) and hazard quotient (HQ) calculations for three age groups indicated that PFAS exposure did not pose a significant risk to ecological or human health. Implementing source-oriented mitigation strategies is crucial to effectively reduce the ecological and human health risks of PFAS in receiving waters.
Collapse
Affiliation(s)
- Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xu Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jin Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zhenyu Wang
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Dresden 01062, Germany
| | - Ruifei Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
41
|
Song D, Qiao B, Yao Y, Zhao L, Wang X, Chen H, Zhu L, Sun H. Target and nontarget analysis of per- and polyfluoroalkyl substances in surface water, groundwater and sediments of three typical fluorochemical industrial parks in China. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132411. [PMID: 37666171 DOI: 10.1016/j.jhazmat.2023.132411] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
The objectives of this study were to identify both legacy and emerging per- and polyfluoroalkyl substances (PFAS) from three typical fluoridated industrial parks (FIPs) in China, and to assess their environmental occurrence and fate. Complementary suspect target and nontarget screening were implemented, and a total of 111 emerging PFAS were identified. Based on the multi-mass scale analysis, 25 emerging PFAS were identified for the first time, including 24 per- and polyfluoroalkyl ether carboxylic acids (PFECAs) and 1 ultra-short chlorinated perfluoroalkyl carboxylic acids (Cl-PFCAs, C2), with a maximum percentage of 48.2 % in nontarget PFAS (exclude target PFAS). The composition of PFAS identified in different media was influenced by functional groups, carbon chain length, substituents and ether bond insertion, with poly-hydrogen substituted being preferably in water and a more diverse pattern of PFECAs in sediments. The patterns of PFAS homologs revealed distinct differences among the three typical FIPs in the shift of PFAS production patterns. The C4-PFAS and short-chain carboxylic acids (≤C6) were the main PFAS in the Fuxin and Changshu, respectively. In contrast, perfluorooctanoic acid (PFOA, C8) remained dominant in Zibo, and the highest point concentrations in water and sediment were up to 706 µg/L and 553 µg/g, respectively.
Collapse
Affiliation(s)
- Dongbao Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Lingyan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
42
|
Zhang YH, Ding TT, Huang ZY, Liang HY, Du SL, Zhang J, Li HX. Environmental exposure and ecological risk of perfluorinated substances (PFASs) in the Shaying River Basin, China. CHEMOSPHERE 2023; 339:139537. [PMID: 37478992 DOI: 10.1016/j.chemosphere.2023.139537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/09/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
There have been concerns raised about the environmental effects of perfluoroalkyl substances (PFASs) because of their toxicity, widespread distribution, and persistence. Understanding the occurrences and ecological risk posed by PFASs is essential, especially for the short-chain replacements perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS), which are now becoming predominant PFASs. The lack of aquatic life criteria (ALC), however, prevents an accurate assessment of the ecological risks of PFBA and PFBS. This study thus investigated the occurrence of 15 PFASs at 29 sampling sites in Shaying River Basin (in China) systematically, conducted the toxicity tests of PFBA and PFBS on eight resident aquatic organisms in China, and derived the predicted non-effect concentration (PNEC) values for PFBA and PFBS for two environmental media in China. The results showed that the total PFASs concentrations (ΣPFASs) ranged from 5.07 to 20.32 ng/L (average of 10.95 ng/L) in surface water, whereas in sediment, ΣPFASs ranged from 6.46 to 20.05 ng/g (dw) (average of 11.51 ng/g). The presence of PFBS was the most prominent PFASs in both water (0.372-8.194 ng/L) and sediment (4.54-15.72 ng/g), demonstrating that short-chain substitution effects can be observed in watersheds. The PNEC values for freshwater and sediment were 6.60 mg/L and 8.30 mg/kg (ww), respectively, for PFBA, and 14.04 mg/L, 37.08 mg/kg (ww), respectively, for PFBS. Ecological risk assessment of two long-chain PFASs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), and two short-chain PFASs, PFBA and PFBS, using the hazard quotient method revealed that Shaying River and other major River Basins in China were at risk of PFOS contamination. This study contributes to a better understanding of the presence and risk of PFASs in the Shaying River and first proposes the ALCs for PFBA and PFBS in China, which could provide important reference information for water quality standards.
Collapse
Affiliation(s)
- Ya-Hui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Zi-Yan Huang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, 310005, PR China; Key Laboratory of Water Pollution Control and Waste Water Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Hong-Yi Liang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Shi-Lin Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Waste Water Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Hui-Xian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| |
Collapse
|
43
|
Xu W, Li S, Wang W, Sun P, Yin C, Li X, Yu L, Ren G, Peng L, Wang F. Distribution and potential health risks of perfluoroalkyl substances (PFASs) in water, sediment, and fish in Dongjiang River Basin, Southern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99501-99510. [PMID: 37610541 DOI: 10.1007/s11356-023-29327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have attracted worldwide attention due to their high stability, refractory degradation, and bioaccumulation. The Dongjiang River is one of the most important water sources in the Pearl River Delta region. It flows from Jiangxi Province to Guangdong Province and finally into the Pearl River, providing domestic water for cities such as Guangzhou, Shenzhen, and Hong Kong. In this study, 17 PFASs in water, sediment, and fish in the Dongjiang River Basin in southern China were investigated using high-performance liquid chromatography-mass spectrometry. Total PFAS concentrations ranged from 20.83 to 372.8 ng/L in water, from 1.050 to 3.050 ng/g in sediments, and from 12.28 to 117.4 ng/g in fish. Among six species of fish, Oreochromis mossambicus (mean: 68.55 ng/g) had the highest concentration of PFASs, while Tilapia zillii (36.90 ng/g) had the lowest concentration. Perfluorooctanoic acid (PFOA) predominates in water and sediments, while perfluorooctanesulfonic acid (PFOS) predominates in fish. Long-chain perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs) showed higher bioaccumulation, and the field-sourced sediment-water partition coefficients (Kd) and bioaccumulation factors (BAFs) of PFASs increased with the length of perfluorocarbon chains. PFAS concentration in the lower reaches (urban area) of the Dongjiang River is higher than that in the upper and middle reaches (rural area). The calculated hazard ratio (HR) of PFOS and PFOA levels in fish in the Dongjiang River Basin was far less than 1; hence, the potential risk to human health was limited.
Collapse
Affiliation(s)
- Wang Xu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Shibo Li
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China
| | - Weimin Wang
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Ping Sun
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Chunyang Yin
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Xuxia Li
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Liang Yu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Gang Ren
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China
| | - Lin Peng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
44
|
He Q, Yan Z, Qian S, Xiong T, Grieger KD, Wang X, Liu C, Zhi Y. Phytoextraction of per- and polyfluoroalkyl substances (PFAS) by weeds: Effect of PFAS physicochemical properties and plant physiological traits. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131492. [PMID: 37121031 DOI: 10.1016/j.jhazmat.2023.131492] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
Phytoextraction is a promising technology that uses plants to remediate contaminated soil. However, its feasibility for per- and polyfluoroalkyl substances (PFAS) and the impact of PFAS properties and plant traits on phytoextraction efficacy remains unknown. In this study, we conducted greenhouse experiment and evaluated the potential of weeds for phytoextraction of PFAS from soil and assessed the effects of PFAS properties and plant traits on PFAS uptake via systematic correlation analyses and electron probe microanalyzer with energy dispersive spectroscopy (FE-EPMA-EDS) imaging. The results showed that 1) phytoextraction can remove 0.04%- 41.4%wt of PFAS from soil, with extracted PFAS primarily stored in plant shoots; 2) Weeds preferentially extracted short-chain PFAS over long-chain homologues from soil. 3) PFAS molecular size and hydrophilicity determined plant uptake behavior, while plant morphological traits, particularly root protein and lipid content, influenced PFAS accumulation and translocation. Although plants with thin roots and small leaf areas exhibited greater PFAS uptake and storage ability, the impact of PFAS physicochemical properties was more significant. 4) Finally, short-chain PFAS were transported quickly upwards in the plant, while uptake of long-chain PFOS was restricted.
Collapse
Affiliation(s)
- Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zheng Yan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Shenhua Qian
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Tiantian Xiong
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Khara D Grieger
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA; North Carolina Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, USA
| | - Xiaoming Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
45
|
Gao D, Kong C, Liao H, Junaid M, Pan T, Chen X, Wang Q, Wang X, Wang J. Interactive effects of polystyrene nanoplastics and 6:2 chlorinated polyfluorinated ether sulfonates on the histomorphology, oxidative stress and gut microbiota in Hainan Medaka (Oryzias curvinotus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163307. [PMID: 37030384 DOI: 10.1016/j.scitotenv.2023.163307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
Nanoplastics adsorb surrounding organic contaminants in the environment, which alters the physicochemical properties of contaminants and affects associated ecotoxicological effects on aquatic life. The current work aims to explore the individual and combined toxicological implications of polystyrene nanoplastics (80 nm) and 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES, trade name: F-53B) in an emerging freshwater fish model Hainan Medaka (Oryzias curvinotus). Therefore, O. curvinotus were exposed to 200 μg/L of PS-NPs or 500 μg/L of F-53B in the single or mixture exposure for 7 days to investigate the effects on fluorescence accumulation, tissue damage, antioxidant capacity and intestinal flora. The PS-NPs fluorescence intensity was significantly higher in the single exposure treatment than it in combined exposure treatment (p < 0.01). Histopathological results showed that exposure to PS-NPs or F-53B inflicted varying degree of damages to the gill, liver, and intestine, and these damage were also present in the corresponding tissues of the combined treatment group, illustrating a stronger extent of destruction of these tissues by the combined treatment. Compared to the control group, combined exposure group elevated the malondialdehyde (MDA) content, superoxide dismutase (SOD) and catalase (CAT) activities except in the gill. In addition, the adverse contribution of PS-NPs and F-53B on the enteric flora in the single and combined exposure groups was mainly characterised in the form of reductions in the number of probiotic bacteria (Firmicutes) and this reduction was aggravated by the combined exposure group. Collectively, our results indicated that the toxicological effects of PS-NPs and F-53B on pathology, antioxidant capacity and microbiomics of medaka may be modulated by the interaction of two contaminants with mutually interactive effects. And our work offers fresh information on the combined toxicity of PS-NPs and F-53B to aquatic creatures along with a molecular foundation for the environmental toxicological mechanism.
Collapse
Affiliation(s)
- Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xikun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiuping Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
46
|
Carrizo JC, Munoz G, Vo Duy S, Liu M, Houde M, Amé MV, Liu J, Sauvé S. PFAS in fish from AFFF-impacted environments: Analytical method development and field application at a Canadian international civilian airport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163103. [PMID: 36972881 DOI: 10.1016/j.scitotenv.2023.163103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Methods targeting anionic per- and polyfluoroalkyl substances (PFAS) in aquatic biota are well established, but commonly overlook many PFAS classes present in aqueous film-forming foams (AFFFs). Here, we developed an analytical method for the expanded analysis of negative and positive ion mode PFAS in fish tissues. Eight variations of extraction solvents and clean-up protocols were first tested to recover 70 AFFF-derived PFAS from the fish matrix. Anionic, zwitterionic, and cationic PFAS displayed the best responses with methanol-based ultrasonication methods. The response of long-chain PFAS was improved for extracts submitted to graphite filtration alone compared with those involving solid-phase extraction. The validation included an assessment of linearity, absolute recovery, matrix effects, accuracy, intraday/interday precision, and trueness. The method was applied to a set of freshwater fish samples collected in 2020 in the immediate vicinity (creek, n = 15) and downstream (river, n = 15) of an active fire-training area at an international civilian airport in Ontario, Canada. While zwitterionic fluorotelomer betaines were major components of the subsurface AFFF source zone, they were rarely detected in fish, suggesting limited bioaccumulation potential. PFOS largely dominated the PFAS profile, with record-high concentrations in brook sticklebacks (Culaea inconstans) from the creek (16000-110,000 ng/g wet weight whole-body). These levels exceeded the Canadian Federal Environmental Quality Guidelines (FEQG) for PFOS pertaining to the Federal Fish Tissue Guideline (FFTG) for fish protection and Federal Wildlife Diet Guidelines (FWiDG) for the protection of mammalian and avian consumers of aquatic biota. Perfluorohexane sulfonamide and 6:2 fluorotelomer sulfonate were among the precursors detected at the highest levels (maximum of ∼340 ng/g and ∼1100 ng/g, respectively), likely reflecting extensive degradation and/or biotransformation of C6 precursors originally present in AFFF formulations.
Collapse
Affiliation(s)
- Juan Cruz Carrizo
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada; CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Min Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC, Canada
| | - María Valeria Amé
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
47
|
Alinezhad A, Shao H, Litvanova K, Sun R, Kubatova A, Zhang W, Li Y, Xiao F. Mechanistic Investigations of Thermal Decomposition of Perfluoroalkyl Ether Carboxylic Acids and Short-Chain Perfluoroalkyl Carboxylic Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8796-8807. [PMID: 37195265 PMCID: PMC10269594 DOI: 10.1021/acs.est.3c00294] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
In this study, we investigated the thermal decomposition mechanisms of perfluoroalkyl ether carboxylic acids (PFECAs) and short-chain perfluoroalkyl carboxylic acids (PFCAs) that have been manufactured as replacements for phased-out per- and polyfluoroalkyl substances (PFAS). C-C, C-F, C-O, O-H, and C═C bond dissociation energies were calculated at the M06-2X/Def2-TZVP level of theory. The α-C and carboxyl-C bond dissociation energy of PFECAs declines with increasing chain length and the attachment of an electron-withdrawing trifluoromethyl (-CF3) group to the α-C. Experimental and computational results show that the thermal transformation of hexafluoropropylene oxide dimer acid to trifluoroacetic acid (TFA) occurs due to the preferential cleavage of the C-O ether bond close to the carboxyl group. This pathway produces precursors of perfluoropropionic acid (PFPeA) and TFA and is supplemented by a minor pathway (CF3CF2CF2OCFCF3COOH → CF3CF2CF2· + ·OCFCF3COOH) through which perfluorobutanoic acid (PFBA) is formed. The weakest C-C bond in PFPeA and PFBA is the one connecting the α-C and the β-C. The results support (1) the C-C scission in the perfluorinated backbone as an effective PFCA thermal decomposition mechanism and (2) the thermal recombination of radicals through which intermediates are formed. Additionally, we detected a few novel thermal decomposition products of studied PFAS.
Collapse
Affiliation(s)
- Ali Alinezhad
- Department
of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Heng Shao
- Key
Laboratory of Water and Sediment Sciences of Ministry of Education,
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Katerina Litvanova
- Department
of Chemistry, The University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Runze Sun
- Department
of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Alena Kubatova
- Department
of Chemistry, The University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Wen Zhang
- John
A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yang Li
- Key
Laboratory of Water and Sediment Sciences of Ministry of Education,
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Feng Xiao
- Department
of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
48
|
Macorps N, Labadie P, Lestremau F, Assoumani A, Budzinski H. Per- and polyfluoroalkyl substances (PFAS) in surface sediments: Occurrence, patterns, spatial distribution and contribution of unattributed precursors in French aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162493. [PMID: 36863581 DOI: 10.1016/j.scitotenv.2023.162493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
While perfluoroalkyl sulfonic acids (PFSAs) and perfluoroalkyl carboxylic acids (PFCAs) are ubiquitous in aquatic environments, non-targeted methods have recently revealed the presence of numerous unidentified per- and polyfluoroalkyl substances (PFAS). Besides those methods, the total oxidizable precursor (TOP) assay has proved useful to estimate the contribution of unattributed perfluoroalkyl acids precursors (pre-PFAAs). In this study, an optimized extraction method was developed to examine the spatial distribution of 36 targeted PFAS in surface sediments collected at French nationwide scale (n = 43), including neutral, anionic and zwitterionic molecules. In addition, a TOP assay procedure was implemented to estimate the contribution of unattributed pre-PFAAs in these samples. Conversion yields of targeted pre-PFAAs were determined for the first time under realistic conditions and led to differences in oxidation profiles compared to the common spiked ultra-pure water method. PFAS were detected in 86 % of samples and ∑PFAStargeted was in the range < Limit of Detection - 23 ng g-1 dry weight (dw) (median: 1.3 ng g-1 dw), with ∑pre-PFAAstargeted representing on average 29 ± 26 % of ∑PFAS. Among pre-PFAAs, compounds of emerging interest such as the fluorotelomer sulfonamidoalkyl betaines 6:2 FTAB and 8:2 FTAB were respectively detected in 38 % and 24 % of samples, with levels similar to those of L-PFOS (<0.36-2.2, <0.50-6.8 and < 0.08-5.1 ng g-1 dw, respectively). A hierarchical cluster analysis coupled with a geographic information system-based approach revealed similarities between groups of sampling sites. For instance, elevated contribution of FTABs were associated with the proximity to airport activities where betaine-based aqueous film-forming foam (AFFFs) might have been used. In addition, unattributed pre-PFAAs were strongly correlated with ∑PFAStargeted and they accounted for 58 % of ∑PFAS (median value); they were generally found in larger quantity near industrial and urban areas where the highest ∑PFAStargeted were also observed.
Collapse
Affiliation(s)
| | - Pierre Labadie
- CNRS/Université de Bordeaux, UMR 5805 EPOC, Talence, France.
| | - François Lestremau
- INERIS, Unité Méthodes et développements en Analyses pour l'Environnement, 60550 Verneuil-en-Halatte, France; Hydrosciences Montpellier, Univ. Montpellier, IMT Mines Ales, IRD, CNRS, Ales, France
| | - Azziz Assoumani
- INERIS, Unité Méthodes et développements en Analyses pour l'Environnement, 60550 Verneuil-en-Halatte, France
| | | |
Collapse
|
49
|
Hu J, Lyu Y, Chen H, Cai L, Li J, Cao X, Sun W. Integration of target, suspect, and nontarget screening with risk modeling for per- and polyfluoroalkyl substances prioritization in surface waters. WATER RESEARCH 2023; 233:119735. [PMID: 36801580 DOI: 10.1016/j.watres.2023.119735] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Though thousands of per- and polyfluoroalkyl substances (PFAS) have been on the global market, most research focused on only a small fraction, potentially resulting in underestimated environmental risks. Here, we used complementary target, suspect, and nontarget screening for quantifying and identifying the target and nontarget PFAS, respectively, and developed a risk model considering their specific properties to prioritize the PFAS in surface waters. Thirty-three PFAS were identified in surface water in the Chaobai river, Beijing. The suspect and nontarget screening by Orbitrap displayed a sensitivity of > 77%, indicating its good performance in identifying the PFAS in samples. We used triple quadrupole (QqQ) under multiple-reaction monitoring for quantifying PFAS with authentic standards due to its potentially high sensitivity. To quantify the nontarget PFAS without authentic standards, we trained a random forest regression model which presented the differences up to only 2.7 times between measured and predicted response factors (RFs). The maximum/minimum RF in each PFAS class was as high as 1.2-10.0 in Orbitrap and 1.7-22.3 in QqQ. A risk-based prioritization approach was developed to rank the identified PFAS, and four PFAS (i.e., perfluorooctanoic acid, hydrogenated perfluorohexanoic acid, bistriflimide, 6:2 fluorotelomer carboxylic acid) were flagged with high priority (risk index > 0.1) for remediation and management. Our study highlighted the importance of a quantification strategy during environmental scrutiny of PFAS, especially for nontarget PFAS without standards.
Collapse
Affiliation(s)
- Jingrun Hu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Yitao Lyu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, SC 29634, USA.
| | - Leilei Cai
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Jie Li
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
50
|
Szabo D, Marchiandi J, Samandra S, Johnston JM, Mulder RA, Green MP, Clarke BO. High-resolution temporal wastewater treatment plant investigation to understand influent mass flux of per- and polyfluoroalkyl substances (PFAS). JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130854. [PMID: 36701979 DOI: 10.1016/j.jhazmat.2023.130854] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 06/17/2023]
Abstract
This study aims to identify sources of per- and polyfluoroalkyl substances (PFAS) to wastewater treatment plants (WWTPs) and reveals previously undescribed variability in daily PFAS concentrations by measuring their occurrence in WWTP influent each hour over the course of a week. ∑50PFAS concentrations ranged between 89 ± 38 on Monday and 173 ± 110 ng L-1 on Friday, where perfluoroalkyl carboxylic acids (PFCAs), disubstituted phosphate esters (diPAPs), and perfluoroalkyl sulfonic acids (PFSAs) contributed the largest proportion to overall weekly concentrations 37%, 30%, and 17% respectively. Simultaneous pulse events of perfluorooctanesulfonic acid (PFOS; 400 ng L-1) and perfluoroheptanesulfonic acid (PFHpS; 18 ng L-1) indicate significant industrial or commercial waste discharge that persists for up to 3 h. The minimum number of hourly grab samples required to detect variation of PFOS and PFHpS concentrations are 7 and 9 samples respectively, indicating a high degree of variability in PFAS concentrations between days. Overall, the risk of sampling bias from grab samples is high given the variability in PFAS concentrations and more frequent sampling campaigns must be balanced against the cost of analysis carefully to avoid the mischaracterisation of mass flux to receiving surface waters.
Collapse
Affiliation(s)
- Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia; Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 11418, Sweden
| | - Jaye Marchiandi
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Subharthe Samandra
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Julia M Johnston
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Raoul A Mulder
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Mark P Green
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|