1
|
Ou Z, Wang Z, Duan C, Shu L, Hu Z. Simultaneously disinfection of amoebae, endosymbiotic bacteria, and resistance genes using a novel two-electron water oxidation strategy. WATER RESEARCH 2025; 284:123894. [PMID: 40449332 DOI: 10.1016/j.watres.2025.123894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025]
Abstract
Amoebae, which serve as important vectors for various pathogenic bacteria, are ubiquitous in natural and artificial water systems. Their robust survival capabilities and protective characteristics render conventional disinfection methods largely ineffective. Moreover, amoeba cells provide an ideal environment for the replication and transfer of antibiotic resistance genes, posing a significant threat to human health and safety. In this study, an in-situ activation system for electrocatalytic water oxidation was developed. This system effectively inactivates amoeba spores and their intracellular symbiotic bacteria while simultaneously reducing the abundance of resistance genes through the generation of hydroxyl radicals (•OH) and carbonate free radicals (•CO3-). The results demonstrated a 99.9 % inactivation rate for amoeba spores and a 99.999 % inactivation rate for intracellular bacteria. In addition, the prevalence of resistant genes in bacteria within amoebae, specifically including sul1 (sulfonamide resistance), tetA (tetracycline resistance), blaFOX (cefoxitin resistance), arsB (arsenic resistance), czcA (cadmium resistance), and copA (copper resistance), was significantly reduced by approximately 16 %-62.6 %. Therefore, this study introduces a new technology capable of simultaneously treating amoeba spores, intracellular bacteria, and resistance genes, which holds significant importance for reducing the spread of resistant genes and enhancing public health safety.
Collapse
Affiliation(s)
- Zheshun Ou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zihe Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chengyu Duan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Gao YY, Wu YX, Chu WC, Lai L, Sun JH, Zhuang LL, Liu FF. Biochar-amended constructed wetlands enhance sulfadiazine removal and reduce resistance genes accumulation in treatment of mariculture wastewater. ENVIRONMENTAL RESEARCH 2025; 273:121161. [PMID: 39986428 DOI: 10.1016/j.envres.2025.121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
With the rapid development of mariculture, an increasing amount of antibiotics are being discharged into the marine environment. Effectively removing antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater with a relatively high salinity and low C/N presents challenges. Biochar-amended constructed wetlands (CWs) can effectively remove antibiotics, However, few studies have compared the impacts of biochar-amended CWs pyrolyzed at different temperatures on the treatment of mariculture wastewater. Thus, this study utilized biochar prepared at three temperatures as substrate for CWs (CW-300, CW-500, and CW-700), aiming to evaluate their efficiency to treat mariculture wastewater containing antibiotic sulfadiazine (SDZ). The results demonstrated that compared to traditional quartz sand-filled CW (NCW), the addition of biochar with a larger specific surface area significantly enhanced the removal efficiency of SDZ by 21.72%-46.96%. Additionally, the addition of biochar effectively reduced the relative abundance of one integron gene (int1) and antibiotic resistance genes (ARGs) including sul1, sul2, and sul3 in both effluent and substrates. The addition of biochar reduced the accumulation of extracellular polymeric substances within the substrate of CWs, thereby mitigating the proliferation and spread of ARGs. The microbial community structure indicated that the addition of biochar increased the abundance of the potential antibiotic-degrading bacteria such as Proteobacteria and Bacteroidota, facilitating the degradation of SDZ and mitigating the accumulation of ARGs. This study demonstrated that biochar can be a promising substrate in CWs for treating mariculture wastewater containing antibiotics.
Collapse
Affiliation(s)
- Yuan-Yuan Gao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yu-Xin Wu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Wang-Chao Chu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Li Lai
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jia-Hao Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Fei-Fei Liu
- School of Nuclear Science, Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China; Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
3
|
Zhu C, Wu L, Ning D, Tian R, Gao S, Zhang B, Zhao J, Zhang Y, Xiao N, Wang Y, Brown MR, Tu Q, Ju F, Wells GF, Guo J, He Z, Nielsen PH, Wang A, Zhang Y, Chen T, He Q, Criddle CS, Wagner M, Tiedje JM, Curtis TP, Wen X, Yang Y, Alvarez-Cohen L, Stahl DA, Alvarez PJJ, Rittmann BE, Zhou J. Global diversity and distribution of antibiotic resistance genes in human wastewater treatment systems. Nat Commun 2025; 16:4006. [PMID: 40301344 PMCID: PMC12041579 DOI: 10.1038/s41467-025-59019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/03/2025] [Indexed: 05/01/2025] Open
Abstract
Antibiotic resistance poses a significant threat to human health, and wastewater treatment plants (WWTPs) are important reservoirs of antibiotic resistance genes (ARGs). Here, we analyze the antibiotic resistomes of 226 activated sludge samples from 142 WWTPs across six continents, using a consistent pipeline for sample collection, DNA sequencing and analysis. We find that ARGs are diverse and similarly abundant, with a core set of 20 ARGs present in all WWTPs. ARG composition differs across continents and is distinct from that of the human gut and the oceans. ARG composition strongly correlates with bacterial taxonomic composition, with Chloroflexi, Acidobacteria and Deltaproteobacteria being the major carriers. ARG abundance positively correlates with the presence of mobile genetic elements, and 57% of the 1112 recovered high-quality genomes possess putatively mobile ARGs. Resistome variations appear to be driven by a complex combination of stochastic processes and deterministic abiotic factors.
Collapse
Affiliation(s)
- Congmin Zhu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Linwei Wu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA.
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China.
| | - Daliang Ning
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Renmao Tian
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Shuhong Gao
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Bing Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jianshu Zhao
- Center for Bioinformatics and Computational Biology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ya Zhang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Naijia Xiao
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Yajiao Wang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Mathew R Brown
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Qichao Tu
- Institute for Marine Science and Technology, Shandong University, Qingdao, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Per H Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Aijie Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ting Chen
- Institute for Artificial Intelligence and Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA
- Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN, USA
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network 'Chemistry meets Microbiology', University of Vienna, Vienna, Austria
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.
- School of Computer Sciences, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
4
|
Zhu X, Angelidaki I, Zhang T, Ju F. Metagenomics Disentangles Differential Resistome Traits and Risks in Full-Scale Anaerobic Digestion Plants under Ambient, Mesophilic, and Thermophilic Conditions. ACS ENVIRONMENTAL AU 2025; 5:183-196. [PMID: 40125276 PMCID: PMC11926754 DOI: 10.1021/acsenvironau.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 03/25/2025]
Abstract
Anaerobic digestion (AD) systems are vital for converting organic waste to green bioenergy but also serve as a non-negligible environmental reservoir for antibiotic-resistance genes (ARGs) and resistant bacteria of environmental and human health concerns. This study profiles the antibiotic resistome of 90 full-scale biogas reactors and reveals that AD microbiomes harbor at least 30 types and 1257 subtypes of ARGs, of which 16% are located on plasmids showing potential mobility. The total abundance of AD-ARGs ranges widely from 0.13 to 7.81 copies per cell and is distributed into 42-739 subtypes, significantly influenced (P < 0.05) by operational conditions like digestion temperature and substrate types. Compared with the ambient and mesophilic digesters, the thermophilic digesters harbor a significantly lower abundance and diversity as well as greatly reduced mobility and host pathogenicity levels (all P < 0.05) of ARGs, revealing that a higher digestion temperature mitigates the overall resistome risks. The comprehensive analysis of basic traits and key traits of the AD resistome is demonstrated to provide crucial quantitative and qualitative insights into the diversity, distribution pattern, and health risks of ARGs in full-scale AD systems. The revealed knowledge offers new guidance for improving environmental resistome management and developing oriented mitigation strategies to minimize the unwanted spread of clinically important antimicrobial resistance from AD systems.
Collapse
Affiliation(s)
- Xinyu Zhu
- Westlake
Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Environmental
Microbiome and Biotechnology Laboratory, School of Engineering, Westlake University, Hangzhou, 310030 Zhejiang, China
- Center
of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310030 Zhejiang, China
| | - Irini Angelidaki
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Tong Zhang
- Environmental
Microbiome Engineering and Biotechnology Laboratory, Department of
Civil Engineering, The University of Hong
Kong, Pokfulam Road, Pokfulam 999077, Hong Kong, China
| | - Feng Ju
- Westlake
Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Environmental
Microbiome and Biotechnology Laboratory, School of Engineering, Westlake University, Hangzhou, 310030 Zhejiang, China
- Center
of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310030 Zhejiang, China
- Institute
of Advanced Technology, Westlake Institute
for Advanced Study, 18
Shilongshan Road, Hangzhou, 310024 Zhejiang, China
| |
Collapse
|
5
|
Ma H, Du J, Xu T, Yin D, Fang X, Guo X. Distribution and risk assessment of antibiotic resistance genes in swine farm wastewater and its surrounding environments: from soil to water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:741-751. [PMID: 39989022 DOI: 10.1039/d4em00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Livestock farms are important reservoirs of antibiotic resistance genes (ARGs). However, how wastewater irrigation from swine farms affects the surrounding environments, especially water bodies, is not fully understood. In this study, the occurrence pattern and potential risk of ARGs and mobile gene elements (MGEs) in a biogas slurry from a large-scale swine farm and its surrounding environments were investigated. Genes conferring resistance to tetracycline, sulfonamide, and multidrugs were found to be predominant in the biogas slurry, while sulfonamide and multidrug resistance genes exhibited the highest abundance in the surrounding environments. Overall, the total relative abundance of ARGs in the biogas slurry was 1.4-7 fold higher than that in the surrounding environments. PCA revealed the cluster pattern of samples based on sample types and a better correlation between swine farm wastewater and groundwater. A higher abundance of ARGs was found in groundwater farther away from the swine farm than that in nearby groundwater and surface water. Correlation analysis indicated that ARGs had a significant positive correlation with MGEs at each sampling site. The most abundant MGE IS6100 may mediate the horizontal transfer of lnuA from the swine farm to nearby groundwater. Considering the abundance, mobility, host pathogenicity, and the co-occurrence patterns with MGEs of ARGs, nine high-risk ARGs, namely, aadA2, aadA17, aac (6')-Ib, tetX, tetG, tetM, oprJ, sul1, and ermF, were screened in the environment. Our results indicated that the swine farm wastewater had long-term effects on the surrounding surface water and groundwater and that MGEs can serve as a medium that contributes to the widespread distribution of various ARGs. This study provides a theoretical basis for the risk assessment of ARGs in farms and the reuse of farm wastewater.
Collapse
Affiliation(s)
- Haiyue Ma
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinping Du
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoling Fang
- Shanghai Eye Diseases Prevention &Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai 200331, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Zhang Y, Zhu D, Zhou S, Gong H, Dai X. Antibiotic resistome during two-stage partial nitritation/anammox process for sludge anaerobic digestion reject water treatment. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136967. [PMID: 39731890 DOI: 10.1016/j.jhazmat.2024.136967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Anaerobic digestion (AD) reject water serves as a significant reservoir for antibiotic resistance genes (ARGs), underscoring the importance of understanding ARGs dynamics during treatment processes. Partial nitritation /anammox (PN/A) has become an increasingly adopted process, while comprehensive investigation on ARG behavior within this system, especially in full-scale, remains limited. This study explores the distribution of ARGs in a full-scale two-stage PN/A system, with an anaerobic/anoxic/oxic (AAO) system for comparison. The sludge in partial nitritation (PN) stage exhibited higher ARG abundance (0.82 copy/cell) compared to that in anammox stage (0.21-0.26 copy/cell). In anammox sludge samples, 95.8-99.1 % of the mobile genetic elements (MGEs) were identified as tnpA, while the PN stage showing greater diversity. Some ARGs co-occur in the same contigs, and some of these ARGs belong to different ARGs types, which is related to multi-antibiotic resistance, with the highest frequency observed in the PN stage. The abundance of contigs with ARG-MGE co-occurrence, suggesting the possibility of horizontal gene transfer (HGT), was most prevalent in the AAO system. Potential ARG hosts were identified by metagenomic binning, and some functional bacteria, like Nitrosomonas, were regarded as ARGs host. This study offers a comprehensive analysis of the complexities of ARGs distribution within full-scale two-stage PN/A systems treating AD reject water.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Danyang Zhu
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuyan Zhou
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hui Gong
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Institute of Carbon Neutrality, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
7
|
Wang G, Haenelt S, Corrêa FB, da Rocha UN, Musat F, Zhang J, Müller JA, Musat N. Riverine antibiotic resistome along an anthropogenic gradient. Front Microbiol 2025; 16:1516033. [PMID: 40078550 PMCID: PMC11897494 DOI: 10.3389/fmicb.2025.1516033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
The introduction of antibiotic-resistant bacteria into riverine systems through the discharge of wastewater treatment plant (WWTP) effluent and agricultural waste poses significant health risks. Even when not pathogenic, these bacteria can act as reservoirs for antibiotic resistance genes (ARGs), transferring them to pathogens that infect humans and animals. In this study, we used fluorescence in situ hybridization, qPCR, and metagenomics to investigate how anthropogenic activities affect microbial abundance and the resistome along the Holtemme River, a small river in Germany, from near-pristine to human-impacted sites. Our results showed higher bacterial abundance, a greater absolute and relative abundance of ARGs, and a more diverse ARG profile at the impacted sites. Overall, the ARG profiles at these sites reflected antibiotic usage in Germany, with genes conferring resistance to drug classes such as beta-lactams, aminoglycosides, folate biosynthesis inhibitors, and tetracyclines. There were also variations in the ARG profiles of the impacted sites. Notably, there was a high abundance of the oxacillin resistance gene OXA-4 at the downstream site in the river. In the metagenome assembly, this gene was associated with a contig homologous to small plasmids previously identified in members of the Thiotrichaceae. The likely in-situ host of the putative plasmid was a close relative of Thiolinea (also known as Thiothrix) eikelboomii, a prominent member of WWTP microbiomes worldwide. Our results show that the effluent from WWTPs can introduce bacteria into the environment that act as shuttle systems for clinically relevant ARG.
Collapse
Affiliation(s)
- Gangan Wang
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sarah Haenelt
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Felipe Borim Corrêa
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Florin Musat
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Junya Zhang
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jochen A. Müller
- Karlsruhe Institute of Technology, Institute for Biological Interfaces (IBG 5), Eggenstein-Leopoldshafen, Germany
| | - Niculina Musat
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Yang W, Liang Y, Wang S, Cai C, Wang X, Dai X, Chen X. Effects of quaternary ammonium disinfectants on human pathogenic bacteria in anaerobic sludge digestion: Dose-response and resistance variation. BIORESOURCE TECHNOLOGY 2025; 416:131745. [PMID: 39505280 DOI: 10.1016/j.biortech.2024.131745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/11/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Sewage sludge is a critical reservoir for biological pollutants, and its harmless disposal remains a major issue. Quaternary ammonium compounds (QACs) as typical household disinfectants are inevitably concentrated in sewage sludge, and have the potential to affect human pathogenic bacteria (HPBs) that remain poorly understood. This study found that the relative abundance of HPBs in digesters was decreased by 10 - 20 % at low QACs dose, but increased by 238 - 591 % at high QACs dose. Mechanistic analysis revealed that low QACs doses promoted functional hydrolytic/fermentative bacteria and their metabolism by stimulating extracellular polymeric substances secretion and enhancing resistance to QACs. Conversely, high QAC doses decreased microbial biomass and developed QACs and antibiotic resistance of HPBs by increasing cell membrane permeability and triggering oxidative stress, resulting in deteriorating sanitation performance. These findings provide advanced insights into the potential function and hazards of exogenous QACs on the biosafety of digestate.
Collapse
Affiliation(s)
- Wan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yunfei Liang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiang Chen
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China; National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, Wuhan 430010, China
| |
Collapse
|
9
|
Yu K, He B, Xiong J, Kan P, Sheng H, Zhi S, Zhu DZ, Yao Z. Deciphering basic and key traits of bio-pollutants in a long-term reclaimed water headwater urban stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177696. [PMID: 39577583 DOI: 10.1016/j.scitotenv.2024.177696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Reclaimed water has been recognized as a stable water resource for ecological replenishment in riverine environment. However, information about the bio-pollutants spatial and temporal distributions and the associated risk in this environment remains insufficient. Herein, the bio-pollutant profile in a long-term reclaimed water headwater urban stream, including antibiotic resistance genes (ARGs), mobile genetic elements and pathogens, were revealed by metagenomics. Notably, the temporal variation in bio-pollutant levels exceeded spatial fluctuations, possibly due to the varied rainfall intensity. Specially, multidrug resistance genes and Acinetobacter baumannii (A. baumannii) were the dominant ARGs and pathogens, respectively, exhibiting higher abundance in the dry season, especially in the downstream of the receiving point, where the bio-risk also peaked. A. baumannii and Ralstonia solanacearum were found to be the main plasmids contributors inducing the horizontal gene transfer process in this stream. Overall, A. baumannii contributed over 50 % bio-risk values in most samples, indicating that it was the "overlord" in this headwater urban stream. This study revealed characteristics of bio-pollutants in a typical long-term reclaimed water headwater urban stream, highlighting the superiority of A. baumannii in bio-pollutants, which should be a key consideration in the bio-pollutants surveillance for reclaimed waters.
Collapse
Affiliation(s)
- Kai Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Bin He
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peiying Kan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Huafeng Sheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315211, China
| | - David Z Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Wang Y, Cheng B, Jia Y, Qi Y, Li H, Zhang Q, Wang H. Fate of antibiotic resistance genes during sludge anaerobic fermentation: Roles of different sludge pretreatment. ENVIRONMENTAL RESEARCH 2024; 263:120139. [PMID: 39393457 DOI: 10.1016/j.envres.2024.120139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Excess sludge, the primary by-product of wastewater treatment plants, is the source and sink of antibiotic resistance genes (ARGs). Sludge pretreatments are an indispensable pathway to improve the resource recovery and harmfulness for anaerobic digestion sludge. However, fewer studies have compared the effects of different pretreatment technologies on the distribution of ARGs during anaerobic sludge digestion. Here, this study established seven anaerobic digesters, and four typical ARGs and one integrase gene of class 1 integron (intI1) regarded as the representative mobile genetic elements (MGEs) were examined during the whole anaerobic digestion process. It was found anaerobic digestion could effectively remove ARGs with about 70.86% removal rate of total ARGs. Among these pretreatments, the reduce efficiency of ARGs was the highest in 50 °C pretreatment, followed by oxidant, and the last was acid-alkaline. The microbial community analysis demonstrated the microbial community structure, including ARGs hosts and antibiotic resistant bacteria, was significantly changed and influenced by high temperature pretreatment. In addition, high temperature and K2S2O8 observably decrease the level of ROS production. Macro transcriptome analysis indicated that sludge pretreatment, except for 50 °C pretreatment, up-regulated the genes relevant to lyases and transferase, but down-regulated the genes responsible for peroxidase, antioxidant enzymes and T4SS gene. This study emphasized and compared the different sludge pretreatments on the fate of ARGs in anaerobic sludge, and highlighted concerns regarding the environmental and health risks to our society.
Collapse
Affiliation(s)
- Yali Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China
| | - Boya Cheng
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Yuanyuan Jia
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Yuxuan Qi
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Hang Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Qiushuo Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China.
| |
Collapse
|
11
|
Zhao W, Ye C, Li J, Yu X. Increased risk of antibiotic resistance in surface water due to global warming. ENVIRONMENTAL RESEARCH 2024; 263:120149. [PMID: 39414103 DOI: 10.1016/j.envres.2024.120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
As the pace of global warming accelerates, so do the threats to human health, urgent priority among them being antibiotic-resistant infections. In the context of global warming, this review summarises the direct and indirect effects of rising surface water temperatures on the development of bacterial antibiotic resistance. First, the resistance of typical pathogens such as E. coli increased with average temperature. This is not only related to increased bacterial growth rate and horizontal gene transfer frequency at high temperatures but also heat shock responses and cumulative effects. Secondly, the acceleration of bacterial growth indirectly promotes antibiotic residues in surface water, which is conducive to the growth and spread of resistant bacteria. Furthermore, the cascading effects of global warming, including the release of nutrients into the water and the resulting increase of bacteria and algae, indirectly promote the improvement of resistance. Water treatment processes exposed to high temperatures also increase the risk of resistance in surface water. The fitness costs of antibiotic resistance under these dynamic conditions are also discussed, concluding the relationship between various factors and resistance persistence. It was expected to provide a comprehensive basis for mitigating antibiotic resistance in the face of global warming.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China
| | - Jianguo Li
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen. 361102, China.
| |
Collapse
|
12
|
Da YM, Yang XR, Li MJ, Li SS, Gao ZP, Zhang Y, Su JQ, Zhou GW. Promotion of antibiotic-resistant genes dissemination by the micro/nanoplastics in the gut of snail Achatina fulica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176829. [PMID: 39437930 DOI: 10.1016/j.scitotenv.2024.176829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Terrestrial animal intestines are hotspots for the enrichment of micro/nano plastics (M/NPs) and antibiotic-resistant genes (ARGs). However, little is known about the further impact of M/NPs on the spread of ARGs in animal guts. This study investigates the role of M/NPs (polystyrene) with varying particle sizes (0.082, 42, and 182 μm), concentrations (10 and 100 mg/L), and exposure durations (4 and 16 days) in the ARGs dissemination via conjugation in the edible snail (Achatina fulica) gut. Combination of qPCR with 16S rRNA-based sequencing, we found that PS exposure caused intestinal cell impairment and shifts in the gut microbial community of snails. Conjugation rate increased with PS particle sizes in the snail gut. After 4 days of exposure, significantly higher conjugation rates were observed in the gut exposed to 100 mg/L PS compared to 10 mg/L, however, this trend reversed after 16 days. Consistently, the abundances of conjugation relevant genes trfA and trbB shared similar trends to the conjugation ratios in the snail gut after PS exposure. Transconjugant diversity was much lower in 10 mg/L PS groups than in 100 mg/L PS treatments. Therefore, this study suggests that the presence of M/NPs would complicate management of ARG spread. The selection pressure exerted by M/NPs may sustain or even amplify the spread of ARGs in the gut of terrestrial animals even in the absence of antibiotics. It highlights the necessity of avoiding M/NPs intake as a part of comprehensive strategy for cubing ARG dissemination in the gut of animals.
Collapse
Affiliation(s)
- Yan-Mei Da
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ming-Jun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Shun-Shun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Ze-Ping Gao
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Ying Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guo-Wei Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
13
|
Zhao Y, Zhao Q, Liu D, Xie H, Zhang J, Zheng Y, Xu X, Wu H, Hu Z. Antibiotic resistomes and ecological risk elimination in field-scale constructed wetland revealed by integrated metagenomics and metatranscriptomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136045. [PMID: 39368357 DOI: 10.1016/j.jhazmat.2024.136045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Constructed wetlands (CWs) are identified as significant ecological systems for the potential control of antibiotic resistance genes (ARGs) in the environment. However, the precise mechanisms governing removal, persistence, expression, and associated risks of ARGs during wetland treatment remain poorly understood. In this study, the distribution, mobility, expression, and hosts of ARGs in water, sediments, and plants of a field-scale CW and its parallel natural river were systematically investigated through metagenomic and metatranscriptomic approaches. Results showed that both the abundance and diversity of ARGs in water gradually decreased along the way of CW, reaching a final abundance removal rate of 72.28 % in the effluent. Source tracking analysis indicted that the reduction of ARGs in water was mainly achieved by the dynamic accumulation of ARGs in sediments and plants of the CW. Proteobacteria were identified as primary hosts for ARGs, particularly in sediments and plants during CW treatment. Moreover, although ESKAPE pathogens carrying multiple ARGs persisted in all media throughout the CW treatment, ARG expression levels and risk of water were also significantly decreased after CW treatment. Collectively, our comprehensive multi-omics study would enhance the understanding of ARG removal by CWs, offering insights for controlling antimicrobial resistance in wastewater treatment system.
Collapse
Affiliation(s)
- Yanhui Zhao
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Qian Zhao
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Daoxing Liu
- Shandong Innovation and Entrepreneurship Community of Green Industry and Environmental Security, Jinan 250199, PR China; Shandong Academy of Environmental Science Co., LTD., Jinan 250199, PR China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China; Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China.
| | - Yu Zheng
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Xinyi Xu
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Haiming Wu
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
14
|
Chen X, Zhu Y, Yan S, Li Y, Xie S. Enhanced tetracycline removal in sequencing batch reactors by bioaugmentation using tetX-carrying strains: Efficiency and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136118. [PMID: 39405671 DOI: 10.1016/j.jhazmat.2024.136118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
Tetracyclines antibiotics (TCs) pose notable environmental challenges due to their persistence in the effluent of wastewater treatment systems. Bioaugmentation offers a promising strategy for their removal, yet information is still very limited. This study aimed to assess the efficacy of bioaugmentation using wild-type (Sphingobacterium sp. WM1) and engineered tetX-carrying (PUC-tetX) strains for enhancing tetracycline (TC) removal in sequencing batch reactors (SBRs). Bioaugmentation mitigated TC's inhibitory effects on denitrification and phosphorus removal processes within SBR systems. Specifically, strain WM1 outperformed strain PUC-tetX in removing TC from sludge and maintained a longer viability. TC addition (500 μg/L, at an environmentally relevant concentration) and bioaugmentation did not significantly impact overall microbial community diversity. Notably, the introduction of these exogenous bacteria markedly increased the abundance of the tetX gene, correlating with the increase in TC degradation. Interestingly, MAGs associated with the Chloroflexi phylum in bioaugmented reactors showed the transfer of the tetX gene to autochthonous bacterial species, promoting TC removal capability. These findings underscored the potential of bioaugmentation to enhance antibiotic removal and provided insights into the dynamics of ARGs and tetX gene within activated sludge systems.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Zhao Y, Fan L, Gao SH, Huang F, Lei Z, Wang W, Gao R, Dai Z, Li Q, Liang B, Wang A. Strain-level multidrug-resistant pathogenic bacteria in urban wastewater treatment plants: Transmission, source tracking and evolution. WATER RESEARCH 2024; 267:122538. [PMID: 39357157 DOI: 10.1016/j.watres.2024.122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Wastewater treatment plants (WWTPs) serve as reservoirs for various pathogens and play a pivotal role in safeguarding environmental safety and public health by mitigating pathogen release. Pathogenic bacteria, known for their potential to cause fatal infections, present a significant and emerging threat to global health and remain poorly understood regarding their origins and transmission in the environment. Using metagenomic approaches, we identified a total of 299 pathogens from three full-scale WWTPs. We comprehensively elucidated the occurrence, dissemination, and source tracking of the pathogens across the WWTPs, addressing deficiencies in traditional detection strategies. While indicator pathogens in current wastewater treatment systems such as Escherichia coli are effectively removed, specific drug-resistant pathogens, including Pseudomonas aeruginosa, Pseudomonas putida, and Aeromonas caviae, persist throughout the treatment process, challenging complete eradication efforts. The anoxic section plays a predominant role in controlling abundance but significantly contributes to downstream pathogen diversity. Additionally, evolution throughout the treatment process enhances pathogen diversity, except for upstream transmission, such as A. caviae str. WP8-S18-ESBL-04 and P. aeruginosa PAO1. Our findings highlight the necessity of expanding current biomonitoring indicators for wastewater treatment to optimize treatment strategies and mitigate the potential health risks posed by emerging pathogens. By addressing these research priorities, we can effectively mitigate risks and safeguard environmental safety and public health.
Collapse
Affiliation(s)
- Yanmei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Fang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zelin Lei
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Wenxiu Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Rui Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zihan Dai
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qian Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
16
|
Jiao P, Zhou Y, Zhang X, Jian H, Zhang XX, Ma L. Mechanisms of horizontal gene transfer and viral contribution to the fate of intracellular and extracellular antibiotic resistance genes in anaerobic digestion supplemented with conductive materials under ammonia stress. WATER RESEARCH 2024; 267:122549. [PMID: 39368190 DOI: 10.1016/j.watres.2024.122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
The addition of conductive materials (CMs) is an effective strategy for mitigating ammonia inhibition during anaerobic digestion (AD). However, the introduction of CMs can result in increased antibiotic resistance genes (ARGs) pollution, potentially facilitated by enhanced horizontal gene transfer (HGT). The complex dynamics of intracellular and extracellular ARGs (iARGs/eARGs) and the mechanisms underlying their transfer, mediated by CMs, in ammonia-stressed AD systems remain unclear. In this study, we investigated the effects of three commonly used CMs-nano magnetite (Mag), nano zero-valent iron (nZVI), and granular activated carbon (GAC)-on the fate of iARGs and eARGs during the AD of waste activated sludge under ammonia stress. The results revealed an unexpected enrichment of iARGs by 1.5 %-10.9 % and a reduction of eARGs by 14.1 %-25.2 % in CM-supplemented AD. This discrepancy in the dynamics of iARGs and eARGs may be attributed to changes in microbial hosts and the horizontal transfer of ARGs. Notably, CMs activated prophages within antibiotic-resistant bacteria (ARB) and their symbiotic partners involved in vitamin B12 provision, leading to the lysis of ARB and the subsequent release of eARGs for transformation. Additionally, the abundance of potentially mobile ARGs, which co-occurred with mobile genetic elements, increased by 56.6 %-134.5 % with CM addition, highlighting an enhanced potential for the HGT of ARGs. Specifically, Mag appeared to promote both transformation and conjugation processes, while nZVI only promoted conjugation. Moreover, none of the three CMs had any discernible impact on transduction. GAC proved superior to both nano Mag and nZVI in controlling the enrichment of iARGs, reducing eARGs, and limiting HGTs simultaneously. Overall, these findings provide novel insights into the role of viruses and the mechanisms of ARG spread in CM-assisted AD, offering valuable information for developing strategies to mitigate ARG pollution in practical applications.
Collapse
Affiliation(s)
- Pengbo Jiao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ying Zhou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai, 200062, China.
| |
Collapse
|
17
|
Wang N, Li S, Shi M, Ni N, Zhang X, Guo X, Lin H, Luo Y. Trajectory of antibiotic resistome response to antibiotics gradients: A comparative study from pharmaceutical and associated wastewater treatment plants to receiving river. WATER RESEARCH 2024; 266:122444. [PMID: 39298897 DOI: 10.1016/j.watres.2024.122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Pharmaceutical wastewater often contains significant levels of antibiotic residues, which continuously induce and promote antibiotic resistance during the sewage treatment process. However, the specific impact of antibiotics on the emergence of antibiotic resistance genes (ARGs), microbiomes, and mobile genetic elements (MGEs), as well as the dose-response relationship remain unclear. Herein, through metagenomic sequencing and analysis, we investigated the fate, transmission, and associated risk of ARGs over a ten-year period of exposure to a gradient of sulfonamide antibiotics at a pharmaceutical wastewater treatment plant (PWWTP), an associated wastewater treatment plant (WWTP), and the receiving river. Through abundance comparison and principal co-ordinates analysis (PCoA), our results revealed distinct ARG, microbiome, and MGE profiles across different antibiotic concentrations. Notably, there was a decreasing trend in the abundance of ARGs and MGEs as the antibiotic concentrations were attenuated (p < 0.05). Further partial least squares path modeling analysis, Procrustes analysis and network analysis indicated that variation in MGEs and microbiomes were the driving forces behind the distribution of ARGs. Based on these findings, we proposed an antibiotic-microbiome-MGE-ARG dissemination paradigm, in which integrons as key drivers were closely associated with prevalent ARGs such as sul1, sul2, and aadA. With a focus on human pathogenic bacteria and the associated health risks of ARGs, we conducted pathogen source analysis and calculated the antibiotic resistome risk index (ARRI). Our findings highlighted potential risks associated with the transition from PWWTP to WWTP, raising concerns regarding risk amplification due to the mixed treatment of antibiotic-laden industrial wastewater and domestic sewage. Overall, the results of our study provide valuable information for optimizing wastewater treatment practices to better manage antibiotic resistance.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Shuchang Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Mali Shi
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Ni Ni
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xiaohui Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xinyan Guo
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Zou S, Hu R, Liang S, Lu T, Kang D, Li D. Assessment of health risk of antibiotics resistance genes from human disturbed habitat to wild animals: Metagenomic insights into availability and functional changes of gut microbiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117117. [PMID: 39342753 DOI: 10.1016/j.ecoenv.2024.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Not all antibiotic resistance genes (ARGs) pose an ecological risk to their host animals. A standard should be developed to study which types of ARGs posed an ecological risk to wild animals under human disturbances (HDs). In this study, the golden snub-nosed monkeys (Rhinopithecus roxellana) were used as sentinel species. According to the animals-associated enrichment, mobility, and pathogenicity, the ARGs in habitat of sentinel species were divided into four levels. If the mobile and pathogenic ARGs that could be collinear with the metagenome-assembled genome (MAGs) in the gut of the sentinel species, the ARGs were defined as Rank I ARGs and they were considered to have ecological risk to sentinel species. Functional genes in the MAGs that collinear with the Rank I ARGs were used to predict the health risks of sentinel species. The ecological risk to sentinel species was present in 0.158 % of the ARGs-contigs in the habitat. Cultivation and villages, but not grazing, agriculture and ecotourism, increased the ecological risk of the ARGs to wild animals, The ability of gut microbiome to acquire mobile and pathogenic ARGs increased, as did the collinear functional genes, and the health risks of the wild animals also enhanced by the disturbances of cultivation and villages. Cultivation and villages increased the nutrient content of the soil, and they had a positive effect on the ecological risk of Rank I ARGs by affecting the mobile genetic elements (MGEs), microbiome and the resistant group in the habitat, which was why the cultivation and villages increased the health risks of wild animals. We proposed that cultivation and living should be controlled, while grazing, agriculture and ecotourism could be developed in nature reserves of wild animals, but the nutrients in the wild animals' habitat should be monitored.
Collapse
Affiliation(s)
- Shuzhen Zou
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China; Key Laboratory of Conservation Biology of Rhinopithecus roxellana at China West Normal University of Sichuan Province, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Rongpan Hu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Sumei Liang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Tan Lu
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China
| | - Di Kang
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, Science and Technology Department of Sichuan Province, Chengdu, China
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, China West Normal University, 1# Shida Road, Nanchong 637009, China; Key Laboratory of Conservation Biology of Rhinopithecus roxellana at China West Normal University of Sichuan Province, China West Normal University, 1# Shida Road, Nanchong 637009, China; Liziping Giant Panda's Ecology and Conservation Observation and Research Station of Sichuan Province, Science and Technology Department of Sichuan Province, Chengdu, China.
| |
Collapse
|
19
|
Wang Z, Yan C, Wang X, Xia S. Double-edged sword effects of sulfate reduction process in sulfur autotrophic denitrification system: Accelerating nitrogen removal and promoting antibiotic resistance genes spread. BIORESOURCE TECHNOLOGY 2024; 409:131239. [PMID: 39122125 DOI: 10.1016/j.biortech.2024.131239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This study proposed the double-edged sword effects of sulfate reduction process on nitrogen removal and antibiotic resistance genes (ARGs) transmission in sulfur autotrophic denitrification system. Excitation-emission matrix-parallel factor analysis identified the protein-like fraction in soluble microbial products as main endogenous organic matter driving the sulfate reduction process. The resultant sulfide tended to serve as bacterial modulators, augmenting electron transfer processes and mitigating oxidative stress, thereby enhancing sulfur oxidizing bacteria (SOB) activity, rather than extra electron donors. The cooperation between SOB and heterotroph (sulfate reducing bacteria (SRB) and heterotrophic denitrification bacteria (HDB)) were responsible for advanced nitrogen removal, facilitated by multiple metabolic pathways including denitrification, sulfur oxidation, and sulfate reduction. However, SRB and HDB were potential ARGs hosts and assimilatory sulfate reduction pathway positively contributed to ARGs spread. Overall, the sulfate reduction process in sulfur autotrophic denitrification system boosted nitrogen removal process, but also increased the risk of ARGs transmission.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Changchun Yan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
20
|
Yang J, Zhang X, Xu Z, Wang X. Prevalence of antibiotic resistance genes in different drinking water treatment processes in a northwest Chinese city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:436. [PMID: 39316241 DOI: 10.1007/s10653-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
Antibiotic resistance genes (ARGs) are an emerging issue which are receiving increasing concerns in drinking water safety. However, the factors (e.g. treatment processes and water quality) affecting the removal efficiency of ARGs in the drinking water treatment plants (DWTPs) is still unclear. This work investigated the ARG profiles in each treatment process of two DWTPs located in a northwest Chinese city. The results showed that tetracycline and sulfonamide resistance genes were predominant among the 14 targeted ARGs. After the treatment, the Z water treatment plant which demonstrated a higher removal rate of ARGs (ranging from 50 to 80%), compared to the S plant (50-75%). And the average removal rate of tetracycline resistance genes (tetA, tetG, tetQ, tetX) was about 49.18% (S plant) and 67.50% (Z plant), as well as the removal rate of 64.2% and 72.9% for sulfonamide resistance (sul1 and sul2) at S and Z water plants, respectively. It was found that the relative abundance of main microbial communities (such as Bacteroidota, Actinobacteria, Verrucomicrobiota, Roseomonas), α-diversity index, as well as the abundance of pathogenic bacteria were all significantly reduced after different treatment processes. Network co-occurrence analysis revealed that Methylocystis possibly was the potential host for most ARGs, and sul1 was found across a broad spectrum of microorganisms in the drinking water environment. Adonis analysis showed that heavy metals and microbial communities explain solely 44.1% and 35.7% of variances of ARGs within DWTPs. This study provides insights into the contamination status and removal efficiencies of ARGs in DWTPs, offering valuable references for future studies on ARG removal, propagation, and diffusion patterns in drinking water treatment.
Collapse
Affiliation(s)
- Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Xuan Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Zekun Xu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Xueyan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
21
|
Huang X, Zhao X, Fu L, Yang G, Luo L. The distribution and key influential factors of antibiotic resistance genes in agricultural soils polluted by multiple heavy metals. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:385. [PMID: 39167301 DOI: 10.1007/s10653-024-02164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
Due to anthropogenic activities such as mining, several agricultural soils are polluted by multiple heavy metals. However, it is still unclear whether multiple heavy metals could affect the distribution of antibiotic resistance genes (ARGs), and how metals affect ARGs. To understand ARGs' distribution in heavy metal-polluted soils, we chose soils contaminated by different types and contents of heavy metals to determine the ARGs' number and abundance through high-throughput quantitative real-time PCR (HT-qPCR) in this study. Additionally, the factors affecting ARGs' distribution, such as soil properties, mobile genetic genes (MGEs), and bacterial communities, were explored. The results demonstrated that the sampled soils were primarily contaminated by Cd, As, Pb, and Zn, and the pollution load index (PLI) values of these metals ranged from 1.3 to 2.7, indicating a low to moderate degree of heavy metal contamination. The number and abundance of ARGs ranged from 44 to 113 and from 2.74 × 107 copies/g to 1.07 × 108 copies/g, respectively. Besides, abundant MGEs in soils, ranging from 1.84 × 106 copies/g to 5.82 × 106 copies/g, were observed. The pathway analysis suggested that MGEs were the most important factor directly affecting ARG abundance (0.89). Notably, heavy metals also affected the ARG abundance. Proteobacteria and Actinobacteria, the main heavy metal tolerant bacteria, were found to be the main hosts of ARGs through network analysis. ARG-carrying pathogens (ACPs) in agricultural soils were found to carry MGEs, indicating a high risk of dissemination. This study provided important information for understanding the ARGs' fate and also the key factors affecting ARGs' spread in multiple heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Xin Huang
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, People's Republic of China
| | - Xin Zhao
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, People's Republic of China
| | - Li Fu
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, People's Republic of China
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, People's Republic of China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
22
|
Zhang X, Ma L, Zhang XX. Neglected risks of enhanced antimicrobial resistance and pathogenicity in anaerobic digestion during transition from thermophilic to mesophilic. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134886. [PMID: 38878435 DOI: 10.1016/j.jhazmat.2024.134886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Minimization of antibiotic resistance genes (ARGs) and potential pathogenic antibiotic-resistant bacteria (PARB) during anaerobic digestion (AD) is significantly impacted by temperature. However, knowledge on how ARGs and PARB respond to temperature transition from thermophilic to mesophilic is limited. Here, we combined metagenomic-based with culture-based approaches and revealed the risks of antimicrobial resistance and pathogenicity during transition from 55 °C to 35 °C for AD, with strategies of sharp (ST, one-step by 20 °C/d) and mild (MT, step-wise by 1 °C/d). Results indicated a lower decrease in methane production with MT (by 38.9%) than ST (by 88.8%). Phenotypic assays characterized a significant propagation of multi-resistant lactose-fermenting Enterobacteriaceae and indicator pathogens after both transitions, especially via ST. Further genomic evidence indicated a significant increase of ARGs (29.4-fold), virulence factor genes (1.8-fold) and PARB (65.3-fold) after ST, while slight enrichment via MT. Bacterial succession and enhanced horizontal transfer mediated by mobile genetic elements promoted ARG propagation in AD during transition, which was synchronously exacerbated through horizontal transfer mechanisms mediated by cellular physiological responses (oxidative stress, membrane permeability, bacterial conjugation and transformation) and co-selection mechanisms of biomethanation metabolic functions (acidogenesis and acetogenesis). This study reveals temperature-dependent resistome and pathogenicity development in AD, facilitating microbial risk control.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
23
|
Li YQ, Zhang CM, Wang Q, Jiao XR. Metagenomic insights into effects of carbon/nitrogen ratio on microbial community and antibiotic resistance in moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2024; 406:131007. [PMID: 38901747 DOI: 10.1016/j.biortech.2024.131007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
This study investigated the effects of carbon/nitrogen (C/N) ratio on microbial community in moving bed biofilm reactor (MBBR) using metagenomic analysis, and the dynamic changes of relevant antibiotic resistance genes (ARGs) were also analyzed. The results showed that under low C/N ratio, MBBR exhibited average removal rates of 98.41 % for ammonia nitrogen and 75.79 % for total nitrogen. Metagenomic analysis showed low C/N ratio altered the structure of biofilm and water microbiota, resulting in the detachment of bacteria such as Actinobacteria from biofilm into water. Furthermore, sulfamethazine (SMZ)-resistant bacteria and related ARGs were released into water under low C/N ratio, which lead to the increase of SMZ resistance rate to 90%. Moreover, most dominant genera are potential hosts for both nitrogen cycle related genes and ARGs. Specifically, Nitrosomonas that carried gene sul2 might be released from biofilm into water. These findings implied the risks of antibiotic resistance dissemination in MBBR under low C/N ratio.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qian Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan-Ru Jiao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
24
|
Gheorghe-Barbu I, Surleac M, Barbu IC, Paraschiv S, Bănică LM, Rotaru LI, Vrâncianu CO, Niță Lazăr M, Oțelea D, Chifiriuc MC. Decoding the resistome, virulome and mobilome of clinical versus aquatic Acinetobacter baumannii in southern Romania. Heliyon 2024; 10:e33372. [PMID: 39035534 PMCID: PMC11259834 DOI: 10.1016/j.heliyon.2024.e33372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Acinetobacter baumannii, a notorious opportunistic pathogen, presents a formidable challenge in both clinical and environmental fields due to its resilience and ability to acquire resistance. This study undertook a comprehensive analysis of 183 A. baumannii isolates collected between 2019 and 2022 from intra-hospital infections (IHI), hospital sewages (Hs), wastewater treatment plants (WWTP), and adjacent river waters from two Southern cities, focusing on their resistome, virulome, and mobilome through isolation on chromogenic media, identification by MALDI-TOF-MS and antibiotic susceptibility testing by disk diffusion) followed by genotypic characterization [Whole Genome Sequencing (WGS), 3rd generation sequencing through the MinION (ONT) platform, pangenome description, and respectively horizontal gene transfer through conjugation assays]. Our findings reveal significant genomic plasticity and the prevalence of high-risk international clones, underlining the potential of these isolates to act as reservoirs for antibiotic resistance genes (ARGs) that could be dynamically exchanged between clinical and environmental settings through mobile genetic elements (MGEs) such as the pMAL1 plasmids and the critical role of WWTPs in the persistence and spread of A. baumannii. Moreover, our study presents the first report of the co-occurrence of bla OXA-23 and bla OXA-72 in A. baumannii ST2 clone. Thus, our research underscores the necessity for integrated surveillance and targeted interventions across healthcare and environmental sectors to mitigate the risk posed by this adaptable pathogen.
Collapse
Affiliation(s)
- Irina Gheorghe-Barbu
- Department of Microbiology and Botany, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Marius Surleac
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- National Institute for Infectious Diseases, “Matei Balș’‘, Bucharest, Romania
| | - Ilda Czobor Barbu
- Department of Microbiology and Botany, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Simona Paraschiv
- National Institute for Infectious Diseases, “Matei Balș’‘, Bucharest, Romania
| | | | - Liviu-Iulian Rotaru
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrâncianu
- Department of Microbiology and Botany, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
| | - Mihai Niță Lazăr
- National Institute for Research and Development for Industrial Ecology, Bucharest, Romania
| | - Dan Oțelea
- National Institute for Infectious Diseases, “Matei Balș’‘, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Botany, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| |
Collapse
|
25
|
Lei L, Chen N, Chen Z, Zhao Y, Lin H, Li X, Hu W, Zhang H, Shi J, Luo Y. Dissemination of antibiotic resistance genes from aboveground sources to groundwater in livestock farms. WATER RESEARCH 2024; 256:121584. [PMID: 38598950 DOI: 10.1016/j.watres.2024.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are prevalent in various environments on livestock farms, including livestock waste, soil, and groundwater. Contamination of groundwater by ARB and ARGs in livestock farms is a growing concern as it may have potentially huge risks to human health. However, the source of groundwater-borne ARB and ARGs in animal farms remains largely unknown. In this study, different types of samples including groundwater and its potential contamination sources from aboveground (pig feces, wastewater, and soil) from both working and abandoned swine feedlots in southern China were collected and subjected to metagenomic sequencing and ARB isolation. The source tracking based on metagenomic analysis revealed that 56-95 % of ARGs in groundwater was attributable to aboveground sources. Using metagenomic assembly, we found that 45 ARGs predominantly conferring resistance to aminoglycosides, sulfonamides, and tetracyclines could be transferred from the aboveground sources to groundwater, mostly through plasmid-mediated horizontal gene transfer. Furthermore, the full-length nucleotide sequences of sul1, tetA, and TEM-1 detected in ARB isolates exhibited the close evolutionary relationships between aboveground sources and groundwater. Some isolated strains of antibiotic-resistant Pseudomonas spp. from aboveground sources and groundwater had the high similarity (average nucleotide identity > 99 %). Notably, the groundwater-borne ARGs were identified as mainly carried by bacterial pathogens, potentially posing risks to human and animal health. Overall, this study underscores the dissemination of ARGs from aboveground sources to groundwater in animal farms and associated risks.
Collapse
Affiliation(s)
- Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Nan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yirong Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Hanhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jingliang Shi
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
26
|
Wang X, Zhang D, Ma K, Bu C, Wang Y, Tang Y, Xu J, Xu Y. Biochar and zero-valent iron alleviated sulfamethoxazole and tetracycline co-stress on the long-term system performance of bioretention cells: Insights into microbial community, antibiotic resistance genes and functional genes. ENVIRONMENTAL RESEARCH 2024; 248:118271. [PMID: 38262515 DOI: 10.1016/j.envres.2024.118271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Antibiotics and antibiotic resistance genes (ARGs), known as emerging contaminants, have raised widespread concern due to their potential environmental and human health risks. In this study, a conventional bioretention cell (C-BRC) and three modified bioretention cells with biochar (BC-BRC), microbial fuel cell coupled/biochar (EBC-BRC) and zero-valent iron/biochar (Fe/BC-BRC) were established and two antibiotics, namely sulfamethoxazole (SMX) and tetracycline (TC), were introduced into the systems in order to thoroughly investigate the co-stress associated with the long-term removal of pollutants, dynamics of microbial community, ARGs and functional genes in wastewater treatment. The results demonstrated that the SMX and TC co-stress significantly inhibited the removal of total nitrogen (TN) (C-BRC: 37.46%; BC-BRC: 41.64%; EBC-BRC: 55.60%) and total phosphorous (TP) (C-BRC: 53.11%; BC-BRC: 55.36%; EBC-BRC: 62.87%) in C-BRC, BC-BRC and EBC-BRC, respectively, while Fe/BC-BRC exhibited profoundly stable and high removal efficiencies (TN: 89.33%; TP: 98.36%). Remarkably, greater than 99% removals of SMX and TC were achieved in three modified BRCs compared with C-BRC (SMX: 30.86 %; TC: 59.29%). The decreasing absolute abundances of denitrifying bacteria and the low denitrification functional genes (nirK: 2.80 × 105-5.97 × 105 copies/g; nirS: 7.22 × 105-1.69 × 106 copies/g) were responsible for the lower TN removals in C-BRC, BC-BRC and EBC-BRC. The amendment of Fe/BC successfully detoxified SMX and TC to functional bacteria. Furthermore, the co-stress of antibiotics stimulated the propagation of ARGs (sulI, sulII, tetA and tetC) in substrates of all BRCs and only Fe/BC-BRC effectively reduced all the ARGs in effluent by an order of magnitude. The findings contribute to developing robust ecological wastewater treatment technologies to simultaneously remove nutrients and multiple antibiotics.
Collapse
Affiliation(s)
- Xue Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Danyi Zhang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Kexin Ma
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Chibin Bu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Jianing Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
27
|
Shuai X, Zhou Z, Zhu L, Achi C, Lin Z, Liu Z, Yu X, Zhou J, Lin Y, Chen H. Ranking the risk of antibiotic resistance genes by metagenomic and multifactorial analysis in hospital wastewater systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133790. [PMID: 38368689 DOI: 10.1016/j.jhazmat.2024.133790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Antimicrobial resistance poses a serious threat to human health. Hospital wastewater system (HWS) is an important source of antibiotic resistance genes (ARGs). The risk of ARGs in HWS is still an under-researched area. In this study, we collected publicly metagenomic datasets of 71 hospital wastewater samples from 18 hospitals in 13 cities. A total of 9838 contigs were identified to carry 383 unique ARGs across all samples, of which 2946 contigs were plasmid-like sequences. Concurrently, the primary hosts of ARGs within HWS were found to be Escherichia coli and Klebsiella pneumoniae. To further evaluate the risk of each ARG subtype, we proposed a risk assessment framework based on the importance of corresponding antibiotics as defined by the WHO and three other indicators - ARG abundance (A), mobility (M), and host pathogenicity (P). Ninety ARGs were identified as R1 ARGs having high-risk scores, which meant having a high abundance, high mobility, and carried by pathogens in HWS. Furthermore, 25% to 49% of genomes from critically important pathogens accessed from NCBI carried R1 ARGs. A significantly higher number of R1 ARGs was carried by pathogens in the effluents of municipal wastewater treatment plants from NCBI, highlighting the role of R1 ARGS in accelerating health and environmental risks.
Collapse
Affiliation(s)
- Xinyi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenchao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Chioma Achi
- Ineos Oxford Institute of Antimicrobial Research, Department of Biology, University of Oxford, United Kingdom
| | - Zejun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinyu Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanhan Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
Fang Y, Chen C, Cui B, Zhou D. Nanoscale zero-valent iron alleviate antibiotic resistance risk during managed aquifer recharge (MAR) by regulating denitrifying bacterial network. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133238. [PMID: 38134694 DOI: 10.1016/j.jhazmat.2023.133238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
The frequent occurrence of antibiotics in reclaimed water is concerning, in the case of managed aquifer recharge (MAR), it inevitably hinders further water purification and accelerates the evolutionary resistance in indigenous bacteria. In this study, we constructed two column reactors and nanoscale zero-valent iron (nZVI) amendment was applied for its effects on water quality variation, microbial community succession, and antibiotic resistance genes (ARGs) dissemination, deciphered the underlying mechanism of resistance risk reduction. Results showed that nZVI was oxidized to iron oxides in the sediment column, and total effluent iron concentration was within permissible limits. nZVI enhanced NO3--N removal by 15.5% through enriching denitrifying bacteria and genes, whereas made no effects on oxacillin (OXA) removal. In addition, nZVI exhibited a pivotal impact on ARGs and plasmids decreasing. Network analysis elucidated that the diversity and richness of ARG host declined with nZVI amendment. Denitrifying bacteria play a key role in suppressing horizontal gene transfer (HGT). The underlying mechanisms of inhibited HGT included the downregulated SOS response, the inhibited Type-Ⅳ secretion system and the weakened driving force. This study afforded vital insights into ARG spread control, providing a reference for future applications of nZVI in MAR.
Collapse
Affiliation(s)
- Yuanping Fang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Congli Chen
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Bin Cui
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
29
|
Li LJ, Xu F, Xu JX, Yan Y, Su JQ, Zhu YG, Li H. Spatiotemporal Changes of Antibiotic Resistance, Potential Pathogens, and Health Risk in Kindergarten Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3919-3930. [PMID: 38353611 DOI: 10.1021/acs.est.3c07935] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The microorganisms present in kindergartens are extremely important for children's health during their three-year preschool education. To assess the risk of outdoor dust in kindergartens, the antibiotic resistome and potential pathogens were investigated in dust samples collected from 59 kindergartens in Xiamen, southeast China in both the winter and summer. Both high-throughput quantitative PCR and metagenome analysis revealed a higher richness and abundance of antibiotic resistance genes (ARGs) in winter (P < 0.05). Besides, the bloom of ARGs and potential pathogens was evident in the urban kindergartens. The co-occurrence patterns among ARGs, mobile genetic elements (MGEs), and potential pathogens suggested some bacterial pathogens were potential hosts of ARGs and MGEs. We found a large number of high-risk ARGs in the dust; the richness and abundance of high-risk ARGs were higher in winter and urban kindergartens compared to in summer and peri-urban kindergartens, respectively. The results of the co-occurrence patterns and high-risk ARGs jointly reveal that urbanization will significantly increase the threat of urban dust to human beings and their risks will be higher in winter. This study unveils the close association between ARGs/mobile ARGs and potential pathogens and emphasizes that we should pay more attention to the health risks induced by their combination.
Collapse
Affiliation(s)
- Li-Juan Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fei Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Xin Xu
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
30
|
Yang T, Wang X, Jiang L, Sui X, Bi X, Jiang B, Zhang Z, Li X. Antibiotic resistance genes associated with size-segregated bioaerosols from wastewater treatment plants: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123169. [PMID: 38128715 DOI: 10.1016/j.envpol.2023.123169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The antibiotic-resistant pollution in size-segregated bioaerosols from wastewater treatment plants (WWTPs) is of increasing concern due to its public health risks, but an elaborate review is still lacking. This work overviewed the profile, mobility, pathogenic hosts, source, and risks of antibiotic resistance genes (ARGs) in size-segregated bioaerosols from WWTPs. The dominant ARG type in size-segregated bioaerosols from WWTPs was multidrug resistance genes. Treatment units that equipped with mechanical facilities and aeration devices, such as grilles, grit chambers, biochemical reaction tanks, and sludge treatment units, were the primary sources of bioaerosol antibiotic resistome in WWTPs. Higher enrichment of antibiotic resistome in particulate matter with an aerodynamic diameter of <2.5 μm, was found along the upwind-downwind-WWTPs gradient. Only a small portion of ARGs in inhalable bioaerosols from WWTPs were flanked by mobile genetic elements. The pathogens with multiple drug resistance had been found in size-segregated bioaerosols from WWTPs. Different ARGs or antibiotic resistant bacteria have different aerosolization potential associated with bioaerosols from various treatment processes. The validation of pathogenic antibiotic resistance bacteria, deeper investigation of ARG mobility, emission mechanism of antibiotic resistome, and development of treatment technologies, should be systematically considered in future.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Lu Jiang
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, PR China.
| | - Xin Sui
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Zhanpeng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xinlong Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| |
Collapse
|
31
|
Zhang Z, Bo L, Wang S, Li C, Zhang X, Xue B, Yang X, He X, Shen Z, Qiu Z, Zhao C, Wang J. Multidrug-resistant plasmid RP4 inhibits the nitrogen removal capacity of ammonia-oxidizing archaea, ammonia-oxidizing bacteria, and comammox in activated sludge. ENVIRONMENTAL RESEARCH 2024; 242:117739. [PMID: 38007076 DOI: 10.1016/j.envres.2023.117739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
In wastewater treatment plants (WWTPs), ammonia oxidation is primarily carried out by three types of ammonia oxidation microorganisms (AOMs): ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and comammox (CMX). Antibiotic resistance genes (ARGs), which pose an important public health concern, have been identified at every stage of wastewater treatment. However, few studies have focused on the impact of ARGs on ammonia removal performance. Therefore, our study sought to investigate the effect of the representative multidrug-resistant plasmid RP4 on the functional microorganisms involved in ammonia oxidation. Using an inhibitor-based method, we first evaluated the contributions of AOA, AOB, and CMX to ammonia oxidation in activated sludge, which were determined to be 13.7%, 41.1%, and 39.1%, respectively. The inhibitory effects of C2H2, C8H14, and 3,4-dimethylpyrazole phosphate (DMPP) were then validated by qPCR. After adding donor strains to the sludge, fluorescence in situ hybridization (FISH) imaging analysis demonstrated the co-localization of RP4 plasmids and all three AOMs, thus confirming the horizontal gene transfer (HGT) of the RP4 plasmid among these microorganisms. Significant inhibitory effects of the RP4 plasmid on the ammonia nitrogen consumption of AOA, AOB, and CMX were also observed, with inhibition rates of 39.7%, 36.2%, and 49.7%, respectively. Moreover, amoA expression in AOB and CMX was variably inhibited by the RP4 plasmid, whereas AOA amoA expression was not inhibited. These results demonstrate the adverse environmental effects of the RP4 plasmid and provide indirect evidence supporting plasmid-mediated conjugation transfer from bacteria to archaea.
Collapse
Affiliation(s)
- Zhaohui Zhang
- School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, China.
| | - Lin Bo
- School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, China; Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xi Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Xinxin He
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
32
|
Yang T, Wang X, Jiang L, Hui X, Bi X, Zheng X, Jiang B, Wang X. Mobility, bacterial hosts, and risks of antibiotic resistome in submicron bioaerosols from a full-scale wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119771. [PMID: 38071920 DOI: 10.1016/j.jenvman.2023.119771] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Antibiotic resistome could be loaded by bioaerosols and escape from wastewater or sludge to atmosphere environments. However, until recently, their profile, mobility, bacterial hosts, and risks in submicron bioaerosols (PM1.0) remain unclear. Here, metagenomic sequencing and assembly were employed to conduct an investigation of antibiotic resistome associated with PM1.0 within and around a full-scale wastewater treatment plant (WWTP). More subtypes of antibiotic resistant genes (ARGs) with higher total abundance were found along the upwind-downwind-WWTP transect. ARGs in WWTP-PM1.0 were mainly mediated by plasmids and transposases were the most prevalent mobile genetic elements (MGEs) co-occurring with ARGs. A contig-based analysis indicated that very small proportions (15.32%-19.74%) of ARGs in WWTP-PM1.0 were flanked by MGEs. Proteobacteria was the most dominant host of ARGs. A total of 28 kinds of potential pathogens, such as Pseudomonas aeruginosa and Escherichia coli, carried multiple ARG types. Compared to upwind, WWTP and corresponding downwind were characterized by higher PM1.0 resistome risk. This study emphasizes the vital role of WWTPs in discharging PM1.0-loaded ARGs and antibiotic resistant pathogens to air, and indicates the need for active safeguard procedures, such as that employees wear masks and work clothes, covering the main emission sites, and collecting and destroying of bioaerosols.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Lu Jiang
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, 266100, PR China.
| | - Xiaoliang Hui
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, PR China.
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Xiaodong Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| |
Collapse
|
33
|
Shuai X, Zhou Z, Ba X, Lin Y, Lin Z, Liu Z, Yu X, Zhou J, Zeng G, Ge Z, Chen H. Bacteriophages: Vectors of or weapons against the transmission of antibiotic resistance genes in hospital wastewater systems? WATER RESEARCH 2024; 248:120833. [PMID: 37952327 DOI: 10.1016/j.watres.2023.120833] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Antimicrobial resistance poses a serious threat to human health and is responsible for the death of millions of people annually. Hospital wastewater is an important hotspot for antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). However, little is known about the relationship between phages and ARGs in hospital wastewater systems (HWS). In the present study, the viral diversity of 12 HWSs using data from public metagenomic databases was investigated. Viruses were widely found in both the influent and effluent of each HWS. A total of 45 unique ARGs were carried by 85 viral contigs, which accounted for only 0.14% of the total viral populations, implying that ARGs were not commonly present in phages. Three efflux pump genes were identified as shared between phages and bacterial genomes. However, the predominant types of ARGs in HWS such as aminoglycoside- and beta-lactam-resistance genes were rarely found in phages. Based on CRISPR spacer and tRNA matches, interactions between 171 viral contigs and 60 antibiotic-resistant genomes were predicted, including interactions involving phages and vancomycin-resistant Enterococcus_B faecium or beta-lactam-resistant Klebsiella pneumoniae. More than half (56.1%) of these viral contigs indicated lytic and none of them carried ARGs. As the vOTUs in this study had few ARGs and were primarily lytic, HWS may be a valuable source for phage discovery. Future studies will be able to experimentally validate these sequence-based results to confirm the suitability of HWS phages for pathogen control measures in wastewater.
Collapse
Affiliation(s)
- Xinyi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhenchao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yanhan Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zejun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhe Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xi Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinyu Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangshu Zeng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ziye Ge
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; International Cooperation Base of Environmental Pollution and Ecological Health, Science and Technology Agency of Zhejiang, Zhejiang University, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Zhang L, Wang B, Su Y, Wu D, Wang Z, Li K, Xie B. Pathogenic Bacteria Are the Primary Determinants Shaping PM 2.5-Borne Resistomes in the Municipal Food Waste Treatment System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19965-19978. [PMID: 37972223 DOI: 10.1021/acs.est.3c04681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Bioaerosol pollution poses a substantial threat to human health during municipal food waste (FW) recycling. However, bioaerosol-borne antibiotic-resistant genes (ARGs) have received little attention. Herein, 48 metagenomic data were applied to study the prevalence of PM2.5-borne ARGs in and around full-scale food waste treatment plants (FWTPs). Overall, FWTP PM2.5 (2.82 ± 1.47 copies/16S rRNA gene) harbored comparable total abundance of ARGs to that of municipal wastewater treatment plant PM2.5 (WWTP), but was significantly enriched with the multidrug type (e.g., AdeC/I/J; p < 0.05), especially the abundant multidrug ARGs could serve as effective indicators to define resistome profiles of FWTPs (Random Forest accuracy >92%). FWTP PM2.5 exhibited a decreasing enrichment of total ARGs along the FWTP-downwind-boundary gradient, eventually reaching levels comparable to urban PM2.5 (1.46 ± 0.21 copies/16S rRNA gene, N = 12). The combined analysis of source-tracking, metagenome-assembled genomes (MAGs), and culture-based testing provides strong evidence that Acinetobacter johnsonii-dominated pathogens contributed significantly to shaping and disseminating multidrug ARGs, while abiotic factors (i.e., SO42-) indirectly participated in these processes, which deserves more attention in developing strategies to mitigate airborne ARGs. In addition, the exposure level of FWTP PM2.5-borne resistant pathogens was about 5-11 times higher than those in urban PM2.5, and could be more severe than hospital PM2.5 in certain scenarios (<41.53%). This work highlights the importance of FWTP in disseminating airborne multidrug ARGs and the need for re-evaluating the air pollution induced by municipal FWTP in public health terms.
Collapse
Affiliation(s)
- Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zijiang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China
| |
Collapse
|
35
|
Shivaram KB, Bhatt P, Verma MS, Clase K, Simsek H. Bacteriophage-based biosensors for detection of pathogenic microbes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165859. [PMID: 37516175 DOI: 10.1016/j.scitotenv.2023.165859] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Wastewater is discarded from several sources, including industry, livestock, fertilizer application, and municipal waste. If the disposed of wastewater has not been treated and processed before discharge to the environment, pathogenic microorganisms and toxic chemicals are accumulated in the disposal area and transported into the surface waters. The presence of harmful microbes is responsible for thousands of human deaths related to water-born contamination every year. To be able to take the necessary step and quick action against the possible presence of harmful microorganisms and substances, there is a need to improve the effective speed of identification and treatment of these problems. Biosensors are such devices that can give quantitative information within a short period of time. There have been several biosensors developed to measure certain parameters and microorganisms. The discovered biosensors can be utilized for the detection of axenic and mixed microbial strains from the wastewaters. Biosensors can further be developed for specific conditions and environments with an in-depth understanding of microbial organization and interaction within that community. In this regard, bacteriophage-based biosensors have become a possibility to identify specific live bacteria in an infected environment. This paper has investigated the current scenario of microbial community analysis and biosensor development in identifying the presence of pathogenic microorganisms.
Collapse
Affiliation(s)
- Karthik Basthi Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Mohit S Verma
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Kari Clase
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
36
|
Zhao Y, Huang F, Wang W, Gao R, Fan L, Wang A, Gao SH. Application of high-throughput sequencing technologies and analytical tools for pathogen detection in urban water systems: Progress and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165867. [PMID: 37516185 DOI: 10.1016/j.scitotenv.2023.165867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The ubiquitous presence of pathogenic microorganisms, such as viruses, bacteria, fungi, and protozoa, in urban water systems poses a significant risk to public health. The emergence of infectious waterborne diseases mediated by urban water systems has become one of the leading global causes of mortality. However, the detection and monitoring of these pathogenic microorganisms have been limited by the complexity and diversity in the environmental samples. Conventional methods were restricted by long assay time, high benchmarks of identification, and narrow application sceneries. Novel technologies, such as high-throughput sequencing technologies, enable potentially full-spectrum detection of trace pathogenic microorganisms in complex environmental matrices. This review discusses the current state of high-throughput sequencing technologies for identifying pathogenic microorganisms in urban water systems with a concise summary. Furthermore, future perspectives in pathogen research emphasize the need for detection methods with high accuracy and sensitivity, the establishment of precise detection standards and procedures, and the significance of bioinformatics software and platforms. We have compiled a list of pathogens analysis software/platforms/databases that boast robust engines and high accuracy for preference. We highlight the significance of analyses by combining targeted and non-targeted sequencing technologies, short and long reads technologies, sequencing technologies, and bioinformatic tools in pursuing upgraded biosafety in urban water systems.
Collapse
Affiliation(s)
- Yanmei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Fang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenxiu Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Rui Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
37
|
Lee J, Ju F, Beck K, Bürgmann H. Differential effects of wastewater treatment plant effluents on the antibiotic resistomes of diverse river habitats. THE ISME JOURNAL 2023; 17:1993-2002. [PMID: 37684524 PMCID: PMC10579368 DOI: 10.1038/s41396-023-01506-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Wastewater treatment plants (WWTPs) are key sources of antimicrobial resistance genes (ARGs) that could influence the resistomes of microbial communities in various habitats of the receiving river ecosystem. However, it is currently unknown which habitats are most impacted and whether ARGs, like certain chemical contaminants, could be accumulated or enriched in the river ecosystem. We conducted a systematic metagenomic survey on the antibiotic resistomes of WWTP effluent, four riverine habitats (water, suspended particles, sediment, epilithic biofilm), and freshwater amphipod gut microbiomes. The impact of WWTP effluent on the downstream habitats was assessed in nine Swiss rivers. While there were significant differences in resistomes across habitats, the wastewater resistome was more similar to the resistome of receiving river water than to the resistomes of other habitats, and river water was the habitat most strongly impacted by the WWTPs effluent. The sulfonamide, beta-lactam, and aminoglycoside resistance genes were among the most abundant ARGs in the WWTP effluents, and especially aadA, sul1, and class A beta-lactamase genes showed significantly increased abundance in the river water of downstream compared to upstream locations (p < 0.05). However, this was not the case for the sediment, biofilm, and amphipod gut habitats. Accordingly, evidence for accumulation or enrichment of ARGs through the riverine food web was not identified. Our study suggests that monitoring riverine antimicrobial resistance determinants could be conducted using "co-occurrence" of aadA, sul1, and class A beta-lactamase genes as an indicator of wastewater-related pollution and should focus on the water as the most affected habitat.
Collapse
Affiliation(s)
- Jangwoo Lee
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Swiss Federal Institute of Technology, Zurich, Switzerland
- Departments of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, and Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 310030, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China.
| | - Karin Beck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047, Kastanienbaum, Switzerland.
| |
Collapse
|
38
|
Xu Z, Ze S, Chen X, Song X, Wang Y. Mutual influence mechanism of nitrate and sulfamethoxazole on their biotransformation in poly (3-hydroxybutyrate-3-hydroxyvalerate) supported denitrification biofilter for a long-term operation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118897. [PMID: 37683386 DOI: 10.1016/j.jenvman.2023.118897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Nitrate and SMX both play a critical role in their biotransformation in biodegradable polymer-supported denitrification biofilters. However, the mutual influences of nitrate and SMX on their biotransformation for long-term operation remained obscure. Results showed SMX and nitrate had divergent effects on SMX removal. SMX removal rates was positively related with its loading rates, whereas they were negatively related to NLRs. The most abundant metabolite C10H14O3N3S (the reduced form of SMX moiety) from the N-O bond cleavage pathway by UHPLC-LTQ-Orbitrap-MS/MS and effluent TOC variations confirmed the presence of electron donor competition between nitrate and SMX. SMX less than 1000 μg/L had a negligible influence on denitrification performance. Denitrifiers such as Azospira and Denitratisoma were still enriched after chronic exposure, and nosZ/narG positively correlated with sul1/sul2 resistance genes, which were both responsible for the negligible influence of SMX. This work could guide the operational management of denitrification biofilters for simultaneous nitrate and antibiotics removal.
Collapse
Affiliation(s)
- Zhongshuo Xu
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Siwen Ze
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| | - Xueting Chen
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| | - Xinshan Song
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China
| | - Yuhui Wang
- Donghua University, College of Environmental Science and Engineering, Shanghai, 201600, China.
| |
Collapse
|
39
|
Kim MJ, Kang D, Lee G, Kim K, Kim J, Shin JH, Lee S. Interplays between cyanobacterial blooms and antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2023; 181:108268. [PMID: 37897871 DOI: 10.1016/j.envint.2023.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs), which are a form of microbial dysbiosis in freshwater environments, are an emerging environmental and public health concern. Additionally, the freshwater environment serves as a reservoir of antibiotic resistance genes (ARGs), which pose a risk of transmission during microbial dysbiosis, such as cyanoHABs. However, the interactions between potential synergistic pollutants, cyanoHABs, and ARGs remain poorly understood. During cyanoHABs, Microcystis and high microcystin levels were dominant in all the nine regions of the river sampled. The resistome, mobilome, and microbiome were interrelated and linked to the physicochemical properties of freshwater. Planktothrix and Pseudanabaena competed with Actinobacteriota and Proteobacteria during cyanoHABs. Forty two ARG carriers were identified, most of which belonged to Actinobacteriota and Proteobacteria. ARG carriers showed a strong correlation with ARGs density, which decreased with the severity of cyanoHAB. Although ARGs decreased due to a reduction of ARG carriers during cyanoHABs, mobile gene elements (MGEs) and virulence factors (VFs) genes increased. We explored the relationship between cyanoHABs and ARGs for potential synergistic interaction. Our findings demonstrated that cyanobacteria compete with freshwater commensal bacteria such as Actinobacteriota and Proteobacteria, which carry ARGs in freshwater, resulting in a reduction of ARGs levels. Moreover, cyanoHABs generate biotic and abiotic stress in the freshwater microbiome, which may lead to an increase in MGEs and VFs. Exploration of the intricate interplays between microbiome, resistome, mobilome, and pathobiome during cyanoHABs not only revealed that the mechanisms underlying the dynamics of microbial dysbiosis but also emphasizes the need to prioritize the prevention of microbial dysbiosis in the risk management of ARGs.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Dayun Kang
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea.
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Kyeongnam Kim
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jinnam Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea.
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Seungjun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
40
|
Xu M, Gao P, Chen HQ, Shen XX, Xu RZ, Cao JS. Metagenomic insight into the prevalence and driving forces of antibiotic resistance genes in the whole process of three full-scale wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118369. [PMID: 37356328 DOI: 10.1016/j.jenvman.2023.118369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The spread of antibiotic resistance genes (ARGs) is an emerging global health concern, and wastewater treatment plants (WWTPs), as an essential carrier for the occurrence and transmission of ARGs, deserves more attention. Based on the Illumina NovaSeq high-throughput sequencing platform, this study conducted a metagenomic analysis of 18 samples from three full-scale WWTPs to explore the fate of ARGs in the whole process (influent, biochemical treatment, advanced treatment, and effluent) of wastewater treatment. Total 70 ARG subtypes were detected, among which multidrug, aminoglycoside, tetracycline, and macrolide ARGs were most abundant. The different treatment processes used for three WWTPs were capable of reducing ARG diversity, but did not significantly reduce ARG abundance. Compared to that by denitrification filters, the membrane bioreactor (MBR) process was advantageous in controlling the prevalence of multidrug ARGs in WWTPs. Linear discriminant analysis Effect Size (LEfSe) suggested g_Nitrospira, g_Curvibacter, and g_Mycobacterium as the key bacteria responsible for differential ARG prevalence among different WWTPs. Meanwhile, adeF, sul1, and mtrA were the persistent antibiotic resistance genes (PARGs) and played dominant roles in the prevalence of ARGs. Proteobacteria and Actinobacteria were the host bacteria of majority ARGs in WWTPs, while Pseudomonas and Nitrospira were the most crucial host bacteria influencing the dissemination of critical ARGs (e.g., adeF). In addition, microbial richness was determined to be the decisive factor affecting the diversity and abundance of ARGs in wastewater treatment processes. Overall, regulating the abundance of microorganisms and key host bacteria by selecting processes with microbial interception, such as MBR process, may be beneficial to control the prevalence of ARGs in WWTPs.
Collapse
Affiliation(s)
- Ming Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Peng Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Hao-Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiao-Xiao Shen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
41
|
Zhao Y, Hu Z, Xie H, Wu H, Wang Y, Xu H, Liang S, Zhang J. Size-dependent promotion of micro(nano)plastics on the horizontal gene transfer of antibiotic resistance genes in constructed wetlands. WATER RESEARCH 2023; 244:120520. [PMID: 37657315 DOI: 10.1016/j.watres.2023.120520] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Constructed wetlands (CWs) have been identified as significant sources of micro(nano)plastics (MPs/NPs) and antibiotic resistance genes (ARGs) in aquatic environments. However, little is known about the impact of MPs/NPs exposure on horizontal gene transfer (HGT) of ARGs and shaping the corresponding ARG hosts' community. Herein, the contribution of polystyrene (PS) particles (control, 4 mm, 100 μm, and 100 nm) to ARG transfer was investigated by adding an engineered fluorescent Escherichia coli harboring RP4 plasmid-encoded ARGs into CWs. It was found MPs/NPs significantly promoted ARG transfer in a size-dependent manner in each CW medium (p < 0.05). The 100 μm-sized PS exhibited the most significant promotion of ARG transfer (p < 0.05), whereas 100 nm-sized PS induced limited promotion due to its inhibitory activity on microbes. The altered RP4-carrying bacterial communities suggested that MPs/NPs, especially 100 µm-PS, could recruit pathogenic and nitrifying bacteria to acquire ARGs. The increased sharing of RP4-carrying core bacteria in CW medium further suggested that ARGs can spread into CW microbiome using MPs/NPs as carriers. Overall, our results highlight the high risks of ARG dissemination induced by MPs/NPs exposure and emphasize the need for better control of plastic disposal to prevent the potential health threats.
Collapse
Affiliation(s)
- Yanhui Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P.R. China.
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Qingdao 266237, P.R. China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Yuechang Wang
- Beijing Further Tide Eco-construction Co., Ltd, Beijing 100012, P.R. China
| | - Han Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, P.R. China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P.R. China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, P.R. China.
| |
Collapse
|
42
|
Wang X, Zhang L, Gu J, Feng Y, He K, Jiang H. Effects of soil solarization combined with manure-amended on soil ARGs and microbial communities during summer fallow. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121950. [PMID: 37279818 DOI: 10.1016/j.envpol.2023.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Soil solarization (SS) is a technique for managing pathogens and weeds, which involves covering with transparent plastic to increase soil temperature during summer fallow (SF). However, SS also alters the diversity of bacterial communities. Therefore, during SF, various organic modifiers are used in combination with SS to improve its efficacy. Organic amendments may contain antibiotic resistance genes (ARGs). Greenhouse vegetable production (GVP) soils are vital to ensure food security and ecological balance. However, comprehensive study on the effects of SS combined with different types of manure on ARGs in GVP soils during SF remains unclear. Therefore, this study employed high-throughput qPCR to explore the effects of different organic amendments combined with SS on the abundance changes of ARGs and mobile genetic elements (MGEs) in GVP soils during SF. The abundance and diversity of ARGs and MGEs in GVP soils with different manure fertilization and SS decreased during SF. Horizontal gene transfer via MGEs (especially integrases 45.80%) induced by changes in environmental factors (NO3--N 14.7% and NH4+-N) was the main factor responsible for the changes in ARGs. Proteobacteria (14.3%) and Firmicutes were the main potential hosts of ARGs. Network analysis suggested that Ornithinimicrobium, Idiomarina and Corynebacterium had positive correlations with aminoglycosides, MLSB, and tetracycline resistance genes. These results provide new insights to understand the fate of ARGs in the GVP soils by manure-amended combined with SS during SF, which may help to reduce the spread of ARGs.
Collapse
Affiliation(s)
- Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yucheng Feng
- Department of C, rop, Soil & Environmental Sciences (formerly Agronomy and Soils), Auburn University, Auburn, AL36849, USA
| | - Kai He
- Tobacco Monopoly Bureau (Branch), Longhui, Shaoyang, Hunan, 422208, China
| | - Haihong Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
43
|
Li J, Zhao C, Li C, Xue B, Wang S, Zhang X, Yang X, Shen Z, Bo L, He X, Qiu Z, Wang J. Multidrug-resistant plasmid RP4 increases NO and N 2O yields via the electron transport system in Nitrosomonas europaea ammonia oxidation. WATER RESEARCH 2023; 242:120266. [PMID: 37421866 DOI: 10.1016/j.watres.2023.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Antibiotic resistance genes (ARGs) have recently become an important public health problem and therefore several studies have characterized ARG composition and distribution. However, few studies have assessed their impact on important functional microorganisms in the environment. Therefore, our study sought to investigate the mechanisms through which multidrug-resistant plasmid RP4 affected the ammonia oxidation capacity of ammonia-oxidizing bacteria, which play a key role in the nitrogen cycle. The ammonia oxidation capacity of N. europaea ATCC25978 (RP4) was significantly inhibited, and NO and N2O were produced instead of nitrite. Our findings demonstrated that the decrease in electrons from NH2OH decreased the ammonia monooxygenase (AMO) activity, leading to a decrease in ammonia consumption. In the ammonia oxidation process, N. europaea ATCC25978 (RP4) exhibited ATP and NADH accumulation. The corresponding mechanism was the overactivation of Complex Ⅰ, ATPase, and the TCA cycle by the RP4 plasmid. The genes encoding TCA cycle enzymes related to energy generation, including gltA, icd, sucD, and NE0773, were upregulated in N. europaea ATCC25978 (RP4). These results demonstrate the ecological risks of ARGs, including the inhibition of the ammonia oxidation process and an increased production of greenhouse gases such as NO and N2O.
Collapse
Affiliation(s)
- Jia Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xi Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaobo Yang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lin Bo
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China; Tiangong University, Tianjin, China
| | - Xinxin He
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhigang Qiu
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
44
|
Guan X, Guo Z, Wang X, Xiang S, Sun T, Zhao R, He J, Liu F. Transfer route and driving forces of antibiotic resistance genes from reclaimed water to groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121800. [PMID: 37169235 DOI: 10.1016/j.envpol.2023.121800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The infiltration of reclaimed water has created a significant environmental risk due to the spread of antibiotic resistance genes (ARGs) in riparian groundwater. Reclaimed water from wastewater treatment plants (WWTPs) had been identified as a source of both antibiotics and ARGs in groundwater, based on their spatial and temporal distribution. The assembly process of microbial communities in the groundwater of the infiltration zone was more influenced by deterministic processes. Co-occurrence network analysis revealed that Thermotoga, Desulfotomaculum, Methanobacterium, and other such genera were dominant shared genera. These were considered core genera and hosts of ARGs for transport from reclaimed water to groundwater. The most abundant ARG in these shared genera was MacB, enriched in groundwater point G3 and potentially transferred from reclaimed water to groundwater by Acidovorax, Hydrogenophaga, Methylotenera, Dechloromonas, and Nitrospira. During the infiltration process, environmental factors and the tradeoff between energy metabolism and antibiotic defense strategy may have affected ARG transfer. Understanding the transfer route and driving forces of ARGs from reclaimed water to groundwater provided a new perspective for evaluating the spread risk of ARGs in reclaimed water infiltration.
Collapse
Affiliation(s)
- Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Zining Guo
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Xusheng Wang
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Shizheng Xiang
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Tongxin Sun
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Ruoyu Zhao
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jiangtao He
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Fei Liu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
45
|
Shi B, Zhao R, Su G, Liu B, Liu W, Xu J, Li Q, Meng J. Metagenomic surveillance of antibiotic resistome in influent and effluent of wastewater treatment plants located on the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162031. [PMID: 36740063 DOI: 10.1016/j.scitotenv.2023.162031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
As hotspots for the dissemination of antibiotic resistance genes (ARGs), wastewater treatment plants (WWTPs) have attracted global attention. However, there lacks a sufficient metagenomic surveillance of antibiotic resistome in the WWTPs located on the Qinghai-Tibet Plateau. Here, metagenomic approaches were used to comprehensively investigate the occurrence, mobility potential, and bacterial hosts of ARGs in influent and effluent of 18 WWTPs located on the Qinghai-Tibet Plateau. The total ARG relative abundances and diversity were significantly decreased from influent to effluent across the WWTPs. Multidrug, bacitracin, sulfonamide, aminoglycoside, and beta-lactam ARGs generally consisted of the main ARG types in effluent samples, which were distinct from influent samples. A group of 72 core ARGs accounting for 61.8-95.8 % of the total ARG abundances were shared by all samples. Clinically relevant ARGs mainly conferring resistance to beta-lactams were detected in influent (277 ARGs) and effluent (178 ARGs). Metagenomic assembly revealed that the genetic location of an ARG on a plasmid or a chromosome was related to its corresponding ARG type, demonstrating the distinction in the mobility potential of different ARG types. The abundance of plasmid-mediated ARGs accounted for a much higher proportion than that of chromosome-mediated ARGs in both influent and effluent. Moreover, the ARGs co-occurring with diverse mobile genetic elements in the effluent exhibited a comparable mobility potential with the influent. Furthermore, 137 metagenome-assembled genomes (MAGs) assigned to 13 bacterial phyla were identified as the ARG hosts, which could be effectively treated in most WWTPs. Notably, 46 MAGs were found to carry multiple ARG types and the potential pathogens frequently exhibited multi-antibiotic resistance. Some ARG types tended to be carried by certain bacteria, showing a specific host-resistance association pattern. This study highlights the necessity for metagenomic surveillance and will facilitate risk assessment and control of antibiotic resistome in WWTPs located on the vulnerable area.
Collapse
Affiliation(s)
- Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renxin Zhao
- School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingyue Liu
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wenxiu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Yuan L, Ju F. Potential Auxiliary Metabolic Capabilities and Activities Reveal Biochemical Impacts of Viruses in Municipal Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5485-5498. [PMID: 36947091 DOI: 10.1021/acs.est.2c07800] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Viruses influence biogeochemical cycles in oceans, freshwater, soil, and human gut through infection and by modulating virocell metabolism through virus-encoded auxiliary metabolic genes (vAMGs). However, the geographical distribution, potential metabolic function, and engineering significance of vAMGs in wastewater treatment plants (WWTPs) remain to be explored. Here, 752 single-contig viral genomes with high confidence, 510 of which belonged to Caudovirales, were recovered from the activated sludge metagenomes of 32 geographically distributed WWTPs. A total of 101 vAMGs involved in various metabolic pathways were identified, the most common of which were the queuosine biosynthesis genes folE, queD, and queE and the sulfur metabolism gene cysH. Phylogenetic analysis and virus-host relationship prediction revealed the probable evolutionary histories of vAMGs involved in carbon (acpP and prsA), nitrogen (amoC), sulfur (cysH), and phosphate (phoH) metabolism, which potentially mediate microbial carbon and nutrient cycling. Notably, 11 of the 38 (28.3%) vAMGs identified in the metagenomes with corresponding metatranscriptomes were transcriptionally expressed, implying an active functional state. This meta-analysis provides the first broad catalog of vAMGs in municipal WWTPs and how they may assist in the basic physiological reactions of their microbial hosts or nutrient cycling in the WWTPs, and therefore, may have important effects on the engineering of wastewater treatment processes.
Collapse
Affiliation(s)
- Ling Yuan
- Environmental Science and Engineering Department, Zhejiang University, Hangzhou 310012, Zhejiang, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Environmental Microbiome and Biotechnology Laboratory (EMBLab), Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
47
|
Shao M, Liu L, Liu B, Zheng H, Meng W, Liu Y, Zhang X, Ma X, Sun C, Luo X, Li F, Xing B. Hormetic Effect of Pyroligneous Acids on Conjugative Transfer of Plasmid-mediated Multi-antibiotic Resistance Genes within Bacterial Genus. ACS ENVIRONMENTAL AU 2023; 3:105-120. [PMID: 37102089 PMCID: PMC10125354 DOI: 10.1021/acsenvironau.2c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 04/28/2023]
Abstract
Spread of antibiotic resistance genes (ARGs) by conjugation poses great challenges to public health. Application of pyroligneous acids (PA) as soil amendments has been evidenced as a practical strategy to remediate pollution of ARGs in soils. However, little is known about PA effects on horizontal gene transfer (HGT) of ARGs by conjugation. This study investigated the effects of a woody waste-derived PA prepared at 450°C and its three distillation components (F1, F2, and F3) at different temperatures (98, 130, and 220°C) on conjugative transfer of plasmid RP4 within Escherichia coli. PA at relatively high amount (40-100 μL) in a 30-mL mating system inhibited conjugation by 74-85%, following an order of PA > F3 ≈ F2 ≈ F1, proving the hypothesis that PA amendments may mitigate soil ARG pollution by inhibiting HGT. The bacteriostasis caused by antibacterial components of PA, including acids, phenols, and alcohols, as well as its acidity (pH 2.81) contributed to the inhibited conjugation. However, a relatively low amount (10-20 μL) of PA in the same mating system enhanced ARG transfer by 26-47%, following an order of PA > F3 ≈ F2 > F1. The opposite effect at low amount is mainly attributed to the increased intracellular reactive oxygen species production, enhanced cell membrane permeability, increased extracellular polymeric substance contents, and reduced cell surface charge. Our findings highlight the hormesis (low-amount promotion and high-amount inhibition) of PA amendments on ARG conjugation and provide evidence for selecting an appropriate amount of PA amendment to control the dissemination of soil ARGs. Moreover, the promoted conjugation also triggers questions regarding the potential risks of soil amendments (e.g., PA) in the spread of ARGs via HGT.
Collapse
Affiliation(s)
- Mengying Shao
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Liuqingqing Liu
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bingjie Liu
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Ministry
of Ecology and Environment, South China
Institute of Environmental Sciences, Guangzhou 510535, China
| | - Hao Zheng
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572000, China
| | - Wei Meng
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yifan Liu
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiao Zhang
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiaohan Ma
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Cuizhu Sun
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xianxiang Luo
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572000, China
| | - Fengmin Li
- Institute
of Coastal Environmental Pollution Control, Ministry of Education
Key Laboratory of Marine Environment and Ecology, College of Environmental
Science and Engineering, Frontiers Science Center for Deep Ocean Multispheres
and Earth System, Ocean University of China, Qingdao 266100, China
- Marine
Ecology and Environmental Science Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Sanya
Oceanographic Institution, Ocean University
of China, Sanya 572000, China
| | - Baoshan Xing
- Stockbridge
School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
48
|
Fang Y, Chen C, Cui B, Zhou D. Self-rescue of nitrogen-cycling bacteria under β-lactam antibiotics stress during managed aquifer recharge (MAR): Microbial collaboration and anti-resistance. WATER RESEARCH 2023; 231:119623. [PMID: 36689880 DOI: 10.1016/j.watres.2023.119623] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Storing reclaimed water via managed aquifer recharge (MAR) is an effective strategy for alleviating groundwater overdraft and achieving water resource recycling simultaneously. However, β-lactam antibiotics in the reclaimed water can induce stress on aquifer system, reshape microbial community, and affect the emergence and prevalence of antibiotic resistance genes (ARGs). In this study, three sandy soil columns (H 1.5 m, ID 14 cm) were employed to simulate MAR, and synthetic reclaimed water containing either amoxicillin (AMO), ampicillin (AMP) or oxacillin (OXA) was continuously recharged for 120 d The temporal and spatial attenuation of β-lactams and nitrogen was studied, and microbial collaboration and the resistance mechanism were elaborated. Biodegradation is the main pathway for β-lactams elimination, AMO and AMP were eliminated when migrating 30 cm, while the attenuation of OXA experienced in the whole column with final removal efficiency of 82%. Moreover, refractory OXA induced more ARGs production, and approximately 10% and 13% higher than that of AMO and AMP columns. Efflux pump and antibiotics inactivation were the two major resistance mechanisms. NO3--N gradually decreased (by 26%, 38%, and 49% for AMO, AMP, and OXA, respectively) along the recharge direction. Microbial co-occurrence network revealed that nitrogen-cycling bacteria were the keystone species in aquifer community, and ammonation provided NH4+-N for the nitrification process of ammonia-oxidizing archaea (AOA), promoting the further denitrification for nitrogen removal in MAR process. Nitrogen-cycling bacteria were the key and active ARG hosts, which could keep nitrogen transformation activity under antibiotics stress. In sum, nitrogen-cycling bacteria exhibited intimate collaboration and elastic resistance in response to the malnutrition environment and β-lactams exposure during MAR.
Collapse
Affiliation(s)
- Yuanping Fang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China
| | - Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China
| | - Bin Cui
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
49
|
Zhu L, Yuan L, Shuai XY, Lin ZJ, Sun YJ, Zhou ZC, Meng LX, Ju F, Chen H. Deciphering basic and key traits of antibiotic resistome in influent and effluent of hospital wastewater treatment systems. WATER RESEARCH 2023; 231:119614. [PMID: 36682238 DOI: 10.1016/j.watres.2023.119614] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Hospital wastewater treatment system (HWTS) is an important source and environmental reservoir of clinically relevant antibiotic resistance genes (ARGs). However, how antibiotic resistome of clinical wastewater changed in HWTS is poorly understood. Herein, the basic quantitative traits (i.e., diversity and abundance) of ARGs in three HWTSs were profiled by metagenomics. In total, 709 ARG subtypes belonging to 20 ARG types were detected with relative abundance ranging from 1.12 × 10-5 to 7.33 × 10-1 copies/cell. Notably, most ARGs could not be significantly removed by chlorination treatment in the HWTS. These ARGs were identified to confer resistance to almost all major classes of antibiotics and include ARGs of last-resort antibiotics, such as blaNDM, mcr and tet(X) which were abundantly occurred in HWTS with 19, 5 and 7 variants, respectively. Moreover, qualitative analysis based on metagenome-assembled genome (MAG) analysis revealed that the putative hosts of the identified ARGs were broadly distributed into at least 8 dominant bacterial phyla. Of the 107 ARG-carrying MAGs recovered, 39 encoded multi-antibiotic resistance and 16 belonged to antibiotic resistant pathogens. Further analysis of co-occurrence patterns of ARGs with mobile genetic elements suggested their potential mobility. These key qualitative traits of ARGs provided further information about their phylogeny and genetic context. This study sheds light on the key traits of ARGs associated with resistance dissemination and pathogenicity and health risks of clinical wastewater.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ling Yuan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Industries of the Future, Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Xin-Yi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ze-Jun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Jie Sun
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen-Chao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling-Xuan Meng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Ju
- Research Center for Industries of the Future, Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China.
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
50
|
Active predation, phylogenetic diversity, and global prevalence of myxobacteria in wastewater treatment plants. THE ISME JOURNAL 2023; 17:671-681. [PMID: 36774445 PMCID: PMC9919749 DOI: 10.1038/s41396-023-01378-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/13/2023]
Abstract
The operation of modern wastewater treatment plants (WWTPs) is driven by activated sludge microbiota, a complex assemblage of trophically interacting microorganisms. Microbial predation is crucial to fundamental understanding of how biological interactions drive microbiome structuring and functioning of WWTPs. However, predatory bacteria have received little attention regarding their diversity, activity, and ecological function in activated sludge, limiting the exploitation of food web interactions for wastewater microbiome engineering. Here, by using rRNA-stable isotope probing of activated sludge microbiota with 13C-labeled prey bacteria, we uncovered diverse as-yet-uncultivated putative predatory bacteria that actively incorporated 13C-biomass. Myxobacteria, especially Haliangium and the mle1-27 clade, were found as the dominant active predators, refreshing conventional views based on a few predatory isolates of Bdellovibrionota from WWTPs. The identified predatory bacteria showed more selective predation on prey compared with the protists dominated by ciliates, providing in situ evidence for inter-domain predation behavior divergence in activated sludge. Putative predatory bacteria were tracked over a two-year microbiome monitoring effort at a local WWTP, revealing the predominance of Myxococcota (6.5 ± 1.3%) over Bdellovibrionota (1.0 ± 0.2%) lineages. Phylogenetic analysis unveiled highly diverse myxobacteria inhabiting activated sludge and suggested a habitat filtering effect in global WWTPs. Further mining of a global activated sludge microbiome dataset revealed the prevalence of Myxococcota (5.4 ± 0.1%) species and potential impacts of myxobacterial predation on process performance. Collectively, our findings provided unique insights into the predating activity, diversity, and prevalence of Myxococcota species in activated sludge, highlighting their links with wastewater treatment processes via trophic regulation of enteric and functional bacteria.
Collapse
|