1
|
Xing Y, He W, Cai C, Liu S, Jiang Y, Tan S, Qu C, Hao X, Cai P, Huang Q, Chen W. Bacterial activation level determines Cd(II) immobilization efficiency by calcium-phosphate minerals in soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137341. [PMID: 39874766 DOI: 10.1016/j.jhazmat.2025.137341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Soil mineral properties significantly influence the mobility of Cd(II) within the soil matrix. However, the limited understanding of how microbial metabolism affects mineral structure at the microscale poses challenges for in situ remediation. Here, we designed a model calcium-phosphate system in a urea-rich environment to explore the impact of different microbial activation levels on Cd(II) fixation at mineral interfaces. Findings indicate that bacteria affected the morphological structure of the minerals and the amount of carbonate incorporation (average 5.4 %), thereby enhancing Cd(II) immobilization capacity (up to 9.6 times). This process is influenced by the intensity of bacterial activation, as reflected in their urease activity. Extracellular substances secreted by bacteria are also essential for activating minerals, contributing to a sustained decrease in their surface potential. The introduction of activated minerals in potting experiments markedly stimulated the soil urease activity, promoting the enrichment of functional bacteria and facilitating Cd(II) passivation, thereby reducing Cd(II) uptake by vegetables. An extensive soil survey further corroborated a linkage between soil total phosphorus and urease activity, indirectly emphasizing the universality of phosphate mineral-urease microbial interactions and their critical role in the morphological transformation of Cd(II). Our findings highlight the functional dynamics of urease microorganisms in shaping soil mineral landscapes and regulating heavy metal mobility, with broad implications for soil microscale remediation strategies.
Collapse
Affiliation(s)
- Yonghui Xing
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wenjing He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Changshui Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Song Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yi Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuxin Tan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chenchen Qu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiuli Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
2
|
Le VVH, Gong Z, Maccario L, Bousquet E, Parra B, Dechesne A, Sørensen SJ, Nesme J. Birmingham-group IncP-1 α plasmids revisited: RP4, RP1 and RK2 are identical and their remnants can be detected in environmental isolates. Microb Genom 2025; 11:001381. [PMID: 40152918 PMCID: PMC11952213 DOI: 10.1099/mgen.0.001381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
RP4, RP1, RK2 and R68 were isolated from the multidrug-resistant bacterial wound isolates in 1969 in the Birmingham Accident Hospital, Birmingham, England, and collectively called Birmingham-group IncP-1α plasmids. These plasmids have been widely used as models to study different aspects of plasmid biology, develop genetic delivery systems and design plasmid vectors. Early studies showed that these plasmids conferred the same antibiotic resistance profile, had a similar size and were undistinguishable from each other using DNA heteroduplex electron microscopy and restriction endonuclease analyses. These observations have led to the widely held assumption that they are identical, although there has been no conclusive supporting evidence. In this work, we sequenced the plasmids RP1 and RP4 from our laboratory strain collection and compared these new sequences with the plasmids RP4 and RK2 assembled from a publicly available sequencing database, showing that the RP1, RP4 and RK2 plasmids are 60 095 bp in length and identical at the nucleotide resolution. Noteworthily, the plasmid sequence is highly conserved despite having been distributed to different labs over 50 years and propagated in different bacterial hosts, strengthening the previous observation that the bacterial host adapts to the RP4/RP1/RK2 plasmid rather than the opposite. In the updated RP4/RP1/RK2 sequence, we found a fusion gene, called pecM-orf2, that was formed putatively by a genetic deletion event. By searching for pecM-orf2 in the National Center for Biotechnology Information database, we detected remnants of the RP4/RP1/RK2 plasmid that carry features of laboratory-engineered vectors in bacterial environmental isolates, either in their chromosome or as a plasmid. This suggests a leak of these plasmids from the laboratory into the environment, which may subsequently impact bacterial evolution and raises concerns about the biocontainment of engineered plasmids when being handled in laboratory settings.
Collapse
Affiliation(s)
- Vuong Van Hung Le
- Living Systems Institute, University of Exeter, Exeter, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhuang Gong
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lorrie Maccario
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Emma Bousquet
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Boris Parra
- Laboratorio de Investigación de Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Concepción, Chile
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Søren J. Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Manzoor M, Guan DX, Ma LQ. Plant-microbiome interactions for enhanced crop production under cadmium stress: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178538. [PMID: 39879949 DOI: 10.1016/j.scitotenv.2025.178538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Cadmium (Cd) is a toxic heavy metal that has detrimental effects on agriculture crops and human health. Both natural and anthropogenic processes release Cd into the environment, elevating its contents in soils. Under Cd stress, strong plant-microbiome interactions are important in improving crop production, but a systematic review is still missing. This review demonstrates the importance of microbiomes and their interactions with plants in mitigating Cd toxicity and promoting crop growth. Endogenous and exogenous microbiomes play a role to enhance plant's ability to respond to Cd stress. Specifically, the rhizosphere microbiome, which includes plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, endosphere microbiome, and phyllosphere microbiome, are involved in Cd accumulation, immobilization, and translocation, and Cd-induced stress management. The mechanisms underlying these plant-microbiome interactions vary depending on the species and varieties of crops, composition and diversity of the microbiome, and level of Cd stress. Among the microbiome-mediated approaches, biosorption, bioprecipitation, and bioaccumulation are promising for Cd remediation in soil. Additionally, the endosphere microbiome, particularly Cd resistant endophytes, reduces Cd toxicity, increases the expression of Cd efflux genes, and enhances crop growth through regulating crops' antioxidant machinery and endogenous hormones. Furthermore, improved agricultural practices modulate the soil and plant microbiomes, thereby reducing Cd stress and increasing crop productivity.
Collapse
Affiliation(s)
- Maria Manzoor
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Fang LR, Ren JY, Sun K, Zhang W, He W, Dai CC. Sulfate-reducing bacteria block cadmium and lead uptake in rice by regulating sulfur metabolism. J Appl Microbiol 2025; 136:lxaf022. [PMID: 39870375 DOI: 10.1093/jambio/lxaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
AIM This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination. METHODS AND RESULTS We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through a hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.60% and 39.88%, respectively, and Pb levels by 35.96% and 51.54%. We also compared two treatment groups, inoculated with SYN1 and exogenously added GSH, and found that both enhanced the antioxidant response of the plants, increased the lignin and GSH contents and the expression of genes related to the phenylpropane biosynthesis pathway (OsCAD, Os4CL, OsCOMT, OsPOD, OsC3H, and OsPAL), and decreased the expression of heavy metal transporter genes (OsHMA2, OsIRT1) expression. There were no significant differences between the two treatments. CONCLUSIONS Sulfate-reducing bacteria produce GSH through the sulfur assimilation pathway, and GSH can directly chelate heavy metals or enhance plant antioxidant enzyme activities and regulate processes such as the uptake and translocation of heavy metals, thus enhancing plant resistance to heavy metal toxicity.
Collapse
Affiliation(s)
- Li-Rong Fang
- College of Life Sciences, Nanjing Normal University, Wenyuan street, Nanjing 210023, China
| | - Jing-Yu Ren
- College of Life Sciences, Nanjing Normal University, Wenyuan street, Nanjing 210023, China
| | - Kai Sun
- College of Life Sciences, Nanjing Normal University, Wenyuan street, Nanjing 210023, China
| | - Wei Zhang
- College of Life Sciences, Nanjing Normal University, Wenyuan street, Nanjing 210023, China
| | - Wei He
- College of Life Sciences, Nanjing Normal University, Wenyuan street, Nanjing 210023, China
| | - Chuan-Chao Dai
- College of Life Sciences, Nanjing Normal University, Wenyuan street, Nanjing 210023, China
| |
Collapse
|
5
|
Yuan R, Li W, Salam M, Li H. Nano-biochar reduces sustainable remediation of cadmium-contaminated soil more than micro-biochar: Evidence from cadmium removal and Eisenia foetida toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125479. [PMID: 39644949 DOI: 10.1016/j.envpol.2024.125479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Micro- (M-BC) and nano-biochar (N-BC) particles are ready to be disintegrated from biochar (BC), which is extensively applied to remediate heavy metal-contaminated soil. Still, its effects on the remediation efficiency remain poorly understood. This study investigated the interactions between the BC particles (M-BC and N-BC) and Eisenia foetida (E. foetida) in cadmium (Cd)-contaminated soils. Results indicated that M-BC has weak negative effect on E. foetida with survival rates of ≥85% as it is failed to be internalized. The interactive effects between M-BC/N-BC and Cd reduced the mobility of Cd, leading to low avoidance behavior of E. foetida. The synergistic effect of 0.1% M-BC and E. foetida caused pH regulation, BC diffusion and alternation of soil microbial community in the soil. This favored the remediation of Cd-contaminated soils with 56.2% Cd fixation efficiency identified. Conversely, internalization of Cd-loaded N-BC by E. foetida was recorded when 0.1% N-BC was amended in the soil. This triggered DNA damage, antioxidant suppression, antiapoptotic inhibition, digestion impairment, reproductive decline, and survival rates reduction (55%) in E. foetida, indicating the essential role of E. foetida in the soil is likely to be depressed. These findings are helpful to understand the potential negative effects of BC application in soil remediation.
Collapse
Affiliation(s)
- Ruoyu Yuan
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Wei Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
6
|
Wang M, Yu L, Wang J, Qin L, Sun X, Liu J, Han Y, Chen S. Chemotaxis of rhizosphere Pseudomonas sp. induced by foliar spraying of lanthanum reduces cadmium uptake by pakchoi. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136625. [PMID: 39581036 DOI: 10.1016/j.jhazmat.2024.136625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Foliar application of rare earth micronutrient of lanthanum (La) exhibits great potential in reducing cadmium (Cd) uptake in crops, the underlying mechanisms controlling the interaction between Cd toxicity-relieved crops and soil microbiota are poorly understood. In this study, LaCl3 with the concentrations of 10 and 30 μM was sprayed on pakchoi (Brassica chinensis L.) planting on Cd contaminated solution and soil to determine the changes of root metabolites and rhizosphere bacterial communities. Compared to the control, Cd concentration in pakchoi leaves was significantly decreased by 30.9 % and 22.6 % with the high group under both hydroponic and pot culture by applying 30 μM LaCl3. Herein, the concrete evidence is provided that pakchoi plants in response to foliar-spraying La under soil or solution Cd toxicity can promote the root secretion of amino acids, resulting in a strong enrichment of nitrogen-related microorganisms. To probe this linkage, a Pseudomonas representative specie was isolated that had the ability of consuming alanine, the most oversecreted root exudate due to La application. Further results demonstrated that this strain had the capacities for alleviating Cd toxicity and enhancing crop growth by immobilizing Cd and secreting plant-beneficial metabolites. This study reveals a plant-extrudate-microbiome feedback loop for responding to La-relieved Cd toxicity in crops by the chemotaxis of rhizosphere Pseudomonas toward alanine secreted by pakchoi.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lei Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Luyao Qin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyi Sun
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaxiao Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Han
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shibao Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
7
|
Xi JF, Zhou L, Zhang YS, Lin XY, Chen S, Xue RY, Zhou D, Li HB. Consuming probiotics protects against cadmium exposure from rice consumption while promotes gut health: An assessment based on a mouse model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177997. [PMID: 39671946 DOI: 10.1016/j.scitotenv.2024.177997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/17/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Cadmium (Cd) in rice constitutes a global health risk. It is crucial to develop strategies that not only reduce the bioavailability of Cd in rice but also confer additional health benefits. One potential approach involves the consumption of probiotics, which can bind Cd in the intestines and enhance gut health. The effects of consuming Akkermansia muciniphila, Bifidobacterium pseudolongum, and Psychrobacter sp. on the bioavailability of Cd in rice and gut health were evaluated using in vivo mouse bioassays and in vitro Cd immobilization assays. In mice fed Cd-contaminated rice without dietary calcium (Ca) and iron (Fe) supplementation (i.e., under conditions of mineral deficiency), the intake of these probiotics insignificantly reduced Cd accumulation in the kidneys and livers, although it did promote Cd excretion via feces. This outcome was primarily due to the competition for Ca and Fe between the probiotics and the host, which led to increased intestinal expression of Ca and Fe transporters under mineral-deficient conditions, thereby mitigating the probiotics' ability to reduce Cd bioavailability. Conversely, in mice fed Cd-contaminated rice with adequate dietary Ca and Fe (i.e., under conditions of mineral adequacy), probiotic intake significantly decreased Cd concentrations in the kidneys by 60.0 %-72.0 % compared to the control group exposed to Cd. Additionally, probiotic consumption fostered the growth of beneficial gut bacteria and strengthened intestinal tight junctions, reducing the inflammatory response in the intestines. These findings suggest that combining probiotics with sufficient Ca and Fe intake can effectively reduce dietary Cd exposure and enhance gut health.
Collapse
Affiliation(s)
- Jin-Feng Xi
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Zhu X, Ju W, Beiyuan J, Chao H, Zhang Z, Chen L, Cui Q, Qiu T, Zhang W, Huang M, Shen Y, Fang L. Bacterial consortium amendment effectively reduces Pb/Cd bioavailability in soil and their accumulation in wheat. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122789. [PMID: 39369534 DOI: 10.1016/j.jenvman.2024.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/26/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Microbial remediation can maintain the sustainability of farmlands contaminated with heavy metals (HMs). However, the effects of bacterial consortium on crop growth and potential risks under HM stress, as well as its mechanisms, are still unclear compared with a single microorganism. Here, we investigated the effect of a bacterial consortium consisting of some HMs-resistant bacteria, including Bacillus cereus, Bacillus thuringiensis, and Herbaspirillum huttiense, on plant growth promotion and inhibition of Pb/Cd accumulation within different contaminated soil-wheat systems through pot experiments. The results showed that microbial inoculation alleviated HMs-induced growth inhibition by activating antioxidant enzymes and inhibiting lipid peroxidation, and enhanced plant growth in the bacterial consortium. Compared to a single strain (Bacillus cereus, Bacillus thuringiensis, or Herbaspirillum huttiense), the bacterial consortium was more conducive to improving root development and reducing the content of available HMs in soil (4.5-10.3%) and its transfer to shoot (4.3-8.4%). Moreover, bacterial consortium significantly increased soil enzyme activities and available nutrients, resulting in nearly twice that of a single strain on the effect of soil quality and plant growth. Correlation analysis and least square path analysis showed that the bacterial consortium could significantly reduce the HMs-enrichment/transport from soil to shoot than a single strain by regulating soil available HMs and biochemical properties, as well as the parameters for plant growth. This study emphasizes that bacterial consortium promotes the growth of the crop wheat and reduces the risk of HMs entering human food chain, further providing an effective strategy for the safe production of food crops in contaminated soils.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Xingzhi, Zhejiang Normal University, Jinhua, 321000, China
| | - Wenliang Ju
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jingzi Beiyuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Herong Chao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhiqin Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; School of Materials Engineering, Shanxi College of Technology, Shuozhou, 036000, China
| | - Li Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Qingliang Cui
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China
| | - Tianyi Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wenju Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Huang
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yufang Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
9
|
Liu N, Zhao J, Du J, Hou C, Zhou X, Chen J, Zhang Y. Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174237. [PMID: 38942300 DOI: 10.1016/j.scitotenv.2024.174237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Since the 1980s, there has been increasing concern over heavy metal pollution remediation. However, most research focused on the individual remediation technologies for heavy metal pollutants in either soil or water. Considering the potential migration of these pollutants, it is necessary to explore effective integrated remediation technologies for soil and water heavy metals. This review thoroughly examines non-phytoremediation technologies likes physical, chemical, and microbial remediation, as well as green remediation approaches involving terrestrial and aquatic phytoremediation. Non-phytoremediation technologies suffer from disadvantages like high costs, secondary pollution risks, and susceptibility to environmental factors. Conversely, phytoremediation technologies have gained significant attention due to their sustainable and environmentally friendly nature. Enhancements through chelating agents, biochar, microorganisms, and genetic engineering have demonstrated improved phytoremediation remediation efficiency. However, it is essential to address the environmental and ecological risks that may arise from the prolonged utilization of these materials and technologies. Lastly, this paper presents an overview of integrated remediation approaches for addressing heavy metal contamination in groundwater-soil-surface water systems and discusses the reasons for the research gaps and future directions. This paper offers valuable insights for comprehensive solutions to heavy metal pollution in water and soil, promoting integrated remediation and sustainable development.
Collapse
Affiliation(s)
- Nengqian Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiang Zhao
- Shanghai Rural Revitalization Research Center, PR China
| | - Jiawen Du
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cheng Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
10
|
Zhu X, Beiyuan J, Ju W, Qiu T, Cui Q, Chen L, Chao H, Shen Y, Fang L. Inoculation with Bacillus thuringiensis reduces uptake and translocation of Pb/Cd in soil-wheat system: A life cycle study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174032. [PMID: 38885714 DOI: 10.1016/j.scitotenv.2024.174032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Microbial inoculation is an important strategy to reduce the supply of heavy metals (HMs) in soil-crop systems. However, the mechanisms of microbial inoculation for the availability of HMs in soil and their accumulation/transfer in crops remain unclear. Here, the inhibitory effect of inoculation with Bacillus thuringiensis on the migration and accumulation of Pb/Cd in the soil-wheat system during the whole growth period was investigated by pot experiments. The results showed that inoculation with Bacillus thuringiensis increased soil pH and available nutrients (including carbon, nitrogen, and phosphorus), and enhanced the activities of nutrient-acquiring enzymes. Dominance analysis showed that dissolved organic matter (DOM) is the key factor affecting the availability of HMs. The content of colored spectral clusters and humification characteristics of DOM were significantly improved by inoculation, which is conducive to reducing the availability of Pb/Cd, especially during the flowering stage, the decrease was 12.8 %. Inoculation decreased Pb/Cd accumulation in the shoot and the transfer from root to shoot, with the greatest decreases at the jointing and seedling stages (27.0-34.1 % and 6.9-11.8 %), respectively. At the maturity stage, inoculation reduced the Pb/Cd accumulation in grain (12.9-14.7 %) and human health risk (4.1-13.2 %). The results of Pearson correlation analysis showed that the availability of Pb/Cd was positively correlated with the humification of DOM. Least square path model analysis showed that Bacillus thuringiensis could significantly reduce Pb/Cd accumulation in the grain and human health risks by regulating DOM spectral characteristics, the availability of HMs in soil and metals accumulation/transport in wheat at different growth stages. This study revealed the inhibition mechanism of Bacillus thuringiensis on migration of Pb/Cd in a soil-wheat system from a viewpoint of a full life cycle, which offers a valuable reference for the in-situ remediation of HM-contaminated soil and the safe production of food crops in field.
Collapse
Affiliation(s)
- Xiaozhen Zhu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Jingzi Beiyuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China
| | - Wenliang Ju
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tianyi Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Qingliang Cui
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Li Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Herong Chao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Yufang Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Wang X, Guo N, Zhang Y, Wang G, Shi K. Cross-protection and cross-feeding between Enterobacter and Comamonas promoting their coexistence and cadmium tolerance in Oryza sativa L. Microbiol Res 2024; 286:127806. [PMID: 38924817 DOI: 10.1016/j.micres.2024.127806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/13/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Metabolic cross-feeding is a pervasive interaction between bacteria to acquire novel phenotypes. However, our current understanding of the survival mechanism for cross-feeding in cocultured bacterial biofilms under heavy-metal conditions remains limited. Herein, we found that Comamonas sp. A23 produces L-phenylalanine to activate the L-phenylalanine degradation pathway in Enterobacter sp. A11, enhancing biofilm formation and cadmium [Cd(II)] immobilization in A11. The genes responsible for L-phenylalanine-degradation (paaK) and cell attachment and aggregation (csgAD) are essential for biofilm formation and Cd(II) immobilization in A11 induced by L-phenylalanine. The augmentation of A11 biofilms, in turn, protects A23 under Cd(II) and H2O2 stresses. The plant-based experiments demonstrate that the induction of two rice Cd(II) transporters, OsCOPT4 and OsBCP1, by A11 and A23 enhances rice resistance against Cd(II) and H2O2 stresses. Overall, our findings unveil the mutual dependence between bacteria and rice on L-phenylalanine cross-feeding for survival under abiotic stress.
Collapse
Affiliation(s)
- Xing Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Naijiang Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
12
|
Tian Y, Li P, Chen X, He J, Tian M, Zheng Z, Hu R, Fu Z, Yi Z, Li J. R3 strain and Fe-Mn modified biochar reduce Cd absorption capacity of roots and available Cd content of soil by affecting rice rhizosphere and endosphere key flora. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116418. [PMID: 38696873 DOI: 10.1016/j.ecoenv.2024.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Microorganisms have a significant role in regulating the absorption and transportation of Cd in the soil-plant system. However, the mechanism by which key microbial taxa play a part in response to the absorption and transportation of Cd in rice under Cd stress requires further exploration. In this study, the cadmium-tolerant endophytic bacterium Herbaspirillum sp. R3 (R3) and Fe-Mn-modified biochar (Fe-Mn) were, respectively, applied to cadmium-contaminated rice paddies to investigate the effects of key bacterial taxa in the soil-rice system on the absorption and transportation of Cd in rice under different treatments. The results showed that both R3 and Fe-Mn treatments considerably decreased the content of cadmium in roots, stems and leaves of rice at the peak tillering stage by 17.24-49.28% in comparison to the control (CK). The cadmium content reduction effect of R3 treatment is better than that of Fe-Mn treatment. Further analysis revealed that the key bacterial taxa in rice roots under R3 treatment were Sideroxydans and Actinobacteria, and that their abundance showed a substantial positive correlation and a significant negative correlation with the capacity of rice roots to assimilate Cd from the surroundings, respectively. The significant increase in soil pH under Fe-Mn treatment, significant reduction in the relative abundances of Acidobacteria, Verrucomicrobia, Subdivision3 genera incertae sedis, Sideroxydans, Geobacter, Gp1, and Gp3, and the significant increase in the relative abundance of Thiobacillus among the soil bacterial taxa may be the main reasons for the decrease in available Cd content of the soil. In addition, both the R3 and Fe-Mn treatments showed some growth-promoting effects on rice, which may be related to their promotion of transformations of soil available nutrients. This paper describes the possible microbial mechanisms by which strain R3 and Fe-Mn biochar reduce Cd uptake in rice, providing a theoretical basis for the remediation of Cd contamination in rice and soil by utilizing key microbial taxa.
Collapse
Affiliation(s)
- Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Peng Li
- Hunan Soil and Fertilizer Institute, Hunan Academy of Agricultural Sciences, 410125, China
| | - Xinyu Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Jing He
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Meijie Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhongyi Zheng
- College of Education, Hunan Agricultural University, Changsha 410128, China
| | - Ruiwen Hu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhiqiang Fu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
13
|
Bai X, Bol R, Chen H, Cui Q, Qiu T, Zhao S, Fang L. A meta-analysis on crop growth and heavy metals accumulation with PGPB inoculation in contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134370. [PMID: 38688214 DOI: 10.1016/j.jhazmat.2024.134370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Plant growth-promoting bacteria (PGPB) offer a promising solution for mitigating heavy metals (HMs) stress in crops, yet the mechanisms underlying the way they operate in the soil-plant system are not fully understood. We therefore conducted a meta-analysis with 2037 observations to quantitatively evaluate the effects and determinants of PGPB inoculation on crop growth and HMs accumulation in contaminated soils. We found that inoculation increased shoot and root biomass of all five crops (rice, maize, wheat, soybean, and sorghum) and decreased metal accumulation in rice and wheat shoots together with wheat roots. Key factors driving inoculation efficiency included soil organic matter (SOM) and the addition of exogenous fertilizers (N, P, and K). The phylum Proteobacteria was identified as the keystone taxa in effectively alleviating HMs stress in crops. More antioxidant enzyme activity, photosynthetic pigment, and nutrient absorption were induced by it. Overall, using PGPB inoculation improved the growth performance of all five crops, significantly increasing crop biomass in shoots, roots, and grains by 33 %, 35 %, and 20 %, respectively, while concurrently significantly decreasing heavy metal accumulation by 16 %, 9 %, and 37 %, respectively. These results are vital to grasping the benefits of PGPB and its future application in enhancing crop resistance to HMs.
Collapse
Affiliation(s)
- Xiaohan Bai
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, 712100 Yangling, China
| | - Roland Bol
- Institute of Bio‑ and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Wilhelm Johnen Str, 52425 Jülich, Germany
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, 712100 Yangling, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, 712100 Yangling, China
| | - Linchuan Fang
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, 712100 Yangling, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, 430070 Wuhan, China.
| |
Collapse
|
14
|
Mei S, Bian W, Yang A, Xu P, Qian X, Yang L, Shi X, Niu A. The highly effective cadmium-resistant mechanism of Pseudomonas aeruginosa and the function of pyoverdine induced by cadmium. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133876. [PMID: 38428299 DOI: 10.1016/j.jhazmat.2024.133876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Pyoverdine (PVD) plays an important role in reducing cadmium (Cd) accumulation in plants. Some Pseudomonas aeruginosa (P. aeruginosa) species can produce PVD under Cd(Π) stress. However, the function of Cd(Π)-induced PVD remains unclear. In this study, we isolated a highly effective Cd(Π)-resistant P. aeruginosa which can secrete PVD under Cd(Π) stress and found that PVD secretion has a dose-dependent relationship with Cd(Π) concentration. PVD can form a PVD-Cd complex with Cd(Π), though the PVD-Cd complex is unable to be adsorbed by the cell or enter the cell, so the complexation of PVD and Cd(Π) impedes Cd(Π) adsorption on the cell surface and alleviates the oxidative stress, lipid peroxidation, and morphological destruction of the cell caused by Cd(Π) and effectively improves the resistance of P. aeruginosa to Cd(Π). In summary, our research results indicate that the Cd(Π) resistance mechanism of P. aeruginosa screened is the complexation of PVD for Cd(Π) and the adsorption of bacteria for Cd(Π); furthermore, PVD plays an important role in improving the Cd(Π)-resistant ability of bacteria. This study provides a deeper understanding of the highly effective Cd(Π) resistance mechanism of P. aeruginosa and the function of Cd(Π)-induced PVD in bacteria.
Collapse
Affiliation(s)
- Shixue Mei
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wanping Bian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Peng Xu
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiaoli Qian
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Linping Yang
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xianrong Shi
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Aping Niu
- College of Resources and Environmental Engineering, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
15
|
Guo J, Yang H, Wang C, Liu Z, Huang Y, Zhang C, Huang Q, Xue W, Sun Y. Inhibitory effects of Pseudomonas sp. W112 on cadmium accumulation in wheat grains: Reduced the bioavailability in soil and enhanced the interception by plant organs. CHEMOSPHERE 2024; 355:141828. [PMID: 38552800 DOI: 10.1016/j.chemosphere.2024.141828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Microorganisms play an important role in heavy metal bioremediation and soil fertility. The effects of soil inoculation with Pseudomonas sp. W112 on Cd accumulation in wheat were investigated by analyzing the transport, subcellular distribution and speciation of Cd in the soil and plants. Pseudomonas sp. W112 application significantly decreased Cd content in the roots, internode and grains by 10.2%, 29.5% and 33.0%, respectively, and decreased Cd transfer from the basal nodes to internodes by 63.5%. Treatment with strain W112 decreased the inorganic and water-soluble Cd content in the roots and increased the proportion of residual Cd in both the roots and basal nodes. At the subcellular level, the Cd content in the root cell wall and basal node cytosol increased by 19.6% and 61.8%, respectively, indicating that strain W112 improved the ability of the root cell wall and basal node cytosol to fix Cd. In the rhizosphere soil, strain W112 effectively colonized and significantly decreased the exchangeable Cd, carbonate-bound Cd and iron-manganese oxide-bound Cd content by 43.5%, 27.3% and 17.6%, respectively, while it increased the proportion of residual Cd by up to 65.2%. Moreover, a 3.1% and 23.5% increase in the pH and inorganic nitrogen content in the rhizosphere soil, respectively, was recorded. Similarly, soil bacterial community sequencing revealed that inoculating with strain W112 increased the abundance of Pseudomonas, Thauera and Azoarcus, which are associated with inorganic nitrogen metabolism, and decreased that of Acidobacteria, which is indicative of soil alkalinization. Hence, root application of Pseudomonas sp. W112 improved soil nitrogen availability and inhibited Cd accumulation in the wheat grains in a two-stage process: by reducing the Cd availability in the rhizosphere soil and by improving Cd interception and fixation in the wheat roots and basal nodes. Pseudomonas sp. W112 may be a suitable bioremediation agent for restoring Cd-contaminated wheat fields.
Collapse
Affiliation(s)
- Jiajia Guo
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China; Centre for Green Agricultural Inputs and MicroEcological Farming, Jinhe Jiannong (Beijing) Agricultural Biotechnology Co., Ltd., Chinese Academy of Agricultural Sciences, Beijing, 100020, People's Republic of China.
| | - Hao Yang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China; College of Resources and Environment, Northeast Agricultural University, Harbin, 1500302, People's Republic of China.
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Qingqing Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| |
Collapse
|
16
|
An L, Zhou C, Zhao L, Wei A, Wang Y, Cui H, Zheng S. Selenium-oxidizing Agrobacterium sp. T3F4 decreases arsenic uptake by Brassica rapa L. under a native polluted soil. J Environ Sci (China) 2024; 138:506-515. [PMID: 38135416 DOI: 10.1016/j.jes.2023.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 12/24/2023]
Abstract
Toxic arsenic (As) and trace element selenium (Se) are transformed by microorganisms but their complex interactions in soil-plant systems have not been fully understood. An As- and Se- oxidizing bacterium, Agrobacterium sp. T3F4, was applied to a native seleniferous As-polluted soil to investigate As/Se uptake by the vegetable Brassica rapa L. and As-Se interaction as mediated by strain T3F4. The Se content in the aboveground plants was significantly enhanced by 34.1%, but the As content was significantly decreased by 20.5% in the T3F4-inoculated pot culture compared to the control (P < 0.05). Similar result was shown in treatment with additional 5 mg/kg of Se(IV) in soil. In addition, the As contents in roots were significantly decreased by more than 35% under T3F4 or Se(IV) treatments (P<0.05). Analysis of As-Se-bacterium interaction in a soil simulation experiment showed that the bioavailability of Se significantly increased and As was immobilized with the addition of the T3F4 strain (P < 0.05). Furthermore, an As/Se co-exposure hydroponic experiment demonstrated that As uptake and accumulation in plants was reduced by increasing Se(IV) concentrations. The 50% growth inhibition concentration (IC50) values for As in plants were increased about one-fold and two-fold under co-exposure with 5 and 10 µmol/L Se(IV), respectively. In conclusion, strain T3F4 improves Se uptake but decreases As uptake by plants via oxidation of As and Se, resulting in decrease of soil As bioavailability and As/Se competitive absorption by plants. This provides a potential bioremediation strategy for Se biofortification and As immobilization in As-polluted soil.
Collapse
Affiliation(s)
- Lijin An
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunzhi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lipeng Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Wei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huimin Cui
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Liu J, He T, Yang Z, Peng S, Zhu Y, Li H, Lu D, Li Q, Feng Y, Chen K, Wei Y. Insight into the mechanism of nano-TiO 2-doped biochar in mitigating cadmium mobility in soil-pak choi system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169996. [PMID: 38224887 DOI: 10.1016/j.scitotenv.2024.169996] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
Soil cadmium (Cd) pollution poses severe threats to food security and human health. Previous studies have reported that both nanoparticles (NPs) and biochar have potential for soil Cd remediation. In this study, a composite material (BN) was synthesized using low-dose TiO2 NPs and silkworm excrement-based biochar, and the mechanism of its effect on the Cd-contaminated soil-pak choi system was investigated. The application of 0.5 % BN to the soil effectively reduced 24.8 % of diethylenetriaminepentaacetic acid (DTPA) Cd in the soil and promoted the conversion of Cd from leaching and HOAc-extractive to reducible forms. BN could improve the adsorption capacity of soil for Cd by promoting the formation of humic acid (HA) and increasing the cation exchange capacity (CEC), as well as activating the oxygen-containing functional groups such as CO and CO. BN also increased soil urease and catalase activities and improved the synergistic network among soil bacterial communities to promote soil microbial carbon (C) and nitrogen (N) cycling, thus enhancing Cd passivation. Moreover, BN increased soil biological activity-associated metabolites like T-2 Triol and altered lipid metabolism-related fatty acids, especially hexadecanoic acid and dodecanoic acid, crucial for bacterial Cd tolerance. In addition, BN inhibited Cd uptake and root-to-shoot translocation in pak choi, which ultimately decreased Cd accumulation in shoots by 51.0 %. BN significantly increased the phosphorus (P) uptake in shoots by 59.4 % by improving the soil microbial P cycling. This may serve as a beneficial strategy for pak choi to counteract Cd toxicity. These findings provide new insights into nanomaterial-doped biochar for remediation of heavy metal contamination in soil-plant systems.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tieguang He
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, China
| | - Zhixing Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China; CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shirui Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Yanhuan Zhu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Dan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Qiaoxian Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Yaxuan Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Kuiyuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Yanyan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530005, China.
| |
Collapse
|
18
|
Lin L, Wu X, Deng X, Lin Z, Liu C, Zhang J, He T, Yi Y, Liu H, Wang Y, Sun W, Xu Z. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts. ENVIRONMENTAL RESEARCH 2024; 245:118054. [PMID: 38157968 DOI: 10.1016/j.envres.2023.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.
Collapse
Affiliation(s)
- Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou, 510656, China
| | - Tao He
- College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Yunqiang Yi
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
19
|
Li J, Ou Y, Wang L, Zheng Y, Xu W, Peng J, Zhang X, Cao Z, Ye J. Responses of a polycyclic aromatic hydrocarbon-degrading bacterium, Paraburkholderia fungorum JT-M8, to Cd (II) under P-limited oligotrophic conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133123. [PMID: 38056271 DOI: 10.1016/j.jhazmat.2023.133123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/28/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
For the bioremediation of mixed-contamination sites, studies on polycyclic aromatic hydrocarbon (PAH) degradation or Cd (II) tolerance in bacteria are commonly implemented in nutrient-rich media. In contrast, in the field, inocula usually encounter harsh oligotrophic habitats. In this study, the environmental strain Paraburkholderia fungorum JT-M8 was used to explore the overlooked Cd (II) defense mechanism during PAH dissipation under P-limited oligotrophic condition. The results showed that the growth and PAH degradation ability of JT-M8 under Cd (II) stress were correlated with phosphate contents and exhibited self-regulating properties. Phosphates mainly affected the Cd (II) content in solution, while the cellular distribution of Cd (II) depended on Cd (II) levels; Cd (II) was mainly located in the cytoplasm when exposed to less Cd (II), and vice versa. The unique Cd (II) detoxification pathways could be classified into three aspects: (i) Cd (II) ionic equilibrium and dose-response effects regulated by environmental matrices (phosphate contents); (ii) bacterial physiological self-regulation, e.g., cell surface-binding, protein secretion and active transport systems; and (iii) specific adaptive responses (flagellum aggregation). This study emphasizes the importance of considering culture conditions when assessing the metal tolerance and provides new insight into the bacterial detoxification process of complex PAH-Cd (II) pollutants.
Collapse
Affiliation(s)
- Jinghua Li
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China.
| | - Yiwen Ou
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Lijuan Wang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yue Zheng
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Weiyun Xu
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jianbiao Peng
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China
| | - Xin Zhang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China
| | - Junpei Ye
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China; International Joint Laboratory on Key Techniques in Water Treatment, Xinxiang, Henan 453007, PR China; Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China; Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, Henan 453007, PR China
| |
Collapse
|
20
|
Yang W, Sun T, Sun Y. Adsorption mechanism of Cd 2+ on microbial inoculant and its potential for remediation Cd-polluted farmland soils. CHEMOSPHERE 2024; 352:141349. [PMID: 38307335 DOI: 10.1016/j.chemosphere.2024.141349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The adsorption characteristics and mechanism of Cd2+ on microbial inoculant (MI) mainly composed of Bacillus subtilis, Bacillus thuringiensis and Bacillus amyloliquefaciens, and its potential for remediation Cd polluted soils through batch adsorption and soil incubation experiments. It was found that the Freundlich isotherm model and the pseudo-second-order kinetics were more in line with the adsorption processes of Cd2+. The maximum adsorption capacity predicted by Langmuir isotherm model suggested that of MI was 57.38 mg g-1. Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) images exhibited the surface structure of MI was damaged to varying degrees after adsorption, and Cd element was distributed on the surface of MI through ion exchange. X-ray diffraction (XRD) results showed that CdCO3 was formed on the surface of MI. Moreover, the functional groups (-OH, C-H, and -NH) involved in the adsorption of Cd2+ through fourier transform infrared spectroscopy (FTIR). After applying MI to Cd-contaminated soil, it was found that soil pH, conductivity (EC) and soil organic matter (SOM) increased by 0.84 %-2.43 %, 31.6 %-241.48 %, and 8.11 %-24.1 %, respectively, when compared with the control treatments. The content of DTPA-Cd in the soils was significantly (P < 0.05) reduced by 15.48 %-29.68 % in contrast with CK, and the Cd speciation was transformed into a more stable residual fraction. The activities of urease, phosphatase and sucrose were increased by 3.5 %-45.18 %, 57.00 %-134.18 % and 52.51 %-70.52 %, respectively, compared with CK. Therefore, MI could be used as an ecofriendly and sustainable material for bioremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Wenhao Yang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA)/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA)/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
21
|
Luo Y, Liao M, Lu X, Xu N, Xie X, Gao W. Unveiling the performance of a novel alkalizing bacterium Enterobacter sp. LYX-2 in immobilization of available Cd. J Environ Sci (China) 2024; 137:245-257. [PMID: 37980012 DOI: 10.1016/j.jes.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 11/20/2023]
Abstract
A novel alkalizing strain Enterobacter sp. LYX-2 that could resist 400 mg/L Cd was isolated from Cd-contaminated soil, which immobilized 96.05% Cd2+ from medium. Cd distribution analysis demonstrated that more than half of the Cd2+ was converted into extracellular precipitated Cd through mobilization of the alkali-producing mechanism by the strain LYX-2, achieving the high immobilization efficiency of Cd2+. Biosorption experiments revealed that strain LYX-2 had superior biosorption capacity of 48.28 mg/g for Cd. Pot experiments with Brassica rapa L. were performed with and without strain LYX-2. Compared to control, 15.92% bioavailable Cd was converted to non-bioavailable Cd and Cd content in aboveground vegetables was decreased by 37.10% with addition of strain LYX-2. Available Cd was mainly immobilized through extracellular precipitation, cell-surface biosorption and intracellular accumulation of strain LYX-2, which was investigated through Cd distribution, Scanning Electron Microscope and Energy-Dispersive X-ray Spectroscopy (SEM-EDS), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM) analysis. In addition, the application of strain LYX-2 significantly promoted the growth of vegetables about 2.4-fold. Above results indicated that highly Cd-resistant alkalizing strain LYX-2, as a novel microbial passivator, had excellent ability and reuse value to achieve the remediation of Cd-contaminated soil coupled with safe production of vegetables simultaneously.
Collapse
Affiliation(s)
- Yixin Luo
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Min Liao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| | - Xiongxiong Lu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Na Xu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xiaomei Xie
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; National Demonstration Center for Experimental Environmental and Resources Education, Zhejiang University, Hangzhou 310058, China.
| | - Weiming Gao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; National Demonstration Center for Experimental Environmental and Resources Education, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Li X, Liang LM, Hua ZB, Zhou XK, Huang Y, Zhou JH, Cao Y, Liu JJ, Liu T, Mo MH. Eco-friendly management of Meloidogyne incognita in cadmium-contaminated soil by using nematophagous fungus Purpureocillium lavendulum YMF1.683: Efficacy and mechanism. ENVIRONMENTAL RESEARCH 2024; 244:117930. [PMID: 38103771 DOI: 10.1016/j.envres.2023.117930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Root-knot nematodes (RKNs) are distributed globally, including in agricultural fields contaminated by heavy metals (HM), and can cause serious crop damages. Having a method that could control RKNs in HM-contaminated soil while limit HM accumulation in crops could provide significant benefits to both farmers and consumers. In this study, we showed that the nematophagous fungus Purpureocillium lavendulum YMF1.683 exhibited a high nematocidal activity against the RKN Meloidogyne incognita and a high tolerance to CdCl2. Comparing to the P. lavendulum YMF1.838 which showed low tolerance to Cd2+, strain YMF1.683 effectively suppressed M. incognita infection and significantly reduced the Cd2+ uptake in tomato root and fruit in soils contaminated by 100 mg/kg Cd2+. Transcriptome analyses and validation of gene expression by RT-PCR revealed that the mechanisms contributed to high Cd-resistance in YMF1.683 mainly included activating autophagy pathway, increasing exosome secretion of Cd2+, and activating antioxidation systems. The exosomal secretory inhibitor GW4869 reduced the tolerance of YMF1.683 to Cd2+, which firstly demonstrated that fungal exosome was involved in HM tolerance. The up-regulation of glutathione synthesis pathway, increasing enzyme activities of both catalase and superoxide dismutase also played important roles in Cd2+ tolerance of YMF1.683. In Cd2+-contaminated soil, YMF1.683 limited Cd2+-uptake in tomato by up-regulating the genes of ABCC family in favor of HM sequestration in plant, and down-regulating the genes of ZIP, HMA, NRAMP, YSL families associated with HM absorption, transport, and uptake in plant. Our results demonstrated that YMF1.683 could be a promising bio-agent in eco-friendly management of M. incognita in Cd2+ contaminated soils.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Zhi-Bin Hua
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Xin-Kui Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Ying Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Jin-Hua Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Jian-Jin Liu
- Puer Corporation of Yunnan Tobacco Corporation, Puer, 650202, China
| | - Tong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
23
|
Guo J, Luo X, Zhang Q, Duan X, Yuan Y, Zheng S. Contributions of selenium-oxidizing bacteria to selenium biofortification and cadmium bioremediation in a native seleniferous Cd-polluted sandy loam soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116081. [PMID: 38335579 DOI: 10.1016/j.ecoenv.2024.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Selenium (Se) is a trace element that is essential for human health. Daily dietary Se intake is governed by the food chain through soil-plant systems. However, the cadmium (Cd) content tends to be excessive in seleniferous soil, in which Se and Cd have complex interactions. Therefore, it is a great challenge to grow crops containing appreciable amounts of Se but low amounts of Cd. We compared the effects of five Se-transforming bacteria on Se and Cd uptake by Brassica rapa L. in a native seleniferous Cd-polluted soil. The results showed that three Se-oxidizing bacteria (LX-1, LX-100, and T3F4) increased the Se content of the aboveground part of the plant by 330.8%, 309.5%, and 724.3%, respectively, compared to the control (p < 0.05). The three bacteria also reduced the aboveground Cd content by 15.1%, 40.4%, and 16.4%, respectively (p < 0.05). In contrast, the Se(IV)-reducing bacterium ES2-45 and weakly Se-transforming bacterium LX-4 had no effect on plant Se uptake, although they did decrease the aboveground Cd content. In addition, the three Se-oxidizing bacteria increased the Se available in the soil by 38.4%, 20.4%, and 24.0%, respectively, compared to the control (p < 0.05). The study results confirm the feasibility of using Se-oxidizing bacteria to simultaneously enhance plant Se content and reduce plant Cd content in seleniferous Cd-polluted soil.
Collapse
Affiliation(s)
- Jiayi Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiong Luo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qingyun Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xuanshuang Duan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongqiang Yuan
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shixue Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
24
|
Wang X, Zhong L, Huo X, Guo N, Zhang Y, Wang G, Shi K. Chromate-induced methylglyoxal detoxification system drives cadmium and chromate immobilization by Cupriavidus sp. MP-37. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123194. [PMID: 38145638 DOI: 10.1016/j.envpol.2023.123194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The detoxification of cadmium (Cd) or chromium (Cr) by microorganisms plays a vital role in bacterial survival and restoration of the polluted environment, but how microorganisms detoxify Cd and Cr simultaneously is largely unknown. Here, we isolated a bacterium, Cupriavidus sp. MP-37, which immobilized Cd(II) and reduced Cr(VI) simultaneously. Notably, strain MP-37 exhibited variable Cd(II) immobilization phenotypes, namely, cell adsorption and extracellular immobilization in the co-presence of Cd(II) and Cr(VI), while cell adsorption in the presence of Cd(II) alone. To unravel Cr(VI)-induced extracellular Cd(II) immobilization, proteomic analysis was performed, and methylglyoxal-scavenging protein (glyoxalase I, GlyI) and a regulator (YafY) showed the highest upregulation in the co-presence of Cd(II) and Cr(VI). GlyI overexpression reduced the intracellular methylglyoxal content and increased the immobilized Cd(II) content in extracellular secreta. The addition of lactate produced by GlyI protein with methylglyoxal as substrate increased the Cd(II) content in extracellular secreta. Reporter gene assay, electrophoretic mobility shift assay, and fluorescence quenching assay demonstrated that glyI expression was induced by Cr(VI) but not by Cd(II), and that YafY positively regulated glyI expression by binding Cr(VI). In the pot experiment, inoculation with the MP-37 strain reduced the Cd content of Oryza sativa L., and their secreted lactate reduced the Cr accumulation in Oryza sativa L. This study reveals that Cr(VI)-induced detoxification system drives methylglyoxal scavenging and Cd(II) extracellular detoxification in Cd(II) and Cr(VI) co-existence environment.
Collapse
Affiliation(s)
- Xing Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Limin Zhong
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xueqi Huo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Naijiang Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
25
|
Yan Z, Wang Z, Si G, Chen G, Feng T, Liu C, Chen J. Bacteria-loaded biochar for the immobilization of cadmium in an alkaline-polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1941-1953. [PMID: 38044401 DOI: 10.1007/s11356-023-31299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The combination of biochar and bacteria is a promising strategy for the remediation of Cd-polluted soils. However, the synergistic mechanisms of biochar and bacteria for Cd immobilization remain unclear. In this study, the experiments were conducted to evaluate the effects of the combination of biochar and Pseudomonas sp. AN-B15, on Cd immobilization, soil enzyme activity, and soil microbiome. The results showed that biochar could directly reduce the motility of Cd through adsorption and formation of CdCO3 precipitates, thereby protecting bacteria from Cd toxicity in the solution. In addition, bacterial growth further induces the formation of CdCO3 and CdS and enhances Cd adsorption by bacterial cells, resulting in a higher Cd removal rate. Thus, bacterial inoculation significantly enhances Cd removal in the presence of biochar in the solution. Moreover, soil incubation experiments showed that bacteria-loaded biochar significantly reduced soil exchangeable Cd in comparison with other treatments by impacting soil microbiome. In particular, bacteria-loaded biochar increased the relative abundance of Bacillus, Lysobacter, and Pontibacter, causing an increase in pH, urease, and arylsulfatase, thereby passivating soil exchangeable Cd and improving soil environmental quality in the natural alkaline Cd-contaminated soil. Overall, this study provides a systematic understanding of the synergistic mechanisms of biochar and bacteria for Cd immobilization in soil and new insights into the selection of functional strain for the efficient remediation of the contaminated environments by bacterial biochar composite.
Collapse
Affiliation(s)
- Zhengjian Yan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Zitong Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guangzheng Si
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guohui Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China.
| |
Collapse
|
26
|
Wang X, Teng Y, Wang X, Xu Y, Li R, Sun Y, Dai S, Hu W, Wang H, Li Y, Fang Y, Luo Y. Nitrogen transfer and cross-feeding between Azotobacter chroococcum and Paracoccus aminovorans promotes pyrene degradation. THE ISME JOURNAL 2023; 17:2169-2181. [PMID: 37775536 PMCID: PMC10689768 DOI: 10.1038/s41396-023-01522-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Nitrogen is a limiting nutrient for degraders function in hydrocarbon-contaminated environments. Biological nitrogen fixation by diazotrophs is a natural solution for supplying bioavailable nitrogen. Here, we determined whether the diazotroph Azotobacter chroococcum HN can provide nitrogen to the polycyclic aromatic hydrocarbon-degrading bacterium Paracoccus aminovorans HPD-2 and further explored the synergistic interactions that facilitate pyrene degradation in nitrogen-deprived environments. We found that A. chroococcum HN and P. aminovorans HPD-2 grew and degraded pyrene more quickly in co-culture than in monoculture. Surface-enhanced Raman spectroscopy combined with 15N stable isotope probing (SERS - 15N SIP) demonstrated that A. chroococcum HN provided nitrogen to P. aminovorans HPD-2. Metabolite analysis and feeding experiments confirmed that cross-feeding occurred between A. chroococcum HN and P. aminovorans HPD-2 during pyrene degradation. Transcriptomic and metabolomic analyses further revealed that co-culture significantly upregulated key pathways such as nitrogen fixation, aromatic compound degradation, protein export, and the TCA cycle in A. chroococcum HN and quorum sensing, aromatic compound degradation and ABC transporters in P. aminovorans HPD-2. Phenotypic and fluorescence in situ hybridization (FISH) assays demonstrated that A. chroococcum HN produced large amounts of biofilm and was located at the bottom of the biofilm in co-culture, whereas P. aminovorans HPD-2 attached to the surface layer and formed a bridge-like structure with A. chroococcum HN. This study demonstrates that distinct syntrophic interactions occur between A. chroococcum HN and P. aminovorans HPD-2 and provides support for their combined use in organic pollutant degradation in nitrogen-deprived environments.
Collapse
Affiliation(s)
- Xia Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of the Chinese Academy of Sciences, 100049, Beijing, China.
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yi Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Shixiang Dai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenbo Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongzhe Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanning Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan Fang
- University of the Chinese Academy of Sciences, 100049, Beijing, China
- Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
27
|
Huang M, Shen S, Meng Z, Si G, Wu X, Feng T, Liu C, Chen J, Duan C. Mechanisms involved in the sequestration and resistance of cadmium for a plant-associated Pseudomonas strain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115527. [PMID: 37806135 DOI: 10.1016/j.ecoenv.2023.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Understanding Cd-resistant bacterial cadmium (Cd) resistance systems is crucial for improving microremediation in Cd-contaminated environments. However, these mechanisms are not fully understood in plant-associated bacteria. In the present study, we investigated the mechanisms underlying Cd sequestration and resistance in the strain AN-B15. These results showed that extracellular Cd sequestration by complexation in strain AN-B15 was primarily responsible for the removal of Cd from the solution. Transcriptome analyses have shown that the mechanisms of Cd resistance at the transcriptional level involve collaborative processes involving multiple metabolic pathways. The AN-B15 strain upregulated the expression of genes related to exopolymeric substance synthesis, metal transport, Fe-S cluster biogenesis, iron recruitment, reactive oxygen species oxidative stress defense, and DNA and protein repair to resist Cd-induced stress. Furthermore, inoculation with AN-B15 alleviated Cd-induced toxicity and reduced Cd uptake in the shoots of wheat seedlings, indicating its potential for remediation. Overall, the results improve our understanding of the mechanisms involved in Cd resistance in bacteria and thus have important implications for improving microremediation.
Collapse
Affiliation(s)
- Mingyu Huang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shili Shen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhuang Meng
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Guangzheng Si
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xinni Wu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; School of Agriculture, Yunnan University, Kunming 650091, China.
| |
Collapse
|
28
|
Zhao Z, Sun Y, Wang H, Yu Q. Regulation of cadmium-induced biofilm formation by artificial polysaccharide-binding proteins for enhanced phytoremediation. CHEMOSPHERE 2023; 342:140156. [PMID: 37714481 DOI: 10.1016/j.chemosphere.2023.140156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Phytoremediation is an economic way to attenuate soil heavy metal pollution, but is frequently limited by its low pollutant-removing efficiency. Recently, we revealed the close relation between polysaccharide-based biofilm formation and cadmium removal. In this study, for improving the phytoremediation efficiency, an artificial polysaccharide-binding protein was designed by synthetic biology techniques to regulate biofilm formation. The artificial protein Syn contained two polysaccharide-binding domains from the Ruminococcus flavefaciens CttA and the Clostridium cellulolyticum CipC, preferentially binding polysaccharides exposed on both cadmium-treated bacteria and plant roots. Under cadmium stress, Syn remarkably promoted bacterial polysaccharide production from 99 mg/L to 237 mg/L, leading to 1.23-fold higher biofilm biomass. During treatment of the remediation plants with exogenous cadmium-capturing bacteria, Syn improved root biofilm formation, with the root surface polysaccharide contents increasing by 79%, and the Log10 CFU/g root increasing from 7.01 to 7.80. Meanwhile, Syn remodeled the rhizosphere microbiome, especially increasing the abundance of the bacterial groups involved in biofilm formation and stress tolerance, e.g., Pseudomonas, Enterobacter, etc. Consequently, Syn promoted plant cadmium adsorption, with the cadmium-removing efficiency increasing from 17.2% to 33.8%. This study sheds light on synthetic biology-based regulation of biofilm formation for enhanced phytoremediation.
Collapse
Affiliation(s)
- Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| | - Ying Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Hairong Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
29
|
Xu Q, Zhang Y, Yang R, Li J, Chen J, Wang J, Wang G, Li M, Shi K. The utilization of Lysinibacillus bacterial powder to induce Fe plaque formation mitigates cadmium and chromium levels in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132825. [PMID: 39492105 DOI: 10.1016/j.jhazmat.2023.132825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
The presence of cadmium (Cd) and chromium (Cr) contamination in soil poses an environmental risk to food safety. Microorganisms are crucial for biotransforming heavy metals, but their limited survival in contaminated soils hinders their application in bioremediation. Here, we isolated Lysinibacillus sp. OR-15, which effectively removed Cd(II) and reduced Cr(VI) from the culture. Proteomic analyses and heterologous expression assays showed that QueF, an NADPH-dependent reductase, enhanced bacterial resistance to Cd(II) and Cr(VI), enhancing metal removal capacity. The dry bacterial powder, produced through deep liquid fermentation and spray drying, contained 2.3 × 1010 viable cells per gram. It effectively reduced Cd and Cr levels in rice grains and maintained a concentration of 105 per gram in soils even after 60 days of cultivation following one application. Scanning and microscopy analysis revealed that Lysinibacillus sp. OR-15 facilitated the formation of iron plaque on rice roots. The formation of iron plaque on the root surface serves as a protective barrier against the upward translocation of heavy metals. Our findings suggest that Lysinibacillus sp. OR-15 exhibits stable and effective properties as a factor for Cd and Cr adsorb on rice iron plaque, thus mitigating the levels of Cd and Cr in rice grains.
Collapse
Affiliation(s)
- Qing Xu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuxiao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ruijia Yang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jinfang Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiongxi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jingyi Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingshun Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
30
|
Fan R, Xie W, Ma H, Zhu M, Ma K, Yan X. Isolation of cadmium-resistant microbial strains and their immobilisation of cadmium in soil. Biodegradation 2023; 34:445-459. [PMID: 37043132 DOI: 10.1007/s10532-023-10026-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023]
Abstract
Six cadmium (Cd)-resistant microbial strains were isolated and their ability to immobilise Cd2+ in soil investigated. Cd-1, Cd-2, Cd-5, and Cd-6 were identified as Stenotrophomonas sp., Cd-3 as Achromobacter sp., and Cd-7 as Staphylococcus sp. The six strains showed a wide adaptation range for salinity and a strong tolerance to Cd2+. The effects of the initial Cd2+ concentration (1-100 mg/L), duration (18-72 h), temperature (10-40 °C), and pH (5.0-9.0) on the efficiency of Cd2+ removal were analysed. The results revealed that the Cd2+ removal rate was higher at an initial Cd2+ concentration of 5-100 mg/L than at 1 mg/L. The maximum Cd2+ removal effect was at a culture duration of 36 h, temperature of 10-35 °C, and pH of 5.0-7.0. X-ray diffraction (XRD) analysis revealed that the Cd2+ was immobilised by Stenotrophomonas sp. Cd-2 and Staphylococcus sp. Cd-7 through bio-precipitation. X-ray photoelectron spectroscopy (XPS) revealed that the Cd2+ was adsorbed by Stenotrophomonas sp. Cd-2, Achromobacter sp. Cd-3, and Staphylococcus sp. Cd-7. Fourier transform infrared spectroscopy (FTIR) analysis revealed that the isolates reacted with the Cd2+ mainly through the O-H, protein N-H, C-N, lipid C-H, fatty acid COO, polysaccharide C-O, P-O, and other functional groups, as well as with lipid molecules on the cell wall surfaces. Scanning electron microscopy (SEM) analysis revealed that there was little difference in the cells after Cd2+ treatment. The results of the soil remediation experiments indicated that the toxicity of Cd in soil could be effectively reduced using certain strains of microbe.
Collapse
Affiliation(s)
- Ruijuan Fan
- College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China.
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan, 750021, China.
| | - Weixia Xie
- College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China
| | - Heqin Ma
- College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China
| | - Mengke Zhu
- College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China
| | - Kun Ma
- Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, 750021, China
- National Key Laboratory Breeding Base of Northwest Land Degradation and Ecological Restoration, Ningxia University, Yinchuan, 750021, China
| | - Xingfu Yan
- College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan, 750021, China
| |
Collapse
|
31
|
Li C, Yao Y, Liu X, Chen H, Li X, Zhao M, Zhao H, Wang Y, Cheng Z, Wang L, Cheng J, Sun H. Integrated metabolomics, transcriptomics, and proteomics analyses reveal co-exposure effects of polycyclic aromatic hydrocarbons and cadmium on ryegrass (Lolium perenne L.). ENVIRONMENT INTERNATIONAL 2023; 178:108105. [PMID: 37517176 DOI: 10.1016/j.envint.2023.108105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) are prominent soil contaminants found in industrial sites, and their combined effects on plants are not yet fully understood. To investigate the mechanisms underlying the co-exposure of Cd and PAHs and identify key biomarkers for their co-effects, an integrated analysis of metabolomics, transcriptomics, and proteomics was conducted on ryegrass leaves cultivated in soil. In nontarget metabolomics analysis, nine differentially expressed metabolites that were specifically induced by the compound exposure were identified. When combined with the analysis of differentially expressed genes and proteins, it was determined that the major pathways involved in the response to the co-stress of Cd and PAHs were linoleic acid metabolism and phenylpropanoid biosynthesis. The upregulation of 12,13-dihydroxy-9Z-octadecenoic acid and the downregulation of sinapyl alcohol were identified as typical biomarkers, respectively. Compared to scenarios of single exposures, the compound exposure to Cd and PAHs disrupted the oxidation of linoleic acid, leading to alterations in the profiles of linoleate metabolites. Additionally, it intensified hydroxylation, carboxylation, and methylation processes, and interfered with reactions involving coenzyme A, thus inhibiting lignin production. As a result, oxidative stress was elevated, and the cell wall defense system in ryegrass was weakened. The findings of this study highlight the ecological risks associated with unique biological responses in plants co-exposed to Cd and PAHs in polluted soils.
Collapse
Affiliation(s)
- Cheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xiaosong Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiemin Cheng
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Zhang S, Ke C, Jiang M, Li Y, Huang W, Dang Z, Guo C. S(-II) reactivates Cd 2+-stressed Shewanella oneidensis via promoting low-molecular-weight thiols synthesis and activating antioxidant defense. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121516. [PMID: 36972810 DOI: 10.1016/j.envpol.2023.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Efficient remedies for living organisms including bacteria to counteract cadmium (Cd2+) toxicity are still highly needed. Plant toxicity studies have showed that exogenous S(-II) (including hydrogen sulfide and its ionic forms, i.e., H2S, HS-, and S2-) application can effectively alleviate adverse effects of Cd stress, but whether S(-II) could mitigate bacterial Cd toxicity remains unclear. In this study, S(-II) was applied exogenously to Cd-stressed Shewanella oneidensis MR-1 and the results showed that S(-II) can significantly reactivate impaired physiological processes including growth arrest and enzymatic ferric (Fe(III) reduction inhibition. The efficacy of S(-II) treatment is negatively correlated with the concentration and time length of Cd exposure. Energy-dispersive X-ray (EDX) analysis suggested the presence of cadmium sulfide inside cells treated with S(-II). Both compared proteomic analysis and RT-qPCR showed that enzymes associated with sulfate transport, sulfur assimilation, methionine, and glutathione biosynthesis were up-regulated in both mRNA and protein levels after the treatment, indicating S(-II) may induce the biosynthesis of functional low-molecular-weight (LMW) thiols to counteract Cd toxicity. Meanwhile, the antioxidant enzymes were positively modulated by S(-II) and thus the activity of intracellular reactive oxygen species was attenuated. The study demonstrated that exogenous S(-II) can effectively alleviate Cd stress for S. oneidensis likely through inducing intracellular trapping mechanisms and modulating cellular redox status. It suggested that S(-II) may be a highly effective remedy for bacteria such as S. oneidensis under Cd-polluted environments.
Collapse
Affiliation(s)
- Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| | - Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| | - Mengge Jiang
- Guangzhou Metro Group Co., Ltd., Guangzhou, 510335, China
| | - Yuancheng Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
| |
Collapse
|
33
|
Wang T, Yin Y, Zhang J, Guan H, Xu J, Liu X. Extracellular vesicles as a strategy for cadmium secretion in bacteria SH225. CHEMOSPHERE 2023; 324:138373. [PMID: 36906001 DOI: 10.1016/j.chemosphere.2023.138373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd), as one of the most carcinogenic substances, poses a great threat to human health. With the development of microbial remediation technology, the necessity for urgent research into the mechanism of Cd toxicity to bacteria has arisen. In this study, a highly Cd-tolerant strain (up to 225 mg/L) was isolated and purified from Cd-contaminated soil, which was identified by 16S rRNA as a strain of Stenotrophomonas sp., thus manually designated as SH225. By testing OD600 of the strain, we indicated that Cd concentrations below 100 mg/L had no discernible impact on the biomass of SH225. When the Cd concentration was over 100 mg/L, the cell growth was significantly inhibited, while the number of extracellular vesicles (EVs) was greatly elevated. After extraction, cell-secreted EVs were confirmed to contain large amounts of Cd cations, highlighting the crucial function of EVs in the Cd detoxification of SH225. Meanwhile, the TCA cycle was vastly enhanced, suggesting that the cells provided adequate energy supply for EVs transport. Thus, these findings emphasized the crucial role played by vesicles and TCA cycle in Cd detoxification.
Collapse
Affiliation(s)
- Tong Wang
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yiran Yin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiawen Zhang
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Haoran Guan
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xingmei Liu
- College of Environmental & Natural Resources, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
34
|
Xing Y, Liu S, Tan S, Jiang Y, Luo X, Hao X, Huang Q, Chen W. Core Species Derived from Multispecies Interactions Facilitate the Immobilization of Cadmium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4905-4914. [PMID: 36917516 DOI: 10.1021/acs.est.3c00486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbial consortia have opened new avenues for heavy-metal remediation. However, the limited understanding of the overall effect of interspecific interactions on remediation efficacy hinders its application. Here, the effects of multispecies growth and biofilm formation on Cd immobilization were explored from direct and multiple interactions through random combinations of two or three rhizosphere bacteria. In monocultures, Cd stress resulted in an average decrease in planktonic biomass of 26%, but through cooperation, the decrease was attenuated in dual (21%) and triple cultures (13%), possibly involving an increase in surface polysaccharides. More than 65% of the co-cultures exhibited induction of biofilm formation under Cd stress, which further enhanced the role of biofilms in Cd immobilization. Notably, excellent biofilm-forming ability or extensive social induction makes Pseudomonas putida and Brevundimonas diminuta stand out in multispecies biofilm formation and Cd immobilization. These two core species significantly increase the colonization of soil microorganisms on rice roots compared to the control, resulting in a 40% decrease in Cd uptake by rice. Our study enhances the understanding of bacterial interactions under Cd stress and provides a novel strategy for adjusting beneficial soil consortia for heavy-metal remediation.
Collapse
Affiliation(s)
- Yonghui Xing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Song Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shuxin Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yi Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
35
|
Zhao C, Yao J, Knudsen TŠ, Liu J, Zhu X, Ma B. Effect of goethite-loaded montmorillonite on immobilization of metal(loid)s and the micro-ecological soil response in non-ferrous metal smelting areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161283. [PMID: 36587687 DOI: 10.1016/j.scitotenv.2022.161283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In this work, the immobilization stabilization and mechanism of heavy metal(loid)s by goethite loaded montmorillonite (GMt) were investigated, and the soil microbial response was explored. The simulated acid rain leaching experiment showed that GMt had a higher acid tolerance and the more stable heavy metal(loid)s fixation ability. The soil incubation demonstrated that GMt significantly decreased the available Cd, Zn, Pb and As concentration. Interestingly, higher immobilization of heavy metals was observed by GMt in highly acid leached and acidic soils. The richness and diversity of bacterial communities improved after the addition of GMt. GMt induced the enrichment of the excellent functional bacteria of the phylum Proteobacteria as well as the genus Massilia and Sphingomonas. The main immobilization mechanisms of heavy metal(loid)s by GMt include electrostatic interaction, complexation, precipitation and oxidation. The addition of the GMt also optimizes the soil bacterial community structure, which further facilitates the immobilization of heavy metal(loid)s. Our results confirm that the novel GMt has a promising application in the immobilization and stabilization of heavy metal(loid)s contaminated soils in non-ferrous metal smelting areas.
Collapse
Affiliation(s)
- Chenchen Zhao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Tatjana Šolević Knudsen
- Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, University of Belgrade, Njegoševa 12, Belgrade 11000, Serbia
| | - Jianli Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaozhe Zhu
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bo Ma
- School of Water Resources and Environment, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
36
|
Liu H, Hong Z, Lin J, Huang D, Ma LQ, Xu J, Dai Z. Bacterial coculture enhanced Cd sorption and As bioreduction in co-contaminated systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130376. [PMID: 36423454 DOI: 10.1016/j.jhazmat.2022.130376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The bacterial interactions that regulate Cd sorption and As bioreduction in co-contaminated systems are poorly understood. We isolated two bacterial strains, i.e., Pseudomonas aeruginosa and Bacillus licheniformis from a Cd and As co-contaminated soil and compared the effects of monoculture and coculture on microbial Cd sorption and As bioreduction efficiency in the media with different Cd (0, 0.5, 5, 10, 50, 100 mg/L) and As(Ⅴ) (0, 90 mg/L) concentrations. Compared with monoculture, the bacterial coculture increased the Cd sorption efficiency by up to 32% and the As bioreduction (As(Ⅴ) to As(Ⅲ)) efficiency by up to 28%, associated with the increased abundance of As reduction gene arsB. Based on SEM-TEM and metabolomics, the enhanced efficiency was attributed to bacterial interactions, supported by the differential secretion of extracellular polymeric substances. Notably, the differential lipids and lipid-like molecules, and organoheterocyclic compounds resulted from bacterial interactions compared to monoculture exhibited the highest Cd sorption and As bioreduction. The increased efficiencies by bacterial coculture were verified by soil incubation experiments. These results provide insight on applying specific bacterial coculture and their metabolites to enhance Cd sorption and As bioreduction in effective and sustainable remediation of co-contaminated environments.
Collapse
Affiliation(s)
- Huaiting Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhiqi Hong
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Dan Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Feng W, Xiao X, Li J, Xiao Q, Ma L, Gao Q, Wan Y, Huang Y, Liu T, Luo X, Luo S, Zeng G, Yu K. Bioleaching and immobilizing of copper and zinc using endophytes coupled with biochar-hydroxyapatite: Bipolar remediation for heavy metals contaminated mining soils. CHEMOSPHERE 2023; 315:137730. [PMID: 36603675 DOI: 10.1016/j.chemosphere.2022.137730] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Copper and zinc are toxic heavy metals in soils that require development of feasible strategies for remediation of contaminated soils around the mine areas. In this study, the processing conditions and mechanisms of immobilization and bioleaching for remediation of highly contaminated soils with heavy metals are investigated. Soil remediation is carried out using a bioleaching-immobilization bipolar method. The results show that LSE03 bacteria provide efficient leaching result and immobilization on Cu2+ and Zn2+. Among the bacterial metabolites, cis, cis-muconic acid and isovaleric acid play major roles in the bioleaching process. The bacterial extracellular polymeric substances are rich in a variety of organic acids that show a significant decrease in content after the adsorption process, indicating that all of these substances are involved in the binding of heavy metals. Characterization of the endophytes and immobilizing agents with FTIR, TEM-mapping, and XPS techniques reveal the ability of both bacteria and composites to adsorb Cu-Zn as well as the main functional groups of -OH, -COOH, -PO43-, and -NH. According to the heavy metals species analyses, competitive adsorption experiments, and bioleaching desorption experiments, it is planned to carry out the bipolar remediation of contaminated soil through immobilization followed by bioleaching process. After bipolar remediation processing, 97.923% and 96.387% of available Cu and Zn are respectively removed. Soils fertility significantly increases in all cases. Our study provides a green, practical, and environmentally friendly treatment method for soils contaminated with high concentrations of heavy metals.
Collapse
Affiliation(s)
- Weiran Feng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Junjie Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Qicheng Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Li Ma
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Qifeng Gao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yuke Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yutian Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China; Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Guisheng Zeng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Kai Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resources Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| |
Collapse
|
38
|
Wang X, Xu Q, Hu K, Wang G, Shi K. A Coculture of Enterobacter and Comamonas Species Reduces Cadmium Accumulation in Rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:95-108. [PMID: 36366828 DOI: 10.1094/mpmi-09-22-0186-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation of cadmium (Cd) in plants is strongly impacted by soil microbes, but its mechanism remains poorly understood. Here, we report the mechanism of reduced Cd accumulation in rice by coculture of Enterobacter and Comamonas species. In pot experiments, inoculation with the coculture decreased Cd content in rice grain and increased the amount of nonbioavailable Cd in Cd-spiked soils. Fluorescence in situ hybridization and scanning electron microscopy detection showed that the coculture colonized in the rhizosphere and rice root vascular tissue and intercellular space. Soil metagenomics data showed that the coculture increased the abundance of sulfate reduction and biofilm formation genes and related bacterial species. Moreover, the coculture increased the content of organic matter, available nitrogen, and potassium and increased the activities of arylsulfatase, β-galactosidase, phenoloxidase, arylamidase, urease, dehydrogenase, and peroxidase in soils. In subsequent rice transcriptomics assays, we found that the inoculation with coculture activated a hypersensitive response, defense-related induction, and mitogen-activated protein kinase signaling pathway in rice. Heterologous protein expression in yeast confirmed the function of four Cd-binding proteins (HIP28-1, HIP28-4, BCP2, and CID8), a Cd efflux protein (BCP1), and three Cd uptake proteins (COPT4, NRAM5, and HKT6) in rice. Succinic acid and phenylalanine were subsequently proved to inhibit rice divalent Cd [Cd(II)] uptake and activate Cd(II) efflux in rice roots. Thus, we propose a model that the coculture protects rice against Cd stress via Cd immobilization in soils and reducing Cd uptake in rice. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qing Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Kang Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
39
|
Wu S, Wu K, Shi L, Sun X, Tan Q, Hu C. Recruitment of specific microbes through exudates affects cadmium activation and accumulation in Brassica napus. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130066. [PMID: 36193614 DOI: 10.1016/j.jhazmat.2022.130066] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Exploration of the mechanisms of cadmium (Cd) activation mediated by the rhizosphere process is important to advance our understanding of Cd accumulation in plants. In this study, two oilseed rape cultivars (L338, L351) with varied Cd accumulation traits were applied and the responses of their rhizosphere ecology to Cd stress were investigated by metabolome and microbiome. The results showed that shoot Cd accumulations in L338 accounted for 54.16% and 64.76% of those in L351 under low and high Cd contamination, respectively. Moreover, the cultivars response of rhizosphere process reflected that the lower pH and higher Cd mobility were assigned to the characters of L351, which were induced by the secretion of carboxylic acid (e.g. Acetaminophen cysteine, N-Fructosyl alliin) and the enrichment of bacterial taxa with the capacities of Cd resistant and activation (e.g. Sphingomonas, Flavobacterium, Neorhizobium, Altererythrobacter). Conclusively, the varied Cd accumulation traits of two oilseed rape cultivars were not only derived from the Cd transfer ability, it would be ascribed to Cd mobility regulated by rhizosphere processes as well. The results provide baseline data and a new perspective on the cultivar response of Cd accumulation, thus maintaining cleaner production of oilseed rape.
Collapse
Affiliation(s)
- Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Kongjie Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Libiao Shi
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| |
Collapse
|
40
|
Li M, Yao J, Sunahara G, Hawari J, Duran R, Liu J, Liu B, Cao Y, Pang W, Li H, Li Y, Ruan Z. Novel microbial consortia facilitate metalliferous immobilization in non-ferrous metal(loid)s contaminated smelter soil: Efficiency and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120042. [PMID: 36044947 DOI: 10.1016/j.envpol.2022.120042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/13/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Exposure to toxic metals from nonferrous metal(loid) smelter soils can pose serious threats to the surrounding ecosystems, crop production, and human health. Bioremediation using microorganisms is a promising strategy for treating metal(loid)-contaminated soils. Here, a native microbial consortium with sulfate-reducing function (SRB1) enriched from smelter soils can tolerate exposures to mixtures of heavy metal(loid)s (e.g., As and Pb) or various organic flotation reagents (e.g., ethylthionocarbamate). The addition of Fe2+ greatly increased As3+ immobilization compared to treatment without Fe2+, with the immobilization efficiencies of 81.0% and 58.9%, respectively. Scanning electronic microscopy-energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed that the As3+ immobilizing activity was related to the formation of arsenic sulfides (AsS, As4S4, and As2S3) and sorption/co-precipitation of pyrite (FeS2). High-throughput 16S rRNA gene sequencing of SRB1 suggests that members of Clostridium, Desulfosporosinus, and Desulfovibrio genera play an important role in maintaining and stabilizing As3+ immobilization activity. Metal(loid)s immobilizing activity of SRB1 was not observed at high and toxic total exposure concentrations (220-1181 mg As/kg or 63-222 mg Pb/kg). However, at lower concentrations, SRB1 treatment decreased bioavailable fractions of As (9.0%) and Pb (28.6%) compared to without treatment. Results indicate that enriched native SRB1 consortia exhibited metal(loid) transformation capacities under non-toxic concentrations of metal(loid)s for future bioremediation strategies to decrease mixed metal(loid)s exposure from smelter polluted soils.
Collapse
Affiliation(s)
- Miaomiao Li
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Geoffrey Sunahara
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Jalal Hawari
- École Polytechnique de Montréal, Département des génies civil, géologique et des mines, 2900 boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Jianli Liu
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Bang Liu
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ying Cao
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Wancheng Pang
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hao Li
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yangquan Li
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 100082, China
| | - Zhiyong Ruan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
41
|
Wang Y, Narayanan M, Shi X, Chen X, Li Z, Natarajan D, Ma Y. Plant growth-promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms. Front Microbiol 2022; 13:966226. [PMID: 36033871 PMCID: PMC9404692 DOI: 10.3389/fmicb.2022.966226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Heavy metal contamination in soils endangers humans and the biosphere by reducing agricultural yield and negatively impacting ecosystem health. In recent decades, this issue has been addressed and partially remedied through the use of “green technology,” which employs metal-tolerant plants to clean up polluted soils. Furthermore, the global climate change enhances the negative effects of climatic stressors (particularly drought, salinity, and extreme temperatures), thus reducing the growth and metal accumulation capacity of remediating plants. Plant growth-promoting bacteria (PGPB) have been widely introduced into plants to improve agricultural productivity or the efficiency of phytoremediation of metal-contaminated soils via various mechanisms, including nitrogen fixation, phosphate solubilization, phytohormone production, and biological control. The use of metal-tolerant plants, as well as PGPB inoculants, should hasten the process of moving this technology from the laboratory to the field. Hence, it is critical to understand how PGPB ameliorate environmental stress and metal toxicity while also inducing plant tolerance, as well as the mechanisms involved in such actions. This review attempts to compile the scientific evidence on this topic, with a special emphasis on the mechanism of PGPB involved in the metal bioremediation process [plant growth promotion and metal detoxification/(im)mobilization/bioaccumulation/transformation/translocation] and deciphering combined stress (metal and climatic stresses) tolerance.
Collapse
Affiliation(s)
- Yue Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhenlun Li
- College of Resources and Environment, Southwest University, Chongqing, China
| | | | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
- *Correspondence: Ying Ma,
| |
Collapse
|
42
|
Luo X, Wang Y, Lan Y, An L, Wang G, Li M, Zheng S. Microbial oxidation of organic and elemental selenium to selenite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155203. [PMID: 35421462 DOI: 10.1016/j.scitotenv.2022.155203] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is an essential trace element for life. Se reduction has attracted much attention in the microbial Se cycle, but there is less evidence for Se oxidation. In particular, it is unknown whether microorganisms oxidise organic Se(-II). In this study, four strains of bacteria, namely Dyella spp. LX-1 and LX-66, and Rhodanobacter spp. LX-99 and LX-100, isolated from seleniferous soil, were involved in the oxidation of selenomethionine (SeMet), selenocystine (SeCys2), selenourea and Se(0) to selenite (Se(IV)) in pure cultures. The oxidation rates of organic Se were more rapidly than those of Se(0) in liquid media. Then Se(0) and SeMet were used as examples, microbial oxidation was the predominant process for both additional Se(0) and SeMet in sterilised alkaline or acidic soils. The Se(IV) concentrations were significantly higher at pH 8.56 than at pH 5.25. In addition, water-soluble Se (SOLSe) and exchangeable and carbonate-bound Se (EXC-Se) fractions increased dramatically with these four Se-oxidising bacteria in unsterilised seleniferous soil. To our knowledge, this is the first study to find that various bacteria are involved in the oxidation of organic Se to Se oxyanions, bridging the gap of Se redox in the Se biogeochemical cycle.
Collapse
Affiliation(s)
- Xiong Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yan Lan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lijin An
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Mingshun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
43
|
Wu P, Rane NR, Xing C, Patil SM, Roh HS, Jeon BH, Li X. Integrative chemical and omics analyses reveal copper biosorption and tolerance mechanisms of Bacillus cereus strain T6. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129002. [PMID: 35490635 DOI: 10.1016/j.jhazmat.2022.129002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
A comprehensive understanding of the cellular response of microbes to metal stress is necessary for the rational development of microbe-based biosorbents for metal removal. The present study investigated the copper (Cu) sorption and resistance mechanism of Bacillus cereus strain T6, a newly isolated Cu-resistant bacterium, by integrative analyses of physiochemistry, genomics, transcriptomics, and metabolomics. The growth inhibition assay and biosorption determination showed that this bacterium exhibited high tolerance to Cu, with a minimum inhibitory concentration of 4.0 mM, and accumulated Cu by both extracellular adsorption and intracellular binding. SEM microscopic images and FTIR spectra showed significant cellular surface changes at the high Cu level but not at low, and the involvement of surface functional groups in the biosorption of Cu, respectively. Transcriptomic and untargeted metabolomic analyses detected 362 differentially expressed genes and 60 significantly altered metabolites, respectively. Integrative omics analyses revealed that Cu exposure dramatically induced a broad spectrum of genes involved in Cu transport and iron homeostasis, and suppressed the denitrification pathway, leading to significant accumulation of metabolites for metal transporter synthesis, membrane remolding, and antioxidant activities. The results presented here provide a new perspective on the intricate regulatory network of Cu homeostasis in bacteria.
Collapse
Affiliation(s)
- Ping Wu
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Niraj R Rane
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Chao Xing
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 26493, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| |
Collapse
|
44
|
Zhang Y, Xu Q, Wang G, Shi K. Indole-Acetic Acid Promotes Ammonia Removal Through Heterotrophic Nitrification, Aerobic Denitrification With Mixed Enterobacter sp. Z1 and Klebsiella sp. Z2. Front Microbiol 2022; 13:929036. [PMID: 35875564 PMCID: PMC9304994 DOI: 10.3389/fmicb.2022.929036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Mixed Enterobacter sp. Z1 and Klebsiella sp. Z2 displayed an outstanding ammonia removal capacity than using a single strain. Metabolomics, proteomics, and RNA interference analysis demonstrated that the HNAD process was closely related to indole-acetic acid (IAA). Under the cocultured conditions, the excess IAA produced by Z2 could be absorbed by Z1 to compensate for the deficiency of IAA in the cells. IAA directly induced the expression of denitrifying enzymes and further activated the IAA metabolism level, thus greatly improving the nitrogen removal ability of Z1. In turn, nitrate and nitrite induced the expression of key enzymes in the IAA pathways. Moreover, Z1 and Z2 enhanced two IAA metabolic pathways in the process of mixed removal process. The activated hydrolysis-redox pathway in Z1 reduced the oxidative stress level, and the activated decarboxylation pathway in Z2 promoted intracellular energy metabolism, which indirectly promoted the process of HNAD in the system.
Collapse
|
45
|
Xu ZM, Zhang YX, Wang L, Liu CG, Sun WM, Wang YF, Long SX, He XT, Lin Z, Liang JL, Zhang JX. Rhizobacteria communities reshaped by red mud based passivators is vital for reducing soil Cd accumulation in edible amaranth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154002. [PMID: 35231517 DOI: 10.1016/j.scitotenv.2022.154002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Red mud (RM) was constantly reported to immobilize soil cadmium (Cd) and reduce Cd uptake by crops, but few studies investigated whether and how RM influenced rhizobacteria communities, which was a vital factor determining Cd bioavailability and plant growth. To address this concern, high-throughput sequencing and bioinformatics were used to analyze microbiological mechanisms underlying RM application reducing Cd accumulation in edible amaranth. Based on multiple statistical models (Detrended correspondence analysis, Bray-Curtis, weighted UniFrac, and Phylogenetic tree), this study found that RM reduced Cd content in plants not only through increasing rhizosphere soil pH, but by reshaping rhizobacteria communities. Special taxa (Alphaproteobacteria, Gammaproteobacteria, Actinobacteriota, and Gemmatimonadota) associated with growth promotion, anti-disease ability, and Cd resistance of plants preferentially colonized in the rhizosphere. Moreover, RM distinctly facilitated soil microbes' proliferation and microbial biofilm formation by up-regulating intracellular organic metabolism pathways and down-regulating cell motility metabolic pathways, and these microbial metabolites/microbial biofilm (e.g., organic acid, carbohydrates, proteins, S2-, and PO43-) and microbial cells immobilized rhizosphere soil Cd via the biosorption and chemical chelation. This study revealed an important role of reshaped rhizobacteria communities acting in reducing Cd content in plants after RM application.
Collapse
Affiliation(s)
- Zhi-Min Xu
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Yu-Xue Zhang
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Chun-Guang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Wei-Min Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yi-Fan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sheng-Xing Long
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiao-Tong He
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zheng Lin
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jia-Lin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie-Xiang Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
46
|
Jiang Y, Zhang J, Wen Q, Zheng J, Zhang Y, Wei Q, Qin Y, Zhang X. Up-flow anaerobic column reactor for sulfate-rich cadmium-bearing wastewater purification: system performance, removal mechanism and microbial community structure. Biodegradation 2022; 33:239-253. [PMID: 35461432 DOI: 10.1007/s10532-022-09983-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
This study constructed an up-flow anaerobic column reactor fed with synthetic sulfate-rich cadmium (Cd(II))-bearing wastewater, for investigating its Cd(II) removal performance and mechanism. Long-term experiment results manifest that introducing Cd(II) into influent led to an enhanced sulfate removal but did not increase the effluent sulfide concentration, implying the CdS formation. When influent Cd(II) concentration was shifted from 50 to 100 mg/L, the median Cd(II) removal rate was increased from 13.6 to 32.2 mg/(L·d). Batch tests indicate that the uptake and sequestration function of anaerobes merely led to a small portion of Cd(II) removal. A majority of aqueous Cd(II) (86.3%) was eliminated by precipitation reactions. The generated precipitates were found to be dominantly presented in carbonate, Fe-Mn oxide, sulfide bound and residue forms, which account for 92.6-93.9% of total Cd content of sludge obtained at diverse operation phases. The crystallographic CdS (i.e., residue fraction) particles have nano-scale sizes, and the relatively high atomic ratio of S to Cd was likely due to the adsorption/deposition of other sulfides. The dominant sulfate-reducing bacteria (SRB) were recognized as Desulfurella, Desulforhabdus and Desulfovibrio, and the primary competitor with them for substrate utilization were identified to be methanogens.
Collapse
Affiliation(s)
- Yongrong Jiang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
| | - Jie Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
- School of Chemistry and Materials Engineering, Huizhou University, 46 Yanda Road, Huizhou, 516007, China
| | - Qianmin Wen
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China.
| | - Yuanyuan Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China.
| | - Qiaoyan Wei
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
| | - Yongli Qin
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
| | - Xuehong Zhang
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin, 541004, China
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin, 541006, China
| |
Collapse
|
47
|
Wu Q, Wang D, Zhang J, Chen C, Ge H, Xu H, Cai D, Wu Z. Synthesis of Iron-Based Carbon Microspheres with Tobacco Waste Liquid and Waste Iron Residue for Cd(II) Removal from Water and Soil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5557-5567. [PMID: 35451849 DOI: 10.1021/acs.langmuir.2c00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, a novel magnetic iron-based carbon microsphere was prepared by cohydrothermal treatment of tobacco waste liquid (TWL) and waste iron residue (WIR) to form WIR@TWL. After that, WIR@TWL was coated with sodium polyacrylate (S.P.) to fabricate WIR@TWL@SP, whose removal efficiency for bivalent cadmium (Cd(II)) was studied in water and soil. As a result, WIR@TWL@SP possessed a high Cd(II) removal efficiency, which could reach 98.5% within 2 h. The adsorption process was consistent with the pseudo-second-order kinetic model because of the higher value of adjusted R2 (0.99). The thermodynamic data showed that the adsorption process was spontaneous (ΔG° < 0) and exothermic (ΔH° = 32.42 KJ·mol-1 > 0). Cd(II) removal mechanisms also include cation exchange, electrostatic attraction, hydrogen-bond interaction, and cation-π interaction. Notably, pot experiments demonstrated that WIR@TWL@SP could effectively reduce Cd absorption by plants in water and soil. Thus, this study offers an effective method for remediating Cd(II)-contaminated water and soil and may have a practical application value.
Collapse
Affiliation(s)
- Qingchuan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Chaowen Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Hongjian Ge
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| |
Collapse
|
48
|
Li SQ, Li GD, Peng KM, Yang LH, Huang XF, Lu LJ, Liu J. The combined effect of Diversispora versiformis and sodium bentonite contributes on the colonization of Phragmites in cadmium-contaminated soil. CHEMOSPHERE 2022; 293:133613. [PMID: 35032512 DOI: 10.1016/j.chemosphere.2022.133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
To promote the colonization of Phragmites in Cd polluted, nutrient deprived and structural damaged soil, the combined remediation using chemical and microbial modifiers were carried out in potting experiments. The co-application of Diversispora versiformis and sodium bentonite significantly improved the soil structure and phosphorus utilization of the plant, while decreasing the content of cadmium bound by diethylenetriaminepentaacetic acid by 77.72%. As a result, the Phragmites height, tillers, and photosynthetic capacity were increased by 71.60%, 38.37%, and 17.54%, respectively. Further analysis suggested the co-application increased the abundance of phosphorus-releasing microbial communities like Pseudomonassp. and Gemmatimonadetes. Results of rhizosphere metabolites also proved that the signal molecule of lysophosphatidylcholine regulated the phosphorus fixation and utilization by the plant. This work finds composite modifiers are effective in the colonization of Phragmites in Cd contaminated soil by decreasing the bioavailable Cd, increasing the abundance of functional microbial communities and regulating the phosphorus fixation.
Collapse
Affiliation(s)
- Shuang-Qiang Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Gen-Dong Li
- Inner Mongolia Hetao Irrigation District Water Conservancy Development Center, Bayan Nur, 015000, China
| | - Kai-Ming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Li-Heng Yang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xiang-Feng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Li-Jun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai, 201210, China.
| |
Collapse
|
49
|
Wu S, Zhou Z, Zhu L, Zhong L, Dong Y, Wang G, Shi K. Cd immobilization mechanisms in a Pseudomonas strain and its application in soil Cd remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127919. [PMID: 34894511 DOI: 10.1016/j.jhazmat.2021.127919] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/11/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
In this study, we isolated a highly cadmium (Cd)-resistant bacterium, Pseudomonas sp. B7, which immobilized 100% Cd(II) from medium. Culturing strain B7 with Cd(II) led to the change of functional groups, mediating extracellular Cd(II) adsorption. Proteomics showed that a carbonic anhydrase, CadW, was upregulated with Cd(II). CadW expression in Escherichia coli conferred resistance to Cd(II) and increased intracellular Cd(II) accumulation. Fluorescence assays demonstrated that CadW binds Cd(II) and the His123 residue affected Cd(II) binding activity, indicating that CadW participates in intracellular Cd(II) sequestration. Chinese cabbage pot experiments were performed using strain B7 and silicate [Si(IV)]. Compared with the control, Cd content in aboveground parts significantly decreased by 21.3%, 29.4% and 32.9%, and nonbioavailable Cd in soil significantly increased by 129.4%, 45.0% and 148.7% in B7, Si(IV) and B7 +Si(IV) treatments, respectively. The application of Si(IV) alone reduced chlorophyll content by 20.8% and arylsulfatase activity in soil by 33.9%, and increased malonaldehyde activity by 15.0%. The application of strain B7 alleviated the negative effect of Si(IV) on plant and soil enzymes. Overall, application of Si(IV) is most conducive to the decreased Cd accumulation in plant, and strain B7 is beneficial to maintaining soil and plant health.
Collapse
Affiliation(s)
- Shijuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zijie Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lin Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Limin Zhong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yixuan Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
50
|
Lyu C, Qin Y, Chen T, Zhao Z, Liu X. Microbial induced carbonate precipitation contributes to the fates of Cd and Se in Cd-contaminated seleniferous soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126977. [PMID: 34481395 DOI: 10.1016/j.jhazmat.2021.126977] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Bioremediation based on microbial induced carbonate precipitation (MICP) was conducted in Cd-contaminated seleniferous soils with objective to investigate effects of MICP on the fates of Cd and Se in soils. Results showed that soil indigenous microorganisms could induce MICP process to stabilize Cd and mobilize Se without inputting exogenous urease-producing strain. After remediation, soluble Cd (SOL-Cd) and exchangeable Cd (EXC-Cd) concentrations were decreased respectively by 59.8% and 9.4%, the labile Cd measured by the diffusive gradients in thin-films technique (DGT) was decreased by 14.2%. The MICP stabilized Cd mainly by increasing soil pH and co-precipitating Cd during the formation of calcium carbonate. Compared with chemical extraction method, DGT technique performs better in reflecting Cd bioavailability in soils remediated with MICP since this technique could eliminate the interference of Ca2+. The increase in pH resulted in Se conversion from nonlabile fraction to soluble and exchangeable fractions, thus improving Se bioavailability. And Se in soil solution could adsorb to or co-precipitate with the insoluble calcium carbonate during MICP, which would partly weaken Se bioavailability. Taken together, MICP had positive effects on the migration of Se. In conclusion, MICP could stabilize Cd and improve Se availability simultaneously in Cd-contaminated seleniferous soils.
Collapse
Affiliation(s)
- Chenhao Lyu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Yongjie Qin
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Tian Chen
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China
| | - Zhuqing Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Xinwei Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China.
| |
Collapse
|