1
|
Lin X, Wang H, Zhang J, Jiang G, Xia X. Toxicokinetic Modeling for Intermittent Dietary Uptake of Per- and Polyfluoroalkyl Substances by Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:11493-11504. [PMID: 40464451 DOI: 10.1021/acs.est.5c03205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Dietary uptake plays an important role in fish bioaccumulation of per- and polyfluoroalkyl substances (PFAS). However, the existing toxicokinetic modeling for dietary uptake of PFAS is limited. In this study, adult zebrafish were exposed to diet-borne PFAS with diverse structures for 3 days, followed by a 12 day depuration. The PFAS levels in zebrafish were monitored and predicted by toxicokinetic models. The experimental results showed intermittent feeding caused a peak PFAS level during feeding intervals. A two-compartment model considering intermittent feeding can accurately describe the dietary uptake kinetics of PFAS and provide a robust estimation of assimilation efficiency. The extent of PFAS level fluctuation is determined by the elimination rate constant in the whole body. Subsequently, a physiologically based toxicokinetic (PBTK) model considering intermittent dietary uptake was developed to predict the internal body burden and tissue distribution of PFAS in zebrafish. The incorporation of intermittent feeding into the PBTK model significantly enhanced the model performance and provided PFAS level estimates within a factor of 2 for most of the experimental measurements during exposure. This study underscores the significant influence of intermittent dietary uptake on the internal body burden of PFAS in fish and advocates for its integration within the toxicokinetic model framework.
Collapse
Affiliation(s)
- Xiaohan Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Ronda K, Gauthier J, Singaravadivel K, Costa PM, Downey K, Wolff WW, Lysak DH, Pellizzari J, Meulen OV, Steiner K, Jenne A, Bastawrous M, Ng Z, Haber A, Goerling B, Busse V, Busse F, Elliot C, Mabury S, Ateia M, Muir DCG, Letcher RJ, Krishnamurthy K, Kleywegt S, Jobst KJ, Simpson MJ, Simpson AJ. NMR as a Discovery Tool: Exploration of Industrial Effluents Discharged Into the Environment. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2025. [PMID: 40360259 DOI: 10.1002/mrc.5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
NMR provides unprecedented molecular information, urgently needed by environmental researchers and policy makers. However, NMR is underutilized in environmental sciences due to the lack of available technologies, limited environmental-specific training opportunities, and easy-to-use workflows. NMR has considerable potential as a discovery tool for novel pollutants, and by-products, exemplified by the recent discovery of the degradation by-product of a rubber additive, 6PPD-quinone, now considered one of the most toxic compounds presently known. This work represents a proof-of-concept case study highlighting the use of NMR to profile effluents from 38 industries across Ontario, Canada. Wastewater effluents from various industrial sectors were analyzed using several 1D and 2D 1H/13C NMR and 19F experiments and were screened both unconcentrated and after lyophilization. Common species could be identified using human metabolic NMR databases, but environmental-specific NMR databases desperately need further development. An example of manually identifying unusual NMR signatures is included; these resulted from phosphinic and phosphonic acids originating from the electroplating industry, for which the environmental impacts are not well understood. Basic 1H NMR quantification is performed using ERETIC, while an optimized approach combining relaxation agents and steady-state-free-precession 19F NMR, to reduce detection limits (at 500 MHz) to sub-ppb (< 1 μg/L) in under 15 min, is demonstrated. The future potential of benchtop NMR (80 MHz) is also considered. This paper represents a guide to others interested in applying NMR spectroscopy to environmental media and demonstrates the potential of NMR as a complementary tool to assist MS in environmental pollutant and by-product discovery.
Collapse
Affiliation(s)
- Kiera Ronda
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Jeremy Gauthier
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Khanisha Singaravadivel
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Peter M Costa
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Katelyn Downey
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - William W Wolff
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Daniel H Lysak
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Jacob Pellizzari
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Owen Vander Meulen
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Katrina Steiner
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Amy Jenne
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Monica Bastawrous
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Zainab Ng
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | | | | | | | - Falko Busse
- Bruker Switzerland AG, Faellanden, Switzerland
| | | | - Scott Mabury
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Derek C G Muir
- Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Robert J Letcher
- Ecotoxicological and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada
| | | | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Myrna J Simpson
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Andre J Simpson
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Wang Q, Ruan Y, Shao Y, Jin L, Xie N, Yang X, Hong Y, Wang H, Tsujimoto A, Yasuhara M, Leung KMY, Lam PKS. Spatiotemporal Trend of PFAS in Estuarine Sediments: Insights into Chlorinated Polyfluoroalkyl Ether Sulfonate Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7377-7388. [PMID: 40172133 DOI: 10.1021/acs.est.5c02731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic long-lasting chemicals. Marine sediment is a major repository for PFAS in the environment; accordingly, this work investigated 45 legacy and emerging PFAS in samples of surface sediments and sediment cores (1940s-2020s) collected in the Pearl River outlets, its estuary, and the adjacent northern South China Sea (NSCS), one of the global pollution hotspots. The range of total PFAS concentrations in surface sediments from the river outlets and the NSCS was 244-14400 pg/g dry weight (dw) and 31.6-363 pg/g dw, respectively. In sediment cores, perfluorooctanesulfonate (PFOS) concentrations initially increased and then declined around ten years ago. Levels of long-chain perfluorinated carboxylates have been increasing since the 1980s and experienced an accelerated rise in the 2000s. Hydrogen-substituted polyfluoroalkyl ether sulfonate (H-PFESA) was widely found in sediment samples for the first time. The ratios of 6:2 H-PFESA to 6:2 chlorinated (Cl-) PFESA in sediment cores exceeded those in surface sediment and exhibited an increasing trend with the sediment age, implying the gradual transformation of 6:2 Cl-PFESA to its hydrogen-substituted analog in sediments. A preliminary risk assessment indicated that ∑6:2 PFESAs and PFOS posed medium to high risks over recent decades.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yetong Shao
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Linjie Jin
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Naiyu Xie
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xiaoqiang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yuanyuan Hong
- School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, Institute for Climate and Carbon Neutrality, and Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong SAR 999077, China
| | - He Wang
- School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, Institute for Climate and Carbon Neutrality, and Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Akira Tsujimoto
- Institute of Education, Academic Assembly, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Moriaki Yasuhara
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, Institute for Climate and Carbon Neutrality, and Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Levanduski E, Cushman SF, Cleckner LB, Richter W, Becker JC, Massey T, Rinchard J, Razavi NR. Unique per- and polyfluoroalkyl substances (PFAS) source suggested by a Lake Trout (Salvelinus namaycush) PFAS profile in a temperate lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179038. [PMID: 40073771 DOI: 10.1016/j.scitotenv.2025.179038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are detected in pelagic freshwater fish and have deleterious effects on their health. It is unclear if traditional proxies for uptake of contaminants in fish (e.g., length, weight, age) predict fish PFAS concentrations. Here, we observe that summed PFAS concentrations are significantly higher in Lake Trout (Salvelinus namaycush) than other sportfish in Seneca Lake, New York. Carbon source (as proxied by δ13C) predicted variability within species, and trophic level (as proxied by δ15N) trended among species. A moderate inverse correlation (r = -0.51) was found between mercury and summed PFAS in Lake Trout. Summed PFAS concentrations and length, weight, or age were not statistically related, suggesting these characteristics are not reliable proxies for PFAS bioaccumulation. Length, weight, and age were significant predictors for mercury, indicating these drivers may be resulting in differential bioaccumulation in PFAS and mercury. In Seneca Lake, a unique PFAS composition was found for Lake Trout, where PFOS represents a lower proportion of summed PFAS than in other species in Seneca Lake, as well as relative to Lake Trout from other neighboring Finger Lakes. In addition, compared to Lake Erie and Lake Ontario, Lake Trout from Seneca Lake have higher concentrations of PFOA, PFNA, and PFDA, but lower proportions of PFOS. Lake Trout from Seneca Lake have a PFAS composition that consists almost exclusively of perfluoroalkyl carboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), similar to the composition used in aqueous film forming foams (AFFF) before 2000 at a former military and current Superfund site in the lake's watershed.
Collapse
Affiliation(s)
- Eric Levanduski
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Susan F Cushman
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY 14456, United States
| | - Lisa B Cleckner
- Finger Lakes Institute, Hobart and William Smith Colleges, Geneva, NY 14456, United States
| | - Wayne Richter
- Division of Fish and Wildlife, New York State Department of Environmental Conservation, Albany, NY 12233, United States
| | - Jesse C Becker
- Division of Fish and Wildlife, New York State Department of Environmental Conservation, Albany, NY 12233, United States
| | - Trevor Massey
- Finger Lakes Institute, Hobart and William Smith Colleges, Geneva, NY 14456, United States
| | - Jacques Rinchard
- Department of Environmental Science and Ecology, State University of New York Brockport, Brockport, NY 14420, United States
| | - N Roxanna Razavi
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, United States.
| |
Collapse
|
5
|
Deng L, Liu K, Fan Y, Qian X, Ke T, Liu T, Li M, Xu X, Yang D, Li H. Interpretable machine learning models reveal the partnership of microplastics and perfluoroalkyl substances in sediments at a century scale. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137018. [PMID: 39740544 DOI: 10.1016/j.jhazmat.2024.137018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
It is challenging to explore the complex interactions between perfluoroalkyl substances (PFASs) and microplastics in lake sediments. The partnership of perfluoroalkyl substances (PFASs) and microplastics in lake sediments are difficult to determine experimentally. This study utilized sediment cores from Taihu Lake to reconstruct the coexistence history and innovatively reveal the collaboration between PFASs and microplastics by using post-hoc interpretable machine learning methods. Microplastics and PFASs emerged in the 1960s and have significantly increased since the 1990s. PFASs and microplastics had the highest growth rate in the 0-10 cm range, with average growth rates of 35.96 pg/g/year and 4.40 items/year per 100 g, respectively. Extreme gradient boosting demonstrated the best simulation of PFASs and microplastics in machine learning models. Feature importance and Shapley additive explanations semi-quantitatively clarified the importance of transparent and pellet microplastics on PFASs concentrations, as well as the importance of perfluorooctane sulfonate (PFOS) and ΣPFASs on microplastics. Moisture content, redox potential, χfd, and χARM were the key influencing factors on contaminants. Partial dependence plots showed the influencing thresholds were 0.30 ng/g for ΣPFASs and 0.15 ng/g for PFOS on microplastics, and 10 items per 100 g for pellets and 12 items per 100 g for transparent plastics on PFASs. This study elucidated the interactions between two typical emerging contaminants on a century-scale through the intersection of environmental geochemistry and interpretable machine learning.
Collapse
Affiliation(s)
- Ligang Deng
- School of Environment, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Kai Liu
- School of Environment, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tong Ke
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Tong Liu
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Mingjia Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaohan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Daojun Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China.
| |
Collapse
|
6
|
Idowu IG, Ekpe OD, Megson D, Bruce-Vanderpuije P, Sandau CD. A systematic review of methods for the analysis of total per- and polyfluoroalkyl substances (PFAS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178644. [PMID: 39946899 DOI: 10.1016/j.scitotenv.2025.178644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
This manuscript systematically reviews 156 peer-reviewed articles on methods for estimating total per- and polyfluoroalkyl substances (PFAS), following preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Direct and indirect methods of estimating total PFAS include targeted analysis, total fluorine (TF), total organic fluorine (TOF), extractable organic fluorine (EOF), absorbable organic fluorine (AOF), and total oxidizable precursor (TOP) assay. Combustion ion chromatography (CIC) was the most utilized method (>50%), followed by particle-induced gamma-ray emission (PIGE, 9%) and high-resolution-continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS, 6%). Techniques like instrumental neutron activation analysis (INAA) and nuclear magnetic resonance (NMR) were less common. A geographic bias was evident, with 69% of studies from the US (33%), Sweden (12%), China (12%), and Germany (11%). Most research targeted environmental samples (water, soil, sediments), while significant data gaps were noted in South America, Africa, and atmospheric PFAS. Challenges in inter-laboratory comparisons arise from inconsistent reporting units (e.g., mg/L, μg/m3, %, etc.). About 75% of studies involved pre-treatment (e.g., solvent extraction, sorbents), while 25% did not. PFAS detection limit and observed concentrations varied widely, from low concentrations in water (ng/L) to higher levels in soil, biota, and products (mg/L). Limitations of total PFAS methods include contradictory results when complementary techniques are applied to the same sample, potentially leading to over- or under-estimation. Across studies, a substantial fraction of TF remains unaccounted for, highlighting the need for non-targeted screening (NTS) to identify unknown PFAS (UPFAS or UOPFAS). Bridging these gaps is critical for advancing PFAS research and environmental risk assessment.
Collapse
Affiliation(s)
| | - Okon Dominic Ekpe
- Chemistry Matters, Calgary, Canada; Centre for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY 13699, USA
| | - David Megson
- Chemistry Matters, Calgary, Canada; Manchester Metropolitan University, Manchester, UK.
| | - Pennante Bruce-Vanderpuije
- Chemistry Matters, Calgary, Canada; Council for Scientific and Industrial Research, Water Research Institute, Accra, Ghana
| | - Courtney D Sandau
- Chemistry Matters, Calgary, Canada; Mount Royal University, Calgary, Canada
| |
Collapse
|
7
|
Munoz G, Taxil-Paloc A, Desrosiers M, Vo Duy S, Liu M, Houde M, Liu J, Sauvé S. Zwitterionic, cationic, and anionic PFAS in freshwater sediments from AFFF-impacted and non-impacted sites of Eastern Canada. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136634. [PMID: 39637784 DOI: 10.1016/j.jhazmat.2024.136634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Zwitterionic, cationic, and anionic per- and polyfluoroalkyl substances (PFAS) were investigated in freshwater sediments of Canada, including sites impacted by aqueous film-forming foams (AFFFs). The first step of the project involved optimizing the extraction method with equilibrated sediment-water-AFFF samples. The analytical method had acceptable linearity, accuracy, and precision in the sediment matrix, and was further validated with NIST SRM 1936. In the second step of the project, the method was applied to determine over 70 target PFAS in field-collected sediments (n = 102). At federal contaminated sites of Ontario, Newfoundland, and Québec (ditches and creeks at international airports with fire training or fire equipment testing areas), summed PFAS averaged 30 ng/g (maximum of 160 ng/g) with molecular patterns dominated by perfluorooctane sulfonate (maximum PFOS: 84 ng/g). Based on maximum observed concentrations >10 ng/g, other key PFAS at these AFFF-impacted sites included negative ion mode perfluorohexane sulfonate, perfluorohexane sulfonamide, fluorotelomer sulfonates (6:2 FTS and 8:2 FTS) and 5:3 fluorotelomer acid, and positive ion mode N-dimethylammoniopropyl perfluorohexane sulfonamide and 5:1:2 fluorotelomer betaine. In contrast, environmental sediment samples collected at a larger spatial scale (province-wide survey) were characterized by low ΣPFAS (generally <1 ng/g), with PFOS/PFOA below chronic toxicity thresholds for aquatic life.
Collapse
Affiliation(s)
- Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Alice Taxil-Paloc
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; Sciences Sorbonne Université, Paris 75005, France
| | - Mélanie Desrosiers
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Min Liu
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; Department of Civil Engineering, McGill University, Montréal, QC H3A 0G4, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC H2Y 2E7, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, QC H3A 0G4, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada.
| |
Collapse
|
8
|
Zhang J, Liu J, Jin R, Qiao Y, Mao J, Wang Z. Prevalent Per- and Polyfluoroalkyl Substances (PFASs) Pollution in Freshwater Basins in China: A Short Review. TOXICS 2025; 13:135. [PMID: 39997950 PMCID: PMC11861157 DOI: 10.3390/toxics13020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Organic pollutants like per- and polyfluoroalkyl substances (PFASs) exhibit persistence, bioaccumulation, resistance to degradation, and high toxicity, garnering significant attention from scholars worldwide. To better address and mitigate the environmental risks posed by PFASs, this paper employs bibliometric analysis to examine the literature on PFASs' concentrations collected in the Web of Science (WoS) database between 2019 and 2024. The results show that the overall trend of PFASs' pollution research is relatively stable and increasing. In addition, this study also summarizes the pollution status of traditional PFASs across different environmental media in typical freshwater basins. It analyzes PFASs' concentrations in surface water, sediment, and aquatic organisms, elucidating their distribution characteristics and potential sources. While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) levels in water environments are declining annually, short-chain PFASs and their substitutes are emerging as primary pollutants. Short-chain PFASs are frequently detected in surface water, whereas long-chain PFASs tend to accumulate in sediments. In aquatic organisms, PFASs are more likely to concentrate in protein-rich organs and tissues. The environmental presence of PFASs is largely influenced by human activities, such as metal plating, fluoride industry development, and industrial wastewater discharge. Currently, the development of PFASs in China faces a complex dilemma, entangled by policy and legal constraints, industrial production demands, the production and use of new alternatives, and their regulation and restriction, creating a vicious cycle. Breaking this deadlock necessitates continuous and active scientific research on PFASs, particularly PFOS, with an emphasis on detailed investigations of environmental sources and sinks. Furthermore, ecological and health risk assessments were conducted using Risk Quotient (RQ) and Hazard Quotient (HQ) methods. Comprehensive comparison indicates that PFASs (such as PFOA) in the majority of freshwater basins are at a low-risk level (RQ < 0.1 or HQ < 0.2), PFOS in some freshwater basins is at a medium-risk level (0.1 < RQ < 1), and no freshwater basin is at a high-risk level. The adsorption and removal approaches of PFASs were also analyzed, revealing that the combination of multiple treatment technologies as a novel integrated treatment technology holds excellent prospects for the removal of PFASs.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China; (J.Z.); (Y.Q.); (J.M.)
| | - Jiaoqin Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China; (J.Z.); (Y.Q.); (J.M.)
| | - Riya Jin
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China; (J.Z.); (Y.Q.); (J.M.)
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China; (J.Z.); (Y.Q.); (J.M.)
| | - Jipeng Mao
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China; (J.Z.); (Y.Q.); (J.M.)
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Naning 210023, China;
| |
Collapse
|
9
|
Krupa PM, Lotufo GR, Boyda J, Melby NL, Kimble AN. Toxicity of Per- and polyfluoroalkyl substances in elutriates prepared with estuarine and freshwater sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117483. [PMID: 39675074 DOI: 10.1016/j.ecoenv.2024.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
PFAS has a ubiquitous environmental occurrence, posing challenges to sediment management. To address data gaps concerning release of PFAS from sediment to the water column during dredged material aquatic placement or other sediment resuspension activity, we generated elutriates from PFAS-contaminated sediments. Sediments were obtained from both freshwater and estuarine environments, with a field-collected sediment representative of contaminated areas and a spiked sediment with concentrations exceeding levels frequently measured at contaminated sites. We then conducted acute toxicity tests of the elutriates with species standardly used in dredging evaluations: the sheepshead minnow (Cyprinodon variegatus), the fathead minnow (Pimephales promelas), the water flea (Ceriodaphnia dubia), and the Mysid shrimp (Americamysis bahia). PFAS partitioning to sediment and organic matter was observed to increase with carbon chain length. PFAS-induced mortality was not observed in any of the four test species, as measured concentrations of PFAS were below levels known to cause negative effects in these organisms. Though PFAS concentrations in the spiked sediment elutriates exceeded concentrations known to cause effects in the most sensitive aquatic species, PFAS levels in the more environmentally relevant field-collected sediment elutriates did not. Consequently, PFAS released from the sediment to the water column is not expected to cause toxicity to pelagic biota during aquatic placement of dredged material.
Collapse
Affiliation(s)
- Paige M Krupa
- U S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA.
| | - Guilherme R Lotufo
- U S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA
| | - Jonna Boyda
- U S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA
| | - Nicolas L Melby
- U S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA
| | - Ashley N Kimble
- U S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA
| |
Collapse
|
10
|
Estoppey N, Knight ER, Allan IJ, Ndungu K, Slinde GA, Rundberget JT, Ylivainio K, Hernandez-Mora A, Sørmo E, Arp HPH, Cornelissen G. PFAS, PCBs, PCDD/Fs, PAHs and extractable organic fluorine in bio-based fertilizers, amended soils and plants: Exposure assessment and temporal trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177347. [PMID: 39505025 DOI: 10.1016/j.scitotenv.2024.177347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Bio-based fertilizers (BBFs) produced from organic waste contribute to closed-loop nutrient cycles and circular agriculture. However, persistent organic contaminants, such as per- and poly-fluoroalkyl substances (PFAS), polychlorobiphenyls (PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), as well as polyaromatic hydrocarbons (PAHs) can be present in organic waste or be formed during valorization processes. Consequently, these hazardous substances may be introduced into agricultural soils and the food chain via BBFs. This study assessed the exposure of 84 target substances and extractable organic fluorine (EOF) in 19 BBFs produced from different types of waste, including agricultural and food industrial waste, sewage sludge, and biowaste, and through various types of valorization methods, including hygienization at low temperatures (<150 °C) as well as pyrolysis and incineration at elevated temperatures (150-900 °C). The concentrations in BBFs (ΣPFOS & PFOA: <30 μg kg-1, Σ6PCBs: <15 μg kg-1, Σ11PAHs: <3 mg kg-1, Σ17PCDD/Fs: <4 ng TEQ kg-1) were found to be below the strictest thresholds used in individual EU countries, with only one exception (pyrolyzed sewage sludge, Σ11PAHs: 5.9 mg kg-1). Five BBFs produced from sewage sludge or chicken manure contained high concentrations of EOF (>140 μg kg-1), so monitoring of more PFAS is recommended. The calculated expected concentrations in soils after one BBF application (e.g. PFOS: <0.05 μg kg-1) fell below background contamination levels (PFOS: 2.7 μg kg-1) elsewhere in the literature. This was confirmed by the analysis of BBF-amended soils from field experiments (Finland and Austria). Studies on target legacy contaminants in sewage sludge were reviewed, indicating a general decreasing trend in concentration with an apparent half-life ranging from 4 (PFOS) to 9 (PCDD/Fs) years. Modelled cumulative concentrations of the target contaminants in agricultural soils indicated low long-term risks. Concentrations estimated and analyzed in cereal grains were low, indicating that exposure by cereal consumption is well below tolerable daily intakes.
Collapse
Affiliation(s)
- Nicolas Estoppey
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway.
| | - Emma R Knight
- The Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway; Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland, Australia
| | - Ian J Allan
- The Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Kuria Ndungu
- The Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Gøril Aasen Slinde
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | | | - Kari Ylivainio
- Natural Resources Institute Finland (LUKE), Tietotie 4, 31600 Jokioinen, Finland
| | - Alicia Hernandez-Mora
- University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria; AGRANA Research & Innovation Center (ARIC), Reitherstrasse 21-23, 3430 Tulln an der Donau, Austria
| | - Erlend Sørmo
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
11
|
Kim J, Xin X, Hawkins GL, Huang Q, Huang CH. Occurrence, Fate, and Removal of Per- and Polyfluoroalkyl Substances (PFAS) in Small- and Large-Scale Municipal Wastewater Treatment Facilities in the United States. ACS ES&T WATER 2024; 4:5428-5436. [PMID: 39698553 PMCID: PMC11650586 DOI: 10.1021/acsestwater.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024]
Abstract
Wastewater treatment plants (WWTPs) could be conduits of polyfluoroalkyl substances (PFAS) contaminants in the environment. This study investigated the fate of 40 PFAS compounds across nine municipal WWTPs with varying treatment capacity and processes. High concentrations of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) were detected in wastewater, with the ratio of their total concentrations (∑PFCAs/∑PFSAs) always greater than one. Transformation of precursors by activated sludge processes significantly increased the concentrations of short-chain PFCAs (e.g., perfluoropentanoic acid (PFPeA) and perfluorohexanoic acid (PFHxA)), while further advanced treatment processes offered minimal removal of perfluoroalkyl acids. Treatment capacity and PFAS removal efficiency showed no apparent correlation. The maximum possible PFAS loads discharged from WWTPs were 340-9645 g·year-1, similar to those entering the WWTPs. Among six regulated PFAS compounds, detection frequency was 100% for five (perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), perfluorobutanesulfonic acid (PFBS), and perfluorohexanesulfonic acid (PFHxS)) and 67% for hexafluoropropylene oxide dimer acid (HFPO-DA) (Gen-X). Concentrations of PFOA and PFOS in WWTP discharges consistently exceeded 4 ng·L-1. The hazard index (HI) for mixtures containing two or more of the four PFAS (PFNA, PFBS, PFHxS, and HFPO-DA) ranged from 0.2 to 6.1. These findings indicate that wastewater discharges may pose a risk, emphasizing the need for enhanced PFAS removal strategies in wastewater treatment processes.
Collapse
Affiliation(s)
- Juhee Kim
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Civil, Environmental and Construction Engineering, University of Hawai′i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Xiaoyue Xin
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gary L. Hawkins
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30223, United States
| | - Qingguo Huang
- Department
of Crop and Soil Sciences, University of
Georgia, Griffin, Georgia 30223, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
12
|
Yu X, Gutang Q, Wang Y, Wang S, Li Y, Li Y, Liu W, Wang X. Microplastic and associated emerging contaminants in marine fish from the South China Sea: Exposure and human risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136200. [PMID: 39437472 DOI: 10.1016/j.jhazmat.2024.136200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Microplastics can act as vectors of chemical contaminants in aquatic environments, but the extent to which this phenomenon contributes to chemical exposure in marine organisms remains poorly understood. We investigated the occurrence of microplastics and emerging contaminants (ECs), including antibiotics and per- and polyfluoroalkyl substances (PFAS) in 14 marine fish species. Microplastics were detected in all marine fish species, mainly in the gastrointestinal tract. Fluoroquinolones and tetracyclines were the dominant antibiotics in fish muscles with maximum concentrations of 24.84 and 26.95 ng g-1 ww, while perfluorooctanesulfonic acid (PFOS, 0.039-0.95 ng g-1 ww) was the dominant component in the PFAS profile. Fish with more microplastics had significantly higher concentrations of fluoroquinolones and perfluoroalkyl acids than fish with less microplastics (p < 0.05), but the correlation was not observed in other chemicals. Structural equation modeling revealed the contribution of microplastics in fish on the level of ECs contamination. The health quotient value indicated the low health risk of single compounds via fish consumption to humans; however, the combined risk of microplastics and ECs still needs to be considered. This work highlights the link between microplastics with associated ECs ingested by aquatic organisms and the human health risk of consuming polluted seafood.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Qilin Gutang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yuxuan Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Sijia Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Youshen Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wenhua Liu
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Li J, Sun J, Chao L, Chen J, Huang L, Kang B. Exposure, spatial distribution, and health risks of perfluoroalkyl acids in commercial fish species in the Beibu Gulf. MARINE POLLUTION BULLETIN 2024; 209:117101. [PMID: 39413479 DOI: 10.1016/j.marpolbul.2024.117101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
The global distribution, persistence, bioaccumulation, and toxicity of per- and polyfluoroalkyl substances (PFAS) have received significant attention. We determined the contents of major perfluoroalkyl acids (PFAAs) in various commercial fish species from different regions of the Beibu Gulf. We detected 14 out of 17 PFAAs across all species, with PFOS (Perfluorooctanesulphonate) showing the highest detection rate, followed by PFHxS (Perfluorohexanesulfonic acid), PFPeA (Perfluorovaleric acid), and PFTrDA (Perfluorotetradecanoic acid). The concentrations of ∑PFAAs ranged from 0.22 to 7.43 ng/g (ww). Additionally, PFCAs dominated the PFAA profile (70 %) in the southern Beibu Gulf in comparison with the northern (53 %) and central Beibu Gulf (48 %). PFOS was the most abundant compound, accounting for 41 % of total PFAAs, followed by PFUdA (Perfluoroundecanoic Acid) (14 %) and PFOA (Perfluorooctanoic Acid) (12 %). The estimated daily intakes and hazard ratios of PFOS and PFOS indicate that there is no significant health risk from people consuming these fish.
Collapse
Affiliation(s)
- Jintao Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - Le Chao
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jingrui Chen
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Bin Kang
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China.
| |
Collapse
|
14
|
Gkika IS, Kraak MHS, van Gestel CAM, ter Laak TL, van Wezel AP, Hardy R, Sadia M, Vonk JA. Bioturbation Affects Bioaccumulation: PFAS Uptake from Sediments by a Rooting Macrophyte and a Benthic Invertebrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20607-20618. [PMID: 39523560 PMCID: PMC11580174 DOI: 10.1021/acs.est.4c03868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Despite the widespread presence of per- and polyfluoroalkyl substances (PFAS) in freshwater environments, only a few studies have addressed their bioaccumulation in macrophytes and benthic invertebrates. This study therefore aimed at investigating the presence of 40 PFAS in sediments, assessing their bioaccumulation in a rooting macrophyte (Myriophyllum spicatum) and a benthic invertebrate (Lumbriculus variegatus) and examining the effects of the presence and bioturbation activity of the invertebrate on PFAS bioaccumulation in the plants. The macrophytes were exposed to sediments originating from a reference and a PFAS-contaminated site. The worms were introduced in half of the replicates, and at the end of the experiment, PFAS were quantified in all environmental compartments. Numerous targeted PFAS were detected in both sediments and taken up by both organisms, with summed PFAS concentrations in organisms largely exceeding concentrations in the original sediments. Bioaccumulation differed between organisms and the two sediments. The presence of the worms significantly reduced the PFAS concentrations in the plant tissues, but for some compounds, root bioaccumulation increased in the presence of the worms. This effect was most prominent for the degradable PFAS precursors. It is concluded that organisms affect the environmental fate of PFAS, emphasizing that contaminant-macroinvertebrate interactions are two-sided.
Collapse
Affiliation(s)
- Ioanna S. Gkika
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Michiel H. S. Kraak
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Cornelis A. M. van Gestel
- Amsterdam
Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Thomas L. ter Laak
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- KWR
Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Annemarie P. van Wezel
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Robert Hardy
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Mohammad Sadia
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J. Arie Vonk
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
15
|
Bjørke-Monsen AL, Holstad K, Huber S, Averina M, Bolann B, Brox J. PFAS exposure is associated with an unfavourable metabolic profile in infants six months of age. ENVIRONMENT INTERNATIONAL 2024; 193:109121. [PMID: 39515038 DOI: 10.1016/j.envint.2024.109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Exposure to perfluoroalkyl substances (PFAS) are reported to have numerous negative health effects and children are especially vulnerable. The aim of this study was to investigate whether maternal and infant PFAS burden have any impact on prenatal and postnatal growth, liver and lipid parameters in infants at age six months. Data on diet and growth parameters, as well as blood samples were collected from healthy pregnant women in week 18 and in the women and their infants at six months postpartum. The blood samples were analysed for liver enzymes, blood lipids and PFAS. Maternal perfluoroalkyl carboxylic acids (PFCA) and fish for dinner ≥ 3 days per week in pregnancy week 18 were associated with reduced birth weight and increased percent weight gain the first six months of life. Infant PFCA concentrations were positively associated with serum alanine aminotransferase and total- and LDL-cholesterol concentrations at six months of age. Our data demonstrate that prenatal and postnatal PFAS exposure are associated with an unfavourable metabolic profile at a very young age. This pattern is concerning as it may be linked to early conditioning of later metabolic disease. It is vital to reduce PFAS exposure in women of fertile age in order to prevent development of metabolic disease in the next generation.
Collapse
Affiliation(s)
- Anne-Lise Bjørke-Monsen
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Laboratory of Medical Biochemistry, Innlandet Hospital Trust, Lillehammer, Norway; Laboratory of Medical Biochemistry, Førde Hospital Trust, Førde, Norway.
| | - Kristin Holstad
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Bolann
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Jan Brox
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
16
|
Pickard HM, Ruyle BJ, Haque F, Logan JM, LeBlanc DR, Vojta S, Sunderland EM. Characterizing the Areal Extent of PFAS Contamination in Fish Species Downgradient of AFFF Source Zones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19440-19453. [PMID: 39412174 PMCID: PMC11526379 DOI: 10.1021/acs.est.4c07016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Most monitoring programs next to large per- and polyfluoroalkyl substances (PFAS) sources focus on drinking water contamination near source zones. However, less is understood about how these sources affect downgradient hydrological systems and food webs. Here, we report paired PFAS measurements in water, sediment, and aquatic biota along a hydrological gradient away from source zones contaminated by the use of legacy aqueous film-forming foam (AFFF) manufactured using electrochemical fluorination. Clustering analysis indicates that the PFAS composition characteristic of AFFF is detectable in water and fishes >8 km from the source. Concentrations of 38 targeted PFAS and extractable organofluorine (EOF) decreased in fishes downgradient of the AFFF-contaminated source zones. However, PFAS concentrations remained above consumption limits at all locations within the affected watershed. Perfluoroalkyl sulfonamide precursors accounted for approximately half of targeted PFAS in fish tissues, which explain >90% of EOF across all sampling locations. Suspect screening analyses revealed the presence of a polyfluoroketone pharmaceutical in fish species, and a fluorinated agrochemical in water that likely does not accumulate in biological tissues, suggesting the presence of diffuse sources such as septic system and agrochemical inputs throughout the watershed in addition to AFFF contamination. Based on these results, monitoring programs that consider all hydrologically connected regions within watersheds affected by large PFAS sources would help ensure public health protection.
Collapse
Affiliation(s)
- Heidi M. Pickard
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Bridger J. Ruyle
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Global Ecology, Carnegie Institution
for Science, Stanford, California 94305, United States
| | - Faiz Haque
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - John M. Logan
- Massachusetts
Division of Marine Fisheries, New
Bedford, Massachusetts 02744, United States
| | - Denis R. LeBlanc
- U.S.
Geological Survey, Emeritus Scientist, New
England Water Science Center, Northborough, Massachusetts 01532, United States
| | - Simon Vojta
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
17
|
Wang J, Lin ZW, Dichtel WR, Helbling DE. Perfluoroalkyl acid adsorption by styrenic β-cyclodextrin polymers, anion-exchange resins, and activated carbon is inhibited by matrix constituents in different ways. WATER RESEARCH 2024; 260:121897. [PMID: 38870863 DOI: 10.1016/j.watres.2024.121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous environmental contaminants of global concern, and adsorption processes are the most widely used technologies to remove PFAAs from water. However, there remains little data on the ways that specific water matrix constituents inhibit the adsorption of PFAAs on different adsorbents. In this study, we evaluated the adsorption of 13 PFAAs on two styrene-functionalized β-cyclodextrin (StyDex) polymers, an activated carbon (AC), and an anion-exchange resin (AER) in the absence and presence of specific water matrix constituents (16 unique water matrices) in batch experiments. All four adsorbents exhibited some extent of adsorption inhibition in the presence of inorganic ions and/or humic acid (HA) added as a surrogate for natural organic matter. Two PFAAs (C5-C6 perfluorocarboxylic acids (PFCAs)) were found to exhibit relatively weak adsorption and five PFAAs (C6-C8 perfluorosulfonic acids (PFSAs) and C9-C10 PFCAs) were found to exhibit relatively strong adsorption on all four adsorbents across all matrices. Adsorption inhibition was the greatest in the presence of Ca2+ (direct site competition) and HA (direct site competition and pore blockage) for AC, NO3- (direct site competition) and Ca2+ (chemical complexation) for the AER, and SO42- (compression of the double layer) for the StyDex polymers. The pattern of adsorption inhibition of both StyDex polymers were similar to each other but different from AC and AER, which demonstrates the distinctive PFAA adsorption mechanism on StyDex polymers. The unique performance of each type of adsorbent confirms unique adsorption mechanisms that result in unique patterns of adsorption inhibition in the presence of matrix constituents. These insights could be used to develop models to predict the performance of these adsorbents in real water matrices and afford rational selection of adsorbents based on water chemistry for specific applications.
Collapse
Affiliation(s)
- Jieyuan Wang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zhi-Wei Lin
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Langberg HA, Breedveld GD, Kallenborn R, Ali AM, Choyke S, McDonough CA, Higgins CP, Jenssen BM, Jartun M, Allan I, Hamers T, Hale SE. Human exposure to per- and polyfluoroalkyl substances (PFAS) via the consumption of fish leads to exceedance of safety thresholds. ENVIRONMENT INTERNATIONAL 2024; 190:108844. [PMID: 38941943 DOI: 10.1016/j.envint.2024.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) receive global attention due to their adverse effects on human health and the environment. Fish consumption is a major source of human PFAS exposure. The aim of this work was to address the lack of harmonization within legislations (in the EU and the USA) and highlight the level of PFAS in fish exposed to pollution from diffuse sources in the context of current safety thresholds. A non-exhaustive literature review was carried out to obtain PFAS concentrations in wild fish from the Norwegian mainland, Svalbard, the Netherlands, the USA, as well as sea regions (North Sea, English Channel, Atlantic Ocean), and farmed fish on the Dutch market. Median sum wet weight concentrations of PFOA, PFNA, PFHxS, and PFOS ranged between 0.1 µg kg-1 (farmed fish) and 22 µg kg-1 (Netherlands eel). Most concentrations fell below the EU environmental quality standard (EQSbiota) for PFOS (9.1 µg kg-1) and would not be defined as polluted in the EU. However, using recent tolerable intake or reference dose values in the EU and the USA revealed that even limited fish consumption would lead to exceedance of these thresholds - possibly posing a challenge for risk communication.
Collapse
Affiliation(s)
| | - Gijsbert D Breedveld
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Norway; Arctic Technology, University Centre in Svalbard, Norway
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University Life Sciences (NMBU), Norway; University of the Arctic (UArctic), Finland
| | | | - Sarah Choyke
- Department of Civil & Environmental Engineering, Colorado School of Mines, USA; Eurofins Environment Testing, USA
| | | | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Norway
| | - Morten Jartun
- Norwegian Institute for Water Research (NIVA), Norway
| | - Ian Allan
- Norwegian Institute for Water Research (NIVA), Norway
| | - Timo Hamers
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, the Netherlands
| | - Sarah E Hale
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Norway; DVGW-Technologiezentrum Wasser, Germany
| |
Collapse
|
19
|
Grung M, Hjermann DØ, Rundberget T, Bæk K, Thomsen C, Knutsen HK, Haug LS. Low levels of per- and polyfluoroalkyl substances (PFAS) detected in drinking water in Norway, but elevated concentrations found near known sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174550. [PMID: 39004364 DOI: 10.1016/j.scitotenv.2024.174550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous contaminants which are also found in drinking water. Concentration levels in drinking water vary widely and range from a very low contribution to total daily exposure for humans to being the major source of uptake of PFAS. PFAS concentrations in Norwegian drinking water has been rarely reported. We investigated concentrations of 31 PFAS in 164 water samples, representing both source water (i.e., before drinking water treatment) and finished drinking water. Samples were taken from 18 different water bodies across Norway. The 17 waterworks involved supply drinking water to 41 % of the Norwegian population. Only four of the waterworks utilised treatment involving activated carbon which was able to significantly reduce PFAS from the source water. Samples of source water from waterworks not employing activated carbon in treatment were therefore considered to represent drinking water with regards to PFAS (142 samples). All samples from one of the water bodies exceeded the environmental quality standard (EQS) for perfluorooctane sulfonic acid (PFOS) according to the water framework directive (0.65 ng/L). No concentrations exceeded the sum of (20) PFAS (100 ng/L) specified in the EU directive 2020/2184 for drinking water. Several EU countries have issued lower guidelines for the sum of the four PFAS that the European Food Safety Authority (EFSA) has established as the tolerable weekly intake (TWI) for PFOS, perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS). Denmark and Sweden have guidelines specifying 2 and 4 ng/L for the sum of these PFAS. Only one of the 142 drinking water samples exceeded the Danish TWI and contained a sum of 6.6 ng/L PFAS. A population exposure model, for individuals drinking water from the investigated sources, showed that only 0.5 % of the population was receiving PFAS concentrations above the Danish limit of 2 ng/L.
Collapse
Affiliation(s)
- Merete Grung
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway.
| | - Dag Ø Hjermann
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway.
| | - Thomas Rundberget
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway.
| | - Kine Bæk
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway.
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, Department of Food Safety, PO Box 222, Skøyen, 0213 Oslo, Norway; Norwegian Institute of Public Health, Centre for Sustainable Diets, PO Box 222, Skøyen, 0213 Oslo, Norway.
| | - Helle Katrine Knutsen
- Norwegian Institute of Public Health, Department of Food Safety, PO Box 222, Skøyen, 0213 Oslo, Norway; Norwegian Institute of Public Health, Centre for Sustainable Diets, PO Box 222, Skøyen, 0213 Oslo, Norway.
| | - Line Småstuen Haug
- Norwegian Institute of Public Health, Department of Food Safety, PO Box 222, Skøyen, 0213 Oslo, Norway; Norwegian Institute of Public Health, Centre for Sustainable Diets, PO Box 222, Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
20
|
Yu L, Liu X, Hua Z, Chu K. Intense Turbulent Bursts Promote the Release of Perfluoroalkyl Acids from Sediments at High Flow Velocity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11737-11747. [PMID: 38889003 DOI: 10.1021/acs.est.4c03885] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Despite frequent detection of high levels of perfluoroalkyl acids (PFAAs) in sediments, research on the environmental fate of PFAAs in sediments, particularly under hydrodynamic conditions, is rather limited, challenging effective management of PFAA loadings. Therefore, this study investigated the release and transport of 15 PFAAs in sediments under environmentally relevant flow velocities using recirculating flumes and revealed the underlying release mechanisms by identifying related momentum transfer. An increased velocity enhanced the release magnitude of total PFAAs by a factor of 3.09. The release capacity of short-chain PFAAs was notably higher than that of long-chain PFAAs, and this pattern was further amplified by flow velocity. Pore-water drainage was the major pathway for PFAA release, with the release amount predominantly determined by flow velocity-induced release intensity and depth, as well as affected by the perfluorocarbon chain length and sediment size. The weak anion exchanger-diffusion gradients in the thin-film technique confirmed that the release depth of PFAAs increased with flow velocity. Quadrant analysis revealed that the rise in the frequency and intensity of turbulent bursts driven by sweeps and ejections at high flow velocity was the underlying cause of the increased release magnitude and depth of PFAAs.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| | - Kejian Chu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute of Conservation and Development, Hohai University, Nanjing 210098, China
| |
Collapse
|
21
|
Fujii Y, Kato Y, Miyatake M, Akeda S, Nagata S, Ando J, Kido K, Ohta C, Koga N, Harada KH, Haraguchi K. Levels and spatial profile of per- and polyfluoroalkyl substances in edible shrimp products from Japan and neighboring countries; a potential source of dietary exposure to humans. ENVIRONMENT INTERNATIONAL 2024; 189:108685. [PMID: 38823154 DOI: 10.1016/j.envint.2024.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 06/03/2024]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) is of great concern for human health because of their persistence and potentially adverse effects. Dietary intake, particularly through aquatic products, is a significant route of human exposure to PFAS. We analyzed perfluoroalkyl sulfonic acid (PFSA with carbon numbers from 6 to 8 and 10 (C6-C8, C10)) and perfluorooctanesulfonamide (FOSA), and perfluoroalkyl carboxylic acid (PFCA with carbon numbers from 6 to 15 (C6-C15)) in 30 retail packs of edible shrimps, which included seven species from eight coastal areas of Japan and neighboring countries. The most prevalent compounds were perfluorooctane sulfonate (PFOS, C8) and perfluoroundecanoic acid (PFUnDA, C11), accounting for 46 % of total PFAS. The concentrations ranged from 6.5 to 44 ng/g dry weight (dw) (equivalent to 1.5 to 10 ng/g wet weight (ww)) and varied according to species and location. For example, Alaskan pink shrimp (Pandalus eous) from the Hokuriku coast, Japan contained high levels of long-chain PFCAs (38 ng/g dw (equivalent to 8.7 ng/g ww)), while red rice prawn (Metapenaeopsis barbata) from Yamaguchi, Japan contained a high concentration of PFOS (29 ng/g dw (equivalent to 6.7 ng/g ww)). We also observed regional differences in the PFAS levels with higher concentrations of long-chain PFCAs in Japanese coastal waters than in the South China Sea. The PFAS profiles in shrimp were consistent with those in the diet and serum of Japanese consumers, suggesting that consumption of seafood such as shrimp may be an important source of exposure. The estimated daily intake of sum of all PFAS from shrimp from Japanese coastal water was 0.43 ng/kg body weight/day in average, which could reach the weekly tolerable values (4.4 ng/kg body weight /week) for the sum of the four PFSA set by the EFSA for heavy consumers. The high concentration of PFAS in shrimp warrants further investigation.
Collapse
Affiliation(s)
- Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan.
| | - Yoshihisa Kato
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan
| | - Masayuki Miyatake
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan
| | - Syunpei Akeda
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa 769-2193, Japan
| | - Sigeru Nagata
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Junpei Ando
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Katsumi Kido
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Chiho Ohta
- Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
| | - Nobuyuki Koga
- Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Koichi Haraguchi
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| |
Collapse
|
22
|
Henderson WM, Evich MG, Washington JW, Ward TT, Schumacher BA, Zimmerman JH, Kim YD, Weber EJ, Williams AC, Smeltz MG, Glinski DA. Analysis of Legacy and Novel Neutral Per- and Polyfluoroalkyl Substances in Soils from an Industrial Manufacturing Facility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10729-10739. [PMID: 38829283 PMCID: PMC11304343 DOI: 10.1021/acs.est.3c10268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been detected in an array of environmental media due to their ubiquitous use in industrial and consumer products as well as potential release from fluorochemical manufacturing facilities. During their manufacture, many fluorotelomer (FT) facilities rely on neutral intermediates in polymer production including the FT-alcohols (FTOHs). These PFAS are known to transform to the terminal acids (perfluoro carboxylic acids; PFCAs) at rates that vary with environmental conditions. In the current study on soils from a FT facility, we employed gas chromatography coupled with conventional- and high-resolution mass spectrometry (GC-MS and GC-HRMS) to investigate the profile of these precursor compounds, the intermediary secondary alcohols (sFTOHs), FT-acrylates (FTAcr), and FT-acetates (FTAce) in soils around the former FT-production facility. Of these precursors, the general trend in detection intensity was [FTOHs] > [sFTOHs] > [FTAcrs], while for the FTOHs, homologue intensities generally were [12:2 FTOH] > [14:2 FTOH] > [16:2 FTOH] > [10:2 FTOH] > [18:2 FTOH] > [20:2 FTOH] > [8:2 FTOH] ∼ [6:2 FTOH]. The corresponding terminal acids were also detected in all soil samples and positively correlated with the precursor concentrations. GC-HRMS confirmed the presence of industrial manufacturing byproducts such as FT-ethers and FT-esters and aided in the tentative identification of previously unreported dimers and other compounds. The application of GC-HRMS to the measurement and identification of precursor PFAS is in its infancy, but the methodologies described here will help refine its use in tentatively identifying these compounds in the environment.
Collapse
Affiliation(s)
- W Matthew Henderson
- U.S. Environmental Protection Agency, ORD/CEMM/EPD, Athens, Georgia 30605, United States
| | - Marina G Evich
- U.S. Environmental Protection Agency, ORD/CEMM/EPD, Athens, Georgia 30605, United States
| | - John W Washington
- U.S. Environmental Protection Agency, ORD/CEMM/EPD, Athens, Georgia 30605, United States
| | - Thomas T Ward
- Oak Ridge Institute for Science and Education, ORD/CEMM/EPD, Athens, Georgia 30605, United States
| | - Brian A Schumacher
- U.S. Environmental Protection Agency, ORD/CEMM/EPD, Athens, Georgia 30605, United States
| | - John H Zimmerman
- U.S. Environmental Protection Agency, ORD/CEMM/WECD, Research Triangle Park, North Carolina 27711, United States
| | - Yung D Kim
- Oak Ridge Institute for Science and Education, ORD/CEMM/EPD, Athens, Georgia 30605, United States
| | - Eric J Weber
- U.S. Environmental Protection Agency, ORD/CEMM/EPD, Athens, Georgia 30605, United States
| | - Alan C Williams
- U.S. Environmental Protection Agency, ORD/CEMM/WECD, Research Triangle Park, North Carolina 27711, United States
| | - Marci G Smeltz
- U.S. Environmental Protection Agency, ORD/CPHEA/PHITD, Research Triangle Park, North Carolina 27711, United States
| | - Donna A Glinski
- U.S. Environmental Protection Agency, ORD/CEMM/EPD, Athens, Georgia 30605, United States
| |
Collapse
|
23
|
Zarębska M, Bajkacz S, Hordyjewicz-Baran Z. Assessment of legacy and emerging PFAS in the Oder River: Occurrence, distribution, and sources. ENVIRONMENTAL RESEARCH 2024; 251:118608. [PMID: 38447604 DOI: 10.1016/j.envres.2024.118608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
The purpose of the study was to evaluate the occurrence and distribution of emerging contaminants, poly- and perfluoroalkyl substances (PFAS), in the Polish Oder River, aiming to uncover new insights into their environmental impact. The research aimed to identify potential sources of PFAS, assess water quality levels, and verify compliance with European Union environmental quality standards. The concentrations of 25 PFAS (20 legacy and 5 emerging) in 20 samples from intakes upstream and downstream of urban areas were analyzed using novel, developed in these studies, environmental analytical procedures involving solid phase extraction and liquid chromatography-tandem mass spectrometry. The presence of 14 PFAS was confirmed, and the concentration of Σ14PFAS ranged from 7.6 to 68.0 ng/L. The main components were short-chain analogs. PFBA was the most abundant, accounting for about one-third of all PFAS detected. An exception was observed in the waters of the Gliwice Canal, where ADONA represented half of the detected Σ14PFAS. Alternative PFOS replacements were found in all samples. In 11 of 20 water samples, environmental quality standards for PFOS exceeded the limit of 0.65 ng/L. In 5 of 9 cases, the ability of urban areas to increase PFAS levels in the river was determined. 9.5%-54.4% share of alternative PFAS in relation to the sum of the targeted PFAS showing their increasing use as substitutes for phased-out PFOS. Hierarchical cluster analysis was used to identify potential sources of PFAS. Analysis revealed that PFAS in the Oder River most likely originated from domestic and agricultural wastewater, as well as chemical industry discharges. However, the occurrence of PFAS in the Oder River is low and comparable to other recent European studies. These findings provide valuable insights for environmental management to mitigate the risks associated with PFAS pollution in Polish rivers. Moreover, the developed analytical procedure provides a valuable tool that can be successfully applied by other researchers to monitor PFAS in rivers around the world.
Collapse
Affiliation(s)
- Magdalena Zarębska
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, 6 B. Krzywoustego Str., Gliwice, 44-100, Poland; Lukasiewicz Research Network- Institute of Heavy Organic Synthesis "Blachownia", 9 Energetyków Str., Kędzierzyn-Koźle, 47-225, Poland.
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, 6 B. Krzywoustego Str., Gliwice, 44-100, Poland.
| | - Zofia Hordyjewicz-Baran
- Lukasiewicz Research Network- Institute of Heavy Organic Synthesis "Blachownia", 9 Energetyków Str., Kędzierzyn-Koźle, 47-225, Poland.
| |
Collapse
|
24
|
Wang L, Chen L, Wang J, Hou J, Han B, Liu W. Spatial distribution, compositional characteristics, and source apportionment of legacy and novel per- and polyfluoroalkyl substances in farmland soil: A nationwide study in mainland China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134238. [PMID: 38608586 DOI: 10.1016/j.jhazmat.2024.134238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
China, as one of the largest global producers and consumers of per- and poly-fluoroalkyl substances (PFASs), faces concerning levels of PFAS pollution in soil. However, knowledge of their occurrence in agricultural soils of China on the national scale remains unknown. Herein, the first nationwide survey was done by collecting 352 soil samples from 31 provinces in mainland China. The results indicated that the Σ24PFASs concentrations were 74.3 - 24880.0 pg/g, with mean concentrations of PFASs in decreasing order of legacy PFASs > emerging PFASs > PFAS precursors (640.2 pg/g, 340.7 pg/g, and 154.9 pg/g, respectively). The concentrations in coastal eastern China were distinctly higher than those in inland regions. Tianjin was the most severely PFASs-contaminated province because of rapid urban industrialization. This study further compared the PFAS content in monoculture and multiple cropping farmland soils, finding the concentrations of PFASs were high in soils planted with vegetable and fruit monocultures. Moreover, a positive matrix factorization (PMF) model was employed to identify different sources of PFASs. Fluoropolymer industries and aqueous film-forming foams were the primary contributors. The contributions from different emission sources varied across the seven geographical regions. This study provides new baseline data for prevention and control policies for reducing pollution.
Collapse
Affiliation(s)
- Lixi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Liyuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jinze Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bingjun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Tao Y, Pang Y, Luo M, Jiang X, Huang J, Li Z. Multi-media distribution and risk assessment of per- and polyfluoroalkyl substances in the Huai River Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169581. [PMID: 38151127 DOI: 10.1016/j.scitotenv.2023.169581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
The widespread existence, environmental persistence, and risks of per- and polyfluoroalkyl substances (PFASs) have attracted widespread attention. Herein, the distribution and risk assessment of PFASs were investigated from the Huai River Basin. The ranges in different media were 29.83-217.96 (average of 75.82 ± 35.64 ng/L) in water, 0.17-9.55 ng/g (2.56 ± 2.83 ng/g) in sediments, and 0.21-9.76 ng/g (3.43 ± 3.07 ng/g) in biota. Perfluoropentanoic acid (PFPeA) was the most prevalent PFAS in surface water, followed by perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA), accounted for 42.62 %, 22.23 % and 17.72 % of the total concentrations of the PFASs analyzed, respectively. PFBA was dominant in sediments, accounting for 60.37 % of the total concentrations of the PFASs analyzed. Perfluorooctane sulfonate (PFOS) was the main pollutant in biota, and the highest concentration (5.09 ng/g) was found in Channa argus. Considering the measured concentrations in water, sediments and biota, the sediment-water partition coefficients (log Kd) and bioaccumulation factors (BAF) of PFASs were determined. The log Kd of the PFASs differed among those with a different carbon chain length, C7-C11 PFASs were more likely to be adsorbed onto sediments as the carbon chain length increases, and PFUnDA and PFDA showed the higher BAF value in Channa argus. PFASs in the Huai River Basin posed an acceptable ecological risk, and long-chain PFAS contamination provided green algae with a higher potential ecological risk. Compared to drinking water, aquatic products constituted a higher PFASs threat to human health, especially for children. The highest HQ was found in PFOS, with an HQmax of 0.97-4.32. Residents in the Huai River Basin should reduce their intake of Channa argus, Coilia nasus, and Carassius auratus, children aged 2 to 4 are limited to consuming no more than 6.9 g/d, 9.7 g/d, and 16.6 g/d, respectively.
Collapse
Affiliation(s)
- Yanru Tao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Pang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Mingke Luo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiahao Huang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zechan Li
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Resource and Environment, Anqing Normal University, Anqing 246133, China
| |
Collapse
|
26
|
Yuan W, Song S, Lu Y, Shi Y, Yang S, Wu Q, Wu Y, Jia D, Sun J. Legacy and alternative per-and polyfluoroalkyl substances (PFASs) in the Bohai Bay Rim: Occurrence, partitioning behavior, risk assessment, and emission scenario analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168837. [PMID: 38040376 DOI: 10.1016/j.scitotenv.2023.168837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
The use of alternative per- and polyfluoroalkyl substances (PFASs) has been practiced because of the restrictions on legacy PFASs. However, knowledge gaps exist on the ecological risks of alternatives and relationships between restrictions and emissions. This study systematically analyzed the occurrence characteristics, water-sediment partitioning behaviors, ecological risks, and emissions of legacy and alternative PFASs in the Bohai Bay Rim (BBR). The mean concentration of total PFASs was 46.105 ng/L in surface water and 6.125 ng/g dry weight (dw) in sediments. As an alternative for perfluorooctanoic acid (PFOA), hexafluoropropylene oxide dimer acid (GenX) had a concentration second only to PFOA in surface water. In sediments, perfluorobutyric acid (PFBA) and GenX were the two predominant contaminants. In the water-sediment partitioning system, GenX, 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (F-53B), and 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (8:2 Cl-PFESA) tended to be enriched towards sediments. The species sensitivity distribution (SSD) models revealed the low ecological risks of PFASs and their alternatives in the BBR. Moreover, predicted no-effected concentrations (PNECs) indicated that short-chain alternatives like PFBA and perfluorobutane sulfonate (PFBS) were safer for aquatic ecosystems, while caution should be exercised when using GenX and F-53B. Due to the incremental replacement of PFOA by GenX, cumulative emissions of 1317.96 kg PFOA and 667.22 kg GenX were estimated during 2004-2022, in which PFOA emissions were reduced by 59.2 % due to restrictions implemented since 2016. If more stringent restrictions are implemented from 2023 to 2030, PFOA emissions will further decrease by 85.0 %, but GenX emissions will increase by an additional 21.3 %. Simultaneously, GenX concentrations in surface water are forecasted to surge by 2.02 to 2.45 times in 2023. This study deepens the understanding of PFAS alternatives and assists authorities in developing policies to administer PFAS alternatives.
Collapse
Affiliation(s)
- Wang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Yonglong Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjie Yang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiang Wu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanqi Wu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dai Jia
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jun Sun
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China; College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China
| |
Collapse
|
27
|
Langberg HA, Choyke S, Hale SE, Koekkoek J, Cenijn PH, Lamoree MH, Rundberget T, Jartun M, Breedveld GD, Jenssen BM, Higgins CP, Hamers T. Effect-Directed Analysis Based on Transthyretin Binding Activity of Per- and Polyfluoroalkyl Substances in a Contaminated Sediment Extract. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:245-258. [PMID: 37888867 DOI: 10.1002/etc.5777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Only a fraction of the total number of per- and polyfluoroalkyl substances (PFAS) are monitored on a routine basis using targeted chemical analyses. We report on an approach toward identifying bioactive substances in environmental samples using effect-directed analysis by combining toxicity testing, targeted chemical analyses, and suspect screening. PFAS compete with the thyroid hormone thyroxin (T4 ) for binding to its distributor protein transthyretin (TTR). Therefore, a TTR-binding bioassay was used to prioritize unknown features for chemical identification in a PFAS-contaminated sediment sample collected downstream of a factory producing PFAS-coated paper. First, the TTR-binding potencies of 31 analytical PFAS standards were determined. Potencies varied between PFAS depending on carbon chain length, functional group, and, for precursors to perfluoroalkyl sulfonic acids (PFSA), the size or number of atoms in the group(s) attached to the nitrogen. The most potent PFAS were the seven- and eight-carbon PFSA, perfluoroheptane sulfonic acid (PFHpS) and perfluorooctane sulfonic acid (PFOS), and the eight-carbon perfluoroalkyl carboxylic acid (PFCA), perfluorooctanoic acid (PFOA), which showed approximately four- and five-times weaker potencies, respectively, compared with the native ligand T4 . For some of the other PFAS tested, TTR-binding potencies were weak or not observed at all. For the environmental sediment sample, not all of the bioactivity observed in the TTR-binding assay could be assigned to the PFAS quantified using targeted chemical analyses. Therefore, suspect screening was applied to the retention times corresponding to observed TTR binding, and five candidates were identified. Targeted analyses showed that the sediment was dominated by the di-substituted phosphate ester of N-ethyl perfluorooctane sulfonamido ethanol (SAmPAP diester), whereas it was not bioactive in the assay. SAmPAP diester has the potential for (bio)transformation into smaller PFAS, including PFOS. Therefore, when it comes to TTR binding, the hazard associated with this substance is likely through (bio)transformation into more potent transformation products. Environ Toxicol Chem 2024;43:245-258. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Håkon A Langberg
- Environment and Geotechnics, Norwegian Geotechnical Institute, Oslo, Norway
| | - Sarah Choyke
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
- Eurofins Environment Testing, Tacoma, Washington, USA
| | - Sarah E Hale
- Environment and Geotechnics, Norwegian Geotechnical Institute, Oslo, Norway
- DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruhe, Germany
| | - Jacco Koekkoek
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Peter H Cenijn
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| | | | - Morten Jartun
- Norwegian Institute for Water Research, Oslo, Norway
| | - Gijs D Breedveld
- Environment and Geotechnics, Norwegian Geotechnical Institute, Oslo, Norway
- Department of Arctic Technology, University Centre in Svalbard, Longyearbyen, Norway
| | - Bjørn M Jenssen
- Department of Arctic Technology, University Centre in Svalbard, Longyearbyen, Norway
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Timo Hamers
- Amsterdam Institute for Life and Environment, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Xing Y, Zhou Y, Zhang X, Lin X, Li J, Liu P, Lee HK, Huang Z. The sources and bioaccumulation of per- and polyfluoroalkyl substances in animal-derived foods and the potential risk of dietary intake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167313. [PMID: 37742961 DOI: 10.1016/j.scitotenv.2023.167313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have attracted increasing attention due to their environmental persistence and potential toxicity. Diet is one of the main routes of human exposure to PFAS, particularly through the consumption of animal-derived foods (e.g., aquatic products, livestock and poultry, and products derived from them). This review summarizes the source, bioaccumulation, and distribution of PFAS in animal-derived foods and key influential factors. In most environmental media, perfluorooctanoic acid and perfluorooctane sulfonate are the dominant PFAS, with the levels of short-chain PFAS such as perfluorobutyric acid and perfluorohexane sulfonate surpassing them in some watersheds and coastal areas. The presence of PFAS in environmental media is mainly influenced by suspended particulate matter, microbial communities as well as temporal and spatial factors, such as season and location. Linear PFAS with long carbon chains (C ≥ 7) and sulfonic groups tend to accumulate in organisms and contribute significantly to the contamination of animal-derived foods. Furthermore, PFAS, due to their protein affinity, are prone to accumulate in the blood and protein-rich tissues such as the liver and kidney. Species differences in PFAS bioaccumulation are determined by diet, variances in protein content in the blood and tissues and species-specific activity of transport proteins. Carnivorous fish usually show higher PFAS accumulation than omnivorous fish. Poultry typically metabolize PFAS more rapidly than mammals. PFAS exposures in the processing of animal-derived foods are also attributable to the migration of PFAS from food contact materials, especially those in higher-fat content foods. The human health risk assessment of PFAS exposure from animal-derived foods suggests that frequent consumption of aquatic products potentially engender greater risks to women and minors than to adult males. The information and perspectives from this review would help to further identify the toxicity and migration mechanism of PFAS in animal-derived foods and provide information for food safety management.
Collapse
Affiliation(s)
- Yudong Xing
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xia Lin
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Jiaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
29
|
Umeh AC, Hassan M, Egbuatu M, Zeng Z, Al Amin M, Samarasinghe C, Naidu R. Multicomponent PFAS sorption and desorption in common commercial adsorbents: Kinetics, isotherm, adsorbent dose, pH, and index ion and ionic strength effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166568. [PMID: 37633378 DOI: 10.1016/j.scitotenv.2023.166568] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The adsorption and desorption of 9 PFAS, including 3 perfluoroalkyl sulphonic and 6 perfluoroalkyl carboxylic acids, in artificial groundwater was investigated using 3 commercial adsorbents that comprised a powdered activated carbon (PAC), a surface-modified organoclay (NMC+n), and a carbonaceous organic amendment (ROAC). Sorption kinetics and isotherms of PFAS, as well as the effects of adsorbent dose, pH, index ion and ionic strength on PFAS adsorption and desorption were investigated. Sorption of multicomponent PFAS in the adsorbents was rapid, especially for NMC+n and ROAC, regardless of PFAS chain length. The sorption and (and especially) desorption of PFAS in the adsorbents was impacted by the pH, index ion, and ionic strength of simulated groundwater, especially for the short chain PFAS, with only minimal impacts on NMC+n and PAC compared to ROAC. Although the potential mineral and charged constituents of the adsorbents contributed to the adsorption of short chain PFAS through electrostatic interactions, these interactions were susceptible to variable groundwater chemistry. Hydrophobic interactions also played a major role in facilitating and increasing PFAS sorption, especially in adsorbents with aliphatic functional groups. The desorption of PFAS from the adsorbents was below 8 % when the aqueous phase was deionised water, with no measurable desorption for NMC+n. In contrast, the desorption of short chain PFAS in simulated groundwater increased substantially (30-100 %) in the adsorbents, especially in ROAC and NMC+n, but more so with ROAC. In general, the three adsorbents exhibited strong stability for the long chain PFAS, especially the perfluoroalkyl sulphonic acids, with minimal to no sorption reversibility under different pH and ionic composition of simulated groundwater. This study highlights the importance of understanding not only the sorption of PFAS in groundwater using adsorbents, but also the desorption of PFAS, which may be useful for decision making during the ex-situ and in-situ treatment of PFAS-contaminated groundwater.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Masud Hassan
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Maureen Egbuatu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zijun Zeng
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Al Amin
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Chamila Samarasinghe
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
30
|
Capozzi SL, Xia C, Shuwal M, Zaharias Miller G, Gearhart J, Bloom E, Gehrenkemper L, Venier M. From watersheds to dinner plates: Evaluating PFAS exposure through fish consumption in Southeast Michigan. CHEMOSPHERE 2023; 345:140454. [PMID: 37839751 DOI: 10.1016/j.chemosphere.2023.140454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Muscle tissue and organ samples of six different fish species were collected from ten locations in Southeast Michigan's Huron and Rouge watersheds. Per- and polyfluoroalkyl substances (PFAS) were analyzed in 36 samples comprising filets, liver, gut, and eggs using targeted analysis and the direct total oxidizable precursor (dTOP) assay on a subset of six samples. The median concentrations of the ∑PFAS in filets from the Huron and Rouge watersheds were 13 and 6.3 ng/g wet weight (w.w.), respectively. Perfluorooctane sulfonate (PFOS) was the most detected and abundant compound in fish organs, with the liver having the largest overall burden of PFAS. The highest percent increase in targeted PFAS after the dTOP assay was observed in the Catfish filet (552%) while the smallest increase was in the Catfish liver (32%) accounting for 1.3 and 8.1 nMole F/g dry weight (d.w.), respectively. The positive matrix factorization (PMF) analysis revealed three distinct PFAS sources, of which the one attributed to PFOS explained 73% of the data. Results from this work have important implications for fish consumption in Michigan waterways. Among the filet samples analyzed, the calculated daily consumption limit of total PFOS was exceeded in approximately 82% and 91% of samples for adults and children over the age of seven years old, respectively.
Collapse
Affiliation(s)
- Staci L Capozzi
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States.
| | - Chunjie Xia
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Matthew Shuwal
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | | | | | - Erica Bloom
- Ecology Center, Ann Arbor, MI, 48104, United States
| | - Lennart Gehrenkemper
- Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-WillstätterStraße 11, 12489, Berlin, Germany
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| |
Collapse
|
31
|
Manjarrés-López DP, Vitale D, Callejas-Martos S, Usuriaga M, Picó Y, Pérez S, Montemurro N. An effective method for the simultaneous extraction of 173 contaminants of emerging concern in freshwater invasive species and its application. Anal Bioanal Chem 2023; 415:7085-7101. [PMID: 37776351 PMCID: PMC10684701 DOI: 10.1007/s00216-023-04974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
A robust and efficient extraction method was developed to detect a broad range of pollutants of emerging interest in three freshwater invasive species: American red crab (Prokambarus clarkii), Asian clam (Corbicula fluminea), and pumpkinseed fish (Lepomis gibbosus). One native species, "petxinot" clam (Anodonta cygnea), was also evaluated. Invasive species are often more resistant to contamination and could be used in biomonitoring studies to assess the effect of contaminants of emerging concern on aquatic ecosystems while preserving potentially threatened native species. So far, most extraction methods developed for this purpose have focused on analyzing fish and generally focus on a limited number of compounds, especially analyzing compounds from the same family. In this sense, we set out to optimize a method that would allow the simultaneous extraction of 87 PhACs, 11 flame retardants, 21 per- and poly-fluoroalkyl substances, and 54 pesticides. The optimized method is based on ultrasound-assisted solvent extraction. Two tests were performed during method development, one to choose the extraction solvent with the best recovery efficiencies and one to select the best clean-up. The analysis was performed by high-performance liquid chromatography coupled to high-resolution mass spectrometry. The method obtained recoveries between 40 and 120% and relative standard deviations of less than 25% for 85% of the analytes in the four validated matrices. Limits of quantification between 0.01 ng g-1 and 22 ng g-1 were obtained. Application of the method on real samples from the Albufera Natural Park of Valencia (Spain) confirmed the presence of contaminants of emerging concern in all samples, such as acetaminophen, hydrochlorothiazide, tramadol, PFOS, carbendazim, and fenthion. PFAS were the group of compounds with the highest mean concentrations. C. fluminea was the species with the highest detection frequency, and P. clarkii had the highest average concentrations, so its use is prioritized for biomonitoring studies.
Collapse
Affiliation(s)
- Diana P Manjarrés-López
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Dyana Vitale
- Desertification Research Centre (CIDE) (CSIC-UV-GV), University of Valencia, Road CV-315 Km 10.7, Moncada, 46113, Valencia, Spain
| | - Sandra Callejas-Martos
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Martí Usuriaga
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Yolanda Picó
- Desertification Research Centre (CIDE) (CSIC-UV-GV), University of Valencia, Road CV-315 Km 10.7, Moncada, 46113, Valencia, Spain
| | - Sandra Pérez
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Nicola Montemurro
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
32
|
Torres FG, De-la-Torre GE. Per- and polyfluoroalkyl substances (PFASs) in consumable species and food products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2319-2336. [PMID: 37424586 PMCID: PMC10326201 DOI: 10.1007/s13197-022-05545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2022] [Accepted: 06/25/2022] [Indexed: 07/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a group of thousands of manmade chemicals widely used in consumer products and industrial processes. Toxicological studies have suggested that exposure to PFASs may lead to several adverse effects, including infertility and cancer development. In light of their widespread use, the contamination of food products has created health concerns in sites directly influenced by industrial and anthropogenic activity. In the present contribution, the current knowledge of PFAS contamination was systematically reviewed in order to provide with the knowledge gaps and main sources of contamination, as well as critically evaluate estimated dietary intake and relative risk values of the consulted studies. Legacy PFASs remain the most abundant despite their production restrictions. Edible species from freshwater bodies exhibit higher PFAS concentrations than marine species, probably due to low hydrodynamics and dilution in lentic ecosystems. Studies in food products from multiple sources, including aquatic, livestock, and agricultural, agree that the proximity to factories and fluorochemical industries rendered significantly higher and potentially hazardous PFAS contamination. Short-chain PFAS are suggested as chemicals of emerging concern to food security. However, the environmental and toxicological implications of short-chain congeners are not fully understood and, thus, much research is needed in this sense.
Collapse
Affiliation(s)
- Fernando G. Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, 15088 Lima, Perú
| | | |
Collapse
|
33
|
Fremlin KM, Elliott JE, Letcher RJ, Harner T, Gobas FA. Developing Methods for Assessing Trophic Magnification of Perfluoroalkyl Substances within an Urban Terrestrial Avian Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12806-12818. [PMID: 37590934 PMCID: PMC10469464 DOI: 10.1021/acs.est.3c02361] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
We investigated the trophic magnification potential of perfluoroalkyl substances (PFAS) in a terrestrial food web by using a chemical activity-based approach, which involved normalizing concentrations of PFAS in biota to their relative biochemical composition in order to provide a thermodynamically accurate basis for comparing concentrations of PFAS in biota. Samples of hawk eggs, songbird tissues, and invertebrates were collected and analyzed for concentrations of 18 perfluoroalkyl acids (PFAAs) and for polar lipid, neutral lipid, total protein, albumin, and water content. Estimated mass fractions of PFCA C8-C11 and PFSA C4-C8 predominantly occurred in albumin within biota samples from the food web with smaller estimated fractions in polar lipids > structural proteins > neutral lipids and insignificant amounts in water. Estimated mass fractions of longer-chained PFAS (i.e., C12-C16) mainly occurred in polar lipids with smaller estimated fractions in albumin > structural proteins > neutral lipids > and water. Chemical activity-based TMFs indicated that PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA, PFOS, and PFDS biomagnified in the food web; PFOA, PFHxDA, and PFHxS did not appear to biomagnify; and PFBS biodiluted. Chemical activity-based TMFs for PFCA C8-C11 and PFSA C4-C8 were in good agreement with corresponding TMFs derived with concentrations normalized to only total protein in biota, suggesting that concentrations normalized to total protein may be appropriate proxies of chemical activity-based TMFs for PFAS, which predominantly partition to albumin. Similarly, TMFs derived with concentrations normalized to albumin may be suitable proxies of chemical activity-based TMFs for longer-chained PFAS, which predominantly partition to polar lipids.
Collapse
Affiliation(s)
- Katharine M. Fremlin
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - John E. Elliott
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - Robert J. Letcher
- Ecotoxicology
and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1A
0H3, Canada
| | - Tom Harner
- Air
Quality Research Division, Environment and
Climate Change Canada, 4905 Dufferin Street, Toronto, ON M3H 5T4, Canada
| | - Frank A.P.C. Gobas
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- School
of Resource and Environmental Management, Faculty of the Environment, Simon Fraser University, Burnaby, BC V5A
1S6, Canada
| |
Collapse
|
34
|
Tajdini B, Vatankhah H, Murray CC, Liethen A, Bellona C. Impact of effluent organic matter on perfluoroalkyl acid removal from wastewater effluent by granular activated carbon and alternative adsorbents. WATER RESEARCH 2023; 241:120105. [PMID: 37270948 DOI: 10.1016/j.watres.2023.120105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Occurrence of perfluoroalkyl acids (PFAAs) in wastewater effluent coupled with increasingly stringent regulations has increased the need for more effective sorption-based PFAA treatment approaches. This study investigated the impact of ozone (O3)- biologically active filtration (BAF) as integral components of non-reverse osmosis (RO)-based potable reuse treatment trains and as a potential pretreatment option to improve adsorptive PFAA removal from wastewater effluent by nonselective (e.g., granular activated carbon (GAC) and selective (e.g., anionic exchange resins (AER) and surface-modified clay (SMC)) adsorbents. For nonselective GAC, O3 and BAF resulted in similar PFAA removal improvements, while BAF alone performed better than O3 for AER and SMC. O3-BAF in tandem resulted in the highest PFAA removal performance improvement among pretreatments investigated for selective and nonselective adsorbents. Side by side evaluation of the dissolved organic carbon (DOC) breakthrough curves and size exclusion chromatography (SEC) for each pretreatment scenario suggested that despite the higher affinity of selective adsorbents towards PFAAs, the competition between PFAA and effluent organic matter (EfOM) (molecular weights (MWs): 100-1000 Da) negatively impacts the performance of these adsorbents. The SEC results also demonstrated that transformation of hydrophobic EfOM to more hydrophilic molecules during O3 and biotransformation of EfOM during BAF were the dominant mechanisms responsible for alleviating the competition between PFAA and EfOM, resulting in PFAA removal improvement.
Collapse
Affiliation(s)
- Bahareh Tajdini
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Hooman Vatankhah
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Conner C Murray
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA; Hazen and Sawyer, Lakewood, CO, USA
| | - Alexander Liethen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Christopher Bellona
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
35
|
Chen Z, Zhan X, Zhang J, Diao J, Su C, Sun Q, Zhou Y, Zhang L, Bi R, Ye M, Wang T. Bioaccumulation and risk mitigation of legacy and novel perfluoroalkyl substances in seafood: Insights from trophic transfer and cooking method. ENVIRONMENT INTERNATIONAL 2023; 177:108023. [PMID: 37301048 DOI: 10.1016/j.envint.2023.108023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have widespread application in industrial and civil areas due to their unique physical and chemical properties. With the increasingly stringent regulations of legacy PFAS, various novel alternatives have been developed and applied to meet the market demand. Legacy and novel PFAS pose potential threats to the ecological safety of coastal areas, however, little is known about their accumulation and transfer mechanism, especially after cooking treatment. This study investigated the biomagnification and trophic transfer characteristics of PFAS in seafood from the South China Sea, and assessed their health risks after cooking. Fifteen target PFAS were all detected in the samples, of which perfluorobutanoic acid (PFBA) was dominant with concentrations ranging from 0.76 to 4.12 ng/g ww. Trophic magnification factors (TMFs) > 1 were observed for perfluorooctane sulfonate (PFOS) and 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (F-53B), indicating that these compounds experienced trophic magnification in the food web. The effects of different cooking styles on PFAS occurrence were further explored and the results suggested that ΣPFAS concentrations increased in most organisms after baking, while ΣPFAS amounts decreased basically after boiling and frying. Generally, there is a low health risk of exposure to PFAS when cooked seafood is consumed. This work provided quantitative evidence that cooking methods altered PFAS in seafood. Further, suggestions to mitigate the health risks of consuming PFAS-contaminated seafood were provided.
Collapse
Affiliation(s)
- Zhenwei Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xinyi Zhan
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jingru Zhang
- Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Jieyi Diao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Chuanghong Su
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Qiongping Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lulu Zhang
- Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Mai Ye
- Guangdong Provincial Academic of Environmental Science, Guangzhou 510045, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
36
|
Diao J, Chen Z, Su C, Wang J, Zheng Z, Sun Q, Wang L, Bi R, Wang T. Legacy and novel perfluoroalkyl substances in major economic species of invertebrates in South China Sea: Health implication from consumption. MARINE POLLUTION BULLETIN 2023; 192:115112. [PMID: 37276713 DOI: 10.1016/j.marpolbul.2023.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Continuously release of perfluoroalkyl substances (PFASs) would pose non-negligible impacts on environment, organisms, and human health. In present study, 18 PFASs in 7 typical economic invertebrates and their habitats were investigated from the South China Sea. The higher concentrations of PFASs in the nearshore water (6.61-15.54 ng/L) and sediment (0.82-8.84 ng/g) obviously due to frequent human activities. Long-chain PFASs have tendency to accumulate in sediment, however, short-chain PFASs dominated in biota. The acute reference dose (%ARfD) and hazard ratios (HR) of major PFASs in biota were all <100 %, and also below 1, respectively, which means that consumption of PFASs from seafood does not pose risk and threat to human health. However, it should be taken into account that the HR of PFHxA in Mimachlamys nobilis reached 0.82. Potential adverse effects toward human health induced by short-chain PFASs (such as <6 C) via invertebrate seafood consumption should be concerned.
Collapse
Affiliation(s)
- Jieyi Diao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhenwei Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Chuanghong Su
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jianwen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhixin Zheng
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Qiongping Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Lin Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
37
|
Point AD, Crimmins BS, Holsen TM, Fernando S, Hopke PK, Darie CC. Can blood proteome diversity among fish species help explain perfluoroalkyl acid trophodynamics in aquatic food webs? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162337. [PMID: 36848995 DOI: 10.1016/j.scitotenv.2023.162337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/22/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse family of industrially significant synthetic chemicals infamous for extreme environmental persistence and global environmental distribution. Many PFAS are bioaccumulative and biologically active mainly due to their tendency to bind with various proteins. These protein interactions are important in determining the accumulation potential and tissue distribution of individual PFAS. Trophodynamics studies including aquatic food webs present inconsistent evidence for PFAS biomagnification. This study strives to identify whether the observed variability in PFAS bioaccumulation potential among species could correspond with interspecies protein composition differences. Specifically, this work compares the perfluorooctane sulfonate (PFOS) serum protein binding potential and the tissue distribution of ten perfluoroalkyl acids (PFAAs) detected in alewife (Alosa pseudoharengus), deepwater sculpin (Myoxocephalus thompsonii), and lake trout (Salvelinus namaycush) of the Lake Ontario aquatic piscivorous food web. These three fish sera and fetal bovine reference serum all had unique total serum protein concentrations. Serum protein-PFOS binding experiments showed divergent patterns between fetal bovine serum and fish sera, suggesting potentially two different PFOS binding mechanisms. To identify interspecies differences in PFAS-binding serum proteins, fish sera were pre-equilibrated with PFOS, fractionated by serial molecular weight cut-off filter fractionation, followed by liquid chromatography-tandem mass spectrometry analysis of the tryptic protein digests and the PFOS extracts of each fraction. This workflow identified similar serum proteins for all fish species. However, serum albumin was only identified in lake trout, suggesting apolipoproteins are likely the primary PFAA transporters in alewife and deepwater sculpin sera. PFAA tissue distribution analysis provided supporting evidence for interspecies variations in lipid transport and storage, which may also contribute to the varied PFAA accumulation in these species. Proteomics data are available via ProteomeXchange with identifier PXD039145.
Collapse
Affiliation(s)
- Adam D Point
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, United States of America.
| | - Bernard S Crimmins
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY, United States of America; AEACS, LLC, New Kensington, PA, United States of America
| | - Thomas M Holsen
- Civil and Environmental Engineering, Clarkson University, Potsdam, NY, United States of America; Center for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY, United States of America
| | - Sujan Fernando
- Center for Air and Aquatic Resources Engineering and Science, Clarkson University, Potsdam, NY, United States of America
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, United States of America; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, United States of America
| |
Collapse
|
38
|
Wang H, Hu D, Wen W, Lin X, Xia X. Warming Affects Bioconcentration and Bioaccumulation of Per- and Polyfluoroalkyl Substances by Pelagic and Benthic Organisms in a Water-Sediment System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3612-3622. [PMID: 36808967 DOI: 10.1021/acs.est.2c07631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Warming and exposure to emerging global pollutants, such as per- and polyfluoroalkyl substances (PFAS), are significant stressors in the aquatic ecosystem. However, little is known about the warming effect on the bioaccumulation of PFAS in aquatic organisms. In this study, the pelagic organisms Daphnia magna and zebrafish, and the benthic organism Chironomus plumosus were exposed to 13 PFAS in a sediment-water system with a known amount of each PFAS at different temperatures (16, 20, and 24 °C). The results showed that the steady-state body burden (Cb-ss) of PFAS in pelagic organisms increased with increasing temperatures, mainly attributed to increased water concentrations. The uptake rate constant (ku) and elimination rate constant (ke) in pelagic organisms increased with increasing temperature. In contrast, warming did not significantly change or even mitigate Cb-ss of PFAS in the benthic organism Chironomus plumosus, except for PFPeA and PFHpA, which was consistent with declined sediment concentrations. The mitigation could be explained by the decreased bioaccumulation factor due to a more significant percent increase in ke than ku, especially for long-chain PFAS. This study suggests that the warming effect on the PFAS concentration varies among different media, which should be considered for their ecological risk assessment under climate change.
Collapse
Affiliation(s)
- Haotian Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Diexuan Hu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wu Wen
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Xiaohan Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
39
|
Dong H, Lu G, Wang X, Zhang P, Yang H, Yan Z, Liu J, Jiang R. Tissue-specific accumulation, depuration, and effects of perfluorooctanoic acid on fish: Influences of aqueous pH and sex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160567. [PMID: 36455738 DOI: 10.1016/j.scitotenv.2022.160567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) is widely distributed in nature, particularly in aquatic environments. Its bioaccumulation and toxicity in aquatic organisms can be affected by both the chemical status of PFOA in water and the physiology of the organism. However, research on the patterns of these effects is scarce. In this study, we investigated the influence of aqueous pH (pH 6, acidic; pH 7.5, neutral; pH 9, basic) and fish sex on PFOA uptake, clearance, and biochemical effects in crucian carp (C. auratus) using flow-through exposure. In the 17-d kinetic experiment, PFOA bioaccumulation adhered to a uniform first-order model in which PFOA uptake rates from water to blood and liver in acidic conditions were faster than those in other conditions, indicating possible acidic pH influence on PFOA uptake. PFOA clearance rates in these compartments of males were slower than in females, which was attributed to the notably stronger expression of Oat2 (organic anion transporter 2, responsible for reabsorption) in the kidneys of males. Similar responses were observed for peroxisome proliferation-related biomarkers at different pH levels and in different sexes. These biochemical responses were driven by the internal concentrations of PFOA. The inhibition acetylcholinesterase activity in the fish brain was closely linked to changes in P-glycoprotein content, demonstrating a protective relationship. Collectively, an aqueous pH lower than 7.5 might affect the uptake of PFOA by fish. The clearance discrepancies between the sexes highlight the importance of anion carriers for ionizable organic compounds in aquatic organisms.
Collapse
Affiliation(s)
- Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
40
|
Zhang W, Wellington TE, Liang Y. Effect of two sorbents on the distribution and transformation of N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) in soil-soybean systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120941. [PMID: 36566675 DOI: 10.1016/j.envpol.2022.120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The broad application of perfluoroalkyl acid (PFAA) precursors has led to their occurrence in soil, resulting in potential uptake and bioaccumulation in plants. In this study, we investigated the effect of powdered activated carbon (PAC) and montmorillonite on the distribution and transformation of a perfluorooctanesulfonic acid (PFOS) precursor, N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA), in soil-plant systems. The results showed that N-EtFOSAA at 300 μg/kg was taken up by soybean roots and shoots together with its transformation products (i.e., perfluorooctane sulfonamide (PFOSA), PFOS), while decreasing the biomass of shoots and roots by 47.63% and 61.16%, respectively. PAC amendment significantly reduced the water leachable and methanol extractable N-EtFOSAA and its transformation products in soil. In the presence of soybean and after 60 days, 73.5% of the initially spiked N-EtFOSAA became non-extractable bound residues. Compared to the spiked controls, the PAC addition also decreased the total plant uptake of N-EtFOSAA by 94.96%. In contrast, montmorillonite showed limited stabilization performance for N-EtFOSAA and its transformation products and was ineffective to lower their bioavailability. Overall, the combination of PAC and soybean was found to be effective in immobilizing N-EtFOSAA in soil.
Collapse
Affiliation(s)
- Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA.
| | - Tamia E Wellington
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
41
|
Liu S, Liu Z, Tan W, Johnson AC, Sweetman AJ, Sun X, Liu Y, Chen C, Guo H, Liu H, Wan X, Zhang L. Transport and transformation of perfluoroalkyl acids, isomer profiles, novel alternatives and unknown precursors from factories to dinner plates in China: New insights into crop bioaccumulation prediction and risk assessment. ENVIRONMENT INTERNATIONAL 2023; 172:107795. [PMID: 36764184 DOI: 10.1016/j.envint.2023.107795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are contaminants of global concern, and the inadvertent consumption of PFAA-contaminated crops may pose a threat to public health. Therefore, systematically studying their source tracing, bioaccumulation prediction and risk assessments in crops is an urgent priority. This study investigated the source apportionment and transport of PFAAs and novel fluorinated alternatives (collectively as per- and polyfluoroalkyl substances, PFASs) from factories to agricultural fields in a fluorochemical industrial region of China. Furthermore, bioaccumulation specificities and prediction of these chemicals in different vegetables were explored, followed by a comprehensive risk assessment from agricultural fields to dinner plates which considered precursor degradation. A positive matrix factorization model revealed that approximately 70 % of PFASs in agricultural soils were derived from fluorochemical manufacturing and metal processing. Alarming levels of ∑PFASs ranged 8.28-84.3 ng/g in soils and 163-7176 ng/g in vegetables. PFAS with short carbon chain or carboxylic acid group as well as branched isomers exhibited higher environmental transport potentials and bioaccumulation factors (BAFs) across a range of vegetables. The BAFs of different isomers of perfluorooctanoic acid (PFOA) decreased as the perfluoromethyl group moved further from the acid functional group. Hexafluoropropylene oxide dimer acid (GenX) showed relatively low BAFs, probably related to its ether bond with a high affinity to soil. Vegetables with fewer Casparian strips (e.g., carrot and radish), or more protein, possessed larger BAFs of PFASs. A bioaccumulation equation integrating critical parameters of PFASs, vegetables and soils, was built and corroborated with a good contamination prediction. After a total oxidizable precursors (TOP) assay, incremental perfluoroalkyl carboxylic acids (PFCAs) were massively found (325-5940 ng/g) in edible vegetable parts. Besides, precursor degradation and volatilization loss of PFASs was firstly confirmed during vegetable cooking. A risk assessment based on the TOP assay was developed to assist the protection of vegetable consumers.
Collapse
Affiliation(s)
- Shun Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andrew C Johnson
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon, OX 10 8BB, UK
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Xiaoyan Sun
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyu Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Wan
- Hubei Geological Survey, Wuhan 430034, China
| | - Limei Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
42
|
Ren J, Point AD, Baygi SF, Fernando S, Hopke PK, Holsen TM, Crimmins BS. Bioaccumulation of perfluoroalkyl substances in the Lake Erie food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120677. [PMID: 36400140 DOI: 10.1016/j.envpol.2022.120677] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The bioaccumulation and biomagnification of perfluoroalkyl substances (PFAS) in the Lake Erie food web was investigated by analyzing surface water and biological samples including 10 taxa of fish species, 2 taxa of benthos and zooplankton. The carbon (δ13C) and nitrogen (δ15N) isotopic composition and fatty acids profiles of biological samples were used to evaluate the food web structure and assess the biomagnification of PFAS. Perfluorooctane sulfonate (PFOS) dominated the total PFAS (ΣPFAS) concentration (50-90% of ΣPFAS concentration), followed by C9-C11 perfluorinated carboxylic acids (PFCAs). The highest PFOS concentrations (79 ± 4.8 ng/g, wet weight (wwt)) and ΣPFAS (88 ± 5.2 ng/g, wwt) were detected in yellow perch (Perca flavescens). The C8-C14 PFAS biomagnification factors (BMFs) between apex piscivorous fish and prey fish were found to be generally greater than 1, indicative of PFAS biomagnification, while biodilution (BMF<1) was observed between planktivorous fish and zooplankton. Trophic magnification factors (TMFs) of C8-C14 PFCA were not correlated with perfluoroalkyl chain length. The C4-C9 PFAS were detected in the surface water of Lake Erie, and PFBA was found to have the highest concentrations (2.1-2.8 ng/L) among all PFAS detected. The log of bioaccumulation factor (BAF) was found to generally increase with increasing log Kow for C6, 8, and 9 PFAS in all selected species from three tropic levels.
Collapse
Affiliation(s)
- Junda Ren
- Clarkson University, Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - Adam D Point
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA
| | - Sadjad Fakouri Baygi
- Clarkson University, Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - Sujan Fernando
- Clarkson University, Center for Air Resources Engineering and Science, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA; Clarkson University, Center for Air Resources Engineering and Science, 8 Clarkson Avenue, Potsdam, NY, 13699, USA; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas M Holsen
- Clarkson University, Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA; Clarkson University, Center for Air Resources Engineering and Science, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
| | - Bernard S Crimmins
- Clarkson University, Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA; Clarkson University, Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Potsdam, NY, 13699, USA; AEACS, LLC, New Kensington, PA, USA.
| |
Collapse
|
43
|
Banyoi SM, Porseryd T, Larsson J, Grahn M, Dinnétz P. The effects of exposure to environmentally relevant PFAS concentrations for aquatic organisms at different consumer trophic levels: Systematic review and meta-analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120422. [PMID: 36244496 DOI: 10.1016/j.envpol.2022.120422] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Per-and polyfluoroalkyl substances (PFAS) is a collective name for approximately 4700 synthetic chemicals ubiquitous in the aquatic environment worldwide. They are used in a wide array of products and are found in living organisms around the world. Some PFAS have been associated with cancer, developmental toxicity, endocrine disruption, and other health effects. Only a fraction of PFAS are currently monitored and regulated and the presence and effects on aquatic organisms of many PFAS are largely unknown. The aim of this study is to investigate the health effects of environmentally relevant concentrations of PFAS on aquatic organisms at different consumer trophic levels through a systematic review and meta-analysis. The main result shows that PFAS in concentrations up to 13.5 μg/L have adverse effects on body size variables for secondary consumers. However, no significant effects on liver or gonad somatic indices and neither on fecundity were found. In addition, the results show that there are large research gaps for PFAS effects on different organisms in aquatic environments at environmentally relevant concentrations. Most studies have been performed on secondary consumers and there is a substantial lack of studies on other consumers in aquatic ecosystems.
Collapse
Affiliation(s)
- Silvia-Maria Banyoi
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Tove Porseryd
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden.
| | - Josefine Larsson
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden; Marint Centrum, Simrishamn Kommun, Simrishamn, Sweden
| | - Mats Grahn
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Patrik Dinnétz
- Department of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| |
Collapse
|
44
|
Cheng H, Lv C, Li J, Wu D, Zhan X, Song Y, Zhao N, Jin H. Bioaccumulation and biomagnification of emerging poly- and perfluoroalkyl substances in marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158117. [PMID: 35985598 DOI: 10.1016/j.scitotenv.2022.158117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Accumulating evidence has demonstrated the wide environmental presence of 6:2 chlorinated polyfluoroalkyl ether sulfonates (6:2 Cl-PFAES) and p-perfluorous nonenoxybenzene sulfonate (PFNOBS). However, data on the bioaccumulation and trophic magnification of these emerging poly- and perfluoroalkyl substances (PFASs) in subtropical marine environment is still limited. In this study, seawater (n = 17), sediment (n = 14), and marine organism (27 species; n = 177) samples were collected from East China Sea, and analyzed them for legacy and emerging PFASs. Besides perfluoroalkyl carboxylates and perfluorooctane sulfonate (PFOS), 6:2 Cl-PFAES was always among the predominant PFASs detected in seawater, sediment, and marine organism. For emerging PFASs, 6:2 Cl-PFAES (mean ± SD, 3.1 ± 0.17), 8:2 Cl-PFAES (3.3 ± 0.35), and PFNOBS (3.3 ± 0.19) had lower bioaccumulation factors (BAF) than PFOS (3.4 ± 0.22) in marine fish. In crab, PFNOBS (3.7 ± 0.33) had a lower biota-sediment accumulation factor (BSAF) than PFOS (3.9 ± 0.45). In snail, among all detected PFASs, PFNOBS (4.0 ± 0.42) had the highest mean log BSAF value. 8:2 Cl-PFAES consistently had a higher log BSAF value than 6:2 Cl-PFAES in snail and crab. Notably, these differences in BAF and BSAF are not significant. Among PFASs, 6:2 Cl-PFAES (2.3; 95 % confidence interval, CI: 1.9-2.6) displayed the highest trophic magnification factor (TMF). PFNOBS had the lowest TMF value (1.8, 95 % CI: 1.4-2.1), but which still indicates its weak biomagnification through the current marine food web. This is the first study reporting the bioaccumulation and biomagnification of PFNOBS in marine organisms, which deepens the understanding of its environmental behavior in the marine ecosystem.
Collapse
Affiliation(s)
- Haixiang Cheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, PR China
| | - Chenhan Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Jianhui Li
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 324000, PR China
| | - Dexin Wu
- Hangzhou Xinjing Environmental Protection Technology Co., Ltd., Hangzhou, Zhejiang 310012, PR China
| | - Xugang Zhan
- Quzhou Ecological Environment Bureau, Quzhou, Zhejiang 324000, PR China
| | - Ying Song
- Quzhou Ecological Environment Bureau, Quzhou, Zhejiang 324000, PR China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
45
|
Guckert M, Scheurer M, Schaffer M, Reemtsma T, Nödler K. Combining target analysis with sum parameters-a comprehensive approach to determine sediment contamination with PFAS and further fluorinated substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85802-85814. [PMID: 35771320 DOI: 10.1007/s11356-022-21588-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Recent studies aiming at a fluorine mass balance analysis in sediments combined the determination of extractable organic fluorine (EOF) with target analysis. They reported high fractions of unidentified organic fluorine (UOF) compounds, as the target analysis covers only a limited number of per- and polyfluoroalkyl substances (PFAS). For this reason, in this study, a comprehensive approach was used combining target analysis with an extended PFAS spectrum, the EOF and a modified total oxidisable precursor (TOP) assay, which includes trifluoroacetic acid, to determine the PFAS contamination in sediments (n=41) and suspended solids (n=1) from water bodies in Northern Germany (Lower Saxony). PFAS are ubiquitous in the sediments (detected in 83% of the samples). Perfluorinated carboxylic acids (PFCAs) were found in 64% of the samples; perfluorinated sulfonic acids (PFSAs) were detected less frequently (21%), with the highest concentration observed for perfluorooctanesulfonic acid (PFOS). Levels of precursors and substitutes were lower. Applying the TOP assay resulted in an increase in PFCAs in 43% of the samples analysed. In most cases, target analysis and the TOP assay could not account for the EOF concentrations measured. However, as the fraction of UOF decreased significantly, the application of the TOP assay in fluorine mass balance analysis proved to be an important tool in characterising the PFAS contamination of riverine sediments.
Collapse
Affiliation(s)
- Marc Guckert
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruhe, Germany
| | - Marco Scheurer
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruhe, Germany
| | - Mario Schaffer
- Lower Saxony Water Management, Coastal Defense and Nature Conservation Agency - NLWKN, Hannover-Hildesheim, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruhe, Germany.
| |
Collapse
|
46
|
Huang J, Xiang S, Chen S, Wu W, Huang T, Pang Y. Perfluoroalkyl substance pollution: detecting and visualizing emerging trends based on CiteSpace. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82786-82798. [PMID: 35752676 DOI: 10.1007/s11356-022-20756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
In recent years, perfluoroalkyl substances (PFASs) have been detected in all kinds of environmental media and can harm animals and human beings. They have attracted the attention of environmental workers worldwide and have become another research hotspot in the field of environment. However, analyses of PFASs have seldom been studied systematically. Therefore, this study summarizes the available data in 6756 publications (2000-2022) using the CiteSpace software to provide insights into the specific characteristics of PFASs and consequently shows global development trends that scientists can use for establishing future research directions. As opposed to traditional review articles by experts, this study provides a new method for quantitatively visualizing information about the development of this field over the past 23 years. Results show that the countries with more research in this field are mainly the USA and China. The research on PFASs is mainly concentrated in environmental sciences and ecology. Zhanyun Wang and Robert C. Buck's research has the highest influence rate in this field, and their research group is worthy of attention. Through the analysis of hot keywords, we conclude that the research hotspots are mainly focused on PFASs' transmission media and pathways, human exposure and the mechanism of toxicity, and degradation and remediation measures. Collectively these results indicate the major themes of PFAS research are as follows: (1) transmission media and pathways, (2) human exposure and the mechanism of toxicity, (3) degradation and remediation measures. This study maps the major research domains of PFAS research; explanations and implications of the findings are discussed; and emerging trends highlighted.
Collapse
Affiliation(s)
- Jiahao Huang
- Lake Basin Management, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Song Xiang
- Lake Basin Management, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Shuqin Chen
- College of Resources and Environment, Anqing Normal University, Anqing, Anhui, 246011, People's Republic of China
| | - Wei Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Tianyin Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Yan Pang
- Lake Basin Management, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| |
Collapse
|
47
|
Zhang Y, Liu X, Yu L, Hua Z, Zhao L, Xue H, Tong X. Perfluoroalkyl acids in representative edible aquatic species from the lower Yangtze River: Occurrence, distribution, sources, and health risk. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115390. [PMID: 35661881 DOI: 10.1016/j.jenvman.2022.115390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl acid (PFAA) exposure poses a potential hazard to wildlife and humans. Food consumption is one of the main routes of PFAA exposure for the general population, with aquatic organisms being the major contributors. To evaluate the risk of coastal residents' intake of wild aquatic organisms, 14 PFAAs were detected in crucian carp and oriental river prawn from 18 sampling sites from the lower reaches of Yangtze River. The total PFAA (∑PFAA) concentrations ranged from 5.9 to 51.3 ng/g wet weight (ww) in the muscle of crucian carp and river prawn, suggesting the potential risk to human and wildlife. Perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and long-chain PFAAs (C ≥ 10) were the main pollutants in the tissues of crucian carp and river prawn, which are known for their higher bioaccumulation capacity. The ∑PFAA concentration in all the samples showed an increasing trend from upstream to downstream and was higher in the south bank, owing to population density, prevailing winds, background pollution and industrial emission. Principal component analysis-multiple linear regression and Pearson correlation analysis showed that WWTP effluent, industrial pollution and surface runoff ware the main sources of PFAAs in the aquatic organisms and industrial pollution highest contributor, suggesting better regulation is needed to manage them. The assessment of risk to human health and wild life suggested a low risk for most residents of cities along the Yangtze River except for resident of Nantong, where frequent consumption of wild aquatic organisms may cause potential risk to human health, especially for traditional eaters and middle-aged people.
Collapse
Affiliation(s)
- Yuan Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiaodong Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China.
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, PR China
| | - Li Zhao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Xuneng Tong
- Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| |
Collapse
|
48
|
Kidd J, Fabricatore E, Jackson D. Current and future federal and state sampling guidance for per- and polyfluoroalkyl substances in environmental matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155523. [PMID: 35504374 DOI: 10.1016/j.scitotenv.2022.155523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of emerging contaminants composed of an estimated 5000 to 10,000 human-made, fluorinated, organic chemicals. Due to the complexity of PFAS, the need for multiple environmental matrix considerations and the absence of a promulgated federal standard for environmental sampling and analysis, U.S. states have begun developing health-based regulatory and/or guidance values for a limited number of PFAS in environmental matrices. As there is a growing body of science to inform PFAS sampling guidance standard development, it is important to understand which U.S. states are implementing sampling guidelines and how they plan to handle emerging PFAS. This critical review discusses the current and impending federal and state sampling guidelines for PFAS in environmental matrices, the data gaps surrounding PFAS sampling guidance in U.S. states, and the future impacts of impending guidance documents and regulations. Ten federal guidance documents are available for PFAS sampling guidance and analysis. The maximum number of PFAS covered in these guidance documents is 25 analytes spanning across 8 unique media. While the EPA has developed several different sampling and analytical guidelines for PFAS, there is no formal regulation of PFAS or requirements of states to enforce these guidelines. As a result, only 31 states have informally adopted sampling guidelines, while the other 19 states have no guidance documentation in place for PFAS. The introduction of new PFAS sampling guidelines by the EPA, as well as updated analytical guidelines that target more PFAS or total organofluoride, is expected to continuously shift the landscape of federal and state guidance for PFAS sampling moving forward.
Collapse
Affiliation(s)
- Justin Kidd
- Savannah River National Laboratory (SRNL), Aiken, SC 29808, United States.
| | - Emily Fabricatore
- Savannah River National Laboratory (SRNL), Aiken, SC 29808, United States.
| | - Dennis Jackson
- Savannah River National Laboratory (SRNL), Aiken, SC 29808, United States.
| |
Collapse
|
49
|
Zhao Z, Li J, Zhang X, Wang L, Wang J, Lin T. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: current understandings and challenges to overcome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49513-49533. [PMID: 35593984 DOI: 10.1007/s11356-022-20755-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been frequently detected in groundwater globally. With the phase-out of perfluorooctane sulfonate (PFOS) and perfluorooctanate (PFOA) due to their risk to the ecosystem and human population, various novel PFASs have been used as replacements and detected in groundwater. In order to summarize the current understanding and knowledge gaps on PFASs in groundwater, we reviewed the studies about environmental occurrence, transport, and risk of legacy and novel PFASs in groundwater published from 1999 to 2021. Our review suggests that PFOS and PFOA could still be detected in groundwater due to the long residence time and the retention in the soil-groundwater system. Firefighting training sites, industrial parks, and landfills were commonly hotspots of PFASs in groundwater. More novel PFASs have been detected via nontarget analysis using high-resolution mass spectrometry. Some novel PFASs had concentrations comparable to that of PFOS and PFOA. Both legacy and novel PFASs can pose a risk to human population who rely on contaminated groundwater as drinking water. Transport of PFASs to groundwater is influenced by various factors, i.e., the compound structure, the hydrochemical condition, and terrain. The exchange of PFASs between groundwater and surface water needs to be better characterized. Field monitoring, isotope tracing, nontarget screening, and modeling are useful approaches and should be integrated to get a comprehensive understanding of PFASs sources and behaviors in groundwater.
Collapse
Affiliation(s)
- Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Jie Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Leien Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jamin Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
50
|
Diao J, Chen Z, Wang T, Su C, Sun Q, Guo Y, Zheng Z, Wang L, Li P, Liu W, Hong S, Khim JS. Perfluoroalkyl substances in marine food webs from South China Sea: Trophic transfer and human exposure implication. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128602. [PMID: 35255338 DOI: 10.1016/j.jhazmat.2022.128602] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/10/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Perfluoroalkyl substances (PFASs) are known to be persistent and toxic, and can be accumulated and trophic magnified in the environments. PFASs are widely distributed, and their coastal input poses a threat to the health of aquatic organisms and local residents. In present study, 17 PFASs including one emerging polyether substitute in water, sediment, and organisms were investigated from the South China Sea. Perfluorobutanoic acid (PFBA) was predominant in water, of which concentration ranged from ND to 10.26 ng/L, with a mean of 5.21 ng/L. Similar to sediment and organisms, PFBA was the substance with the highest concentration detected among PFASs. This result seemingly indicated that use of short-chain PFASs as substitutes for long-chain PFASs in recent years. Trophic magnification factors (TMFs) of PFASs were estimated in the marine food web. TMFs > 1 was observed only in perfluorooctane sulfonic acid (PFOS), indicating a biomagnification potential of PFOS in the given ecosystem. The estimated daily intake (EDI) of PFOS and PFOA were most prevalent in mollusk, whereas the EDI of PFBA was greater in fish and shrimp. The hazard ratio (HR) reported for seven dominant PFASs were lower than 1, which suggests that PFASs via seafood consumption would not cause significant health risk to local residents.
Collapse
Affiliation(s)
- Jieyi Diao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhenwei Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| | - Chuanghong Su
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Qiongping Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yanjun Guo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhao Zheng
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Lin Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|